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Abstract

We consider the stochastic bandit problem with

a continuous set of arms, with the expected re-

ward function over the arms assumed to be fixed

but unknown. We provide two new Gaussian

process-based algorithms for continuous bandit

optimization – Improved GP-UCB (IGP-UCB)

and GP-Thomson sampling (GP-TS), and derive

corresponding regret bounds. Specifically, the

bounds hold when the expected reward function

belongs to the reproducing kernel Hilbert space

(RKHS) that naturally corresponds to a Gaus-

sian process kernel used as input by the algo-

rithms. Along the way, we derive a new self-

normalized concentration inequality for vector-

valued martingales of arbitrary, possibly infinite,

dimension. Finally, experimental evaluation and

comparisons to existing algorithms on synthetic

and real-world environments are carried out that

highlight the favorable gains of the proposed

strategies in many cases.

1. Introduction

Optimization over large domains under uncertainty is an

important subproblem arising in a variety of sequential de-

cision making problems, such as dynamic pricing in eco-

nomics (Besbes & Zeevi, 2009), reinforcement learning

with continuous state/action spaces (Kaelbling et al., 1996;

Smart & Kaelbling, 2000), and power control in wireless

communication (Chiang et al., 2008). A typical feature of

such problems is a large, or potentially infinite, domain of

decision points or covariates (prices, actions, transmit pow-

ers), together with only partial and noisy observability of

the associated outcomes (demand, state/reward, communi-

cation rate); reward/loss information is revealed only for

decisions that are chosen. This often makes it hard to bal-
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ance exploration and exploitation, as available knowledge

must be transferred efficiently from a finite set of obser-

vations so far to estimates of the values of infinitely many

decisions. A classic case in point is that of the canonical

stochastic MAB with finitely many arms, where the effort

to optimize scales with the total number of arms or deci-

sions; the effect of this is catastrophic for large or infinite

arm sets.

With suitable structure in the values or rewards of arms,

however, the challenge of sequential optimization can be

efficiently addressed. Parametric bandits, especially lin-

early parameterized bandits (Rusmevichientong & Tsitsik-

lis, 2010), represent a well-studied class of structured de-

cision making settings. Here, every arm corresponds to a

known, finite dimensional vector (its feature vector), and

its expected reward is assumed to be an unknown linear

function of its feature vector. This allows for a large, or

even infinite, set of arms all lying in space of finite dimen-

sion, say d, and a rich line of work gives algorithms that

attain sublinear regret with a polynomial dependence on

the dimension, e.g., Confidence Ball (Dani et al., 2008),

OFUL (Abbasi-Yadkori et al., 2011) (a strengthening of

Confidence Ball) and Thompson sampling for linear ban-

dits (Agrawal & Goyal, 2013)1 The insight here is that even

though the number of arms can be large, the number of un-

known parameters (or degrees of freedom) in the problem

is really only d, which makes it possible to learn about the

values of many other arms by playing a single arm.

A different approach to modelling bandit problems with a

continuum of arms is via the framework of Gaussian pro-

cesses (GPs) (Rasmussen & Williams, 2006). GPs are

a flexible class of nonparametric models for expressing

uncertainty over functions on rather general domain sets,

which generalize multivariate Gaussian random vectors.

GPs allow tractable regression for estimating an unknown

function given a set of (noisy) measurements of its values

at chosen domain points. The fact that GPs, being distribu-

tions on functions, can also help quantify function uncer-

tainty makes it attractive for basing decision making strate-

gies on them. This has been exploited to great advantage to

1Roughly, for rewards bounded in [−1, 1], these algorithms

achieve optimal regret Õ
(

d
√
T
)

, where Õ (·) hides polylog(T )

factors.
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build nonparametric bandit algorithms, such as GP-UCB

(Srinivas et al., 2009), GP-EI and GP-PI (Hoffman et al.,

2011). In fact, GP models for bandit optimization, in terms

of their kernel maps, can be viewed as the parametric linear

bandit paradigm pushed to the extreme, where each feature

vector associated to an arm can have infinite dimension 2.

