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Universitat Politècnica de Catalunya

Barcelona, Catalonia (Spain)

{cdalfo,fiol,egarriga}@ma4.upc.edu

August 29, 2008

Abstract

Considering a connected graph G with diameter D, we say that it is k-walk-regular,
for a given integer k (0 ≤ k ≤ D), if the number of walks of length ℓ between vertices u
and v only depends on the distance between them, provided that this distance does not
exceed k. Thus, for k = 0, this definition coincides with that of walk-regular graph,
where the number of cycles of length ℓ rooted at a given vertex is a constant through all
the graph. In the other extreme, for k = D, we get one of the possible definitions for a
graph to be distance-regular. In this paper we show some algebraic characterizations
of k-walk-regularity, which are based on the so-called local spectrum and predistance
polynomials of G. Moreover, some results concerning some parameters of a geometric
nature, such as the cosines, and the spectrum of walk-regular graphs are presented.

1 Introduction

Distance-regular graphs with diameter D can be characterized by the invariance of the
number of walks of length ℓ ≥ 0 between vertices at a given distance i, 0 ≤ i ≤ D (see
e.g. Rowlinson [14]). Similarly, walk-regular graphs are characterized by the fact that
the number of closed walks of length l ≥ 0 rooted at any given vertex is a constant (see
e.g. Godsil [11]). Based on these definitions, in this paper we introduce a generalization
(of both distance-regularity and walk-regularity), which we called k-walk-regularity. In
particular, we present some algebraic characterizations of k-walk-regular graphs in terms
of the so-called local spectrum, which gives information of the graph when it is seen from a
vertex, and the predistance polynomials of G. Moreover, some results relating the cosines
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and the maximum-independence number with the spectrum of walk-regular graphs are
presented.

We begin with some notation and basic results. Throughout this paper, G = (V,E)
denotes a simple, connected graph, with order n = |V | and adjacency matrix A. The
distance between two vertices is denoted by dist(u, v), so that the eccentricity of a vertex is
ecc(u) = maxv∈V dist(u, v) and the diameter of the graph is D = D(G) = maxu∈V ecc(u).
The spectrum of G is denoted by

sp G = spA = {λm0

0 , λm1

1 , . . . , λmd

d },

where λ0 > λ1 > · · · > λd and the superscripts stand for the multiplicities mi = m(λi).
In particular, note that m0 = 1 (since G is connected) and m0 + m1 + · · · + md = n. It
is well-known that the diameter of G satisfies D ≤ d (see, for instance, [1, 6]). Then, a
graph with D = d is said to have spectrally maximum diameter. For a given ordering of
the vertices, the vector space of linear combinations (with real coefficients) of the vertices
of G is identified with R

n, with canonical basis {eu : u ∈ V }. Let Z =
∏d

i=0(x−λi) be the
minimal polynomial of A. The vector space Rd[x] of real polynomials of degree at most d
is isomorphic to R[x]/(Z), and each polynomial p ∈ Rd[x] operates on the vector w ∈ R

n

by p(A)w. For every 0 ≤ k ≤ d, the orthogonal projection of R
n onto Ek = Ker(A− λkI)

is given by the polynomial of degree d

Pk =
1

φk

d
∏

i=0

i6=k

(x − λi) =
(−1)k

πk

d
∏

i=0

i6=k

(x − λi),

where φk =
∏d

i=0,i6=k(λk − λi) and πk = |φk| are “moment-like” parameters satisfying

m
∑

ℓ=0

(−1)ℓ
λk

ℓ

πℓ

=

{

0 if 0 ≤ k < d,
1 if k = d,

(1)

(just express xℓ in terms of the basis {P0, P1, . . . , Pd} and equate coefficients of degree d).
The matrices Ek = Pk(A) corresponding to these orthogonal projections are called the
(principal) idempotents of A. Then, the orthogonal decomposition of the unitary vector
eu, representing vertex u, is:

eu = z0
u + z1

u + · · · + zd
u , where zk

u = Pk(A)eu = Ekeu ∈ Ek. (2)

In particular, if ν is an eigenvector of λ0, then z0
u = 〈eu,ν〉

‖ν‖2 ν = νu

‖ν‖2 ν.

