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On Kelvin Transformation
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We prove that in the Euclidean space of arbitrary dimension the inversion
of the isotropic stable Lévy process killed at the origin is, after an appro-
priate change of time, the same stable process conditioned in the sense of
Doob by the Riesz kernel. Using this identification we derive and explain
transformation rules for the Kelvin transform acting on the Green function
and the Poisson kernel of the stable process and on solutions of Schrödinger
equation based on the fractional Laplacian. The Brownian motion and the
classical Laplacian are included as a special case.
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1. INTRODUCTION

In what follows d is an arbitrary natural number and | · | denotes the
Euclidean norm in Rd . Inversion with respect to the unit sphere is the
transformation T of Rd0 =Rd\ {0} defined as

T x= x

|x|2 .
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We denote by {Xt,Px} the standard (6) rotation invariant (isotropic) α-stable
Lévy process in Rd (i.e. with homogeneous independent increments) with
exponent α∈ (0, 2] and characteristic function

Exeiξ ·(Xt−x)= e−t |ξ |α , x, ξ ∈Rd , t�0. (1)

Here Ex is the expectation for the process starting from x and · denotes
the usual inner product. Let {X0

t } be our stable process killed upon hitting
the origin. The process is regarded as a Markov process on Rd0 . Our main
result is the following theorem.

Theorem 1. The process
{
TX0

θ(t), t�0
}

has the same law as the pro-

cess {X0
t , t � 0} conditioned in the sense of Doob by the function h(x)=

|x|α−d . Here θ is the inverse function of the additive functional A(t)=∫ t
0 |X0

s |−2αds.

In the case of α=2<d the result is given in Ref. 37 Ch. VIII (3.17)
along with further references (for α=2=d we refer to, e.g. Ref. 44 Remar-
que 1). One of the consequences of Theorem 1 is the following transfor-
mation rule for the Green function GD of {Xt } for all α∈ (0, 2].

Theorem 2. For every open set D⊂Rd0

GTD(x, y)=|x|α−d |y|α−dGD(T x, T y), x, y ∈Rd0 . (2)

Here TD={T x:x ∈D}. In the case of the ball, (2) was obtained for α<2
in Ref. 13 (Section 8) by using the explicit form of the Poisson kernel of
the ball for our processes(7,38); see also Ref. 1 and 13 for the classical case
α=2. For general D the statement is apparently new even for α=2. How-
ever, we should note that there exist well-known analytic techniques based
on a characterization of the Green function, which may be used to prove
the theorem. We refer the reader to, e.g., Ref. 36. Section 4.4 for d=α=2
and Ref. 18, Corollary to Theorem 2.6 for α=2 and d=1,2, . . . (see also
below).

Our interest in Kelvin transform comes primarily from the fact that
it reduces potential-theoretic problems pertaining to the point at infinity
(and unbounded domains) to those at the origin (and bounded domains),
see, e.g., Ref. 1 or 25 for the classical case α= 2. This advantage is espe-
cially appealing in considerations related to the boundary Harnack princi-
ple and asymptotics of harmonic functions at the boundary of domains in
Rd , see Refs. 2, 9 and 11 for the case of α<2 and Ref. 13 for α�2. The
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reader interested in other recent developments in the potential theory of
the Riesz kernel and our isotropic stable processes for α< 2 may consult
Refs. 15, 17, 29, 35 and the references given there.

We like to note that the case of general D and 0< α � 2 in The-
orem 2 can be also studied within the framework of analytic potential
theory by means of a transformation formula for Riesz potentials (80),
an approach used before to calculate the Poisson kernel of the ball Refs.
38, 31, (Appendix), 7 and 5, pp. 191–207. We refer the reader to Ref. 10
for details (see also Section 5 below). We note, however, that(10) exhibited
certain difficulties of the recurrent case α � d when 0 ∈ ∂D. These diffi-
culties are not only of technical character as they correspond to certain
peculiarities in formulas for the Green function and harmonic measure of
unbounded domains on the real line.(7,35)

The present paper develops the formalism of the Kelvin transform
including the recurrent case. Our study shows that, except for the inver-
sion, conditioning and a time change, it is the killing of the underlying
isotropic stable process at the origin that allows for a unified treatment
of the recurrent case and the transient case α < d. The properties of the
Kelvin transform are derived here in a broader perspective by lifting the
calculations from the level of the Riesz potential kernel (the approach of
Ref. 10) to the level of the related operator semigroup and the stochastic
process. As we mentioned, our results apply in particular to the Brownian
motion, Newtonian kernel and Laplace operator, which correspond to the
case α=2.

For clarity we note that if α�d then the origin is a polar set for our
process and killing it at the origin has no effect on the process and its
Green function other than regarding Rd0 as a new state space.

We employ standard theory of resolvents (of semigroup) to prove Theo-
rem 1 rather than use the corresponding infinitesimal generators.(5,7,23,31,32)

Our experience with using the infinitesimal generators for identification of
the processes in Theorem 1 indicates essential difficulties in dealing with
their domains in the case α�1.

The paper is organized as follows. In Section 2 we give preliminar-
ies on the Kelvin transform, the isotropic stable Lévy processes, the cor-
responding harmonic functions and Doob’s conditioning. In Section 3 we
prove Theorem 1 in the easy transient case. In Section 4 and 5 we give
a proof for α > d = 1 and α= d, respectively. The reader interested only
in the prevailing transient case may skip these sections because Section
3 exhibits all the basic algebra. In Section 6 we conclude the proof of
Theorem 1 and we prove Theorem 2 along with the well-known pres-
ervation property for harmonic functions. In Section 7 we give several
new and known transformation rules for the Kelvin transform acting on



92 Bogdan and Żak

Green potentials, harmonic measure and solutions of Schrödinger equa-
tion related to our process. At the end of Section 7 we test our formalism
against certain well-known but striking phenomena of the point recurrent
potential theory (α>d=1). In Section 8, we give some general comments
and additional references.

Below we will only consider Borel measures and functions and only
integrals which are well defined as Lebesgue integrals, e.g. absolutely con-
vergent or nonnegative. In inequalities, c denotes a generic multiplicative
constant i.e. a positive real number whose value does not depend on the
variables in other factors of a given product. For example see (19).

2. PRELIMINARIES

The following fundamental property of inversion can be verified by
using the inner product:

|T x−Ty|= |x−y||x||y| , x, y ∈Rd0 . (3)

Note that we adopt no convention on the values of T at the origin and
infinity.

Let B=B(Q, r)={x ∈Rd : |x−Q|<r}, where Q∈Rd0 and 0<r < |Q|.
(3) yields that T B=B(S,ρ), where

S= Q

|Q|2− r2
and ρ= r

|Q|2− r2
. (4)

One consequence of (4) is that the Jacobian of T satisfies

|det(JT (y))|= |y|−2d . (5)

In what follows 0<α�2. Let u be a function on Rd0 . The Kelvin transform
of u is the function Ku on Rd0 defined by

Ku(y)=|y|α−du(T y)=|y|α−du(y/|y|2). (6)

Note that in (6) and below we often drop α and d from our notation.
The choice of α=2 yields the classical Kelvin transform, of which (6) is a
generalization. Of course, T ◦T and K ◦K are identity operators on their
respective domains of definition. It will be convenient to define the dual
Kelvin transform K̃ as adjoint operation, acting on measures ν on Rd0 :

∫

Rd0

f (y)K̃ν(dy)=
∫

Rd0

Kf (y)ν(dy)=
∫

Rd0

|y|α−df (T y)ν(dy). (7)
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If ν(dx)=g(x)dx, then a change of variable and (5) yield

K̃ν(dy)=|y|−2αKg(y) dy. (8)

Generally, we can express K̃ν in terms of μ ◦ T −1, where μ ◦ T −1(dy)=
μ(T −1(dy)) for a measure μ on Rd0 . Indeed, since

