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ON K-SEQUENCES 

JOSEF BURZYK, Katowice 

(Received February 2, 1 

1. We recall that a sequence {xn} in a topological group X is called a K-sequence 

if for every subsequence {yn} of {xn} there are a subsequence {tn} of {yn} and t £ X 

such that 

£*» = . 
n = l 

(see [1]). 
A-sequences converge to zero. Sequences converging to zero in a complete metric 

group are A'-sequences. 

In this note we prove 

T h e o r e m 1. Assume that X is a topological group, {Fk} is a nondecreasing 

sequence of closed subsets of X such that 

x = U ғk 
k-\ 

and assume that {xn} is a K-sequence in X. Then there exists an index ko such 

that 

Xn E Kfc0 + { - Yl Xҷ: ^ C { l , . . . , f c 0 } } 
m£A 

for every n £ N. 

As consequences of Theorem 1 we get the following theorems. 

T h e o r e m 2. Assume that fn for n £ N and f are sequentially continuous non-

negative mappings defined on X such that the following conditions hold: 

1 



(a) fn for n £ N are triangle mappings, i.e. 

fn(x + y) ^ fn(x) + fn(y) for x, ij e N; 

(b) / ( 0 ) = 0 ; 

(c) / n (« ) -+ / ( « ) for every x £ A , 
and assume that {xn} is a K-sequence in X. 

Then fn(xn) —> 0 as 71 —* oo. 

T h e o r e m 3. II A" is a Frechet topological group such that every sequence con

verging to zero in X is a K-sequence, then X is of the second category. 

We recall tha t X is a Frechet topological group if for every subset A of A" and 

for every element x which belongs to the closure A of A there is a sequence {xn} of 

elements in A such that xn —• x. In the case when A" is a metric group, Theorem 

3 was proved in [2]. Theorem 3 in the present form was proved in [3]. The proof 

of Theorem 3 produced in this paper is simpler than the proof in [3] and suggests a 

generalization of the theorem. 

2. In this section we prove the theorems formulated in Section 1. 

P r o o f o f T h e o r e m 1 . Suppose that Theorem 1 does not hold. Then there 

are a topological group X, a nondecreasing sequence {Fk} of closed subsets of A', a 

/v-sequence {xn} in A' and a subsequence {777n} of {n} such that 

X„in + 1 g Fmn + J - ^2 Xm : ^ C {1, • • • , 77in} j -
me A 

Since {Ffc} is a nondecreasing sequence of subsets of X and subsequences of K-

sequences are K-sequences, we may assume that 7Dn = n for 77 £ N and 

xx g<Vi = {0}, 

Xn + l £ Gn + 1 = Fn + { - ^ Xm . AC {1, .. . ,«} j . 
m£A 

Since Gn for 77 £ N are closed subsets of Ar, there are continuous pseudonorms pn 

on Ar and numbers en > 0 such that 

(1) inf {pn(xn - z): z £ Gn} > en 

for 77 £ N. As p\(xn) —> 0, there is an index 7'i such that p\(xrx) < 2~ 2 f i . As 

P2(xn) —* 0, there is an index r2 such that 

P\(xV2) < 2 - 3 £ i and P2(xr2) < 2~4E2-



By induction, we select a subsequence {rn} or {n} such that 

(2) P n ( * r J < 2 - " - " ' £ n 

for n ^ rn and m, n £ N. Since {xrn} is a subsequence of the Ii-sequence {xn}, 

there are a subsequence {sn} of {Tn} and x E X such that 

, x s n = x-
n = \ 

Xs 

n=n o+l 

£• 
n = l 

Let no be an index such that x £ F,n _x. We put 

z = x - ^ x 5 n . 
n<n 0 

Then 
oo 

z £ G. n o and x5 n o - z = ^ 

for n £ N. Hence, by (2), we get 

P3n0(**n0 - ^ ) < ^ » 0 , 

which contradicts (1). This contradiction completes the proof. • 

R e m a r k 1. Under the assumptions of Theorem 1 there is an index ko such 

that xn £ FkQ — Fjb0, and there are subsequence {yn} of {xn}, an index ko, a set 

A C { 1 , . . . , ko} and a sequence {zn} in Fjt0 such that 

yn ~~ ~~ / J xrn -l- zn 

m£A 

for n £ N. If, moreover, F*. for k £ N are subgroups of A', then there is an index k0 

such that xn £ Ffc0 f ° r « G N . 

P r o o f of T h e o r e m 2 . Suppose that Theorem 2 does not hold. Then there 
are number e > 0 and a subsequence {m n } of {n} such that 

(3) fmn{xmn)>e 

for 7i £ N. Since / is continuous, / ( 0 ) = 0 and xn —> 0, there is a subsequence {p n } 

of { m n } such that 

oo 

(4) £ [/(*-J +/(-*PJ] < */3. 



We put 

(5) Fk = {x£X:\fPn(x)-f(x)\^e/4 for n > k}. 

