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INTRODUCTION

Let (M, g) be an n-dimensional, n  3, differentiable manifold of class C . We denote by  its Levi-Civita 
connection. We define endomorphisms R(X, Y) and X  Y by: 
 
                                                                     X Y [X,Y]R(X,Y) Z = [  , ]Z - Z  
 
and 
 
                                                                     (X  Y)Z = g(Y, Z)X - g(X, Z)Y,   (1) 
 
respectively, where X, Y, Z  (M), (M) being the Lie algebra of vector fields on M. The Riemannian Christoffel 
curvature tensor R is defined by R(X, Y, Z, W) = g(R(X, Y) Z, W), W  (M). Let S and  denote the Ricci tensor 
and the scalar curvature of M, respectively. The Weyl conformal curvature tensor is defined by: 
  

C(X, Y)Z = R(X,Y)Z- 1
n 2

{S(Y,Z)X-S(X, Z)Y+g(Y, Z)QX-g(X, Z)QY }+
(n 1)(n 2)

{g(Y, Z)X-g(X, Z)Y},  (2) 

 
where, Q is the Ricci operator defined by g(QX, Y) = S(X,Y) [1].  
 We define tensors R R, R S, Q(g, R) and Q(g, S) by: 
 
                                   (R(X, Y) R)(X1, X2, X3) = R(X, Y)R(X1, X2) X3-R(R(X, Y)X1, X2) X3  
                                                                            -R(X1, R(X, Y) X2) X3-R(X1, X2) R(X, Y)X3, (3) 
 
 

 (R(X, Y)  S)(X1, X2) = -S(R(X, Y) X1, X2)-S(X1, R(X, Y)X2), (4) 
 
 
   Q(g,R)(X1, X2, X3; X, Y) = (X Y)R(X1, X2) X3-R((X Y)X1, X2) X3-R(X1, (X Y)X2) X3-R(X1, X2)(X Y) X3 (5) 
 
and 
 
                                               Q(g, S)(X1, X2; X, Y) = -S((X Y)X1, X2)-S(X1, (X Y)X2), (6) 
 
respectively, where X1, X2, X3, X, Y (M). The tensors R C and Q(g, C) are defined in the same manner as the 
tensors R R and Q(g, R) [2]. 
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 If the tensors R R and Q(g, R) are linearly dependent then M is called pseudosymmetric. This is equivalent to: 
 
                                                                                R R = LR Q(g, R) (7) 
 
holding on the set UR = {x M: Q(g, R) 0 at x}, where LR is some function on UR [2]. If R R = 0 then M is called 
semisymmetric. Every semisymmetric manifold is pseudosymmetric but the converse statement is not true. If R = 0 
then M is called locally symmetric. It is trivial that if M is locally symmetric then it is semisymmetric [3]. 
 If the tensors R S and Q(g, S) are linearly dependent then M is called Ricci-pseudosymmetric. This is equivalent 
to: 
                                                                              R S = LS Q(g, S) (8)  

holding on the set US = {x M: S
n

g  at x}, where LS is some function on US [2].  

 Every pseudosymmetric manifold is Ricci-pseudosymmetric but the converse statement is not true. If R S = 0 
then M is called Ricci-semisymmetric. Every semisymmetric manifold is Ricci-semisymmetric but the converse 
statement is not true. Every Ricci-semisymmetric manifold is Ricci-pseudosymmetric but the converse statement is 
not true [2]. 
 If the tensors R R and Q(S, R) are linearly dependent then M is called Ricci-generalized pseudosymmetric [2]. 
This is equivalent to 
 
                                                                                  R R = L Q(S, R) (9) 
 
holding on the set U = {x M: Q(S,R) 0 at x}, where L is some function on U. The tensors Q(S, R) and X SY are 
defined by:
 