The idempotents of A satisfy the following properties (see e.g. Godsil [11]):

(a.1) EkEh =

{

Ek if k = h,
0 otherwise;

(a.2) AEk = λkEk;
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(a.3) p(A) =
d

∑

k=0

p(λk)Ek, for any polynomial p ∈ R[x].

In particular, taking p = 1 in (a.3), we have E0 + E1 + · · · + Ed = I (as expected, since
the sum of all orthogonal projections gives the original vector). Moreover, taking p = xℓ,
each power of A can be expressed as a linear combination of the idempotents Ek:

Aℓ =
d

∑

k=0

λℓ
kEk. (3)

2 Spectral regularity and walk-regularity

From the decomposition (2), we define the u-local multiplicity of eigenvalue λk as

mu(λk) = ‖zk
u‖

2 = 〈Ekeu,Ekeu〉 = 〈Ekeu,eu〉 = (Ek)uu, (4)

(see [7]), satisfying

d
∑

k=0

mu(λk) = 1,
∑

u∈V

mu(λk) = mk (0 ≤ k ≤ d).

Indeed, the first equality follows from the unitary character of eu, whereas the second one
comes from (4), since

∑

u∈V

mu(λk) = tr(Ek) = mk,

because sp Ek = {0n−mk , 1mk}.

We say that G is spectrally regular when, for any k = 0, 1, . . . , d, the u-local multiplicity
of λk does not depend on the vertex u. Then, the above equations imply that (standard)
multiplicity “splits” equitably among the n vertices, giving mu(λk) = mk

n
. In particular,

since mu(λ0) = ‖z0
k‖

2 = ν2
u

‖ν‖2 , the spectral regularity implies the regularity of the graph

because, in this case, mu(λ0) = 1
n

and νu = ‖ν‖√
n

for all u.

Let a
(ℓ)
u = (Aℓ)uu denote the number of closed walks of length ℓ rooted at vertex u.

When the number a
(ℓ)
u only depends on ℓ, in which case we write a

(ℓ)
u = a(ℓ), the graph G

is called walk-regular (a concept introduced by Godsil and McKay in [12]). Notice that,

as a
(2)
u = δu, the degree of vertex u, every walk-regular graph is also regular. Recall

also that, if G has d + 1 distinct eigenvalues, then {I,A,A2, . . . ,Ad} is a basis of the
adjacency or Bose-Mesner algebra A(G) of matrices which are polynomials in A. There-
fore, the existence of the set of constants C = {a(0), a(1), . . . , a(d)} suffices for assuring
walk-regularity.
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Figure 1: A walk-regular graph which is not distance-regular.

As it is well known, any distance-regular graph is also walk-regular, but the converse
is not true. Actually, as it is pointed out by Godsil [11], there are walk-regular graphs
which are neither vertex-transitive nor distance-regular. This is the case, for instance, of
the graph G depicted in Fig. 1, with spectrum spG = {41, 23, 03,−25} and set of numbers
of closed walks C = {1, 0, 4, 4}.

In our context, we also have the following result:

Proposition 2.1 A connected graph G is spectrally regular if and only if it is walk-regular.

P roof. First, note that, by using (3), the number of closed walks a
(ℓ)
u can be computed

in terms of the local multiplicities as

a(ℓ)
u = (Aℓ)uu =

d
∑

k=0

λℓ
k(Ek)uu =

d
∑

k=0

mu(λk)λ
ℓ
k. (5)

Then, if G is spectrally regular, for any u ∈ V and ℓ ≥ 0, this gives

a(ℓ)
u =

1

n

d
∑

k=0

mkλ
ℓ
k, (6)

so that a
(ℓ)
u is independent of u and G is walk-regular. Conversely, suppose that G is

walk-regular and let a(ℓ) denote the constant value of a
(ℓ)
u for every u ∈ V . Then, from

a(ℓ) =
1

n
tr(Aℓ) =

1

n

d
∑

k=0

mkλ
ℓ
k
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and (5), we get
d

∑

k=0

λℓ
k

(

mk

n
− mu(λk)

