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Abstract

In this paper we study the gonality of the normalizations of curves in the linear system |H | of a general primitively polarized

complex K3 surface (S,H) of genus p. We prove two main results. First we give a necessary condition on p,g, r, d for the

existence of a curve in |H | with geometric genus g whose normalization has a gr
d
. Secondly we prove that for all numerical cases

compatible with the above necessary condition, there is a family of nodal curves in |H | of genus g carrying a g1
k
and of dimension

equal to the expected dimensionmin{2(k−1), g}. Relations with the Mori cone of the hyperkähler manifold Hilbk(S) are discussed.

 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on étudié la gonalité des normalisations des courbes dans le système linéaire |H | d’une surface générale K3

complexe principalement polarisée (S,H) de genre p. On démontre deux resultats principaux. Premièrement on donne une

condition nécessaire sur p,g, r, d à l’existence d’une courbe dans |H | de genre géometrique g dont la normalisation a un gr
d
.

Deuxièmement on démontre que pour tous les cas numérique compatible avec la condition nécessaire ci-dessus, il existe une

famille de courbes nodales dans |H | de genre g qui possèdent un g1
k
et dont la dimension est égale à la dimension attendue

min{2(k− 1), g}. On discute aussi des relations avec le cône de Mori de la variété hyperkählerienne Hilbk(S).

 2013 Elsevier Masson SAS. All rights reserved.
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Introduction

Let (S,H) be a primitively polarized complex K3 surface of genus p � 2, i.e. Ω2
S � OS , h

1(OS) = 0 and H is

a globally generated, indivisible, divisor (or line bundle) with H 2 = 2p − 2. The main objective of this paper is to

study the gonality of the normalization of curves, specifically of nodal curves, in the linear system |H |, when (S,H)

is general in its moduli space, that is, (S,H) belongs to a Zariski open dense subset.
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Let V|H |,δ(S) ⊆ |H | be the Severi variety of curves with δ � p nodes. It is a classical result that V|H |,δ(S) is a

nonempty, locally closed, smooth variety of dimension g = p − δ, which is the geometric genus of the curves in

V|H |,δ(S). The moduli morphism V|H |,δ(S)→Mg is finite to its image (see Proposition 1.2 below).

We consider V k
|H |,δ(S) ⊆ V|H |,δ(S) the subvariety of curves whose normalizations carry a g

1
k . By Brill–Noether

theory, if g � 2(k − 1) then V k
|H |,δ(S) = V|H |,δ(S) so the interesting range is g > 2(k − 1). A count of parameters,

carried out in Section 1.4, suggests that the expected dimension of V k
|H |,δ(S) is 2(k − 1). In any event, if nonempty,

V k
|H |,δ(S) has dimension at least 2(k − 1) (see Proposition 1.5).

Our first main result is Theorem 3.1, which yields a necessary condition for the normalization of a curve C ∈ |H |

of geometric genus g (with any type of singularities) on a primitively polarized K3 surface (S,H) of genus p with

no reducible curves in |C| (e.g., with Pic(S)� Z[H ]) to possess a grd , namely that

ρ(p,αr,αd + δ)� 0, where α :=

�

gr + (d − r)(r − 1)

2r(d − r)

�

,

and ρ is the usual Brill–Noether number. In the case of g1k ’s, setting r = 1, d = k and δ := p− g, the above necessary

condition reads

δ � α
�

p− δ − (k − 1)(α + 1)
�

, where α :=

�

p− δ

2(k− 1)

�

. (1)

Theorem 3.1 is a strong improvement of [13, Thm. 1.4] and its proof is based on the vector bundle approach à la

Lazarsfeld [28].

Our second main result deals with nonemptiness and dimension of V k
|H |,δ(S), and with properties of its general

member, and proves that the bound (1) is optimal:

Theorem 0.1. Let (S,H) be a general primitively polarized K3 surface of genus p � 3 and let δ and k be integers

satisfying 0� δ � p and k � 2. Set g = p− δ. Then:

(i) V k
|H |,δ(S) �= ∅ if and only if (1) holds;

(ii) when nonempty, V k
|H |,δ(S) has an irreducible component of the expected dimension min{2(k − 1), g} whose

general element is an irreducible curve C with normalization C̃ of genus g such that dim(W 1
k (C̃)) =

max{0, ρ(g,1, k)= 2(k− 1)− g};

(iii) in addition, when g � 2(k− 1) (resp. g < 2(k− 1)), any (resp. the general) g1k on C̃ has simple ramification and

all nodes of C are non-neutral with respect to it.

As for statement (i), we note that nonemptiness when p is even, δ � p
4 and k � p

2 + 1 − δ has been proved by

Voisin [35, pf. of Cor. 1, p. 366] by a totally different approach.

Theorem 0.1 yields that, for fixed δ > 0, the general curve in (some component of) the Severi variety V|H |,δ(S) has

the gonality of a general genus g curve, i.e. �(g + 3)/2�, but, for all k satisfying (1), there are substrata of dimension

2(k − 1) of curves of lower gonality k. This is in contrast to the case δ = 0, where the gonality is constant and equal

to �(p + 3)/2�. Parts (ii) and (iii) of Theorem 0.1 also yield that C̃ has gonality min{k, �(g + 3)/2�} and enjoys

properties of a general curve of such a gonality.

The proof of Theorem 0.1 relies on a rather delicate degeneration argument. Indeed, the general (S,H) can be

specialized to the case where S contains a smooth rational curve Γ of degree p and such that S can be embedded

into P2p−1 by the linear system |H + Γ |. This S can be in turn degenerated to a union R of two smooth rational

normal surfaces R1 � P1 × P1 and R2 � F2 intersecting transversally along a smooth elliptic curve of degree 2p
and such that the rational curve Γ specializes to the negative section s2 of R2 and H specializes to the line bundle

OR(1)⊗OR(−s2). This is proved in Section 4.1. In Sections 4.2 and 5 we describe nodal curves on the limit surface

R that fill up limit components of V|H |,δ(S). In Section 6 we describe possible limits of V
k
|H |,δ(S); this latter analysis

is one of the crucial points in the paper, and, to the best of our knowledge, is a nontrivial novelty. If nonempty, these

limit varieties have the expected dimension, and this yields nonemptiness and expected dimension for the general S

containing a smooth rational curve of degree p as above, and therefore also for the general S as in the statement of the
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theorem (see Proposition 1.6). In Section 7 we show nonemptiness of the limit varieties and the required properties

for the g1k in the range (1).

We note that our two-step degeneration seems to be new and has the property of independent interest that the stable

model of the general hyperplane section of the limit surface is an irreducible rational nodal curve. We believe that this

technique can be useful in other contexts. Specifically, for K3 surfaces this can be used to study Severi varieties of

nodal curves, also in |nH | for n > 1.

Besides its intrinsic interest for Brill–Noether theory and moduli problems, the subject of this paper is related to

Mori theory and rational curves on the 2k-dimensional hyperkähler manifold Hilbk(S) parametrizing 0-dimensional

length k-subschemes of the K3 surface S. A curve on S with a g1k on its normalization determines a rational curve on

Hilbk(S). For the importance of rational curves on hyperkähler manifolds see, e.g., [25,26,6,22,21,20,37,36,38] and

Section 8. In particular, rational curves determine the nef and ample cones.

The curves on S in Theorem 0.1 determine a family of rational curves in Hilbk(S) of dimension 2(k− 1), which is

the expected dimension of any family of rational curves on a 2k-dimensional hyperkähler manifold. In Section 2 we

determine their classes in N1(Hilb
k(S)) (see Lemma 2.1); in this computation the properties of the g1k stated in part

(iii) of Theorem 0.1 play an essential role. The lower δ is, the closer the class is to the boundary of the Mori cone.

As a consequence, we obtain necessary conditions for a divisor in Hilbk(S) to be nef or ample (see Proposition 8.3).

For infinitely many p,k we prove that the classes of the rational curves in Hilbk(S) we obtain from Theorem 0.1

with δ minimal satisfying (1) (which we call optimal classes) generate extremal rays of the Mori cone of Hilbk(S)

(see Corollary 8.6 and Proposition 8.9). After the appearance of the first version of this paper on the web, this has

been verified also in the cases p � 2(k − 1), where δ = 0, in [4] (see Proposition 8.7). To determine the Mori cone

of Hilbk(S) for all p,k one would have to extend our results to the nonprimitive cases |nH |, n > 1. This is a difficult

task, but should in principle be possible to treat with similar methods. We plan to do this in future research.

In Section 8 we also relate our work to some interesting conjectures of Hassett and Tschinkel on the Mori cone

of Hilbk(S) (see in particular Remark 8.10) and of Huybrechts and Sawon on Lagrangian fibrations (see in particular

Corollary 8.13).

Throughout this paper we work over C. As usual, and as we did already in this Introduction, we may sometimes
abuse notation and identify divisors with the corresponding line bundles, indifferently using the additive and the

multiplicative notation.