Against this backdrop, our work revisits the problem of

bandit optimization with stochastic rewards. Specifically,

we consider stochastic multiarmed bandit (MAB) problems

with a continuous arm set, and whose (unknown) expected

reward function is assumed to lie in a reproducing kernel

Hilbert space (RKHS), with bounded RKHS norm – this

effectively enforces smoothness on the function3. We make

the following contributions-

• We design a new algorithm – Improved Gaussian

Process-Upper Confidence Bound (IGP-UCB) – for

stochastic bandit optimization. The algorithm can be

viewed as a variant of GP-UCB (Srinivas et al., 2009),

but uses a significantly reduced confidence interval

width resulting in an order-wise improvement in re-

gret compared to GP-UCB. IGP-UCB also shows a

markedly improved numerical performance over GP-

UCB.

• We develop a nonparametric version of Thompson

sampling, called Gaussian Process Thompson sam-

pling (GP-TS), and show that enjoys a regret bound

of Õ
(

γT
√
dT

)

. Here, T is the total time horizon and

γT is a quantity depending on the RKHS containing

the reward function. This is, to our knowledge, the

first known regret bound for Thompson sampling in

the agnostic setup with nonparametric structure.

• We prove a new self-normalized concentration in-

equality for infinite-dimensional vector-valued mar-

tingales, which is not only key to the design and

analysis of the IGP-UCB and GP-TS algorithms, but

also potentially of independent interest. The inequal-

ity generalizes a corresponding self-normalized bound

for martingales in finite dimension proven by Abbasi-

Yadkori et al. (2011).

• Empirical comparisons of the algorithms developed

above, with other GP-based algorithms, are presented,

over both synthetic and real-world setups, demonstrat-

ing performance improvements of the proposed algo-

rithms, as well as their performance under misspecifi-

cation.

2The completion of the linear span of all feature vectors (im-
ages of the kernel map) is precisely the reproducing kernel Hilbert
space (RKHS) that characterizes the GP.

3Kernels, and their associated RKHSs,

2. Problem Statement

We consider the problem of sequentially maximizing a
fixed but unknown reward function f : D → R over a

(potentially infinite) set of decisions D ⊂ R
d, also called

actions or arms. An algorithm for this problem chooses, at
each round t, an arm xt ∈ D, and subsequently observes
a reward yt = f(xt) + εt, which is a noisy version of the
function value at xt. The arm xt is chosen causally de-
pending upon the arms played and rewards obtained upto
round t−1, denoted by the history Ht−1 = {(xs, ys) : s =
1, . . . , t−1}. We assume that the noise sequence {εt}∞t=1 is
conditionally R-sub-Gaussian for a fixed constant R ≥ 0,
i.e.,

∀t ≥ 0, ∀λ ∈ R, E

[

eλεt
∣

∣ Ft−1

]

≤ exp

(

λ2R2

2

)

, (1)

where Ft−1 is the σ-algebra generated by the random vari-

ables {xs, εs}t−1
s=1 and xt.This is a mild assumption on the

noise (it holds, for instance, for distributions bounded in

[−R,R]) and is standard in the bandit literature (Abbasi-

Yadkori et al., 2011; Agrawal & Goyal, 2013).

Regret. The goal of an algorithm is to maximize its cu-

mulative reward or alternatively minimize its cumulative

regret – the loss incurred due to not knowing f ’s maxi-

mum point beforehand. Let x⋆ ∈ argmaxx∈D f(x) be

a maximum point of f (assuming the maximum is at-

tained). The instantaneous regret incurred at time t is

rt = f(x⋆) − f(xt), and the cumulative regret in a time

horizon T (not necessarily known a priori) is defined to be

RT =
∑T

t=1 rt. A sub-linear growth of RT in T signifies

that RT /T → 0 as T → ∞, or vanishing per-round regret.

Regularity Assumptions. Attaining sub-linear regret is

impossible in general for arbitrary reward functions f and

domains D, and thus some regularity assumptions are in

order. In what follows, we assume that D is compact. The

smoothness assumption we make on the reward function f
is motivated by Gaussian processes4 and their associated

reproducing kernel Hilbert spaces (RKHSs, see Schölkopf

& Smola (2002)). Specifically, we assume that f has small

norm in the RKHS of functions D → R, with positive

semi-definite kernel function k : D×D → R. This RKHS,

denoted by Hk(D), is completely specified by its kernel

function k(·, ·) and vice-versa, with an inner product 〈·, ·〉k
obeying the reproducing property: f(x) = 〈f, k(x, ·)〉k for

all f ∈ Hk(D). In other words, the kernel plays the role

of delta functions to represent the evaluation map at each

point x ∈ D via the RKHS inner product. The RKHS

norm ‖f‖k =
√

〈f, f〉
k

is a measure of the smoothness5

4Other work has also studied continuum-armed bandits with
weaker smoothness assumptions such as Lipschitz continuity –
see Related work for details and comparison.