)

= 0,

for ℓ = 0, 1, . . . , d. This system has determinant different from 0. So, mk

n
− mu(λk) = 0

and the graph is spectrally regular. 2

Consequently, from now on we will indistinctly say that a graph G is spectrally regular
or that it is walk-regular. If this is the case, we can relate the spectrum of G with the num-

ber of closed walks a
(ℓ)
u = a(ℓ) in different ways, such as in (6). Also, given the eigenvalues

(from which we compute the polynomials Pk) and the set C = {a(0), a(1), . . . , a(d)}, we can
obtain the multiplicities. With this aim, let us introduce the following notation: given a
polynomial p =

∑d
i=0 αix

i, let p(C) =
∑d

i=0 αia
(i). Note that if the graph is walk-regular,

then (p(A))uu =
∑d

i=0 αi(A
i)uu = p(C) for any vertex u. Thus, for such a graph,

mk = n mu(λk) = n(Ek)uu = n(Pk(A))uu = n Pk(C). (7)

The predistance polynomials

From the spectrum of a given graph sp G = {λm0

0 , λm1

1 , . . . , λmd

d }, we consider the following
scalar product in Rd[x]:

〈p, q〉 =
1

n
tr(p(A)q(A)) =

1

n

d
∑

k=0

mkp(λk)q(λk). (8)

Then, by using the Gram-Schmidt method and normalizing appropriately, it is immediate
to prove the existence and uniqueness of an orthogonal system of polynomials {pk}0≤k≤d

called predistance polynomials which, for any 0 ≤ h, k ≤ d, satisfy:

(b.1) dgr(pk) = k;

(b.2) 〈ph, pk〉 = 0 if h 6= k;

(b.3) ‖pk‖
2 = pk(λ0).

In [7, 8] it was shown that such a system is unique and it is also characterized by the any
of the two following conditions:

(c.1) p0 = 1, ak + bk + ck = λ0 for 0 ≤ k ≤ d,

where ak, bk and ck are the corresponding coefficients of the three-term recurrence

xpk = bk−1pk−1 + akpk + ck+1pk+1 (0 ≤ k ≤ d),

(that is, the Fourier coefficients of xpk in terms of pk−1, pk, and pk+1, respectively)
initiated with p−1 = 0 and p0 any non-zero constant.
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(c.2) H :=
d

∑

k=0

pk =
n

π0

d
∏

k=1

(x − λk) = n P0.

The reader familiar with the theory of distance-regular graphs will have already noted
that the predistance polynomials can be thought as a generalization of the so-called “dis-
tance polynomials”. Recall that, in a distance-regular graph, such polynomials satisfy

pk(A) = Ak (0 ≤ k ≤ d),

where Ak stands for the adjacency matrix of the distance-k graph Gk, usually called the
k-th distance matrix of G (see, for instance, [2]). Also, recall that the polynomial H in (c.2)
is the Hoffman polynomial characterizing the regularity of G by the condition H(A) = J ,
the all-1 matrix (see Hoffman [13]).

In our context, the predistance polynomials allow us to give another characterization
of walk-regularity (or spectral regularity), as it is shown in the following result:

Proposition 2.2 Let G be a connected graph with adjacency matrix A having d+1 distinct
eigenvalues, and with predistance polynomials {p0, p1, . . . , pd}. Then, the two following
statements are equivalent:

(a) G is walk-regular.

(b) The matrices pk(A), 1 ≤ k ≤ d, have null diagonals.

P roof. Assume first that (a) holds: if G is walk-regular, then the diagonal vector of Aℓ

is diag(Aℓ) = a(ℓ)j. Since (pk(A))uu = pk(C) for every vertex u, diag(pk(A)) = pk(C)j,
with j being the all-1 vector. But, for 1 ≤ k ≤ d, we have

0 = 〈pk, p0〉 =
1

n
tr(pk(A)) = pk(C),

so that diag(pk(A)) = 0.