1. Severi varieties, K3 surfaces and k-gonal loci

1.1. Severi varieties and k-gonal loci

Let S be a connected, projective surface with normal crossing singularities and let |H | be a base point free,

complete linear system of Cartier divisors on S whose general element is a connected curve H with at most nodes as

singularities, located at the singular points of S. We will set p = pa(H).

For any integer 0� δ � p, we denote by V|H |,δ(S) the locally closed subscheme of |H | parametrizing the universal

family of curves C ∈ |H | having only nodes as singularities, exactly δ of them (called the marked nodes) off the

singular locus of S, and such that the partial normalization C̃ at these δ nodes is connected (i.e., the marked nodes

are not disconnecting nodes). We set g = p− δ = pa(C̃). If S is smooth the V|H |,δ(S)’s are called Severi varieties of

δ-nodal curves in |H | on S. We use the same terminology in our more general setting.

Let g � 3 be an integer. We denote byMg the moduli space (or stack) of smooth curves of genus g, whose dimen-

sion is 3g− 3. We recall thatMg is quasi-projective and admits a projective compactificationMg , parametrizing all

connected stable curves of arithmetic genus g.

One has the moduli morphism

ψS,H,δ : V|H |,δ(S) Mg (2)

sending C ∈ V|H |,δ(S) to the isomorphism class of the stable model C of the partial normalization C̃ of C at the δ

marked nodes. We write ψ rather than ψS,H,δ if no confusion arises. If ψ is generically finite to its image, we say that

V|H |,δ(S) has maximal number of moduli g.
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One can consider the stratification ofMg in terms of gonality

M1
g,2 ⊂M1

g,3 ⊂ · · · ⊂M1
g,k ⊂ · · · ⊂Mg,

where

M1
g,k :=

�

[Y ] ∈Mg

�

� Y possesses a g1k
�

,

called the k-gonal locus inMg , is irreducible, of dimension 2g + 2k − 5 when g � 2(k − 1), whereasM1
g,k =Mg

when g � 2(k − 1) (see e.g. [1]). Recall that ψ(C) ∈M1
g,k if and only if the partial normalization C̃ of C at the δ

marked nodes is stably equivalent to a curve that is the domain of an admissible cover of degree k to a stable pointed

curve of genus 0 (see [18, Theorem (3.160)]). For any integer k � 2, we define

V k
|H |,δ(S) :=

�

C ∈ V|H |,δ(S)
�

�ψ(C) ∈M1
g,k

�

,

which has a natural scheme structure. This is called the k-gonal locus inside V|H |,δ(S).

1.2. K3 surfaces

We will mainly consider the case in which S is a smooth, projectiveK3 surface, endowed with a globally generated

primitive, i.e. indivisible, divisor H with p = pa(H) � 2. We call (S,H) a primitive (or primitively polarized) K3

surface of genus p. We denote by Kp the moduli space (or stack) of primitive K3 surfaces of genus p, which is

smooth and irreducible of dimension 19, and the general element (S,H) is such that H is very ample. Furthermore,

Pic(S) is generated by the class of H for all (S,H) outside a countable union of Zariski closed proper subsets (the

Noether–Lefschetz divisors).

If V|H |,δ(S) �= ∅, then it is regular, i.e. it is smooth and of the expected dimension g. Indeed, the marked, not

disconnecting nodes of the curves in V|H |,δ(S) impose independent conditions to the linear system |H | (see e.g. [8]).

If V|H |,δ(S) �= ∅ and δ
� < δ, then V|H |,δ(S)⊂ V|H |,δ� .

Remark 1.1. The latter holds for V|H |,δ(S) also when S is a connected surface with local normal crossing singular-

ities, trivial dualizing bundle, h1(S,OS) = 0 and H a globally generated, primitive divisor on S. Indeed, the usual

arguments (like in [8]) apply with no change.

By a result of Mumford’s (cf. [30, Appendix]), for all δ � p the Severi varieties V|H |,δ(S) are nonempty.

Chen extended this to Severi varieties V|mH |,δ(S) with m> 1 (cf. [7]).

The following proposition is related to the rigidity results in [17].

Proposition 1.2. Let (S,H) ∈Kp . The differential of the moduli morphism ψS,H,δ is everywhere injective, hence all

components of V|H |,δ(S) have maximal number of moduli.

Proof. Let C be a curve in V|H |,δ(S) and let f : C̃→ C be the normalization at the δ nodes. We have the following

exact sequence

0 T
C̃

f ∗(TS) Nf 0,

which defines the normal sheaf Nf to the map f . The differential of ψ at C̃ is the coboundary map H 0(C̃,Nf )→

H 1(C̃, T
C̃
). Hence it suffices to prove that h0(C̃, f ∗(TS))= 0, i.e. that h

0(C̃, ϕ∗(TS)|C̃ )= 0, where ϕ : S̃→ S is the

blow-up of S at the nodes of C. Denote by Ei the exceptional divisors, with 1 � i � δ. Consider the diagram with

exact rows and columns
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0 0 0

0 T
S̃
(−C̃) ϕ∗(TS)(−C̃) ⊕δ

i=1OP1(−1) 0

0 T
S̃

ϕ∗(TS) ⊕δ
i=1OP1(1) 0

0 T
S̃ |C̃

ϕ∗(TS)|C̃ � 0,

0 0 0

(3)

where ��C2δ is a skyscraper sheaf of rank 1 supported at the 2δ intersections of C̃ with the Ei ’s and the rightmost

sheaves in the first two rows are supported on Ei � P1, for 1 � i � δ. One has h0(S̃, ϕ∗(TS)) = h0(S, TS) = 0 and

H 1(S̃, ϕ∗(TS)(−C̃))�H 1(S̃, T
S̃
(−C̃)). Grant for the time that

H 0(C̃, T
S̃ |C̃

)= 0. (4)

By (4), the map H 1(S̃, T
S̃
(−C̃))→ H 1(S̃, T

S̃
) is injective. Its image A corresponds to first order deformations

of S̃ that keep C̃ fixed. These deformations do not move the Ei ’s, and therefore A intersects the image of

H 0(S̃,⊕δ
i=1OP1(1))→ H 1(S̃, T

S̃
) in (0). This implies that the map H 1(S̃, ϕ∗(TS)(−C̃))→ H 1(S̃, ϕ∗(TS)) is in-

jective and h0(C̃, ϕ∗(TS)|C̃ )= 0 follows.

We now prove (4). A local computation shows that ϕ∗(TS̃ |C̃ )= TS |C , so it suffices to prove that

h0(S, TS |C)= 0. (5)

Consider S embedded in Pp by |H |. By the exact sequence

0 TS |C TPp |C NS/Pp
|C

0,

to prove (5) one has to prove that the map γ :H 0(C,TPp |C)→H 0(C,NS/Pp
|C
) is injective.

The cohomology of the Euler sequence

0 OS H 0
�

S,OS(C)
�∗
⊗OS(C) TPp |S 0

yields that H 0(S, TPp |S) � H 0(Pp,TPp ) � Cp2+2p is the tangent space to PGL(p + 1,C). Similarly H 0(S,

TPp |S(−C)) � Cp+1 is the tangent space to the subgroup of PGL(p + 1,C) that pointwise fixes the hyperplane
in which C lies.

Consider the long exact cohomology sequence associated to the Euler sequence for C, i.e.

0 H 0(C,OC) H 0
�

S,OS(C)
�∗
⊗H 0(C,ωC)�Cp(p+1) H 0(C,TPp |C)

H 1(C,OC) H 0
�

S,OS(C)
�∗
⊗H 1(C,ωC).

The map in the second row is dual to the surjective map

H 0
�

S,OS(C)
�

⊗H 1(C,ωC)�H 0(C,ωC)⊕C H 0(C,ωC),

hence the last map in the first row is surjective, so that H 0(C,TPp |C)�Cp2+p−1.
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Consider the commutative diagram with exact rows and columns

0 0

0 H 0(S, TPp |S(−C))�Cp+1 α
H 0(S,NS/Pp (−C))

0 H 0(S, TPp |S)�Cp2+2p β
H 0(S,NS/Pp )

H 0(C,TPp |C)�Cp2+p−1 γ
H 0(C,NS/Pp

|C
).

0

Assume we have x ∈H 0(C,TPp |C) such that γ (x)= 0. Lift x to y ∈H
0(S, TPp |S). Then β(y) ∈H

0(S,NS/Pp (−C)).

The above geometric interpretation tells us that y ∈H 0(S, TPp |S(−C)), proving that x = 0, which implies the injec-

tivity of γ , hence (5). ✷

Later we will need to consider the substack K�p of Kp consisting of pairs (S,H) such that S contains a smooth

rational curve Γ satisfying Γ ·H = p.

Proposition 1.3. For any p � 2, K�p is irreducible of codimension one in Kp , and the general element (S,H) ∈K�p is

such that H is ample. Furthermore, Pic(S)� Z[H ]⊕Z[Γ ] for all (S,H) outside a countable union of Zariski closed

proper subsets of K�p .