∫
f (y)ν ◦T −1(dy)=

∫
f (T y)ν(dy), (9)

therefore

K̃ν=|y|d−α
(
ν ◦T −1

)
=

(
|y|α−dν

)
◦T −1. (10)

As usual, for a function g and a measure μ,gμ is the measure defined by∫
f (y)(gμ)(dy)= ∫

f (y)g(y)μ(dy), in which way we understand (10).
The isotropic stable process {Xt } determined by (1) is a well-known

object.(6) For 0<α < 2 it is a symmetric Lévy process in Rd with Lévy
measure ν, zero shift and no Gaussian component.(41) Here ν(dy) =
A(d,−α)|y|−d−α dy and A(d, γ )=	((d−γ )/2)/(2γ πd/2|	(γ /2)|), see also
(17). For each t > 0, the P0 distribution of Xt has the density function
given by inverse Fourier transform and (1):

pt (y)= (2π)−d
∫

Rd
exp(−t |ξ |α)e−iξ ·ydξ. (11)

(11) implies the scaling property

pt (y)= t−d/αp(t−1/αy), t >0, y ∈Rd , (12)

and continuity (smoothness) of pt (y) in (t, y) for t >0. The transition den-
sity of {Xt } is

p(t;x, y)=pt (y−x). (13)

For α=1 we have pt (y)=cd t (|y|2+ t2)−(d+1)/2, t >0, i.e. the Cauchy semi-
group on Rd(8,42,45). The asymptotics of pt is known precisely, in particu-
lar

p1(y)� c
(

1∧|y|−d−α
)
, y ∈Rd , (14)

where ∧ denotes the minimum, see, e.g., Ref. 24.
We assume, as we may, that sample paths of Xt are right-continuous

and have left limits a.s. As usual, Px denotes the distribution of the pro-
cess starting from x and Ex is the corresponding expectation. {Xt,Px} is
strong Markov with respect to the so-called standard filtration (in fact it is
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a Feller process), see Refs. 4, 40, and 41 for details. The scaling (12) lifted
to the level of the process reads

Px{Xt, t�0}=Pkx{k−1Xtk−α , t�0}, x ∈Rd , k >0, (15)

which identifies distributions of the two processes relative to measures Px
and Pkx , respectively. For C2 functions u with compact support the gen-
erator of the process is the fractional Laplacian(3,12,45):

�α/2u(x)=A(d,−α)
∫

Rd

u(x+y)−u(x)−1|y|<1∇u(x) ·y
|y|d+α dy, 0<α<2.

(16)

The limiting case of α = 2 corresponds to the Brownian motion {B2t }
with Laplacian � =∑d

i=1 ∂
2
i as the generator. We have F(�α/2u)(ξ) =

−|ξ |αF(u)(ξ) for such u. Here F is the Fourier transformation and 0<
α� 2. This and (16) follow from the Lévy-Khinchin formula,(3) see also
Ref. 28.

For a number λ� 0 and a (Borel measurable) function f on Rd we
define as usual the λ-resolvent operator:

Uλf (x)=Ex

∫ ∞
0

e−λtf (Xt )dt=
∫ ∞

0

∫

Rd
e−λtp(t;x, y)f (y) dydt, x ∈Rd

(provided the integrals are well defined, e.g. absolutely convergent or non-
negative). It has

uλ(y)=
∫ ∞

0
e−λtpt (y) dt

as its kernel in the sense that

Uλf (x)=
∫

Rd
uλ(y−x)f (y) dy.

The kernel of the 0-resolvent or the potential operator U =U0 is the M.
Riesz’ kernel(5,6):

u(y)=
∫ ∞

0
pt (y) dt=A(d, α)|y|α−d , y ∈Rd , if α<d. (17)

By (12) it is easy to verify that u(y)≡∞ if α�d. In this case it is appro-
priate to consider the compensated kernels(7,23,30,35):

Kα(y)=
∫ ∞

0
[pt (y)−pt (x0)]dt, (18)
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where x0=0 for α>d=1, x0=1 for α=d=1 and x0= (1,0) for α=d=2.
By a direct computation we get

Kα(y)= cα|y|α−1, y ∈R, if 1<α�2,

K1(y)= 1
π

ln
1
|y| , y ∈R, if α=d=1,

and

K2(y)= 1
2π

ln
1
|y| , y ∈R2, if α=d=2,

compare Ref. 35. Here cα = [2	(α) cos(πα/2)]−1< 0. For λ> 0 and every
α∈ (0,2) by (12) and (14) we have

uλ(y)� c
∫ ∞

0
e−λt

(
t−

d
α ∧ t

|y|d+α
)
dt=c

∫ |y|α
0

e−λt
t

|y|d+α dt+c
∫ ∞
|y|α
e−λt t−

d
α dt

� cλ−2	(2)|y|−d−α+ cλ−1|y|−de−λ|y|α � c|y|−d−α, y ∈Rd . (19)

Of course,

uλ�u. (20)

For (open) B ⊂Rd we define τB = inf{t � 0;Xt /∈B}, the first exit time of
B. We say that a function f on Rd is harmonic for our α-stable process
in open set D⊂Rd (or α-harmonic) if

f (x)=Ex [τB <∞;f (XτB )], x ∈B, (21)

for every open bounded set B with closure B ⊂ D (compare Ref. 43).
We always assume that the expectation in (21) is absolutely convergent.
If (21) holds for B =D then f is called regular harmonic for {Xt,Px}
on D or regular α-harmonic on D. Regular α-harmonicity implies plain
α-harmonicity because (21) is inherited by subsets of B. This follows eas-
ily from the strong Markov property. The relation between these two con-
cepts of being harmonic is reminiscent of that between being a martingale
and a closed martingale (see also Refs. 9 and 34). If B is bounded then
(12) yields τB <∞ Px-almost surely for every x (a.s.) and then Ex [τB <
∞;f (XτB )]=Exf (XτB ) in (21). Note also that the equality in (21) extends
trivially to all x ∈Rd .

If f �0 is α-harmonic in open bounded D and continuous on the clo-
sure D of D then f is regular α-harmonic on D. Indeed, let x∈D,n→∞.
Consider open precompact Dn increasing to D. By quasi-left continuity of
{Xt,Px} (4,40) we have XτDn→XτD . Using Fatou’s lemma and monotone
convergence we conclude that f (x)=Exf (XτDn )→Exf (XτD).
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The α-harmonic measure

ωxD(A)=Px(XτD ∈A), x ∈Rd , A⊂Rd ,

reproduces α-harmonic functions. For example, f is regular α-harmonic
on D if and only if

f (x)=
∫

Rd
f (y)ωxD(dy), x ∈D. (22)

The values of f outside D are irrelevant in the theory of harmonic func-
tions of the Brownian motion (i.e. 2-harmonic functions) because Rd\D
is of zero harmonic measure ωxD if x ∈D. This, however, is an exception
and for general Markov processes (with discontinuous trajectories) includ-
ing our α-stable processes a functions which is harmonic on D need to be
defined also on Dc. It is well known that the functions harmonic for the
Brownian motion in our sense are precisely those annihilating the Lapla-
cian.(43) A similar characterization is valid for α-harmonic functions and
�α/2 (for every α∈ (0, 2]), see Ref. 12. We will not use the result in what
follows since (21) is better as a definition.