Now suppose that (b) holds. Then, by using the expression

xℓ =
ℓ

∑

k=0

αℓkpk (9)

where αℓk are the Fourier coefficients of xℓ in terms of pk, we have

diag(Aℓ) =
ℓ

∑

k=0

αℓk diag(pk(A)) = αℓ0j.

Therefore, a
(ℓ)
u = αℓ0, which is independent of u and the graph is walk-regular. (Notice

that αℓ0 = 〈xℓ,1〉
‖1‖2 = 1

n

∑ℓ
k=0 mkλ

ℓ
k, as expected.) 2

Note that property (b) is also satisfied in the case of distance-regularity, as pk(A) = Ak.
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3 k-Walk-regular graphs

The above result can be generalized if we consider the following new definition. Let G be
a connected graph with diameter D. For a given integer k, 0 ≤ k ≤ D, we say that G is

k-walk-regular if the number of walks of length ℓ between vertices u, v, that is a
(ℓ)
uv = (Aℓ)uv,

only depends on the distance between u and v, provided that dist(u, v) = i ≤ k. If this

is the case, we write a
(ℓ)
uv = a

(ℓ)
i . Thus, a 0-walk-regular graph is the same concept as a

walk-regular graph. In the other extreme, the distance-regular graphs correspond to the
case of D-walk-regular graphs (see e.g. Rowlinson [14]). Note that, obviously, if G is a
k-walk-regular graph, then it is also k′-walk-regular for any k′ ≤ k. This is consequent
with the fact that a distance-regular graph is also walk-regular. To illustrate our new
definition, a family of graphs which are 1-walk-regular (but not k-walk-regular for k > 1)
are the Cartesian products of cycles Cm × Cm with m ≥ 5. In fact, notice that all
these graphs are vertex- and edge-transitive. For instance, C5 × C5 has diameter D = 2,

number of different eigenvalues d + 1 = 6, and sets C = {a
(ℓ)
0 }0≤ℓ≤5 = {1, 0, 4, 0, 36, 4},

W = {a
(ℓ)
1 }0≤ℓ≤5 = {0, 1, 0, 9, 1, 100}.

As in the case of walk-regularity, the concept of k-walk-regularity can also be seen as
the invariance of some entries of the idempotents. By analogy with local multiplicities,
which correspond to the diagonal of the matrix, Fiol, Garriga and Yebra [9] called these
entries the crossed (uv-)local multiplicities of λk, and they were denoted by muv(λk).
Now in terms of the orthogonal projection of the canonical vectors eu, the crossed local
multiplicities are obtained by the scalar products

muv(λk) := (Ek)uv = 〈Ekeu,ev〉 = 〈Ekeu,Ekev〉 = 〈zk
u,zk

v〉 (u, v ∈ V ).

Now, for a given k, 0 ≤ k ≤ d, we say that graph G is k-spectrally regular when, for
any h = 0, 1, . . . , d, the crossed uv-local multiplicities of λh only depend on the distance
between u and v, provided that dist(u, v) ≤ k.

At this point, we are ready to give the following result (where “◦” stands for the Schur
or Hadamard—componentwise—product of matrices), relating the k-walk-regularity to
the k-spectral regularity and the matrices obtained from the predistance polynomials.
In the second case, these polynomials give the distance matrices when we look trough a
“window” defined by the matrix Sk = A0 + A1 + · · · + Ak.

Theorem 3.1 Let G be a connected graph with adjacency matrix A having d + 1 distinct
eigenvalues, and with predistance polynomials {p0, p1, . . . , pd}. Then, for a given integer
k, 0 ≤ k ≤ D, the three following statements are equivalent:

(a) G is k-walk-regular.

(b) G is k-spectrally regular.