Proof. This is standard: the proof follows much the same arguments as, e.g., [10, Proposition (3.2)], using

[31, Theorem 1.14.4] and [11, pp. 271–272]. ✷

We note that K�p is a Noether–Lefschetz divisor in Kp .

1.3. Universal Severi varieties and degenerations

For any p � 2, and 0� δ � p, one can consider a stack Vp,δ (see [14, Proposition 4.8]), called the universal Severi

variety, which is pure and smooth of dimension 19+ g, endowed with a morphism φp,δ : Vp,δ → Kp and its fibres

are so described

Vp,δ ⊃

φp,δ

V|H |,δ(S)

Kp � (S,H).

Some fibers may be empty, but there is a dense open substack K◦p of Kp over which the fibers are nonempty and the

morphism φp,δ : Vp,δ→K◦p is smooth on all components of Vp,δ , each dominating K◦p .
In a similar way one can consider the k-gonal universal locus Vk

p,δ ⊆ Vp,δ .
We will need this in a more general setting. Suppose we have a proper flat family of surfaces f : S→D, where D

is a disk. Assume that

• S is smooth, endowed with a line bundle H;
• f is smooth over D∗ =D− {0};
• if t ∈D∗, then the fibre St of f over t is a K3 surface;
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• the fibre S0 of f over 0 is a local normal crossing divisor in S ;
• the line bundle Ht :=H|St determines a complete linear system |Ht | of dimension p for all t ∈ D and (St ,Ht ) ∈

Kp for all t ∈D∗.

Since Vp,δ is functorially defined, we have f -relative Severi varieties φf ;p,δ : Vf ;p,δ → D∗, with Vf ;p,δ locally
closed in P(f∗(H)), such that the fibre of φf ;p,δ over t is V|Ht |,δ(St ) for all t ∈ D∗. We will drop the index δ when
δ = 0.

Lemma 1.4. Let C0 ∈ |H0| be an element of V|H0|,δ(S0), with δ not disconnecting nodes q1, . . . , qδ off the singular

locus of S0. Then C0 sits in the closure of Vf ;p,δ in P(f∗(H)) and Vf ;p,δ dominates D.

Proof. We have a commutative diagram with exact rows and column

0

0 T[C0](V|H0|,δ(S0))�H 0(C0,N
�
C0/S0

) Cp � T[C0](|H0|)� H 0(C0,NC0/S0)
α
⊕δ
i=1T

1
qi

0 H 0(C0,N
�
C0/S) Cp+1 � T[C0](Vf ;p)� H 0(C0,NC0/S)

β
⊕δ
i=1T

1
qi
,

H 0(C0,OC0)

0

where N �C0/S0 and N
�
C0/S are the equisingular normal sheaves at the marked nodes of C in S0 and S , respectively.

By hypothesis, α is onto, hence so is β . Thus H 0(C0,N
�
C0/S), which is the tangent space at [C0] of the space of equi-

singular deformations at the δ nodes of C0 in S , has dimension dim(V|H0|,δ(S0))+ 1, and the assertion follows. ✷

1.4. K3 surfaces and k-gonal loci

Let (S,H) ∈Kp be general. By Brill–Noether theory, V
k
|H |,δ(S)= V|H |,δ(S) if δ � p− 2(k− 1).

Proposition 1.5. Let (S,H) be in Kp . Assume g := p − δ � 2(k − 1). Then for any irreducible component V of

V k
|H |,δ(S) one has dim(V )� 2(k− 1).

Proof. Consider the morphism ψ in (2). Let V be an irreducible component of V k
|H |,δ(S) and V

� the g-dimensional,

irreducible component of V|H |,δ(S) containing it, so that

∅ �=ψ(V )⊆ψ
�

V �
�

∩M1
g,k.

Set W = ψ(V ) and W � = ψ(V �), so that W is an irreducible component of W � ∩M1
g,k and, by Proposition 1.2, one

has dim(W �)= g. Then

dim(V )� dim(W)� dim
�

W �
�

+ dim
�

M1
g,k

�

− dim(Mg)= 2(k − 1). ✷

The proof of Proposition 1.5 shows that the expected dimension of an irreducible component of V k
|H |,δ(S) is

min{2(k− 1),p− δ}.

It is convenient to have a relative version of Proposition 1.5. Let f : S→ D be as in Section 1.3. One can define

the f -relative k-gonal locus Vk
f ;p,δ ⊆ Vf ;p,δ over D∗.
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Proposition 1.6. Let V0 be a component of V k
|H0|,δ

(S0). If dim(V0)= 2(k − 1), then V0 is contained in an irreducible

component V of Vk
f ;p,δ dominating D∗, with dim(V)= dim(V0)+ 1.

Proof. Similar to the proof of Proposition 1.5, using Lemma 1.4 (see also [12, Prop. 5.11 and its proof]). ✷

2. Rational curves in the Hilbert scheme of points of a K3 surface

If S is a K3 surface, then Hilbk(S) is a hyperkähler manifold, also called an irreducible symplectic manifold

(see e.g. [5,25]). The cohomology group H 2(Hilbk(S),Z) is endowed with the Beauville–Bogomolov quadratic

form q and one has the orthogonal decomposition

H 2
�

Hilbk(S),Z
�

�H 2(S,Z)⊕⊥ Z[ek], (6)

where�k := 2ek is the class of the divisor (still denoted by�k) parametrizing nonreduced 0-dimensional subschemes

[5]. Equivalently,�k is the exceptional divisor of theHilbert–Chow morphism µk :Hilb
k(S)→ Symk(S). The embed-

ding ofH 2(S,Z) intoH 2(Hilbk(S),Z) in (6) is given by sending a class F ∈H 2(S,Z) to the class inH 2(Hilbk(S),Z)
determined by all subschemes whose support intersects a representative of F . By abuse of notation we will still denote

by F this class in H 2(Hilbk(S),Z). The restriction of the Beauville–Bogomolov form to H 2(S,Z) is the cup product
on S, and q(ek)=−2(k − 1). Accordingly, (6) induces an orthogonal decomposition (see [5])

Pic
�

Hilbk(S)
�

� Pic(S)⊕⊥ Z[ek]. (7)

Given a primitive class α ∈H2(Hilb
k(S),Z), there exists a unique class wα ∈H

2(Hilbk(S),Q) such that α · v =

q(wα, v), for all v ∈H
2(Hilbk(S),Z), and one sets (cf. e.g. [20])

q(α) := q(wα). (8)

This gives a Q-valued form on homology, and we have

H2
�

Hilbk(S),Z
�

�H2(S,Z)⊕⊥ Z[rk], (9)

where rk is the homology class orthogonal to H
2(S,Z) and satisfying ek · rk =−1, see e.g. [22, §1]. As explained in

[20, Ex. 4.2], rk is the class of a fiber of the Hilbert–Chow morphism, i.e., it is the class of the rational curve in �k

corresponding to the curve lying above 2x1 + x2 + · · · + xk−1 in Sym
k(S), for any k − 1 distinct points x1, . . . , xk−1

of S. The embedding of H2(S,Z) in H2(Hilbk(S),Z) is given by sending the class of a cycle Y to the class of the
cycle

�

ξ ∈Hilbk(S)
�

� Supp(ξ)= {p1, . . . , pk−1, y}, y ∈ Y
�

,

where p1, . . . , pk−1 are distinct fixed points of S off Y .

The decomposition (9) induces

N1
�

Hilbk(S),Z
�

� Pic(S)⊕⊥ Z[rk].

If R ≡D− yrk in N1(Hilb
k(S),Z), with D ∈ Pic(S), then

wR =D −
y

2(k − 1)
ek,

and by (8), one has

q(R)=D2 −
y2

2(k − 1)
. (10)

We mentioned in the Introduction the importance of rational curves on hyperkähler manifolds. The relation with

the topic of this paper is that a curve C on a K3 surface whose normalization C̃ possesses a g1k gives rise, in an

obvious way, to an irreducible rational curve R in Hilbk(S). Indeed, the g1k = |A| on C̃ induces a P1(C,A) ⊂ Sym
k(C̃)

and this is mapped to an irreducible rational curve R(C,A) ⊂ Sym
k(S) by the composed morphism
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Symk(C̃) Symk(C) Symk(S).

The irreducible rational curve R = R(C,A) ⊂ Hilb
k(S) is the strict transform (µk)

−1
∗ (R(C,A)) by the Hilbert–Chow

morphism.

Let C be an element of V k
|H |,δ(S), and assume that its normalization carries a g

1
k such that

all the nodes of C are non-neutral with respect to the g1k ; (11)

the g1k has only simple ramification. (12)

Let R be the corresponding rational curve in Hilbk(S).

Lemma 2.1. Under hypotheses (11) and (12), the class1 of R in N1(Hilb
k(S),Z) is H − (g+ k − 1)rk .

Proof. Write R = H − yrk , so that y = ek · R. Since all nodes are non-neutral and the g
1
k has simple ramification

everywhere, by Riemann–Hurwitz we have

y = ek ·R =
1

2
�k ·R =

1

2
(2g + 2k− 2)= g + k − 1. ✷

The particular case p = 9, δ = 2 and k = 4 is treated in [20, Ex. 4.5].