We note tha t Fk for k G N are closed subsets of X, 

k = l 

and {xPn} is a A'-sequence. Hence, by Theorem 1, there is an index ko such that 

*P» G Fko + { - £ xPn : A C { 1 , . . . , k0}} 
keA 

for n G N. According to Remark 1, there is a subsequence {qn} of {pn}, a set 

4̂ C {1, . . . , ko} a n d a sequence {yn} in Fjt0 such that 

(6) x n̂ = - X] P̂™ + Vn 

me A 

for 7i G N. It follows from (a) that 

/»„(*,.) < An ( - E *P">) + !/»-(»») - f(V»)\ + /(»»)• 

Since yn G Ffc and for sufficiently large n we have qn > ko, in view of (5) we get 

\fq,(yn)-f(yn)\<e/z 

for sufficiently large n. Note that , by (6), (a), (c) and (4), we can write 

f(lln)<f(xqn)+ £ / ( . - P m ) < e / 3 . 
m£A 

Since A is a finite set, we infer from (c) and (2) that 

fi*(- .Ex>™)<£/3 

771 £ A 

for sufficiently large n. From the above estimates we get fqn(xqn) < e for sufficiently 

large n, which contradicts (3). This contradiction prove the theorem. • 



We precede the proof of Theorem 3 with two lemmas. 

L e m m a 1. HA' is a Frechet topological group, X{j G X for i, j G N and X{j —• 0 

as j —• oo for i G N, then there are two subsequences {pi}, {qi} of {i} such that 

xPtqt —• 0 . 

P r o o f . We may assume that , under the assumptions of Lemma 1, there is a 

sequence {xn} in A' such that xn ^ 0 for every n G N and xn —+ 0. Otherwise the 

lemma is trivially true. We see that Xij + Xi —• xxas j —• oo for i G N and Xi ^ 0. 

Therefore, there is a subsequence {mi} of {i} such that x,-j / 0 for j ^ m,- and i G N. 

Assume that 

A = {ar.j : j > m,-, i, j G N} . 

Then 0 ^ A but 0 G c l A . Since X is a Frechet topological group, there are two 

sequences {rz} and {si} of positive integers such that nii ^ .sz for i G N and xrtSt —> 0. 

We assert that 7̂  —-> oo. Otherwise there would exist a constant subsequence {vi} 

of {ri} such that v; = i; for i G N and x*V5t —> 0 but a7VSl. —> xv and x^ ^ 0. 

Consequently, r,- —•»• oo and .st- —•> oo. Thus there is a subsequence {&,-} of {i} such 

that {ric%} and {«*,} are subsequences of {i}. Assuming p,- = rjt, and a2- = sjt. for 

i G N we get the lemma. D 

L e m m a 2. If X is a Frechet topological group and {An} is a nonincreasing se

quence of dense subsets An of X, then there is a sequence {xn} such that xn G An 

for 7i G N and xn —• 0. 

P r o o f . Under the assumptions of Lemma 2, for every i G N there is a sequence 

{xij} such that X(j G Ai for j G N and x^ —• 0 as j —» oo for i G N. By Lemma 1, 

there are two subsequences {pi} and {o2} of {i} such that xPjf?i —• 0. Moreover, we 

have xPtqt G APt C ^4i for i G N. Puting xz = xp .g t for i G N we get the assertion. 

D 

P r o o f of T h e o r e m 3 . Suppose that A" is a Frechet topological group in 

which null sequences are I\-sequences and A" is not of the second category. Then 

there are closed subsets Fk of X such that int Fk = 0 for k G N and 

X=\jFk 

k = l 

To get a contradiction we construct a matrix {x{j} such that 

(i) Xij —• 0 as j —> oo for i G N 



and 

(ü) 
p,- + { - VJ xmn:Ac {{k,l): 1 ^ * O' . 1 ^ l ^ i } } Ft ^ 

(m,n)€A 

for i = 2 , 3 , . . . and j G N. Let {x\j} be a sequence in X such that x i j —• 0. Suppose 

tha t the first (n — I) rows of the matrix have been constructed in such a way that 

(i) and (ii) hold. Assume that 

F, = Fi+{- Yl xmn: Ac{{к,l):\^к^n, ì^l^j}} nj 

(m,n)€A 

for j G N. Then Fnj for n, j G N are closed subsets of X, hit Fnj — 0 and Fnj C 

Fnj_l_i. Consequently, the components F'- are open dense subsets of X and F/ D 

Fn ,-+1 for j G N. Thus, by Lemma 2, there a sequence {x*nj} such that 

xnj G F^j for j G N and xnj- —• 0 as j —* oo. 

Consequently, (i) and (ii) hold for i = n. Hence, by induction, the existence of a 

matr ix {xij} such that (i) and (ii) hold follows. By Lemma V there are subsequences 

{pi} and {qi} of {i} such that xPt9i —+ 0. 

It follows from (ii) that 

*P.«, i F<ir + { - YJ xP^k : -4 C {1, . . •, i }} 
keA 

for i G N. On the other hand, {xPiqi} is a I\-sequence. Hence, by Theorem 1, there 

exists an index io such that 

PlЯt G Fio - f | - ^2xpкЯк : A C {!,..., io}} x 
r m • •" i 

for i G N. This obvious contradiction completes the proof of Theorem 3. • 

R e m a r k 2. Observe that we can modify the proof of Theorem 3 in such a way 

t h a t the elements of {x^} are in a given dense subset G of A". Therefore the assertion 

of Theorem 3 is valid whenever there exists a dense subset G of a Frechet topological 

group X such that null sequences in G are Iv-sequences in A". 
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