By the strong Markov property, the Riesz potential Ug is regular α-
harmonic on Rd\supp(g) provided it is absolutely convergent there. Let
g(y)= |Bε |−11Bε (y) where ε > 0,Bε ={y ∈Rd : |y|<ε} and |Bε | is the vol-
ume of Bε . There is c > 1 such that cu(x)�Ugε(x)→ u(x) as ε→ 0. By
dominated convergence the function

h(x)=|x|α−d

is α-harmonic in Rd0 . As a consequence of the first equality in (17) and the
semigroup property:

p(t+ s;x, y)=
∫

Rd
p(t;x, z)p(s; z, y) dz,

h is excessive for the semigroup of the process in the usual sense, i.e. for
every x ∈Rd

h(x)�
∫

Rd
h(y)p(t;x, y) dy (23)

and
∫

Rd
h(y)p(t;x, y) dy ↑h(x) as t ↓0. (24)
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For every t � 0 and x �= 0 we have Px(Xt = 0)= 0. Let pT (t;x, y) denote
the density function of the PTx -distribution of TXt on Rd0 for t > 0. By
(5), rotational invariance of pt (y), (3) and (12) we have

pT (t;x, y) = pt (T y−T x)|y|−2d =pt
(
y−x
|x||y|

)
|y|−2d (25)

= |x|d |y|−dpt |x|α |y|α (y−x). (26)

Observe that TX0=x under PTx .
We note in passing that by Liouville’s theorem(23) translations, dila-

tions, unitary maps and the inversion generate (by composition) all confor-
mal transformations of Rd (d >2). All of these were used to get (26) here.

Let σ0= inf{t�0:Xt =0} and define

X0
t =

{
Xt if t <σ0,

∂ if t�σ0.

The state space for this stable process killed at the origin is Rd0 ∪{∂}. Here ∂
is an additional terminal state (“cemetery”) with the usual convention that
integration over {∂} returns zero for every numerical function. We also
make the convention that T ∂ = ∂ (this will play some role in Section 4).
By strong Markov property the transition density of {X0

t } is

p0(t;x, y) = p(t;x, y)−Ex [p(t−σ0;Xσ0 , y);σ0<t ]

= p(t;x, y)−Ex [p(t−σ0;0, y);σ0<t ]. (27)

Of course,

p0(t;x, y)�p(t;x, y), x, y ∈Rd0 , t >0. (28)

3. TRANSIENT CASE

In the transient case α<d, which we consider in this section, we have
that

Px{Xt =0 for some t�0}=0, x �=0. (29)

Equation (29) is an easy consequence of unboundedness of the Riesz ker-
nel at the origin and the mean-value property (21) of h(x)=|x|α−d on pre-
compact subsets of Rd0 (see also Ref. 6). Indeed, let 0<ε<M and define
VM = {x ∈Rd : ε < |x|<M} and V = {x ∈Rd : |x|>ε}. For every x ∈Rd0 we
have

h(x)=Exh(XτVM )� ε
α−dPx{|XτVM |<ε}. (30)
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Thus Px{τV <∞}� εd−αh(x) and so

Px{σ0<∞}=0, x ∈Rd0 , (31)

which is equivalent to (29).
It follows that Px{X0

t =Xt for all t � 0}= 1 for every x ∈Rd0 . We will
identify the process {X0

t } with {Xt,Px, x ∈Rd0 } and {TX0
t } with {TXt }. For

the latter process we define the resolvent UTλ , potential operator UT and
their kernels uTλ and uT in the usual way. By the observation following
(26) and a change of variable we obtain

uT (x, y) =
∫ ∞

0
pT (t;x, y) dt=|x|d |y|−d

∫ ∞
0

pt |x|α |y|α (y−x) dt

= |x|d−α|y|−d−α
∫ ∞

0
ps(y−x) ds= |y|

α−d

|x|α−d u(y−x)|y|
−2α. (32)

For our excessive function h(x)=|x|α−d we define after(22) time homoge-
neous subprobability transition densities on Rd0 (because the origin is a
pole of h, see also Ref. 18)

ph(t;x, y)=h(x)−1p(t;x, y)h(y)=|x|d−αpt (y−x)|y|α−d .
The resulting h-process will be denoted by {Xht }. It may be proved that
Xht →0 at the (finite) lifetime of the process(12,18) but we have no need of
the result in what follows. The resolvent kernel of the process is

uhλ(x, y)=
∫ ∞

0
e−λt
|y|α−d
|x|α−d p(t;x, y) dt=

|y|α−d
|x|α−d uλ(y−x), λ�0. (33)

In particular

uT (x, y)=uh(x, y)|y|−2α.

We let

A(t)=
∫ t

0
|X0
s |−2α ds=

∫ t

0
|TX0

s |2α ds, 0� t�∞. (34)

A(t) is finite, continuous and strictly increasing for 0� t <∞ for every tra-
jectory because the trajectories of {X0

t } do not approach the origin in finite
time. Clearly, A′(t)=|X0

t |−2α, t <∞. We define θ(t)=A−1(t)= inf{s:A(s)>
t}. It is a continuous strictly increasing function of t ∈ [0,A(∞)) and θ(t)=
∞ if t�A(∞) (see Lemma 3 below). We have θ ′(t)=|Xθ(t)|2α if t <A(∞).
We define Yt =TX0

θ(t) if t <A(∞) and we let Yt =∂ if A(∞)� t <∞. It is a
Markov (in fact strong Markov) process.(6,43) The resolvent of {Yt } will be
denoted UYλ (λ� 0). UY =UY0 will be the potential operator and uYλ , u

Y –
the respective integral kernels. Note that Yt starts at x∈Rd0 when Xt starts
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at T x, which explains for the presence of ET x in the formulas below (com-
pare (25)). By a change of variable

UYf (x) = ET x

∫ A(∞)

0
f (T Xθ(t)) dt

= ET x

∫ ∞
0

f (T Xs)|Xs |−2α ds=
∫

Rd
f (y)|y|2αuT (x, y) dy, x ∈Rd0 .

(35)

Thus, the kernel of the potential operator of {Yt } is

uY (x, y)=|y|2αuT (x, y)= |y|
α−d

|x|α−d
A(α, d)
|y−x|d−α =u

h(x, y). (36)

We will prove that Uh=UY yields that the respective processes are equal
in law (compare Ref. 27 II, p. 352). We aim at the equality Uhλ =UYλ , λ>0,
which however cannot be proved as in (35). In what follows λ>δ� 0 are
arbitrary. Assume that a function f on Rd0 is such that

Uh|f |(x)<∞ for all x ∈Rd0 . (37)

The semigroup property of {ph(t;x, y), t � 0} yields the pointwise
resolvent equation:

Uhδ f (x)−Uhλ f (x)= (λ− δ)UhλUhδ f (x)= (λ− δ)Uhδ Uhλ f (x), x ∈Rd0 , (38)

where each term is an absolutely convergent integral. In particular, for
δ=0 we have

Uhf (x)−Uhλ f (x)=λUhλUhf (x)=λUhUhλ f (x), x ∈Rd0 . (39)

From now on our equalities are supposed to hold for every x ∈Rd0 . Recall
that Uhf =UYf . By (39) and the resolvent equation for {Yt }, we obtain
Uhλ f +λUhλUhf =UYλ f +λUYλ UYf , thus

(Uhλ −UYλ )(I +λUh)f =0. (40)

Let ϕ be a continuous function with compact support in Rd0 . We have
Uh|ϕ|(x)<∞ on Rd0 because the kernel uh of the potential operator Uh is
locally integrable function (36). By (39)

(I +λUh)(I −λUhλ )ϕ=ϕ. (41)

Let f = (I −λUhλ )ϕ. We shall verify that f satisfies (37). Indeed,

Uh|(I −λUhλ )ϕ|(x)�Uh|ϕ|(x)+λUh|Uhλ ϕ|(x).
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We only need to estimate the second term. From (33), (17), (19) and (20)
we get

uhλ(x, y)=
|y|α−d
|x|α−d uλ(y−x)� c

|y|α−d
|x|α−d

(
|y−x|α−d ∧|y−x|−α−d

)
.