                                Q(S, R)(X1, X2, X3; X, Y) = (X SY)R(X1, X2) X3-R((X SY)X1, X2) X3  
                                                                             -R(X1, (X SY) X2) X3-R(X1, X2)(X SY) X3 (10)  
and  
                                                                        (X SY)Z = S(Y, Z)X-S(X, Z)Y, (11)  
 
respectively. 
 If the tensors R C and Q(g, C) are linearly dependent then M is called Weyl-pseudosymmetric. This is equivalent 
to 
 
                                                                                    R C = LCQ(g, C) (12) 
 
holding on the set UC = {x M: C 0 at x}, where LC is some function on UC. If R C = 0 then M is called Weyl-
semisymmetric. If M is Weyl-semisymmetric then it is trivially Weyl-pseudosymmetric. But the converse statement 
is not true [2]. 
 Semisymmetric Kenmotsu manifolds were studied in [4], Ricci-semisymmetric and Weyl-semisymmetric 
Kenmotsu manifolds were studied in [5]. In this paper, we study on Kenmotsu manifolds satisfying several 
pseudosymmetry conditions. The paper is organized as follows: In Section 2, we give a brief account of Kenmotsu 
manifolds. In Section 3, we find the characterizations of Kenmotsu manifolds satisfying the pseudosymmetry 
conditions like R R = LR Q(g, R), R R = LQ(S, R) and R C = LCQ(g, C). 
 

KENMOTSU MANIFOLDS
 
 Let M be an almost contact manifold [6] equipped with an almost contact metric structure  consisting 
of a (1, 1) tensor field , a vector field , a 1-form  and a compatible Riemannian metric g satisfying 

( , , ,g)

 
                                                             (13) 2 I , ( ) 1, 0, 0,

 
                                                                      g(X,Y) g( X, Y) (X) (Y),  (14)  
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                                                  g(X, Y) g( X,Y), g(X, ) (X)                                            (15) 
for all X, Y  (M). An almost contact metric manifold M is called a Kenmotsu manifold if it satisfies [4] 
 
                                                        (16) X( )Y g( X,Y) (Y) X,   X, Y (M),

,

 
where,  is Levi-Civita connection of the Riemannian metric g. From the above equation it follows that 
 
                                                                                 X X (X)  (17) 
 
                                                                        X( )Y g(X,Y) (X) (Y).  (18) 
 
Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q satisfy [4] 
 
                                                                                S(X, ) (1 n) (X),  (19)
 
                                                                                      Q (1 n)  (20)  
and 
 
                                                                         R( ,X)Y (Y)X g(X,Y) ,  (21) 
 
where n = 2m+1. Kenmotsu manifolds have been studied various authors. For example see [5, 7-12].  
 A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of  equals -2d ) but not Sasakian. Moreover, 
it is also not compact since from equation (17) we get div  = n-1. In [4], Kenmotsu showed (i) that locally a 
Kenmotsu manifold is a warped product I fN of an interval I and a Kähler manifold N with warping function        
f(t) = set, where s is a nonzero constant; and (ii) that a Kenmotsu manifold of constant -sectional curvature is a 
space of constant curvature -1 and so it is locally hyperbolic space.  
 

RESULTS
 
 In [4], K. Kenmotsu studied on semisymmetric Kenmotsu manifolds. In [5], it was considered Ricci-
semisymmetric Kenmotsu manifolds. In this chapter, our aim is to find the characterizations of Kenmotsu manifolds 
which are pseudosymmetric, Ricci-generalized pseudosymmetric and Weyl-pseudosymmetric. Firstly we give: 
 
Theorem 3.1: Let M be an n-dimensional, n  3, Kenmotsu manifold. If M is pseudosymmetric then either it is 
locally isometric to the hyperbolic space Hn(-1) or LR = -1 holds on M. 
 