5One way to see this is that for every element g in
the RKHS, |g(x) − g(y)| = |〈g, k(x, ·) − k(y, ·)〉| ≤
‖g‖

k
‖k(x, ·)− k(y, ·)‖

k
by Cauchy-Schwarz.
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of f , with respect to the kernel function k, and satisfies:

f ∈ Hk(D) if and only if ‖f‖k < ∞.

We assume a known bound on the RKHS norm of the un-
known target function6: ‖f‖k ≤ B. Moreover, we assume

bounded variance by restricting k(x, x) ≤ 1, for all x ∈ D.
Two common kernels that satisfy bounded variance prop-
erty are Squared Exponential and Matérn, defined as

kSE(x, x
′) = exp

(

− s2/2l2
)

,

kMatérn(x, x
′) =

21−ν

Γ(ν)

(s
√
2ν

l

)ν

Bν

(s
√
2ν

l

)

,

where l > 0 and ν > 0 are hyperparameters, s =
‖x− x′‖2 encodes the similarity between two points

x, x′ ∈ D, and Bν(·) is the modified Bessel function. Gen-

erally the bounded variance property holds for any station-

ary kernel, i.e. kernels for which k(x, x′) = k(x − x′) for

all x, x′ ∈ R
d. These assumptions are required to make

the regret bounds scale-free and are standard in the litera-

ture (Agrawal & Goyal, 2013). Instead if k(x, x) ≤ c or

‖f‖k ≤ cB, then our regret bounds would increase by a

factor of c.

3. Algorithms

Design philosophy. Both the algorithms we propose

use Gaussian likelihood models for observations, and

Gaussian process (GP) priors for uncertainty over re-

ward functions. A Gaussian process over D, denoted

by GPD(µ(·), k(·, ·)), is a collection of random variables

(f(x))x∈D, one for each x ∈ D, such that every finite

sub-collection of random variables (f(xi))
m
i=1 is jointly

Gaussian with mean E [f(xi)] = µ(xi) and covariance

E [(f(xi)− µ(xi))(f(xj)− µ(xj))] = k(xi, xj), 1 ≤
i, j ≤ m, m ∈ N. The algorithms use GPD(0, v2k(·, ·)),
v > 0, as an initial prior distribution for the unknown re-

ward function f over D, where k(·, ·) is the kernel func-

tion associated with the RKHS Hk(D) in which f is as-

sumed to have ‘small’ norm at most B. The algorithms

also assume that the noise variables εt = yt − f(xt)
are drawn independently, across t, from N (0, λv2), with

λ ≥ 0. Thus, the prior distribution for each f(x), is as-

sumed to be N (0, v2k(x, x)), x ∈ D. Moreover, given

a set of sampling points At = (x1, . . . , xt) within D, it

follows under the assumption that the corresponding vec-

tor of observed rewards y1:t = [y1, . . . , yt]
T has the mul-

tivariate Gaussian distribution N (0, v2(Kt + λI)), where

Kt = [k(x, x′)]x,x′∈At
is the kernel matrix at time t. Then,

by the properties of GPs, we have that y1:t and f(x) are

jointly Gaussian given At:
[

f(x)
y1:t

]

∼ N
(

0,

[

v2k(x, x) v2kt(x)
T

v2kt(x) v2(Kt + λI)

])

,

6This is analogous to the bound on the weight θ typically as-
sumed in regret analyses of linear parametric bandits.

where kt(x) = [k(x1, x), . . . , k(xt, x)]
T . Therefore con-

ditioned on the history Ht, the posterior distribution over f
is GPD(µt(·), v2kt(·, ·)), where

µt(x) = kt(x)
T (Kt + λI)−1y1:t, (2)

kt(x, x
′) = k(x, x′)− kt(x)

T (Kt + λI)−1kt(x
′),(3)

σ2
t (x) = kt(x, x). (4)

Thus for every x ∈ D, the posterior distribution of f(x),
given Ht, is N (µt(x), v

2σ2
t (x)).