There are numbers 0<m<M<∞ such that supp ϕ⊂{m< |y|<M}.
We have

|Uhλ ϕ(x)| � c||ϕ||∞|x|d−α
∫

m<|y|<M
|y|α−d

(
|y−x|α−d ∧|y−x|−α−d

)
dy

� c
(
|x|d−α ∧|x|−2α

)
.

Thus,

Uh|Uhλ ϕ|(x) � c

∫ |y|α−d
|x|α−d |y−x|

α−d
(
|y|d−α ∧|y|−2α

)
dy

= c|x|d−α
∫
|y−x|α−d

(
1∧|y|−α−d

)
dy <∞, x ∈Rd0 .

By (40) and (41) we have Uhλ ϕ(x) − UYλ ϕ(x) = 0, x ∈ Rd0 . Let gh(t) =∫
ϕ(y)ph(t;x, y) dy and gY (t)=∫

ϕ(y)pY (t;x, dy), t�0, where pY (t;x, ·) is
the distribution of Yt when {Yt } starts at x. Clearly, Uhλ (x) is the Laplace
transform of gh and UYλ (x) is the Laplace transform of gY . By unique-
ness of Laplace transform (5,21,45) for every x ∈ Rd0 we conclude that∫
ph(t;x, y)ϕ(y) dy=∫

ϕ(y)pY (t;x, dy) for almost every t�0. The class of
considered functions ϕ is countably dense in

Co(Rd0 )={f ∈C(Rd0 ): lim
x→0

f (x)=0 and lim
|x|→∞

f (x)=0},

thus one-dimensional distributions of the two processes are identical for
almost every and so (by right continuity of trajectories) for every t�0. By
Markov property the processes are identical in distribution.

For completeness we give the following result which implies that the
lifetime of the process {Yt } is finite for a.e. trajectory (see Ref. 44 for more
detailed information when α=2<d).

Lemma 3. A(∞)<∞ almost surely for every starting point x ∈Rd0 .

Proof. LetB={x∈Rd: |x|<1} and define the last exit time fromB:�B=
sup{s�0: |Xs |<1}. Fix x∈Rd0 . Note that |Xs |→∞ as s→∞ (Px −a.s.). This
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follows from the decay of h at infinity by a similar argument as we used before
to prove (29) . In particular,�B <∞ (Px −a.s). Clearly,

A(∞)=A(�B)+
∫ ∞
�B

|X0
s |−2αds

and A(�B) <∞ (Px − a.s) because Xs does not approach the origin in
finite time by (31) and quasi-left continuity. We have

Ex

∫ ∞
�B

|X0
s |−2αds � Ex

∫ ∞
0
|Xs |−2α1Bc(Xs)ds

=
∫

Bc
A(d, α)|y−x|α−d |y|−2αdy <∞.

This ends the proof.

4. POINTWISE RECURRENT CASE

In this section α>d= 1. It is no longer true that {X0
t } has the same

law as {Xt } because

Px{σ0<∞}=1, x ∈R. (42)

Indeed, let λ> 0 and note that uλ is now bounded and continuous in R
and has the maximum at the origin, see (12). By considering the process
{Xt,Px} killed with constant rate λ, as at the beginning of Section 3 we
see that uλ is harmonic for this process in R0. Put simply:

uλ(x)=Exuλ(XτB )e
−λτB , x ∈R,

for open B precompact in R0=R\{0}. When B increases to R0 then τB ↑
σ0 and (by quasi-left continuity) uλ(XτB )e

−λτB→uλ(Xσ0)e
−λσ0 on the set

{σ0<∞}. Of course, uλ(XτB )e
−λτB→0 whenever σ0=∞. By bounded con-

vergence theorem we obtain regular harmonicity on R0:

uλ(x)=Ex{σ0<∞;uλ(Xσ0)e
−λσ0} = uλ(0)Exe−λσ0 , x ∈R. (43)

We let x ∈R and ε→0+. By scaling (15) (see also (55) below), continuity
of uλ and (43)

Px(σ0=∞) = Pεx(σ0=∞)<1−uλ(εx)/uλ(0)→0.

This proves our claim.
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We will focus on properties of {X0
t }. The state space for {X0

t } and
{TX0

t } is R0 augmented by ∂. Let

Gλ(x, y)=
∫ ∞

0
e−λtp0(t;x, y)dt, λ�0.

Gλ(x, y) is the kernel of the λ-resolvent Gλ of {X0
t }:

Gλf (x) = Ex

[∫ ∞
0

e−λtf (X0
t )dt

]
=Ex

[∫ σ0

0
e−λtf (Xt )dt

]

=
∫

R0

f (y)Gλ(x, y)dy,

and G(x, y)=G0(x, y) is the kernel of the potential operator G=G0 of
{X0

t } i.e. it is the Green function of {Xt } for R0. Of course,

Gλ(x, y)�G(x, y). (44)

By (28) and (19)

Gλ(x, y)� c|y−x|−1−α. (45)

By (18)

lim
λ→0+

[uλ(y−x)−uλ(0)]=Kα(y−x).

The next result was proved before in Ref. 35, p. 379 by using a related
argument.

Lemma 4. For all x, y ∈R0 we have

G(x, y)=Kα(y−x)−Kα(x)−Kα(y)= cα(|y−x|α−1−|y|α−1−|x|α−1).

Proof. Let x, y ∈R and λ>0. (27) yields

Gλ(x, y) = uλ(y−x)−
∫ ∞

0
e−λtEx [p(t−σ0;0, y);σ0<t ]dt.
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Let μxσ0
be the distribution of σ0 with respect to Px . By a change of var-

iable and (43)
∫ ∞

0
e−λtEx [p(t−σ0;0, y);σ0<t ]dt

=
∫ ∞

0
e−λt

∫

[0,t)
p(t−u;0, y)μxσ0

(du) dt

=
∫

[0,∞)
μxσ0

(du)

∫ ∞
u

e−λtp(t−u;0, y)dt

=
∫

[0,∞)
e−λuμxσ0

(du)

∫ ∞
0

e−λvp(v;0, y)dv

=Exe−λσ0uλ(y)= uλ(x)uλ(y)
uλ(0)

.

By letting λ→0+ we get

G(x, y)← Gλ(x, y)=uλ(y−x)−uλ(x)uλ(y)/uλ(0)
= [uλ(y−x)−uλ(0)]− [uλ(x)−uλ(0)][uλ(y)−uλ(0)]/uλ(0)
−[uλ(x)−uλ(0)]− [uλ(y)−uλ(0)]

→ Kα(y−x)−Kα(x)−Kα(y).
This ends the proof.

For clarity we note that cα= [2	(α) cos(πα/2)]−1<0 and |y−x|α−1 �
|x|α−1+|y|α−1, thus Kα(y−x)−Kα(x)−Kα(y)�0 for x, y∈R. The deriv-
ative of G(x, y) with respect to y is positive precisely for y ∈ (0, x), hence

G(x, y)�G(x, x)=−2cα|x|α−1. (46)

Observe that G(x, y) extends to a continuous function on R×R, by letting
G(0, y)=0.

By the strong Markov property, Gg is harmonic for the killed process
{X0

t } on R0\supp(g) provided it is absolutely convergent there. Naturally,
the definition of harmonicity on open D⊂R0 with respect to {X0

t } is

f (x)=Exf (X0
τB
), x ∈B, (47)

for every open bounded set B with closure B̄ ⊂D. This coincides with
α-harmonicity on D ⊂ R0 because Px(XτB = 0)= 0 for every point x in
such B, but we have no need in proving here this assertion. Using the
usual approximation argument G(x, y) is harmonic for {X0

t } in x∈R0\{y}.
Since limy→±∞G(x, y)=−cα|x|α−1, by Fatou’s lemma, (46) and a limiting
procedure h(x)=|x|α−1 is also harmonic for {X0

t } in R0.
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As in Section 3 we condition the process {X0
t } by h(x)= |x|α−1 and

the resulting h-process will be denoted {Xht }. It is determined by time
homogeneous transition densities

p0,h(t;x, y)=|x|1−αp0
t (x, y)|y|α−1.