(c) Sk ◦ pi(A) = Sk ◦ Ai for any 0 ≤ i ≤ d.
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P roof. (a) ⇔ (b): The equivalence between (a) and (b) is proved analogously to the

proof of Proposition 2.1. Indeed, from (3), we now have that the number of walks a
(ℓ)
uv can

be computed in terms of the crossed uv-local multiplicities as

a(ℓ)
uv = (Aℓ)uv =

d
∑

h=0

muv(λh)λℓ
h. (10)

Then, if G is k-spectrally regular, this gives

a(ℓ)
uv =

1

n

d
∑

k=0

mihλℓ
h, (11)

for any u, v ∈ V such that dist(u, v) = i ≤ k, and ℓ ≥ 0. Therefore, a
(ℓ)
uv is independent of

u, v, provided that dist(u, v) = i ≤ k, and G is k-walk-regular. Conversely, suppose that G

is k-walk-regular and consider the set of numbers of (u, v)-walks W = {a
(0)
i , a

(1)
i , . . . , a

(d)
i },

where i = dist(u, v) ≤ k. Then, we can obtain the crossed uv-local multiplicities as

muv(λh) = (Eh)uv = (Ph(A))uv = Ph(W), (12)

which turn out to be independent of u, v and G is k-spectrally regular.

(a), (b) ⇒ (c): We want to prove that pi(A) = Ai if i ≤ k and Sk ◦ pi(A) = O

otherwise. Then, if G is k-walk-regular, there are constants a
(ℓ)
i , for any 0 ≤ i ≤ k and

ℓ ≥ 0 satisfying

Aℓ =
k

∑

i=0

a
(ℓ)
i Ai. (13)

where, clearly, aℓ
i = 0 when ℓ < i. As a matrix equation (writing only the terms with

ℓ ≤ k),


















I

A

A2

·
·

Ak



















=























a
(0)
0

a
(1)
0 a

(1)
1

a
(2)
0 a

(2)
1 a

(2)
2

· · · ·
· · · · ·

a
(k)
0 a

(k)
1 · · · a

(k)
k









































I

A

A2

·
·

Ak



















, (14)

where the lower triangular matrix T , with rows and columns indexed with the integers

0, 1 . . . , k, has entries (T )ℓi = a
(ℓ)
i . In particular, note that a

(0)
0 = a

(1)
1 = 1 and a

(1)
0 = 0.

Moreover, since a
(k)
k > 0, such a matrix has an inverse, which is also a lower triangular

matrix, and hence each Ai is a polynomial, say qi, of degree i in A. These polynomials
are orthogonal with respect to the scalar product (8) since

〈qi, qj〉 =
1

n
tr(qi(A)qj(A)) =

1

n
tr(AiAj) = 0 (i 6= j).
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Moreover, as Aij = qi(A)j = qi(λ0)j, the number of vertices at distance i, 0 ≤ i ≤ k,
from a given vertex u is a constant through all the graph: ni = Γi(u) = qi(λ0) for every
u ∈ V . Thus,

‖qi‖
2 =

1

n
tr(q2

i (A)) =
1

n
tr(A2

i ) =
1

n
tr(Ai) = qi(λ0)

and, therefore, the obtained polynomials are, in fact, the (pre)distance polynomials qi = pi,
0 ≤ i ≤ k, as claimed. Let us now prove the second part of the statement: if j > k, then
pj(A)uv = 0 provided that dist(u, v) ≤ k. First, note that, from property (a.2) of the
idempotents, we have

(pi(A)Eh)uu = pi(λh)(Eh)uu = pi(λh)mu(λh) = pi(λh)
mh

n
(15)

for any 0 ≤ h ≤ d. But, if i = dist(u, v) ≤ k, we already know that pi(A) = Ai and then,

(pi(A)Eh)uu = (AiEh)uu =
∑

v∈V

(Ai)uv(Eh)uv =
∑

v∈Γi(u)

muv(λh) = nimih, (16)

where we have used the invariance of the crossed local multiplicities, muv(λh) = mih, and
the number of vertices at distance i(≤ k) from any given vertex, ni = pi(λ0). Equating
(15) and (16) we obtain:

mih =
mhpi(λh)

npi(λ0)
(0 ≤ i ≤ k, 0 ≤ h ≤ d). (17)

Using property (b.3) of the idempotents and these values of the crossed multiplicities, we
finally get:

pj(A)uv =
d

∑

h=0

pj(λh)(Eh)uv =
d

∑

h=0

pj(λh)mih

=
1

npi(λ0)

d
∑

h=0

mhpj(λh)pi(λh) =
1

pi(λ0)
〈pj , pi〉 = 0 (j > k ≥ i).