Remark. Note that the GP prior and Gaussian likelihood

model described above is only an aid to algorithm design,

and has nothing to do with the actual reward distribution

or noise model as in the problem statement (Section 2).

The reward function f is a fixed, unknown, member of the

RKHS Hk(D), and the true sequence of noise variables εt
is allowed to be a conditionally R-sub-Gaussian martingale

difference sequence (Equation 1). In general, thus, this rep-

resents a misspecified prior and noise model, also termed

the agnostic setting by Srinivas et al. (2009).

The proposed algorithms, to follow, assume the knowledge

of only the sub-Gaussianity parameter R, kernel function k
and upper bound B on the RKHS norm of f . Note that v, λ
are free parameters (possibly time-dependent) that can be

set specific to the algorithm.

3.1. Improved GP-UCB (IGP-UCB) Algorithm

We introduce the IGP-UCB algorithm (Algorithm 1), that

uses a combination of the current posterior mean µt−1(x)
and standard deviation vσt−1(x) to (a) construct an upper

confidence bound (UCB) envelope for the actual function

f over D, and (b) choose an action to maximize it. Specif-

ically it chooses, at each round t, the action

xt = argmax
x∈D

µt−1(x) + βtσt−1(x), (5)

with the scale parameter v set to be 1. Such a rule
trades off exploration (picking points with high uncertainty
σt−1(x)) with exploitation (picking points with high re-

ward µt−1(x)), with βt = B+R
√

2(γt−1 + 1 + ln(1/δ))
being the parameter governing the tradeoff, which we later
show is related to the width of the confidence interval for f
at round t. δ ∈ (0, 1) is a free confidence parameter used
by the algorithm, and γt is the maximum information gain
at time t, defined as:

γt := max
A⊂D:|A|=t

I(yA; fA).

Here, I(yA; fA) denotes the mutual information between

fA = [f(x)]x∈A and yA = fA + εA, where εA ∼
N (0, λv2I) and quantifies the reduction in uncertainty

about f after observing yA at points A ⊂ D. γt is

a problem dependent quantity and can be found given

the knowledge of domain D and kernel function k. For
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a compact subset D of R
d, γT is O((lnT )d+1) and

O(T d(d+1)/(2ν+d(d+1)) lnT ), respectively, for the Squared

Exponential and Matérn kernels (Srinivas et al., 2009), de-

pending only polylogarithmically on the time T .

Algorithm 1 Improved-GP-UCB (IGP-UCB)

Input: Prior GP (0, k), parameters B, R, λ, δ.

for t = 1, 2, 3 . . . T do

Set βt = B +R
√

2(γt−1 + 1 + ln(1/δ)).
Choose xt = argmax

x∈D
µt−1(x) + βtσt−1(x).

Observe reward yt = f(xt) + εt.
Perform update to get µt and σt using 2, 3 and 4.

end for

Discussion. Srinivas et al. (2009) have proposed the GP-

UCB algorithm, and Valko et al. (2013) the KernelUCB

algorithm, for sequentially optimizing reward functions ly-

ing in the RKHS Hk(D). Both algorithms play an arm

at time t using the rule: xt = argmaxx∈D µt−1(x) +

β̃tσt−1(x). GP-UCB uses the exploration parameter β̃t =
√

2B2 + 300γt−1 ln
3(t/δ), with λ set to σ2, where σ is

additionally assumed to be a known, uniform (i.e., almost-

sure) upper bound on all noise variables εt (Srinivas et al.,

2009, Theorem 3). Compared to GP-UCB, IGP-UCB (Al-

gorithm 1) reduces the width of the confidence interval by

a factor roughly O(ln3/2 t) at every round t, and, as we

will see, this small but critical adjustment leads to much

better theoretical and empirical performance compared to

GP-UCB. In KernelUCB, β̃t is set as η/λ1/2, where η is

the exploration parameter and λ is the regularization con-

stant. Thus IGP-UCB can be viewed as a special case of

KernelUCB where η = βt.