Remark 2.2. The conclusion of Lemma 2.1 holds even without hypothesis (12). Furthermore, also hypothesis (11)

can be weakened: if δ� is the number of non-neutral nodes of C, then the class of R is H − (g� + k − 1)rk , where
g� := p− δ� � g. For a detailed proof, we refer e.g. to [23, §3.3 and 5.3] (see also [24, §6.2]).

3. Necessary conditions for existence of linear series on normalizations

Consider the usual Brill–Noether number ρ(g, r, d)= g − (r + 1)(r + g − d).

Theorem 3.1. Let (S,H) ∈ Kp such that all elements in |H | are reduced and irreducible (e.g., Pic(S) � Z[H ]).
Assume that C ∈ |H | is a curve whose normalization possesses a grd . Let g be the geometric genus of C and set

δ = p− g and α := �
gr+(d−r)(r−1)

2r(d−r) �. Then

ρ(p,αr,αd + δ)� 0, i.e., δ � α
�

rg− (d − r)(αr + 1)
�

. (13)

Proof. Let ν : C̃→ C be the normalization of C and let A be a line bundle on C̃ such that |A| = grd . Then, for any

positive integer l, the sheafAl := ν∗(lA) is torsion free of rank one on C with h
0(Al )= h0(lA)� lr+1 and degAl =

deg(lA)+ δ = ld + δ (see, e.g., [13, Prop. 3.2]). We have ρ(Al )= ρ(pa(C),h
0(Al )− 1,degAl ) � ρ(p, lr, ld + δ)

and we claim that

ρ(p, lr, ld + δ)= l2r(d − r)− l(gr + r − d)+ δ � 0. (14)

To prove (14), let A�l denote the globally generated part of Al , that is, the image of the evaluation map H
0(Al )⊗

OC →Al . If (14) does not hold, then ρ(A�l )� ρ(Al ) < 0. In particular, h
1(A�l ) > 0. The kernel of the evaluation map

H 0(Al )⊗OS A�l 0

is a vector bundle, whose dual bundle El has rank h0(A�l ) = h0(Al ) � lr + 1 and satisfies c1(El ) = C and c2(El ) =
degA�l � degAl = ld + δ (see [15]). One has χ(El ⊗ E∗l ) = 2(1 − ρ(A�l )) � 4 (see e.g. [28, §1]). Furthermore,

dualizing the sequence defining El , we obtain

1 There is an erroneous fraction of 1/2 in the corresponding formula for k = 2 in [12, (6.7)], due to a trivial computational mistake in the line

above the formula: P1�.e=−2 should have been −1, where P1� is rk in our notation.
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0 H 0(A�l )∗ ⊗OS El q
ext1OS

(A�l ,OS) 0.

As h0(ext1OS
(A�l ,OS)) = h1(A�l ) > 0 (by [15, Lemma 2.3]), this proves that El is globally generated off a finite set.

Thus, as in the proof of [28, Lemma 1.3], the linear system |C| would contain a reducible curve, a contradiction.

This proves (14).

The polynomial in l in (14) attains its minimum for l0 =
gr+r−d
2r(d−r) . The inequality (14) holds for the closest integer

to l0, which is α. This proves (13). ✷

The property of |H | not containing reducible curves is a dense, open property inKp . Therefore, the theorem proves

the “only if” part in Theorem 0.1(i).

Remark 3.2. (a) The proof does not require C̃ to be smooth, only to possess a grd . Thus the proof works for any partial

normalization C̃ of C possessing a grd , with g := pa(C̃) instead of the geometric genus of C.

(b) Fix p, d and r . If (13) holds for a given δ, then it holds for all δ� � δ. Indeed, for all positive integers l and for

any δ� � δ, we have ρ(p, lr, ld + δ�)� ρ(p, lr, ld + δ).

Next we concentrate on the case r = 1 and set d = k, where (13) reads like (1). Then Theorem 3.1 proves the part

of Theorem 0.1 stating that V k
|H |,δ(S) �= ∅ only if (1) holds.

Remark 3.3. Set ρ = ρ(p,α, kα+ δ). It is convenient to write (1) in the form

ρ � 0, i.e., δ � (g− k + 1)2 − β2

4(k − 1)
, (15)

where β := (k− 1)(2α + 1)− g, i.e., −(k − 1) < β � k − 1.

As an aside, we obtain a bound on the Beauville–Bogomolov self-intersection of the rational curves in Hilbk(S)

corresponding to curves in V k
|H |,δ(S), which confirms for them a conjecture by Hassett and Tschinkel [20, Conj. 1.2].

Corollary 3.4. Let (S,H) ∈ Kp such that all elements in |H | are reduced and irreducible (e.g., Pic(S) � Z[H ]).
Assume that C ∈ V k

|H |,δ(S) is a curve whose normalization possesses a g1k = |A| satisfying (11) and (12).

Let R =R(C,A) and g := p− δ. Then

q(R)= 2(p− 1)−
(g+ k − 1)2

2(k − 1)
= 2(ρ − 1)−

β2

2(k − 1)
�−k + 3

2
, (16)

with ρ and β as in Remark 3.3.

Proof. The first equality on the left follows from (10) and Lemma 2.1, the middle equality is a direct computation

and the inequality follows from Theorem 3.1 and Remark 3.3. ✷

Remark 3.5. By Remarks 2.2 and 3.2(a), the corollary also holds without assumptions (11) and (12) if we substitute

the number δ with the number δ� of non-neutral nodes of C with respect to the g1k . In particular, the inequality

q(R)�− k+3
2 holds for any rational curve R obtained from a curve in V k

|H |,δ(S).

4. Chains of rational curves on unions of scrolls that are limits of K3 surfaces

We will henceforth fix an integer p � 3 and set q = 2p− 1.

4.1. Unions of scrolls as limits of special K3 surfaces

If (S,L) ∈Kq , then |L| determines a morphism φ|L| : S→ Pq , which is an embedding for general (S,L). Let Hq

be the component of the Hilbert scheme of surfaces in Pq whose general point corresponds to an embedding of an S

as above. One has dim(Hq)= q2 + 2q + 19 and Hq is smooth at each point corresponding to a smooth K3 surface.



Author's personal copy

C. Ciliberto, A.L. Knutsen / J. Math. Pures Appl. 101 (2014) 473–494 483

The component Hq contains points that correspond to degenerations of elements of Kq , as we will now explain

(see [9, §2.2]).

Let E ⊂ Pq be a smooth elliptic normal curve of degree q + 1 with two distinct line bundles Li ∈ Pic
2(E), with

i = 1,2. Let R1 and R2 be the rational normal scrolls of degree q − 1 in Pq defined by L1 and L2, respectively, i.e.

Ri is the union of lines spanned by the divisors of |Li |. Then R1 ∩ R2 = E, the intersection is transversal and E is

anticanonical on each Ri . Moreover R =R1 ∪R2 corresponds to a smooth point of Hq .

We will be concerned with the following case. Let Li ∈ Pic
2(E), with 1 � i � 2, be two general line bundles.

Consider the embedding of E given by L
⊗p
2 =:OE(1). Then R1 � P1 × P1 and R2 � F2. We let si and fi denote the

classes of the nonpositive section and fiber, respectively, of Ri , for 1� i � 2. ThenOR1(1)�OR1(s1+ (p−1)f1) and
OR2(1)�OR2(s2+pf2). The section s2 does not intersect E, hence lies in the smooth locus of R, and it is embedded
in Pq as a (degenerate) rational normal curve of degree p− 2. In particular, s2 is a Cartier divisor on R, so that

H0 :=OR(1)⊗OR(−s2) (17)

is also Cartier, with H 2
0 = 2p− 2. Moreover s2 ·H0 = p.

Lemma 4.1. There is a unique irreducible, codimension one subvariety H�q of Hq containing the point corresponding

to R and smooth there, such that the general point of H�q represents a smooth K3 surface S containing a smooth

rational curve Γ of degree p − 2 degenerating to s2 when S flatly degenerates to R. The line bundle H :=OS(1)⊗

OS(−Γ ) is globally generated and primitive with H 2 = 2p − 2. In particular, (S,H) is a general element of K�p
(cf. Section 1.2).

Proof. Let X → Hq be the universal family and consider s2 ⊂ R2 ⊂ R ⊂ X . Then s2 stays off the singular locus of
X and by standard deformation theoretic arguments (cf. e.g. [27, II, Thm. 1.14]), it moves inside X in a family F
with

dim(F)�−KX · s2 + dim(X )− 3=−KR2 · s2 + dim(Hq)− 1= dim(Hq)− 1. (18)

Since s2 does not move on R and since, for S ∈ Hq outside a countable union of Noether–Lefschetz divisors, we

have Pic(S) � Z[L], with L = OS(1), then equality must hold in (18). This implies that F is smooth at the point

corresponding to s2. Hence there is a unique irreducible codimension one subvariety H�q in Hq , containing the point

corresponding to R and smooth there, over which s2 deforms.
Let S be the surface corresponding to the general point of H�q , let L = OS(1) and let Γ be the rational curve of

degree p− 2 that is a deformation of s2. Since the locus of pairs of scrolls inside Hp has codimension 16, the surface

S is irreducible with at most isolated double points of type An for some n � 1, and Γ sits in the smooth locus of S.