It is important to notice that

h(x)=
∫

R
h(y)p(t;x, y) dy, x ∈R0, (48)

so that the distribution of {Xht } on the path space is a probability rather
than subprobability measure (compare (23)). Indeed, by (47) and continu-
ity of h

h(x)=Exh(X0
τB
), x ∈B,

for every open bounded B ⊂R0. By strong Markov property this further
yields

h(x)=Exh(X0
τB∧t ), x ∈B,

for every (deterministic) t � 0. Letting B ={y ∈R: 0< |y|<n} and n→∞
and using (14) and bounded convergence theorem we obtain (48).

The resolvent kernel of {Xht } is

uhλ(x, y) =
∫ ∞

0
e−λt |x|1−αp0(t;x, y)|y|α−1 dt

= |x|1−αGλ(x, y)|y|α−1, λ�0. (49)

In particular

uh(x, y)=uh0(x, y)=
|y|α−1

|x|α−1
G(x, y).

For later convenience we observe that by (46)

uh(x, y)�2|cα‖y|α−1. (50)

We now compute the potential kernel uT (x, y) of the inverted process
{T (X0

t )}. The transition density of {TX0
t } is

p0,T (t;x, y)=p0
(
t; 1
x
,

1
y

)
1
|y|2 ,
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compare (25). Thus

uT (x, y) =
∫ ∞

0
p0,T (t;x, y) dt=

∫ ∞
0

p0(t;1/x,1/y) 1
y2
dt

= G(1/x,1/y) 1
y2
= cα

(
|1/y−1/x|α−1−|1/y|α−1−|1/x|α−1

) 1
y2

= |y|
α−1

|x|α−1
G(x, y)|y|−2α. (51)

In (51) we used (3), which however is very simple in dimension 1. This cal-
culation also indicates a more prosaic way of proving (32).

In the present context the additive functional (34) is well defined,
finite and strictly increasing for 0� t <σ0. By our convention on ∂ we have

A(t)=
∫ t

0
|X0
s |−2αds=

∫ t∧σ0

0
|Xs |−2αds. (52)

We let, similarly as in Section 3, θ(t)=A−1(t) for 0< t < A(σ0), where
A(σ0)=

∫ σ0
0 |Xs |−2αds (see Lemma 5 below in this respect). We define Yt =

T (Xθ(t)) if t <A(σ0) and we let Yt =∂ if A(σ0)� t <∞. It is a strong Mar-
kov process with respect to the standard filtration. The resolvent operator
of this time-changed process will be denoted UYλ , λ�0, and UY =UY0 will
be the potential operator:

UYf (x)=Ex

∫ σ0

0
f (T Xt)|TXt |2αdt

with kernel

uY (x, y)=uT (x, y)|y|2α=uh(x, y), (53)

see (51) and the remark following (25). We now prove that uh(x, y) =
uY (x, y) yields Uhλ =UYλ for all λ>0. This is very similar to the argument
given in Section 3 and in fact we can use the same notation. Let ϕ be an
arbitrary continuous function with compact support on R0. We only need
to verify that Uh|ϕ|(x)<∞ and UhUhλ |ϕ|(x)<∞, x∈R0. The former prop-
erty follows, e.g., from (50). For the latter we note that (44), (46) and (19)
yield

uhλ(x, y)� c(|x|α−1∧|y−x|−α−1), (54)

thus Uhλ |ϕ|(x) � c(|x|α−1 ∧ |x|−α−1), which is integrable with respect to
uh(x, y)dy by (50). The remaining arguments are a verbatim repetition of
those used in Section 3.
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For clarity we give the following result, which shows that the lifetime
of the process {Y t} is infinite for a.e. trajectory.

Lemma 5. A(σ0)=∞ almost surely.

Proof. Let T = inf{t �0: |Xt |� 1
2 |X0|}. Using (15) we get that for all

x ∈R and k>0

Px({Xt, t�0}, T ,XT , σ0)=Pkx
(
{k−1Xtk−α , t�0}, k−αT , k−1XT , k

−ασ0

)
.

(55)

Define T0=0 and Tn=Tn−1+T ◦ θTn−1 , n=1,2, . . . . Clearly, Tn ↑σ0 and

A(σ0)=
∞∑
n=1

[A(Tn)−A(Tn−1)]=
∞∑
n=1

A(T )◦ θTn−1. (56)

By (55) we get that

Px(A(T ))=Pkx(kαA(T )), k>0, x ∈R. (57)

Let Xi be i.i.d. random variables with distribution P1(|XT |) and let Ai be
i.i.d. random variables with distribution P1(A(T )). From (56), strong Mar-
kov property and (57) it follows that the Px-distribution of A(σ0) is the
same as that of

|x|α
∞∑
n=1

An

n∏
i=1

X−αi =∞ (a.s.).

The last equality follows from the fact that Xi �1/2.

5. LOGARITHMIC CASE

The case of α = d is special because the relevant process is neither
transient nor point recurrent. We will first consider α = d = 1, i.e. the
one-dimensional Cauchy process. To a large extent the logarithmic ker-
nel K1(x)= 1

π
log 1
|x| substitutes for the Green function of R0, which we

used before. The logarithmic kernel is a result of the compensation pro-
cedure (18), which comes back to M. Kac,(30) see also Ref. 26 for the
planar Brownian motion. A concise general treatment of recurrent stable
processes is given in Ref. 35.

Let 0<ε < 1,D={x : ε < |x|< 1/ε}. For the Cauchy process and this
set D we consider the Green function:

GD(x, y)=
∫ ∞

0
pD(t;x, y)dt, (58)
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where pD(t;x, y) = p(t;x, y) − Ex [p(t − τD;XτD, y); τD < t ]. By Fubini’s
theorem ∫

GD(x, y)f (y)dy=Ex

∫ τD

0
f (Xt )dt.

It will be convenient to write K1(x, y) for K1(y−x) below. We have

GD(x, y)=K1(x, y)−ExK1(XτD , y), x, y ∈R. (59)

For (59), we refer to Refs. 7 or 36. The boundary, ∂D, of our D is regular
for Dc meaning that

Px{τ ′D=0}=1, x ∈ ∂D, (60)

or τD=τ ′D(a.s.). Here τ ′D= inf{t >0;Xt /∈D} is the first hitting time of Dc.
We have GD(x, y)=GD(y, x), x, y ∈Rd . For every fixed x ∈D, the func-
tion GD(x, y) vanishes continuously on Dc. This is a well-known conse-
quence of (60) and (59).

We can verify as we did before that K1(x) is 1-harmonic in R0. By
definition, the second term in (59) is regular 1-harmonic on D as a func-
tion of x, whenever y ∈ R is fixed. Therefore the logarithmic kernel is
1-harmonic off its pole.

Lemma 6. For all x, y ∈R0

GD(x, y)=GD(1/x,1/y). (61)

Proof. For y �=1/x let

r(y)=GD(x,1/y)−GD(1/x, y),
where we fix x∈D (because r≡0 if x /∈D). Clearly, r vanishes continuously
on Dc. Note that log 1

|1/y−z| = log 1
|y−1/z| + log |y|− log |z|. We have

πr(y) =
∫

log
1

|1/y− z| (δx −ω
x
D)(dz)+

∫
log

1
|y− z| (δ1/x −ω1/x

D )(dz)

=
∫

log
1

|y−1/z| (δx −ω
x
D)(dz)+

∫
log

1
|y− z| (δ1/x −ω1/x

D )(dz)

(62)

= −
∫

log
1

|y−1/z|ω
x
D(dz)+

∫
log

1
|y− z|ω

1/x
D (dz). (63)

In (62) we used the fact that log |z| is harmonic on D. (63) shows that
limy→1/x r(y) is finite, in particular r is bounded. Furthermore, both terms
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in (63) are 1-harmonic in y ∈D because they are logarithmic potentials of
some measures on Dc (see (9)). We thus have r(y)=Eyr(XτB ), y ∈R(y �=
1/x), for every open B precompact in D. Letting B ↑D, we have XτB→
XτD a.s. by quasi-left continuity of the process. By continuity of r and
bounded convergence, we conclude that r(y) = 0, y �= 1/x. Thus, for all
x, y �=0,GD(x,1/y)=GD(1/x, y).