3.2. Gaussian Process Thompson Sampling (GP-TS)

Our second algorithm, GP-TS (Algorithm 2), inspired

by the success of Thompson sampling for standard and

parametric bandits (Agrawal & Goyal, 2012; Kaufmann

et al., 2012; Gopalan et al., 2014; Agrawal & Goyal,

2013), uses the time-varying scale parameter vt = B +
R
√

2(γt−1 + 1 + ln(2/δ)) and operates as follows. At

each round t, GP-TS samples a random function ft(·) from

the GP with mean function µt−1(·) and covariance function

v2t kt−1(·, ·). Next, it chooses a decision set Dt ⊂ D, and

plays the arm xt ∈ Dt that maximizes ft
7. We call it GP-

Thompson-Sampling as it falls under the general frame-

work of Thompson Sampling, i.e., (a) assume a prior on the

underlying parameters of the reward distribution, (b) play

the arm according to the prior probability that it is optimal,

7If Dt = D for all t, then this is simply exact Thompson
sampling. For technical reasons, however, our regret bound is
valid when Dt is chosen as a suitable discretization of D, so we
include Dt as an algorithmic parameter.

and (c) observe the outcome and update the prior. However,

note that the prior is nonparametric in this case.

Algorithm 2 GP-Thompson-Sampling (GP-TS)

Input: Prior GP (0, k), parameters B, R, λ, δ.

for t = 1, 2, 3 . . . , do

Set vt = B +R
√

2(γt−1 + 1 + ln(2/δ)).
Sample ft(·) from GPD(µt−1(·), v2t kt−1(·, ·)).
Choose the current decision set Dt ⊂ D.

Choose xt = argmax
x∈Dt

ft(x).

Observe reward yt = f(xt) + εt.
Perform update to get µt and kt using 2 and 3.

end for

4. Main Results

We begin by presenting two key concentration inequalities

which are essential in bounding the regret of the proposed

algorithms.

Theorem 1 Let {xt}∞t=1 be an R
d-valued discrete time

stochastic process predictable with respect to the filtration

{Ft}∞t=0, i.e., xt is Ft−1-measurable ∀t ≥ 1. Let {εt}∞t=1

be a real-valued stochastic process such that for some R ≥
0 and for all t ≥ 1, εt is (a) Ft-measurable, and (b) R-sub-

Gaussian conditionally on Ft−1. Let k : Rd×R
d → R be a

symmetric, positive-semidefinite kernel, and let 0 < δ ≤ 1.

For a given η > 0, with probability at least 1 − δ, the fol-

lowing holds simultaneously over all t ≥ 0:

‖ε1:t‖2((Kt+ηI)−1+I)−1 ≤ 2R2 ln

√

det((1 + η)I +Kt)

δ
.

(6)

(Here, Kt denotes the t × t matrix Kt(i, j) = k(xi, xj),
1 ≤ i, j ≤ t and for any x ∈ R

t and A ∈ R
t×t, ‖x‖A :=√

xTAx). Moreover, if Kt is positive definite ∀t ≥ 1 with

probability 1, then the conclusion above holds with η = 0.

Theorem 1 represents a self-normalized concentration in-

equality: the ‘size’ of the increasing-length sequence {εt}t
of martingale differences is normalized by the growing

quantity ((Kt + ηI)−1 + I)−1 that explicitly depends on

the sequence. The following lemma helps provide an al-

ternative, abstract, view of the self-normalized process of

Theorem 1, based on the feature space representation in-

duced by a kernel.

Lemma 1 Let k : Rd ×R
d → R be a symmetric, positive-

semidefinite kernel, with associated feature map ϕ : Rd →
Hk and the reproducing kernel Hilbert space8 (RKHS) Hk.

8Such a pair (ϕ,Hk) always exists, see e.g., Rasmussen &
Williams (2006).
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Letting St =
∑t

s=1 εsϕ(xs) and the (possibly infinite di-

mensional) matrix9 Vt = I+
∑t

s=1 ϕ(xs)ϕ(xs)
T , we have,

whenever Kt is positive definite, that

‖ε1:t‖(K−1

t +I)
−1 = ‖St‖V −1

t
,

where ‖St‖V −1

t
:=

∥

∥

∥
V

−1/2
t St

∥

∥

∥

Hk

denotes the norm of

V
−1/2
t St in the RKHS Hk.