Suppose S is singular. Then its minimal desingularization π : S� → S is a K3 surface and we set L� = π∗(L). By

standard Hodge theory, the subvariety of Hq corresponding to such singular surfaces S is irreducible of codimension

1, and all elements outside a countable union of Zariski closed proper subsets have one single double point of type A1
(a node) and Pic(S�)� Z[L�] ⊕Z[N], where N is the (−2)-curve corresponding to the node. Hence such a singular S

cannot contain a smooth rational curve Γ not containing the node. This proves that S is smooth.

To finish the proof, note that for S general in H�q , the linear system |H | is base point free, as |H0| is, and H
2 =

2p − 2. Suppose H = hA, with h > 1. Then p − 1 = h2(γ − 1), where A2 = 2γ − 2. Moreover p = H · Γ =

h(A · Γ ). Hence h divides both p− 1 and p, a contradiction. Thus H is indivisible, whence (S,H) is general in K�p
by Proposition 1.3. ✷

Let D be a disk. We fix ϕ : D→ H�q a holomorphic map with nonzero differential, such that ϕ(0) is the point
corresponding to R and, for t ∈ D general, ϕ(t) is a general element in H�q . By pulling back the universal family on
Hq , we obtain a flat family X → D, whose total space has isolated singularities along E in the central fibre, and is

otherwise smooth. Indeed, the singular locus is the zero locus of the section inH 0(E,T 1R) corresponding to the section

in H 0(R,NR|Pq ) that is the image of the differential of ϕ at 0 (cf. [9, p. 647] or [7, Sec. 3.1]). Note that T 1R is a line

bundle of degree 16 on E (cf. [9, p. 644]).

On X we have the pullback L of the hyperplane bundle on Pq . The restriction to X of the total space of the flat

family F of deformations of s2 is a surface G contained in the smooth locus of X . Hence it determines a line bundle



Author's personal copy

484 C. Ciliberto, A.L. Knutsen / J. Math. Pures Appl. 101 (2014) 473–494

G on X . We set H = L⊗ G∗. The restrictions of L and H to the general fibre S of X → D give the two globally

generated line bundles L = OS(1) and H specializing to OR(1) and H0, respectively, on the central fiber R. The

restriction of G to the general fibre S is the smooth rational curve Γ , specializing to s2 on the central fibre, and

L�OS(H + Γ ).

One can perform a small resolution of the singularities of X , obtaining a new family f : S→ D, which has all
properties indicated in Section 1.3. The central fibre S0 however is no longer R, but a modification of it. Precisely one

can work things out in such a way that S0 = R1 ∪ R̃2, where R̃2 is a sequence of blow ups of R2 at the singular locus

of X , and R1 and R̃2 meet transversally along E ⊂R1 and its strict transform (still denoted by E) on R̃2.

Since the curves on R we will be concerned with lie off the singular points of X , we can and will work on X or S
with no distinction.

4.2. Special chains of rational curves

We now introduce the building blocks of limits on R of nodal hyperplane sections on the general surface in H�q in

the degeneration described in Section 4.1.

Let m be a positive integer satisfying m� p. A chain of length 2m− 1 is a sum of 2m− 1 distinct lines

f2,1 + f1,1 + f2,2 + f1,2 + · · · + f2,m−1 + f1,m−1 + f2,m, fi,j ∈ |fi |,

where f1,j intersects only f2,j and f2,j+1, for j = 1, . . . ,m− 1. The chain intersects E in 2m points, consisting of

m divisors of |L2|, and 2m− 2 of them lie on the intersections between two lines, whereas the remaining two are on

f2,1 and f2,m and will be denoted by a1 and b1, respectively. This pair of points will be called the distinguished pair

of points of the chain.

We can also define chains with the roles of R1 and R2 interchanged, but we will not need this, except for the

inductive argument in the proof of Lemma 4.2 right below.

We will denote by Cm the family of chains of length 2m−1. Note that Cm is a locally closed subvariety of a Hilbert
scheme of curves on R.

Lemma 4.2. The map sending a chain of length 2m−1 to its pair of distinguished points on E is a birational, injective

morphism between Cm and |mL2 − (m− 1)L1|.

Proof. We describe the inverse map. Its existence is obvious if m= 1. We proceed by induction on m. Let a + b ∈

|mL2 − (m− 1)L1|. Then |L2 − a| = {a�} and |L2 − b| = {b�}. Therefore a� + b� ∼ (m− 1)L1 − (m− 2)L2 and we

are done by induction, exchanging the roles of L1 and L2. ✷

We note that if m � p, then any chain of length 2m− 1 is contained in a hyperplane. This fact will be used in the

next section.

Assume we have a chain of length 2m− 1 contained in a hyperplane section h of R. Let Γ1 and Γ2 be the sections

of the rulings on R1 and R2 contained in h. Then the distinguished points are a1 := Γ1 ∩ f2,1 and b1 := Γ1 ∩ f2,m.

We will call a1 + b1 the 2-cycle on Γ1 associated to the chain. We note that

a1 + b1 ∈ f∗
�
�

�mL2 − (m− 1)L1
�

�

�

, (19)

where f : E→ Γ1 � P1 is the morphism determined by the linear series |L1|. The chain intersects Γ1 and Γ2 in a

total of 2m− 1 points, distributed as m− 1 on Γ1 and m on Γ2. They will be called the nodes of h associated to the

chain. The nodes on Γ1 will be called the marked nodes of h.

Fig. 1 shows a chain of length 9 contained in a hyperplane section. All intersection points between the chain and

E are marked with a box, the two distinguished points are marked with filled boxes, the associated nodes are marked

with circles, the ones on Γ1 are the marked nodes.

In Fig. 2 we describe the stable model of the partial normalization at the associated nodes of a hyperplane section

containing a chain: in the stable model all rulings are contracted, so that the two distinguished points lying on Γ1 are

identified, creating a node.
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Fig. 1.

Fig. 2.

5. Limits of nodal curves

Let α1, . . . , αp be nonnegative integers such that

p =

p
�

j=1

jαj . (20)

Definition 5.1.We define V �(α1, . . . , αp) to be the locally closed subset of |OR(1)| consisting of nodal curves C not

passing through the singular locus of X and containing exactly αj chains of length 2j−1, for j = 1, . . . , p. Condition
(20) implies that every element of V �(α1, . . . , αp) contains p lines in |f2|, thus it contains s2. Hence the elements of
V �(α1, . . . , αp) are in one-to-one correspondence with a locally closed subset of |H0| (cf. (17)), which we denote by

V (α1, . . . , αp).

Given a curve C in V (α1, . . . , αp), we denote by Γ1 the section of the ruling on R1 contained in C (i.e., C is the

union of Γ1 and of chains). The curve C comes equipped with the subscheme of its

δ = δ(α1, . . . , αp) :=

p
�

j=1

(j − 1)αj (21)

marked nodes lying in the smooth locus of R. Set g = p− δ =
�p

j=1 αj .

Proposition 5.2. Under the condition (20), we have:

(i) V (α1, . . . , αp) is a smooth component of V|H0|,δ(R) of the expected dimension g;
(ii) V (α1, . . . , αp) is a component of the flat limit of V|H |,δ(S) with (S,H) ∈K�p general.
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Proof. By Lemma 4.2 we have a morphism

ν : V (α1, . . . , αp)

p
�

j=1

Symαj
�

�jL2 − (j − 1)L1
�

�.

The target is irreducible of dimension g, by (20) and (21). Take any point η therein. By Lemma 4.2 each coordinate of

η uniquely defines a chain. The reduced intersection between the union of these chains and E is an effective divisor

Dη lying in |(
�

jαj )L2| = |pL2| = |OE(1)|, by (20). Hence ν is dominant and any fiber of ν is a point. Therefore

V (α1, . . . , αp) is irreducible of dimension g.

Since the δ nodes are not disconnecting (cf. Section 4.2), the tangent space to V|H0|,δ(R) at a point of V (α1, . . . , αp)

has dimension g. Hence (i) follows. Assertion (ii) follows by Lemma 1.4. ✷

The next result follows from the description of the stable model of the partial normalization at the associated nodes

of a hyperplane section containing a chain in Section 4.2 and the fact that C is obtained by removing the component

s2 from a hyperplane section of R.

Lemma 5.3. Let C be a curve in V (α1, . . . , αp) and C the stable model of its partial normalization at its δ marked

nodes. Then C is the image of Γ1 � P1 by the morphism identifying each distinguished pair of points of each chain

contained in C. Thus C has arithmetic genus g.