(c) ⇒ (b): Conversely, assume that (c) holds and, for every h, 0 ≤ h ≤ d, consider the
expression of Ph =

∑d
j=0 βhjpj, where βhj is the Fourier coefficient of Ph in terms of pj.

Then, if dist(u, v) = i ≤ k,

muv(Eh)uv =
d

∑

j=0

βhjpj(A)uv =
k

∑

j=0

βhj(Aj)uv +
d

∑

j=k+1

βhj(pj(A))uv = βhi.

Consequently, the crossed local multiplicities muv(λh) = βhi only depend on the dis-

tance dist(u, v) = i, and G is k-spectrally regular. (Notice that, βhi = mih = 〈Ph,pi〉
‖pi‖2 =

1
pi(λ0)n

∑d
j=0 mjPh(λj)pi(λj) = mhpi(λh)

npi(λ0) , in concordance with (17).) 2
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4 Spectrum and Diameter

In this last section, we study some results concerning some parameters of a geometric
nature, as the cosines and the (d − 1)-independent number, and the spectrum of walk-
regular graphs. In our context, these results are of interest because they apply to all
k-regular graphs and, in particular, to distance-regular graphs.

Consider the sets Tk = {zk
u = Ekeu : u ∈ V } of vectors in the mk-dimensional space

Ker(x − λk). These sets are usually called eutactic stars and they have been extensively
studied, for instance, see [15, 14, 3]. Then, the spectral regularity of the graph is equiv-
alent to state that, for every k = 0, 1, . . . , d, such vectors define n points (not necessarily
different) on the sphere with radius

√

mk/n. Moreover, for any k = 1, 2, . . . , d, the “center
of mass” of the set Tk is

∑

u∈V

zk
u = Ek

∑

u∈V

eu = Ekj = 0.

Let γk
u,v = γ(zk

u,zk
v) denote the angle between two vectors zk

u, zk
v . Note that, since

z0
u = (1/n)j, we always have γ0

u,v = 0. In terms of our local multiplicities, the cosines of
these angles are:

cos γk
u,v =

〈zk
u,zk

v〉

‖zk
u‖‖z

k
v‖

=
muv(λk)

√

mu(λk)mv(λk)
. (18)

These cosines were already considered by Godsil [10, 11] when G is a distance-regular
graph. He referred to them as the uv-cosines, denoted by wuv = wuv(λk). For such a
graph, and assuming that dist(u, v) = ℓ, they satisfy the formula (see [5]):

wℓ(λk) =
pℓ(λk)

pℓ(λ0)
(0 ≤ k ≤ d).

For spectrally-regular graphs, we have the following result:

Proposition 4.1 Let G = (V,E) be a spectrally regular graph with d + 1 eigenvalues.
Then, two vertices u, v ∈ V are at (spectrally maximum) distance d if and only if

cos γk
u,v =

(−1)k

mk

π0

πk

(0 ≤ k ≤ d). (19)

P roof. For 0 ≤ k ≤ d, we compute the following:

〈zk
u,zk

v〉 = 〈Pk(A)eu, Pk(A)ev〉 = 〈Pk(A)eu,ev〉 = (−1)k

πk
〈Adeu,ev〉

〈zk
u,zk

v〉 = ‖zk
u‖‖z

k
v‖ cos γk

u,v

}

⇒

cos γk
u,v =

(−1)k

πk

n

mk

〈Adeu,ev〉.
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For k = 0, we have 1 = n
π0
〈Adeu,ev〉. Then,

cos γk
u,v =

(−1)k

mk

π0

πk

(0 ≤ k ≤ d).

Reciprocally, let Q1(A), Q2(A), . . . , Qd(A) be the polynomials of degree d − 1 defined by
(A − λ0)Qk(A) = Pk(A), namely,

Qk(A) =
(−1)k

πk

d
∏

i=1

i6=k

(A − λi).

The set {Q1(A), Q2(A), . . . , Qd(A)} is a base in Rd−1 and, for 1 ≤ k ≤ d, each element
Qk(A) holds:

Qk(λ0) =
(−1)k

λ0 − λk

π0

πk

;

Qk(λi) = 0 for 1 ≤ i ≤ d, i 6= k;

Qk(λk) =
(−1)k

λk − λ0
.