We like to mention here that a uniqueness result for the logarithmic
kernel (see Lemma 9 below) and the fact that the expression in (63) equals
zero yield that ω1/x

D = ωxD ◦ T −1 as measures on Dc (for every x ∈ R0).
This identification is a special case of a more general result (68), which
we derive in the next section from Theorem 1.

We define the additive functional A(t) by (34). Note that A(∞)=∞
because {X0

t } is recurrent. As before, we let Yt =T (X0
θ(t)),0� t <∞, where

θ(t)=A−1(t). Clearly, Yt = TXt for all t � 0 almost surely if the starting
point of the process is x �= 0. For nonnegative function f and x ∈R0, by
changing variable in (64) and (65) below, we have

Ex

∫ τD

0
f (Yt )dt = E1/x

∫ τD

0
f (T Xθ(t))dt=E1/x

∫ τD

0
f (T Xs)|Xs |−2ds (64)

=
∫

R0

GD(1/x, y)f (1/y)y−2dy=
∫

R0

GD(1/x,1/y)f (y)dy

(65)

=
∫

R0

GD(x, y)f (y)dy.

Thus the processes Yt and Xt killed upon leaving D have the same poten-
tial kernel. We conclude that the resolvents and the semigroups of the
processes are equal. Indeed, proceeding as before we only need to notice
that GDGDf (x) is finite for f ∈Cc(R0), f � 0. But

∫
GD(x, y)GD(y, z)dy

is bounded in x, z ∈ D because D is a bounded set and GD(x, y) �
const.(| log |y − x‖ + 1). We now let ε ↓ 0 thus D ↑ R0. It is clear that
τD ↑∞ Px-a.s. for every x ∈R0 and the semigroups of the killed processes
increase to those of Yt ,X0

t , respectively. This proves that the semigroups
are identical.

The same argument is valid for the planar Brownian motion (the nor-
malizing constant 1/π in the logarithmic kernel should be then replaced
by 1/(2π)). Of course, there are other proofs of (61) for planar Brownian
motion, for example the one using the conformal mapping z �→1/z̄ of the
complex plane, see Ref. 36 for generalizations of (61) in this case.
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6. PROOFS OF MAIN RESULTS

Proof of Theorem 1. The transient case α <d is given in Section 3.
The pointwise recurrent case α > d = 1 is in Section 4. The cases of α=
d = 1 and α= d = 2 are resolved in Section 5. Therefore, the result holds
for every 0<α�2 and every d ∈{1,2, . . . }.

By Theorem 1, X0
t conditioned by h(x)=|x|α−d has the same law as

Yt=TX0
θ(t). Both processes are directly related to {Xt,Px}. The conditional

process results from a simple transformation of measure on the space of
paths of {X0

t } while {Yt } is a pathwise transformation of {X0
t }. For a given

trajectory ω of {Xt } and (open) D⊂Rd we consider τYD = τYD(ω)= inf{t �
0 :Yt /∈D}. As before τD= τD(ω)= inf{t�0 :Xt /∈D}.

We have

τYD = inf{t�0 :TX0
θ(t) /∈D}= inf{t�0 :Xθ(t) /∈T (D\{0})}

= inf{A(s) : s�0,Xs /∈T (D\{0})}=A(τT (D\{0})). (66)

Thus, for B⊂R0

Px
{
YτYD
∈B; τYD <∞

}
= PT x{Xθ(A(τT (D\{0}))) ∈T (B)\ {0}); τD\{0}<∞}
= ωT xT (D\{0})(T (B \ {0})).

By Theorem 1 the above is equal to

Phx {X0
τD
∈B; τD <∞} = 1

h(x)
Ex{h(XτD)1B(XτD); τD <σ0, τD <∞}

= |x|d−α
∫

B\{0}
|y|α−dωxD\{0}(dy)

= |x|d−α
∫
|y|α−d1T (B\{0})(T y)ωxD\{0}dy).

Using our notation from Section 2 we can describe the result of these cal-
culations as

1Rd0
(x)|x|α−dωT xT (D\{0})= K̃

[
1R0ω

x
D\{0}

]
, x ∈Rd0 . (67)

Observe that (67) is an equality between measures on Rd0 and inquiries
about whether the harmonic measures charge the origin (in the point
recurrent case) should be made separately. Summarizing, for every D⊂Rd0
and x ∈Rd0

KωxTD= K̃ωxD as measures on R0. (68)
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Note that (68) is only a laconic form of (67). If the harmonic measure is
absolutely continuous with respect to the Lebesgue measure and has the
density function (the Poisson kernel) g, say ωT xD (dy)=g(y)dy, then by (8)
we have

dwxTD

dy
=|x|α−d |y|−2αKg(y), x ∈Rd0 , D⊂Rd0 . (69)

We give the following application of (68).

Lemma 7. Let α∈ (0,2], d=1,2, . . . . Let D⊂Rd0 be open. We assume
that f is regular α-harmonic on D and in the case α>d=1 we addition-
ally assume that f (0)=0. Then Kf is regular α-harmonic on TD. If f is
α-harmonic in D (rather than regular α-harmonic) then Kf is α-harmonic
in TD.

Proof. If Exf (XτD)=f (x) for x ∈D then

ExKf (XτTD ) =
∫

Rd0

Kf (y)ωxTD(dy)=
∫

Rd0

f (y)K̃ωxTD(dy)

=
∫

Rd0

f (y)Kxω
x
D(dy)=Kx

∫

Rd0

f (y)ωxD(dy)=Kf (x), x ∈TD,

which proves that Kf is regular α-harmonic on TD. Here and below Kx

indicates that the Kelvin transform acts on the x variable. The last state-
ment of the lemma is obvious.

Lemma 7 is an extension (to all α∈ (0,2] and natural d) and strengthening
(to regular harmonic functions) of the fact that Kelvin transform preserves
harmonic functions.(1,9,13)

Our main corollary of Theorem 1 is Theorem 2.

Proof of Theorem 2. The Green operator of open D ⊂ R0 for the
h-process is given by

1
h(x)

Ex

∫ τD

0
h(X0

t )f (X
0
t )dt =

1
h(x)

Ex

∫ τD

0
h(Xt )f (Xt )dt

= 1
h(x)

∫
GD(x, y)h(y)f (y)dy, x ∈Rd0 .
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Its kernel is |x|d−α|y|α−dGD(x, y), x, y∈Rd0 . By Theorem 1 we will get the
same integral operator, when we calculate

Ex

∫ τYD

0
f (Yt )dt =ETx

∫ A(τTD)

0
f (T X0

θ(t))dt

=ET x

∫ τTD

0
f (T X0

s )|Xs |−2αds=
∫
GTD(T x, y)f (T y)|y|−2αdy

=
∫
GTD(T x, T y)f (y)|y|2α−2ddy.

We used here (66) and we changed variable similarly as in (64) and (65).
Thus, for every x ∈Rd0 we have that GTD(T x, T y)|y|2α−2d = |x|d−α|y|α−d
GD(x, y), for almost all y. By symmetry of the Green function, this holds
true for all x, y ∈ D. Note that the identity immediately extends to all
x, y ∈Rd0 , which proves (2).