Observe that St is Ft-measurable and also E
[

St

∣

∣ Ft−1

]

=
St−1. The process {St}t≥0 is thus a martingale with val-

ues10 in the RKHS H , which can possibly be infinite-

dimensional, and moreover, whose deviation is measured

by the norm weighted by V −1
t , which is itself derived from

St. Theorem 1 represents the kernelized generalization

of the finite-dimensional result of Abbasi-Yadkori et al.

(2011), and we recover their result under the special case

of a linear kernel: ϕ(x) = x for all x ∈ R
d.

We remark that when ϕ is a mapping to a finite-dimensional

Hilbert space, the argument of Abbasi-Yadkori et al. (2011,

Theorem 1) can be lifted to establish Theorem 1, but

it breaks down in the generalized, infinite-dimensional

RKHS setting, as the self-normalized bound in their pa-

per has an explicit, growing dependence on the feature di-

mension. Specifically, the method of mixtures (de la Pena

et al., 2009) or Laplace method, as dubbed by Maillard

(2016), fails to hold in infinite dimension. The primary rea-

son for this is that the mixture distribution for finite dimen-

sional spaces can be chosen independently of time, but in a

nonparametric setup like ours, where the dimensionality of

the self-normalizing factor
(

K−1
t + I

)−1
itself grows with

time, the use of (random) stopping times, precludes using

time-dependent mixtures. We get around this difficulty by

applying a novel ‘double mixture’ construction, in which a

pair of mixtures on (a) the space of real-valued functions on

R
d, i.e., the support of a Gaussian process, and (b) on real

sequences is simultaneously used to obtain a more general

result, of potentially independent interest.

Our next result shows that how the posterior mean is con-

centrated around the unknown reward function f .

Theorem 2 Under the same hypotheses as those of Theo-

rem 1, let D ⊂ R
d, and f : D → R be a member of the

RKHS of real-valued functions on D with kernel k, with
RKHS norm bounded by B. Then, with probability at least
1− δ, the following holds for all x ∈ D and t ≥ 1:

|µt−1(x)− f(x)| ≤
(

B +R
√

2(γt−1 + 1 + ln(1/δ))
)

σt−1(x),

where γt−1 is the maximum information gain after t − 1
rounds and µt−1(x), σ

2
t−1(x) are mean and variance of

9More formally, Vt : Hk → Hk is the linear operator defined
by Vt(z) = z +

∑

t

s=1
ϕ(xs)〈ϕ(xs), z〉 ∀z ∈ Hk.

10We ignore issues of measurability here.

posterior distribution defined as in Equation 2, 3, 4, with λ
set to 1 + η and η = 2/T .

Theorem 3.5 of Maillard (2016) states a similar result on

the estimation of the unknown reward function from the

RKHS. We improve upon it in the sense that the confidence

bound in Theorem 2 is simultaneous over all x ∈ D, while

the bound has been shown only for a single, fixed x in the

Kernel Least-squares setting. We are able to achieve this

result by virtue of Theorem 1.

4.1. Regret Bound of IGP-UCB

Theorem 3 Let δ ∈ (0, 1), ‖f‖k ≤ B and εt is condition-

ally R-sub-Gaussian. Running IGP-UCB for a function f
lying in the RKHS Hk(D), we obtain a regret bound of

O
(√

T (B
√
γT + γT )

)

with high probability. More pre-

cisely, with probability at least 1− δ, RT = O
(

B
√
TγT +

√

TγT (γT + ln(1/δ))
)

.

Improvement over GP-UCB. Srinivas et al. (2009), in

the course of analyzing the GP-UCB algorithm, show

that when the reward function lies in the RKHS Hk(D),

GP-UCB obtains regret O
(√

T (B
√
γT + γT ln3/2(T ))

)

with high probability (see Theorem 3 therein for the ex-

act bound). Furthermore, they assume that the noise εt
is uniformly bounded by σ, while our sub-Gaussianity as-

sumption (see Equation 1) is slightly more general, and

we are able to obtain a O(ln3/2 T ) multiplicative factor

improvement in the final regret bound thanks to the new

self-normalized inequality (Theorem 1). Additionally, in

our numerical experiments, we observe a significantly im-

proved performance of IGP-UCB over GP-UCB, both on

synthetically generated function, and on real-world sensor

measurement data (see Section 6).