Proof: If M is semisymmetric then it is trivially pseudosymmetric. In [4], it was proved that a semisymmetric 
Kenmotsu manifold is locally isometric to the hyperbolic space Hn(-1). Now assume that M is not a semisymmetric, 
a pseudosymmetric Kenmotsu manifold. From (21) and (1), since 
 
                                                                                R( , X)Y = (X )Y, (22) 
 
it is easy to see that: 

                                                                                R( , X) R = (X ) R, 
 
which implies that the pseudosymmetry function LR = -1. Thus the proof of our theorem is completed. 
Therefore we have the following corollary: 
 
Corollary 3.2: Every Kenmotsu manifold Mn, n  3, is a pseudosymmetric manifold of the form R R = -Q(g, R). 
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Proof: If M is semisymmetric by the proof of the previous theorem R R = Q(g, R) = 0. If M is not semisymmetric 
then LR = -1, hence R R = -Q(g, R) holds on M. This proves the corollary. 
 An important subclass of Ricci-generalized pseudosymmetric manifolds is formed by the manifolds realizing 
the condition: 
 
                                                                                    R R = Q(S, R). (23) 
 
It is known from [13] that every 3-dimensional semi-Riemannian manifold satisfies (23). 
Now our aim is to investigate Kenmotsu manifolds realizing the condition (23). So we have the following result: 
 
Theorem 3.3: Let M be an n-dimensional, n  3, Kenmotsu manifold. Then the condition (23) holds on M if and 
only if M is locally isometric to the hyperbolic space Hn (-1). 
 
Proof: Assume that M is locally isometric to the Hyperbolic space Hn (-1). Then it is easy to see that the condition 
R R = Q(S, R) = 0 is satisfied on M. Now let X, Y, Z, W be vector fields on M. Then from (3) we have: 
 
           (R( , X) R)(Y, Z, W) = R( , X)R(Y, Z)W-R(R( , X)Y, Z)W-R(Y, R( , X)Z)W-R(Y, Z) R( , X)W. (24) 
 
Using (21) and taking the inner product of (24) with  we get:  
 
                              g((R( , X) R)(Y, Z, W), ) = -R(Y, Z, W, X)-g(X, Y) g(Z, W)+g(X, Z)g (Y, W). (25) 
 
Similarly by the use of (10) we can write: 
 
             Q(S,R)(Y, Z, W; , X) = ( SX)R(Y, Z)W-R(( SX)Y, Z)W-R(Y, ( SX)Z)W-R(Y, Z) ( SX) W. (26) 
 
So using (11, 19, 21) and taking the inner product of (26) with  we get: 
 
                 g(Q(S, R)(Y, Z, W; , X), ) = S(X, R(Y, Z)W)-S(X, Y) (W) (Z)+S(X, Y)g(Z, W)  
                                                                  -S(X, Z)g(Y, W)+S(X, Z) (W)  (Y)+(1-n) g(X,Y) (W) (Z) 
                                                                  -(1-n)g (X, Z)  (W)  (Y). (27) 
 
Since the condition R R = Q(S, R) holds on M, from (24) and (27) we have: 
 
                                                          (R( , X) R)(Y, Z, W) = Q(S, R)(Y, Z, W; , X). (28) 
 
Taking the inner product of the equation (28) with  we also have: 
 
                                              g((R( , X) R)(Y, Z, W), ) = g(Q(S, R)(Y, Z, W; , X), ). 
 
Using the equations (25) and (27) we obtain: 
 
                                                        -R(Y, Z, W, X) + g(X, Z)g(Y,W)-g(X,Y)g(Z,W) 
                                         = S(X, R(Y, Z)W)-S(X, Y) (W) (Z) + S(X,Y)g(Z,W)-S(X, Z)g(Y,W) 
                                         + S(X, Z) (W) (Y) + (1-n)g(X, Y) (W) (Z)-(1-n)g(X, Z) (W) (Y). (29) 
 
Putting Y =  in (29) we have: 
 
                                                                     (W)[S(X, Z)-(1-n)g(X, Z)] = 0. (30) 
 
So we obtain: 
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                                                                          S(X, Z) = (1-n) g(X, Z). (31) 
Then M is an Einstein manifold with the scalar curvature  = n(1-n). Hence putting (31) into (23) we find: 
 
                                                                             R R = (1-n)Q(g, R). (32) 
 
But from Corollary 3.2, we know that 1-n = -1. Since n  3, this is impossible. So we get R R = 0. Then by [4], M is 
locally isometric to the hyperbolic space Hn (-1). This proves the theorem. 
 