The case δ = 0 corresponds to (α1, . . . , αp)= (p,0, . . . ,0), and then C has p nodes. Then, in the degeneration of

a general (S,H) ∈ K�p to (R,H0), the general element in |H | degenerates to an irreducible p-nodal rational nodal
curve.

6. Limits of k-gonal nodal curves

Let k � 2 be an integer. We keep the notation introduced in Section 5.

6.1. k-gonal nodal curves in the central fibre

Definition 6.1.We define V k(α1, . . . , αp) to be the closed subset of V (α1, . . . , αp) consisting of curves C such that

all 2-cycles (in number of g) on Γ1 associated to a chain belong to divisors of the same g
1
k on Γ1.

The following is a consequence of Lemma 5.3:

Lemma 6.2. Let C be a curve in V (α1, . . . , αp). The stable model of the partial normalization of C at its δ marked

nodes lies in M1
g,k if and only if C lies in V k(α1, . . . , αp). In particular V k(α1, . . . , αp) fills up one or more compo-

nents of V k
|H0|,δ

(R).

If g � 2(k−1), then V k(α1, . . . , αp)= V (α1, . . . , αp) by Lemma 5.3. As we will see in Proposition 6.5 below, this

also follows by a parameter count concerning g1k ’s on P1. By the argument as in the proof of Proposition 1.5 (but also
by the same parameter count as above), the expected dimension of V k(α1, . . . , αp) is 2(k − 1) when g > 2(k − 1).

Our objective is to prove that, under suitable conditions, V k(α1, . . . , αp) is nonempty of the expected dimension. To

do so, we need some intermediate results.

6.2. Some technical results

Recall the morphism f :E→ P1 determined by |L1|. We have the induced map f (2) : Sym2(E)→ Sym2(P1).
As customary, we identify Sym2(P1) with P2: fix an irreducible conic �� P1, and identify a divisor x + y of �

with:



Author's personal copy

C. Ciliberto, A.L. Knutsen / J. Math. Pures Appl. 101 (2014) 473–494 487

• the pole of the line �x, y� with respect to �, if x �= y;

• the point x ∈�, if x = y.

In this way � is identified with the diagonal of Sym2(P1) and the coordinate curve {x + y, y ∈ P1} with the tangent
line �x to � at x.

We denote by cj , for 1 � j � n, the image via f (2) of the smooth rational curves in Sym2(E) defined by the

pencils |jL2 − (j − 1)L1|. These are distinct conics, each intersecting � in four distinct points corresponding to the

ramification points of the pencils.

Consider Q = P1 × P1 with the two projections πi : Q→ P1, i = 1,2. Fix a positive integer k and look at the
line bundle OQ(k, k) := p∗1(OP1(k)) ⊗ p∗2(OP1(k)), whose space of sections is H

0(P1,OP1(k))
⊗2. The two sub-

spaces Sym2(H 0(P1,OP1(k))) and ∧
2H 0(P1,OP1(k)) are invariant (resp. anti-invariant) under the natural involution

that exchanges the coordinates. Hence they are pull-backs of sections of line bundles, O+k and O−k respectively, on
Sym2(P1).
Let us focus on O−k . One has

H 0
�

Sym2
�

P1
�

,O−k
�

�∧2H 0
�

P1,OP1(k)
�

�H 0
�

P2,OP2(k− 1)
�

.

Therefore the linear system |O−k | identifies with |OP2(k−1))| and also with P(∧2H 0(P1,OP1(k))). Under the former
isomorphism, a point g of the grassmannian G(1, k) ⊂ P(∧2H 0(P1,OP1(k))), which can be identified with a linear
series g1k on P1, corresponds to the degree k− 1 curve in P2

Cg =
�

W ∈ Sym2
�

P1
� �

� g(−W)� 0
�

.

The family of curves {Cg}g∈G(1,k) is irreducible of dimension 2(k− 1)= dim(G(1, k)).

Lemma 6.3. For general choices of L1, we have:

(i) no curve cj is contained in a curve Cg, for g= g1k on P1;
(ii) for a general g, the curve Cg intersects each cj transversally in 2(k − 1) distinct points;

(iii) in addition, none of these 2(k − 1) points is fixed varying g.

Proof. By moving L1, each conic cj moves in P2 in a 1-dimensional family containing the diagonal � (obtained for

L1 = L2). But � is not contained in any Cg, proving (i). Similarly, it suffices to prove (ii) for the intersection with �

of a Cg, with g general, which is obvious, since the intersection points correspond to the ramification points of g. Part
(iii) easily follows. ✷

Lemma 4.2 can be rephrased as the following lemma, whose proof is left to the reader.

Lemma 6.4. A chain of length 2m− 1 determines and is determined by a point on the conic cm.

6.3. Nonemptiness and dimension of limit k-gonal nodal curves systems

We can now prove the desired result about nonemptiness and dimension of V k(α1, . . . , αp).

Proposition 6.5. If (20) and

αj � 2(k − 1) for all j (22)

hold, the variety V k(α1, . . . , αp) is nonempty of the expected dimension min{2(k − 1), g} and is a component of

V k
|H0|,δ

(R). Furthermore, for the general curve in V k(α1, . . . , αp), the family of g1k ’s on Γ1 satisfying the condition in

Definition 6.1 has dimension max{0, ρ(g,1, k)}.

Proof. Consider the set of curves {Cg}g∈G(1,k) of dimension 2(k − 1) above, which is in one-to-one correspondence

with the set of g1k ’s on Γ1 � P1. A general Cg intersects each conic cj in 2(k−1) distinct points by (ii) of Lemma 6.3.
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By (22), we can pick αj of them. By (iii) of Lemma 6.3, each of these αj intersection points gives rise to a chain of

length 2j − 1 not intersecting the singular locus of X with distinguished pair given by the 2-cycle corresponding to

the point itself. Then the construction in (the proof of) Proposition 5.2 yields the existence of curves in V (α1, . . . , αp)

containing all the above chains. These curves lie in V k(α1, . . . , αp) by construction.

When g > 2(k − 1), this shows that V k(α1, . . . , αp) is irreducible (and nonempty) of dimension 2(k − 1) and that

its general element corresponds to finitely many of the curves Cg. When g � 2(k − 1), one has V k(α1, . . . , αp) =

V (α1, . . . , αp) and its general element corresponds to a family of dimension 2(k − 1) −
�

αj = 2(k − 1) − g =

ρ(g,1, k) of the curves Cg. The fact that V
k(α1, . . . , αp) is a component of V

k
|H0|,δ

(R) follows from Lemma 6.2. ✷

Corollary 6.6. Assume that (20) and (22) hold. One has:

(i) if (S,H) ∈K�p is general, then V k
|H |,δ(S) has a component V of the expected dimension min{2(k − 1), g} whose

limit when S tends to R contains V k(α1, . . . , αp) as a component;

(ii) the normalization C̃ of the general curve C in V satisfies dim(W 1
k (C̃))=max{0, ρ(g,1, k)};

(iii) the general g1k in any component of W 1
k (C̃) has simple ramification;

(iv) the δ nodes of C are non-neutral with respect to the general g1k in any component of W 1
k (C̃).

Proof. By Proposition 6.5, V k(α1, . . . , αp) is not empty, of the expected dimension min{2(k−1), g}. Then (i) follows

by Proposition 1.6 (note that the nodes on the singular locus of R of the general curve in V k(α1, . . . , αp) must smooth

by well-known arguments). The properties stated at the end of Proposition 6.5 imply (ii).

Let us prove (iii). The stable model of a general curve in V k(α1, . . . , αp) is the image of P1 by a morphism
identifying g pairs of points in a general g= g1k on P1 (see Lemma 6.2). The limit ramification points of a general g1k
on C̃ are the ones of g plus the ones tending to the nodes of C. The former ramification is simple by the generality of
g. The latter is simple because, in the admissible cover setting, each node is replaced by a P1 joining the two branches
and mapping 2 : 1 to a P1, hence the ramification is simple there.
Finally (iv) holds because the same happens for the δ marked nodes on a general limit curve in V k(α1, . . . , αp) and

the related admissible cover. ✷

7. Conclusion of the proof of the main theorem

In this section we finish the proof of Theorem 0.1. We can assume that δ � p−1 and p � 3, as otherwise the result

is trivial. The theorem follows first for the general polarized surface (S,H) ∈K�p by Corollary 6.6 and Proposition 7.1
right below. As is well-known, the general (S,H) ∈ K�p is a limit of a one-parameter family of general polarized
surfaces in Kp . Hence the theorem follows by applying Proposition 1.6 once more to this latter family.

Proposition 7.1. Let p,k, δ be integers satisfying p � 3, k � 2, δ � p−1 and (1). Then there are integers αj satisfying

(20)–(22) with δ(α1, . . . , αp)= δ.

To prove this, we need two auxiliary results.

Lemma 7.2. Assume there are integers αj satisfying (20)–(22) with δ0 = δ(α1, . . . , αp). Then, for any integer δ�

satisfying

δ0 � δ� � p− 1

there are integers α�j satisfying (20)–(22) with δ(α�1, . . . , α
�
p)= δ�.