Then, for 1 ≤ k ≤ d, we get:

〈Qk(A)eu,ev〉 = 〈Qk(λ0)z
0
u + Qk(λk)z

k
u,ev〉 = Qk(λ0)〈z

0
u,z0

v〉 + Qk(λk)〈z
k
u,zk

v〉

=
(−1)k

λ0 − λk

π0

πk

1

n
+

1

λk − λ0

mk

n

(−1)k

mk

π0

πk

= 0.

So, 〈Aieu,ev〉 = 0 for i ≤ d − 1 and the vertices u, v are at distance d. 2

Notice that, according to (18), the above condition (19) can also be given in terms of
the crossed local multiplicities as:

muv(λk) =
(−1)k

n

π0

πk

(0 ≤ k ≤ d).

As a consequence, by using (10) and (1), we have that, under the hypotheses of Proposition
4.1, the number of walks of length d between vertices u, v at maximum distance d is

a
(d)
uv = π0/n (independent of such vertices, as if the graph were distance-regular).

As a direct consequence of Proposition 4.1, we have the following result:

Corollary 4.2 The eigenvalue multiplicities of a (connected) spectrally regular graph with
spectrally maximum diameter satisfy

mk ≥
π0

πk

(0 ≤ k ≤ d).
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Let α ≡ α(G) ≡ αd−1(G) be the (d − 1)-independence number of G, that is, the
maximum number of vertices which are at distance d from each other. Note that, for a
graph G, the property of having spectrally maximum diameter is equivalent to have α ≥ 2.

Proposition 4.3 The (d−1)-independence number of a spectrally regular graph G satisfies
the bound

α ≤ 1 + min
1≤k≤d

k odd

{

mk

πk

π0

}

.

P roof. Let u1, u2, . . . , ur be vertices at distance d from each other. Consider their
spectral decompositions:

eu1
= z0

u1
+ z1

u1
+ · · · + zd

u1

eu2
= z0

u2
+ z1

u2
+ · · · + zd

u2

...

eur = z0
ur

+ z1
ur

+ · · · + zd
ur

.

Then, eu1
+ eu2

+ · · · + eur = w0 + w1 + · · · + wd, where wk = zk
u1

+ zk
u2

+ · · · + zk
ur

∈
Ker(x − λk). Computing ‖wk‖2, we obtain

‖wk‖2 =
r

∑

i,j=1

〈zk
ui

,zk
uj
〉 =

r
∑

i=1

‖zk
ui
‖2 +

r
∑

i,j=1

i6=j

〈zk
ui

,zk
uj
〉

=
r

∑

i=1

mk

n
+

r
∑

i,j=1

i6=j

mk

n

mk

n

(−1)k

mk

π0

πk

= r
mk

n
+ r(r − 1)

(−1)k

n

π0

πk

=
r

n

(

mk + (−1)k(r − 1)
π0

πk

)

.

For k even, the inequality ‖wk‖2 ≥ 0 is irrelevant. However, for k odd, it imposes that
mk ≥ (r − 1) π0

πk
or, equivalently, r ≤ 1 + mk

πk

π0
. 2

Then, from the above results we get:

Corollary 4.4 Let G be a (connected) spectrally regular graph with spectrum spG =
{λm0

0 , λm1

1 , . . . , λmd

d }, spectrally maximum diameter d, and (d − 1)-independence number
α. Then, the eigenvalue multiplicities satisfy the bounds

mk ≥
π0

πk

if k is even,

mk ≥ (α − 1)
π0

πk

if k is odd.

12



A result to be compared with the following characterization of antipodal distance-
regular graphs given in [4].

Proposition 4.5 A distance-regular graph G with spectrum spG = {λm0

0 , λm1

1 , . . . , λmd

d }
is r-antipodal (r ≥ 2) if and only if its eigenvalue multiplicities satisfy:

mk =
π0

πk

(k even),

mk = (r − 1)
π0

πk

(k odd).
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