Theorem 3.4: Let M be an n-dimensional, n  3, Ricci-generalized pseudosymmetric Kenmotsu manifold. If M is 

not semisymmetric then M is an Einstein manifold with scalar curvature  = n(1-n) and L = 1
n 1

holds on M. 

 
Proof: Suppose that M is a Ricci-generalized pseudosymmetric Kenmotsu manifold and X, Y, Z, W (M). Similar 
to the proof of the previous theorem, from (25) and (27) we can write: 
 
                                                                -R(Y, Z, W, X)+g(X, Z)g (Y, W)-g(X, Y) g(Z, W) 
                                          = L{S(X, R (Y, Z)W)-S(X, Y) (W) (Z)+S(X, Y)g(Z, W)-S(X, Z)g(Y,W) 
                                               + S(X, Z) (W) (Y)+(1-n)g(X, Y) (W) (Z)-(1-n) g(X, Z) (W) (Y)}. (33)  
 
Replacing Y with  in (33) we get: 
 
                                                                    (W)L[S(X, Z)-(1-n) g(X, Z)] = 0. (34) 
 
Since M is not semisymmetric L 0. So from (34): 
 
                                                                                S(X, Z) = (1-n) g(X, Z). 
 
Then M is an Einstein manifold with the scalar curvature  = n(1-n). So putting S = (1-n)g into (9) we obtain: 
 
                                                                                   R R = (1-n)LQ(g, R). 
 

But from Corollary 3.2, we know that (1-n)L = -1, which implies L = 1
n 1

. Hence we get the result, as required. 

 
Corollary 3.5: Let M be an n-dimensional, n  4, non-
semisymmetric Ricci-generalized pseudosymmetric 
Kenmotsu manifold. Then R R = R C holds on M. 
 
Proof: Putting S = (1-n)g and  = n(1-n) in (2) we get 
C(X, Y)Z = R(X, Y)Z+{g(Y, Z)X-g(X, Z)Y} So using 
(3) we get the result. 
 Ricci pseudosymmetric Kenmotsu manifolds were 
studied in [14] and the following result was proved: 
 
Theorem 3.6: [14]. Let M be an n-dimensional, n  3, 
Kenmotsu manifold. If M is Ricci-pseudosymmetric
then either M is an Einstein manifold with the scalar 
curvature  = n(1-n) or LS = -1 holds on M. 
So we have the following corollary: 
 
Corollary  3.7: Every   Kenmotsu  manifold  M,  n  3, 
is   a   Ricci-pseudosymmetric  manifold  of  the  form 
R S = -Q(g, S). 

 
Proof: If  M  is Ricci-semisymmetric by the proof of 
the previous theorem R S = Q(g, S) = 0. If M is not 
Ricci-semisymmetric,   Ricci-pseudosymmetric  then 
R S = -Q(g, S) holds on M. Hence we get the result, as 
required. 
 
Theorem 3.8: Let M be an n-dimensional, n  4, 
Kenmotsu manifold. If M is Weyl-pseudosymmetric 
then either M is locally isometric to the hyperbolic 
space Hn (-1) or LC = -1 holds on M. 
 
Proof: If M is Weyl-semisymmetric then by [5], it is 
conformally flat and hence it is locally isometric to the 
hyperbolic space Hn (-1). Assume that M is not a Weyl-
semisymmetric, a Weyl-pseudosymmetric Kenmotsu 
manifold. From (22), it is easy to see that R( , X) C = 
(X ) C, which implies that the pseudosymmetry 
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function LC = -1. Therefore we have the following 
corollary: 
 
Corollary  3.9:  Every  Kenmotsu  manifold  Mn, n  4, 
is  a Weyl-pseudosymmetric  manifold  of  the  form 
R C = -Q(g, C). 
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