Proof. Assume δ0 <p−1. It suffices to find integers α�j satisfying (20)–(22) with δ(α
�
1, . . . , α

�
p)= δ0+1. To do this,

we pick the two largest indices j1, j2, possibly coinciding, for which αj1 + αj2 � 2. These indices do exist, otherwise

αj0 = 1 for one index j0 and αj = 0 for j �= j0. Then p = j0 by (20) and δ0 = j0 − 1 by (21), so that δ0 = p − 1,

a contradiction.

If j1 = j2, we define
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α�j =







αj − 2 if j = j1,

1 if j = 2j1,

αj otherwise.

If j1 �= j2, we define

α�j =







αj − 1 if j = j1 or j = j2,

1 if j = j1 + j2,

αj otherwise.

These integers satisfy the desired conditions. ✷

Define now

m=m(p,k) :=max
�

n ∈ Z
�

� (k− 1)n(n+ 1)� p
�

(23)

and

t = t (p, k) :=max
�

n ∈ Z
�

� (k− 1)m(m+ 1)+ n(m+ 1)� p
�

, i.e. t =

�

p

m+ 1

�

−m(k − 1). (24)

We have a unique representation

p = (k − 1)m(m+ 1)+ t (m+ 1)+ λ. (25)

Note that

0� t < 2(k − 1) and 0� λ�m. (26)

Lemma 7.3. Given p and k, the minimal integer δ satisfying (1) is

δ0 = δ0(p, k)= (k − 1)m(m− 1)+ tm+ λ=

�

mp

m+ 1

�

−m(k − 1). (27)

Proof. Straightforward computation using (26). ✷

Proof of Proposition 7.1. We will find integers αj satisfying (20)–(22) with δ(α1, . . . , αp) = δ0 as in Lemma 7.3.

The result then follows from Lemma 7.2. If λ= 0, we let

αj =

�

2(k − 1) for j = 1, . . . ,m;

t for j =m+ 1;

0 for j > m+ 1.

If t = 0 and λ > 0, we let

αj =











2(k − 1) for j = 1, . . . ,m− 1;

2(k − 1)− 1 for j =m;

1 for j =m+ λ;

0 otherwise.

Finally, if t > 0 and λ > 0, we let

αj =











2(k − 1) for j = 1, . . . ,m;

t − 1 for j =m+ 1;

1 for j =m+ 1+ λ;

0 otherwise.

Then (20)–(22) are verified with δ(α1, . . . , αp)= δ0. ✷
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8. The Mori cone of punctual Hilbert schemes and related conjectures

Finally we go back to the topic of Section 2 (from which we keep the notation). Let (S,H) ∈ Kp . We denote

by Rp,δ,k the rational curves (or their classes) in Hilb
k(S) associated to the g1k on the normalizations of curves in

V k
|H |,δ(S) satisfying (11) and (12). Theorem 0.1 determines the triples (p, k, δ) for which the rational curves Rp,δ,k

exist and, in these cases, yields the existence of an irreducible family of such curves of dimension exactly 2(k − 1),

which is the expected dimension of any family of rational curves on a hyperkähler manifold of dimension 2k (cf. [32,

Cor. 5.1]). By Lemma 2.1, the class of Rp,δ,k in N1(Hilb
k(S)) is H − (p − δ + k − 1)rk . Given p and k, the class

Rp,δ,k that is the closest to the border of the Mori cone is the one corresponding to δ = δ0 minimal satisfying (1),

given by (27). We call such a curve, or class, optimal. Thus:

Proposition 8.1. For fixed p and k, the optimal class is

Rp,δ0,k ≡H −

�

(m+ 1)(k − 1)+

�

p

m+ 1

��

rk, (28)

where m is as in (23).

Remark 8.2. As ρ(p, l, kl + δ − 1)= ρ(p, l, kl + δ)− l − 1 for any positive integer l, the curve Rp,δ,k is optimal if

and only if ρ � α, where ρ is as in Remark 3.3 and α as in (1). This follows from Theorem 0.1.

A result by Huybrechts [26, Prop. 3.2] (resp. Boucksom [6]) says that a divisor D on a hyperkähler manifold X is

nef (resp. ample) if and only if q(D) � 0 and D · R � 0 (resp. q(D) > 0 and D · R > 0) for any (possibly singular)

rational curve R ⊂X. Theorem 0.1 allows a small step towards the determination of the ample (or nef) cone:

Proposition 8.3. Let (S,H) ∈Kp . If the Q-divisor D =H − tek in Hilbk(S) is ample (resp. nef ), then

0< t < τ(p, k) :=
2(p− 1)

(m+ 1)(k − 1)+ � p
m+1�

�

resp. 0� t � τ(p, k)
�

, (29)

where m is as in (23).

Proof. We may assume that (S,H) is general. By Theorem 0.1, the optimal class Rp,δ0,k as in (28) is effective, hence

D ·Rp,δ0,k > 0 (resp. � 0), which is equivalent to the right hand inequality in (29). The other inequality follows from

D · rk > 0 (resp. � 0). ✷

Since N1(Hilb
k(S)) has rank two when PicS � Z[H ], it is natural to pose the following:

Question 8.4. Let (S,H) ∈Kp be general, with PicS � Z[H ] and p � 2. Are the extremal rays of the Mori cone of

Hilbk(S) generated by rk and by the optimal class Rp,δ0,k (cf. (28))?

An affirmative answer to this question would yield that the bound (29) is optimal. We will see below (Corollary 8.6,

Propositions 8.7 and 8.9) that the question has an affirmative answer for infinitely many pairs (p, k). However, the

question does not have a positive answer for all pairs (p, k). Indeed, as communicated to us by Hassett, one can show

that the rational curves in [22, Exmpl. 7.7], where p = 8 and k = 2, have class 3H − 16rk , whereas the optimal class

is H − 5rk . Another example with k = 2 yielding a negative answer to Question 8.4 was provided by Bayer and Macrì

in [3, Exmpl. 13.4] after the appearance of the first version of this paper on the web. In fact, in their work, Bayer and

Macrì determine the generators of the Mori cone of Hilbk(S), up to solving some Pell’s equations. A substantial step

towards determining the Mori cone by our approach would be to extend our analysis to the nonprimitive case, i.e. to

curves in |nH | for n > 1. The methods of our paper should in principle work to treat this more general case, although

the extension is nontrivial. We plan to return to this in future research.
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8.1. Conjectures of Hassett and Tschinkel

Hassett and Tschinkel conjecture in [20, Conj. 1.2] that, for any polarized variety (X,g) deformation equivalent to
Hilbk(S) with S a K3 surface, a 1-cycle R is effective if and only if R · g> 0 and q(R)�−(k + 3)/2. The “only if”
part was proved for k = 2 in [21], and then for all k � 2 by Bayer and Macrì in [3, Prop. 12.6] after the submission

of this paper. Hassett and Tschinkel also conjecture in [20, Thesis 1.1] that −(k + 3)/2 is the self-intersection of

the lines in any Pk ⊂ X. This latter conjecture has been verified for k = 2 in [21], k = 3 in [19] and k = 4 in [2].

Other self-intersections have different geometrical properties from the point of view of birational geometry: primitive

generators R of extremal rays on a hyperkähler manifold such that the associated extremal contraction is divisorial

must satisfy −2� q(R) < 0 by [20, Thm. 2.1].

As noted in Section 3, our Corollary 3.4 proves (and gives a Brill–Noether theoretical interpretation of) the in-

equality q(R)�− k+3
2 for any rational curve arising from a g1k on the normalization of a nodal curve in |H | satisfying

(11) and (12), where (S,H) ∈Kp is such that |H | contains no reducible curves. (In fact, the conditions (11) and (12)

can be skipped, by Remark 3.5.) For the curves Rp,δ,k obtained from Theorem 0.1, we have by Corollary 3.4,

q(Rp,δ,k)= 2(p− 1)−
(p− δ + k − 1)2

2(k − 1)
= 2(ρ − 1)−

β2

2(k − 1)
, (30)

with ρ as in Remark 3.3 and α as in (1). (Recall that ρ � 0 and −(k − 1) < β � k − 1.) We can deduce the existence

of the curves with lowest self-intersection in Hassett–Tschinkel’s conjecture:

Proposition 8.5. Let (S,H) ∈ Kp be general and Rp,δ,k as above. Then q(Rp,δ,k)=−
k+3
2 if and only if p = s(s +

1)(k − 1) for an integer s � 1 and Rp,δ,k is optimal.

Proof. By (30), we have q(Rp,δ,k) = −
k+3
2 if and only if ρ = 0 and β = k − 1, in which case Rp,δ,k is optimal.