More compactly, (2) reads

GTD(x, y)=KxKyGD(x, y), x, y ∈Rd0 , (70)

for every open D⊂Rd0 .

7. APPLICATIONS

We will now sketch several applications of the main results which per-
tain to the kernel functions of a domain and its image under inversion.

Let D⊂Rd0 and let μ be a measure on Rd0 . We define, as usual, the
Green potential GDμ(x) of μ:

GDμ(x)=
∫
GD(x, y)μ(dy), x ∈Rd0 .

From (70) and the fact that K ◦K is identity operator we have

KGDμ(x) =
∫

KxGD(x, y)μ(dy)=
∫

KxK2
yGD(x, y)μ(dy)

=
∫

KxKyGD(x, y)K̃μ(dy)=
∫
GTD(x, y)K̃μ(dy)

= GTDK̃μ(x). (71)

In particular, for the Green potential GDg(x) =
∫
GD(x, y)g(y)dy of a

function g, (8) yields:

KGDg(x) =GTD
(
|y|−2αKg(y)

)
(x)

=GTD
(
|y|−α−dg(y/|y|2)

)
(x), x ∈Rd0 . (72)
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For the next application we consider a function q on Rd0 . Assume that q
is such that F(t)= ∫ t

0 q(Xt )dt is finite for every t�0 (a.s.), see Ref. 13 in
this respect. We let

eq(t)= exp(F (t)).

Assume that

f (x)=Exeq(τD)f (XτD), x ∈Rd . (73)

Such a function f is called regular q-harmonic on D (13) and

�α/2f +qf =0 on D,

see Ref. 13 when α<2 and Ref. 18 when α=2 for details on this Schrödinger
equation.

Let D⊂Rd0 . We claim that if α�d or 0 /∈ ∂D or f (0)=0 then Kf is
regular ρ-harmonic on TD, where ρ(y)= |y|−2αq(y/|y|2). Indeed, let Eh

be the expectation for the h-conditioned process and let v(x)=f (x)/h(x).
By (73), Theorem 1 and a change of variable we obtain

v(x) = 1
h(x)

Exeq(τD)v(XτD)h(XτD)=Ehxeq(τD)v(XτD)

= ET xeaq◦T (τTD)v ◦T (XτTD ), (74)

where a(x) = |x|−2α. Note that v(T x) = Kf (x). Thus Ku is regular
ρ-harmonic on TD, where ρ(y)=a(y)q(T y)=|y|−2αq(y/|y|2).

We note in passing that if �α/2f =μ on open D⊂Rd0 for a locally
finite measure μ then �α/2Kf = K̃μ on TD. We leave the proof to the
interested reader (see Ref. 13, in particular Lemma 5.3, for a necessary for-
malism).

We now examine certain phenomena in the potential theory of our
stable processes in the pointwise recurrent case. We will assume that
1= d <α� 2 in this discussion. Let D⊂R0 be unbounded and such that
dist (0,D)>0. TD is then bounded and 0∈∂(TD). It is well-known(7) that
for all x, y ∈R we have

GTD(x, y) =
∫

R
Kα(z, y)(δx −ωxTD)(dz)

=
∫

R
Kα(z, y)(δx −1R0ω

x
TD)(dz)−Kα(0, y)ωxTD({0})= I − II.

(75)

By (3)

KxKyII =A(d, α)|x|α−dωT xTD({0})=A(d, α)Kxω
x
TD({0}) (76)
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(d = 1 here and below). Note that this function is α-harmonic on Dc. It
is also continuous on R0 as follows easily from regularity of one-point
sets.(35) It is now easy to conclude that the function is regular α-harmonic
on every bounded subset of D. For I we use (67) and (7) to get

KxKyI =
∫
|z|α−dKα(T z, y)K(δx −1R0ω

x
TD)(dz)

=
∫
|z|α−dKα(T z, y)K̃(δx −1R0ω

x
D)(dz)

=
∫
Kα(z, y)(δx −1R0ω

x
D)(dz)

=
∫
|z|α−dKα(z, y)(δx −ωxD)(dz)+Kα(0, y)ωxD({0})

=
∫
|z|α−dKα(z, y)(δx −ωxD)(dz).

We conclude that

GD(x, y) = KxKyGTD(x, y)

=
∫
|z|α−dKα(z, y)(δx −ωxD)(dz)−A(d, α)KωxTD({0}), (77)

which differs from (75) if and only if ωxTD({0}) �≡0, that is if and only if 0
is an isolated point of TDc i.e. Dc is bounded. Details concerning the last
assertion are left to the reader (see (43) and Remark on p. 374 in Ref. 35).
Note that the presence of the additional term is well recognized(7,35) for
complements of compact sets. Here we see that for all other sets (as well
as for α�d) this additional term vanishes. By using the notion of regular
α-harmonicity the term may be described by means of the potential of the
equilibrium measure of R\TD.(35)

We now comment on the relation between the density function
(Poisson kernel) of the harmonic measure of the ball and of its comple-
ment for α<2. Let B={x∈Rd: |x|<1},B ′ =B\{0} and B̌={x∈Rd : |x|>1}.
Let

P(x, y)=Cdα
∣∣∣∣∣
1−|x|2
|y|2−1

∣∣∣∣∣
α/2

|x−y|−d .

It is well-known although not easy(5,7,38,39) that for x∈B,ωxB is absolutely
continuous with respect to the Lebesgue measure (on B̌) and has the den-
sity function

wxB(dy)

dy
=1

B̌
(y)P (x, y), y ∈ B̌. (78)
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When α�d and x ∈B ′ then ωxB =ωxB ′ and so (69) and (3) yield for y ∈ B̌
ωx
B̌
(dy)

(dy)
= |x|α−d |y|−α−dP (T x, T y)

= Cdα
[

1−|x|2
|y|2−1

]α/2
|x−y|−d =P(x, y),

or ωx
B̌
(dy)=1B(y)P (x, y)dy for x ∈ B̌.

Whenα>d=1 the result is different. ForA⊂R0 considerf (x)=ωxB(A)−
ωx
B ′(A)�0. The function is regularα-harmonic onB ′, thusf (x)=Exf (XτB′ )=
f (0)ωx

B ′({0})=ωxB(A)ωxB ′({0}). LetP ′(x, y) be the Poisson kernel ofB ′. By the
above, P(x, y)−P ′(x, y)=P(0, y)ωx

B ′({0}) or

P ′(x, y)=P(x, y)−P(0, y)ωxB ′({0}), x ∈B ′, |y|>1.

Using (69) and (3) again, for x ∈ B̌ and y ∈B ′ we get

ωx
B̌
(dy)

dy
= |x|α−d |y|−α−dP ′(T x, T y)
= P(x, y)−Cdα(1−|y|2)−α/2|x|α−dωT xB ′ ({0}). (79)

One factor in the second term of (79) is a special instance of that in (76).
We refer the reader to Ref. 7 for an integral representation of this term
and another derivation of (79). Note that (79) is valid for all dimensions
d, but ωT x

B ′ ({0})≡0 whenever α�d.

8. CONCLUDING REMARKS

The fact that the classical Kelvin transform (α=2) preserves classical
harmonic functions can be proved by direct differentiation (see Theorem
2.7.2 in Ref. 25). The inversion itself is often used to calculate the classi-
cal Green function or Poisson kernel for the ball and, conversely, the spe-
cial form of these may be used to prove the preservation property (see
Chapter 4 of Ref. 1, and Refs. 13, 23), which is quite natural in view
of Theorem 2 and its consequences. The well-known connection due to
Maxwell(20) between harmonic polynomials, the Newtonian kernel and the
Kelvin transform can also be used for this purpose.(1)

We like to note that for the study of the (classical) Kelvin transform
Jordan algebras give a natural setting more general than that of Rd . We
refer the reader to Ref. 19 for references and the results on the Maxwell’s
connection for Jordan algebras. Ref. 19 corresponds to the case of α= 2
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in our discussion, which suggests possibility of further generalizations. See
also Ref. 16.