A straightforward computation yields g = 2α(k − 1) and p = α(α + 1)(k − 1). Conversely, if p is of the given form,

one checks that δ = p− 2s(k − 1) verifies (1) and q(Rp,δ,k)=−
k+3
2 . ✷

If k = 2, the self-intersection −5/2 is obtained if and only if p = s(s + 1) for an integer s � 1, which are the

genera covered in [12, Prop. 7.2], where rational curves with self-intersections −5/2 in Hilb2(S) covering a P2 were
obtained by different methods.

SinceN1(Hilb
k(S)) has rank two when PicS � Z[H ], we have, as a consequence of the recent result [3, Prop. 12.6]:

Corollary 8.6. Let (S,H) ∈ Kp be general such that PicS � Z[H ] and p = s(s + 1)(k − 1) for an integer s � 1.

Then the extremal rays of the Mori cone of Hilbk(S) are generated by rk and by the optimal class Rp,p−2s(k−1),k ≡

H − (2s + 1)(k − 1)rk .

After the appearance of a first version of this paper on the web, Bayer and Macrì [4, Prop. 9.3] proved that

Question 8.4 also has an affirmative answer in the “simplest” cases p � 2(k − 1), that is, when δ0 = 0. More pre-

cisely, in our notation:

Proposition 8.7 (Bayer and Macrì). Let (S,H) ∈Kp be general and k � 2 be an integer such that p � 2(k−1). Then

the extremal rays of the Mori cone ofHilbk(S) are generated by rk and by the optimal classRp,0,k ≡H−(p+k−1)rk .

In [4, Rem. 9.4] one also proves that the class R := Rp,0,k − rk has positive intersection with an ample class and

q(R) �− k+3
2 for k >> 0, proving that the Mori cone is strictly smaller than predicted by Hassett and Tschinkel in

[20, Conj. 1.2]. In Remark 8.10 below we provide one more series of cases where the same phenomenon occurs. This

shows that the “if” part of their conjecture needs some modification concerning the minimal Beauville–Bogomolov

self-intersection of the generators.

For fixed k, the possible values of q(Rp,δ,k) are a set of rational numbers of the form on the right-hand side of (30).

In the optimal case we find that β = k − 1− t and ρ = λ, where t and λ are as in (24) and (25), that is

q(Rp,δ0,k)= 2(λ− 1)−
(k− 1− t)2

2(k− 1)
. (31)
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Choosing suitable λ and t and varying m ∈ Z+ in (25) such that λ � m, one has that all rational numbers as on the

right-hand side of (30) are attained by Beauville–Bogomolov self-intersections of optimal curves:

Proposition 8.8. Fix any integer k � 2. For any pair of integers (ρ,β) with ρ � 0 and 0 � β � k − 1, there are

infinitely many positive integers p such that Hilbk(S) for general (S,H) ∈Kp contains an optimal curve Rp,δ0,k with

q(Rp,δ0,k)= 2(ρ − 1)−
β2

2(k−1) .

This proposition suggests a conceptual explanation for negative self-intersection numbers of certain extremal rays

(cf. [20, beg. of §4]). If k = 2, Proposition 8.8 gives the negative self-intersection numbers −1/2, −2 and −5/2 for

optimal curves. This is in accordance with [22, Conj. 3.1], where Hassett and Tschinkel conjecture that the Mori cone

should be generated by classes of curves R with positive intersection with some polarizing class and such that either

q(R) � 0 or q(R)=−1/2, −2 or −5/2. (It was proved in [21] that the cone generated by these classes contains the

Mori cone.) If k = 3 we obtain the negative self-intersection numbers −3, −9/4, −2, −1 and −1/4, which are the

numbers in [20, Table H3], except for −1. In the case k = 4 we obtain −7/2, −8/3, −13/6, −2, −3/2, −2/3, −1/6,

which are the numbers in [20, Table H4], except for −3/2. Thus, our results provide extensions of the examples in

[20], both to all k � 2 and to infinitely many genera p.

8.2. Curves of self-intersection zero and conjectures of Huybrechts and Sawon

The existence of curves (or divisors, cf. (8)) with Beauville–Bogomolov self-intersection zero on a hyperkähler

manifold X is conjectured by Huybrechts [16, §21.4] and Sawon [33, Conj. 4.2] (see also [34, Conj. 1]) to imply that

X is birational to a Lagrangian fibration (Hassett and Tschinkel make in [22] the same conjecture in dimension 4).

The existence of a nontrivial nef divisor D with q(D)= 0 is a necessary condition for a hyperkähler manifold to be

a Lagrangian fibration (see e.g. [33, §4.1 and Rmk. 4.2]), and it is yet another conjecture of Sawon’s [33, Conj. 4.1]

that this is also a sufficient condition. Both of these conjectures have been proved for punctual Hilbert schemes of K3

surfaces by Bayer and Macrì in [3, Thm. 1.5] after the submission of this paper.

In the case X =Hilbk(S) with (S,H) ∈Kp such that Pic(S)� Z[H ], a divisor mH − nek is isotropic if and only
if m2(p − 1) = n2(k − 1) and this occurs if and only if (p − 1)(k − 1) is a square (cf. [34, §1]). In the primitive

case, i.e., m= 1 and p = n2(k − 1)+ 1, Sawon [34, Thm. 2] and Markushevich [29, Cor. 4.4] independently proved

that Hilbk(S) is a Lagrangian fibration. As we will see in Corollary 8.13 below, this result cannot be generalized as it

stands to m> 1.

A consequence of Sawon–Markushevich’s result is that Question 8.4 has an affirmative answer in some more cases:

Proposition 8.9. Let (S,H) ∈Kp be general with Pic(S)� Z[H ] and k � 2 be any integer. Assume that p = n2(k −

1)+ 1 for some n � 2. Then the extremal rays of the Mori cone of Hilbk(S) are generated by rk and by the optimal

class R =Rp,(n−1)2(k−1)+1,k ≡H − 2n(k− 1)rk .

Proof. Let D be any isotropic divisor. Then the class of D is proportional to a multiple of H − nek and, by [34,
Thm. 2], it is also proportional to the class of the fiber of the Lagrangian fibration of Hilbk(S), hence it is nef. One

computes that the minimal integer satisfying (1) is δ0 = (n− 1)2(k − 1)+ 1, so that R is effective, and R ·D = 0, so

that R lies on the boundary of the Mori cone. ✷

Remark 8.10. This result also shows that the Mori cone is in some cases smaller than predicted by Hassett and

Tschinkel in [20, Conj. 1.2]. Indeed, mimicking the idea in [4, Rem. 9.4], the class R := R − rk satisfies q(R) =
−2n− 1

2(k−1) � − k+3
2 if 4n � k + 2. Since (H − �ek) · R > 0 and H − �ek is ample for small � > 0, the class R

should be effective by [20, Conj. 1.2], which is not the case.

Curves Rp,δ,k with self-intersection zero always exist when an isotropic divisor exists:

Proposition 8.11. Fix any integer k � 2. Let (S,H) ∈Kp be general with Pic(S)� Z[H ] and p � 2. Then there is a

δ such that q(Rp,δ,k)= 0 if and only if (k− 1)(p− 1)= s2, for a positive integer s. In this case δ = p− 2s + k − 1.
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Proof. By (30), one has q(Rp,δ,k)= 0 if and only if (k − 1)(p − 1)= s2 and δ = p − 2s + k − 1. Conversely, such

p and δ verify (1). ✷

Corollary 8.12. Let (S,H) ∈ Kp be general with Pic(S) � Z[H ], p � 2 and k � 2. Assume that D is a nontrivial

isotropic divisor in Hilbk(S) (so that (k − 1)(p − 1)= s2, with s � 1). Then the rational curve R = Rp,p−2s+k−1,k

satisfies D ·R = 0. In particular, if

(k− 1)(α + 1)2 − (2s + 1)(α + 1)+ p � 0, where α :=

�

2s − k + 1

2(k− 1)

�

, (32)

then D is not nef, since the rational curve R� =Rp,p−2s+k−2,k satisfies D ·R� < 0.

Proof. Condition (32) is equivalent to ρ � α + 1 and the result follows by Remark 8.2. ✷

As a consequence, we obtain an additional necessary condition for Hilbk(S) to be a Lagrangian fibration, showing

that Sawon–Markushevich’s mentioned result cannot be generalized to all cases where an isotropic divisor exists:

Corollary 8.13. Let (S,H) ∈ Kp , with p � 2, and k � 2 be any integer. If Hilbk(S) is a Lagrangian fibration, then

(k− 1)(p− 1)= s2, with s � 1, and

(k− 1)(α + 1)2 − (2s + 1)(α + 1)+ p < 0, where α :=

�

2s − k+ 1

2(k− 1)

�

. (33)

Question 8.14. Let (S,H) ∈ Kp be general. Is the condition (33) also a sufficient condition for Hilbk(S) to be a

Lagrangian fibration?

An affirmative answer would mean that the Lagrangian fibration contracts the extremal ray Rp,p−2s+k−1,k . By the

latest results of Bayer and Macrì [3, Thm. 1.5] after the submission of this paper, the question is reduced to whether

the isotropic class is nef, which is in principle reduced to solving some Pell’s equations, by [3, §13].
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