We now remark on methods used for α ∈ (0,2] in Rd in the litera-
ture. The use of the Kelvin transform in Refs. 5, 31 and 38 is restricted
to the case α<d and reduces to the following transformation formula for
the Riesz potential Uμ(x)=A(d, α) ∫ |y − x|α−dμ(dy) of a finite measure
μ on Rd0 :

KUμ(x) =
∫

Rd0

|x|α−d |y−T x|α−dμ(dy)=
∫

Rd0

|y|α−d |Ty−x|α−dμ(dy)

=
∫

Rd0

Ky(|y−x|α−d)μ(dy)=UK̃μ(x), x ∈Rd0 . (80)

One only needs (3) and (7) to prove (80) here. (80) is easily extended to
the following:

K{a+Uμ(x)+bUδ0(x)} =
a

A(d, α)Uδ0(x)+UK̃μ(x)

+bA(d, α), x ∈Rd0 . (81)

(81) may be interpreted in terms of measures on Rd ∪{ω}, where ω is the
point at infinity (Ref. 31, p. 261).

It is interesting whether a formalism at the level of stochastic pro-
cesses exists which incorporates the point at infinity. Except for (81) also
Lemma 3 seems to suggest such a possibility. Note that (81) is the same in
the point recurrent case but takes on a slightly different form in the loga-
rithmic case.

An application of (80), i.e. of the Kelvin transform, together with
dilations and translations of Rd yield, through an involved calculation, the
Poisson kernel for the ball and its complement (78) for d�2>α (Ref. 31
(Appendix) and Ref. 38). The derivation of (78) and (79) for all α∈ (0,2)
and d=1,2, . . . is completed in Ref. 7. The result plays a fundamental role
in the potential theory of the fractional Laplacian. Still, the properties of
Kelvin transform are even more fundamental, which explains our efforts
in Ref. 10 and here to obtain a proof independent of this involved calcu-
lation (as opposed to the results of Ref. 13).

Another idea underlying our considerations was to use the semigroup
of the process and its resolvent rather than the generator or sole poten-
tial kernel. This approach shifts some of the difficulties of the proof of
the properties of the Kelvin transform to the level of definitions but it also
gives stronger results in the potential theory of the corresponding poten-
tial kernel. As a related problem we sketch below a proof of a unique-
ness result for logarithmic potentials. Noteworthy, the uniqueness of the



116 Bogdan and Żak

Laplace transform used in the proof replaces the usual uniqueness argu-
ments restricted to measures of finite energy.(5,7,31)

For α = d = 1 the transition probability density of our process is
pt (x)= 1

π
t

t2+x2 . Note that

∫ ∞
0
|pt (x)−pt (1)|dt=|K1(x)|= 1

π
| log |x‖. (82)

Using (82) we get

uλ(x)�
1
π
| log |x‖+ 1

λ
, x ∈R, λ>0. (83)

Let

U+f (x)= 1
π

∫

R
log

1
|y−x|f (y)dy,

and

|U+|f (x)= 1
π

∫

R

∣∣∣∣log
1

|y−x|
∣∣∣∣ |f (y)|dy, x ∈R.

Lemma 8. Let x∈R. If
∫

R | log |y−x‖|f (y)|dy<∞ and
∫

R f (y)dy=0
then

lim
λ→0+

Uλf (x)=U+f (x). (84)

Proof. By Fubini’s theorem, (82), (83) and dominated convergence

Uλf (x) =
∫ ∞

0
e−λt

∫

R
pt (y−x)f (y)dydt

=
∫ ∞

0
e−λt

∫

R
[pt (y−x)−pt (1)]f (y)dydt→U+f (x) as λ→0+.

Assume that a finite measure μ on R satisfies
∫
{|y|>1} | log |y‖|μ|(dy)<

∞ and let U+μ(x)= 1
π

∫
R log 1

|y−x|μ(dy). Then the integral is absolutely con-
vergent almost everywhere (a.e.). Under the same assumption on a measure
σ we have the following result.
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Lemma 9. If U+μ=U+σ a.e. then μ=σ .

Proof. By letting one of the parameters tend to zero in the resolvent
equation (compare (38)) and using (84), (83) and (19), for every function
φ with compact support and integral zero we obtain:

Uλφ(x)=U+(φ−λUλφ)(x).
If we let f (x)= φ(x)− λUλφ(x) then this function satisfies |U+‖f |(x)�
c(1+ | log |x‖) and

∫
R f (y)dy = 0. By Fubini’s theorem and our assump-

tion we get

(μ,U+f )= (σ,U+f ),
where (χ,ψ)=∫

R χ(x)ψ(x)dx. Thus, (μ,Uλφ)=(σ,Uλφ), λ>0. By unique-
ness, (μ,Ptφ) = (σ,Ptφ) for all t > 0 (see the end of Section 3). Here
Ptψ(x)=

∫
pt (x, y)ψ(y)dy. Letting t→0+ we conclude that μ=σ .

Our program of proving Theorem 1 solely by means of the resolvent
equation is completed in Sections 2–4, and the remaining exception is the
logarithmic case of Section 5. The difficulty of this case is in calculating
from first principles the limit, when λ→0+, of the λ-resolvent of the time
changed process, as an absolutely convergent integral for functions f ∈
Cc(R0) satisfying an appropriate cancellation property (

∫
f (y)y−2dy=0).

This should be compared with Lemma 8 but seems to require a special
approach.

The literature on the logarithmic kernel in dimension one is scarce
because its potential theory can be reduced to the rich theory of the pla-
nar logarithmic kernel (for which see Refs. 31 and 36) in the manner men-
tioned at the end of Ref. 35.

It should be clear from Section 5 that Theorem 2 is tantamount to
Theorem 1. Note, however, that some uses of Theorem 1, e.g. (74), are not
direct consequences of Theorem 2.

There is a certain emphasis in our paper on the use of the notion of
regular harmonic functions in probabilistic potential theory. Further moti-
vation comes from applications in the boundary potential theory on sub-
domains of Rd , see Ref. 11 for more references.

The following property of Riesz potential kernel and Kelvin trans-
form should be observed:

Ky |y−x|α−d =Kx |y−x|α−d . (85)

Of course, (85) follows from (3). The formula is implicit at least in (80)
and (51) above. We like to note that (85) is reminiscent of the symme-
try condition u(x, y)= u(y, x) for the potential kernel in Hunt’s theory
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(of symmetric Markov processes).(6,27) In fact our proof of (61) above is
modeled after the usual analytic proof of the symmetry of the classical
Green function, a prototype for Hunt’s considerations.

ACKNOWLEDGMENTS

We wish to thank Krzysztof Burdzy and Andrzej Hulanicki for a dis-
cussion on the classical Kelvin transformation and pointing out some ref-
erences. We thank the referee for several suggestions of improvements. Part
of this work(10) was prepared while the first named author was visiting
Departments of Mathematics at the University of Washington and Purdue
University. Their hospitality is gratefully acknowledged. The results of the
paper were presented during LMS Invited Lecture Series “Dirichlet Forms
and Related Stochastic Analysis” at the University of Wales, Swansea, 24–
30 VIII 2003. The invitation from Niels Jacob and the support from the
London Mathematical Society for this visit are gratefully appreciated by
the first named author. The research was partially supported by KBN
(2PO3A 04122) and RTN (HPRN-CT-2001-00273-HARP).

REFERENCES

1. Axler, S., Bourdon, P., and Ramey, W. (1992). Harmonic Function Theory. Springer-Verlag.
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