Comparison with KernelUCB. Valko et al. (2013) show

that the cumulative regret of KernelUCB is Õ(
√

d̃T ),
where d̃, defined as the effective dimension, measures, in

a sense, the number of principal directions over which

the projection of the data in the RKHS is spread. They

show that d̃ is at least as good as γT , precisely γT ≥
Ω(d̃ ln lnT ) and thus the regret bound of KernelUCB is

roughly Õ(
√
TγT ), which is

√
γT factor better than IGP-

UCB. However, KernelUCB requires the number of actions

to be finite, so the regret bound is not applicable for infinite

or continuum action spaces.

4.2. Regret Bound of GP-TS

For technical reasons, we will analyze the following ver-

sion of GP-TS. At each round t, the decision set used

by GP-TS is restricted to be a unique discretization Dt
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of D with the property that |f(x)− f([x]t)| ≤ 1/t2

for all x ∈ D, where [x]t is the closest point to x in

Dt. This can always be achieved by choosing a com-

pact and convex domain D ⊂ [0, r]d and discretization

Dt with size |Dt| = (BLrdt2)d such that ‖x− [x]t‖1 ≤
rd/BLrdt2 = 1/BLt2 for all x ∈ D, where L =

sup
x∈D

sup
j∈[d]

(

∂2k(p,q)
∂pj∂qj

|p=q=x

)1/2

. This implies, for every x ∈

D,

|f(x)− f([x]t)| ≤ ‖f‖k L ‖x− [x]t‖1 ≤ 1/t2, (7)

as any f ∈ Hk(D) is Lipschitz continuous with constant

‖f‖k L (De Freitas et al., 2012, Lemma 1).

Theorem 4 (Regret bound for GP-TS) Let δ ∈ (0, 1),
D ⊂ [0, r]d be compact and convex, ‖f‖k ≤ B and

{εt}t a conditionally R-sub-Gaussian sequence. Run-

ning GP-TS for a function f lying in the RKHS Hk(D)
and with decision sets Dt chosen as above, with prob-

ability at least 1 − δ, the regret of GP-TS satis-

fies RT = O
(

√

(γT + ln(2/δ))d ln(BdT )
(√

TγT +

B
√

T ln(2/δ)
))

.

Comparison with IGP-UCB. Observe that regret scal-

ing of GP-TS is Õ(γT
√
dT ) which is a multiplicative√

d factor away from the bound Õ(γT
√
T ) obtained for

IGP-UCB and similar behavior is reflected in our simula-

tions on synthetic data. The additional multiplicative fac-

tor of
√

d ln(BdT ) in the regret bound of GP-TS is es-

sentially a consequence of discretization. How to remove

this extra logarithmic dependency, and make the analysis

discretization-independent, remains an open question.

Remark. The regret bound for GP-TS is inferior compared

to IGP-UCB in terms of the dependency on dimension d,

but to the best of our knowledge, Theorem 4 is the first

(frequentist) regret guarantee of Thompson Sampling in the

agnostic, non-parametric setting of infinite action spaces.

Linear Models and a Matching Lower Bound. If the

mean rewards are perfectly linear, i.e. if there exists a

θ ∈ R
d such that f(x) = θTx for all x ∈ D, then we

are in the parametric setup, and one way of casting this

in the kernelized framework is by using the linear kernel

k(x, x′) = xTx′. For this kernel, γT = O(d lnT ), and the

regret scaling of IGP-UCB is Õ(d
√
T ) and that of GP-TS

is Õ(d3/2
√
T ), which recovers the regret bounds of their

linear, parametric analogues OFUL (Abbasi-Yadkori et al.,

2011) and Linear Thompson sampling (Agrawal & Goyal,

2013), respectively. Moreover, in this case d̃ = d, thus

the regret of IGP-UCB is
√
d factor away from that of Ker-

nelUCB. But the regret bound of KernelUCB also depends

on the number of arms N , and if N is exponential in d,

then it also suffers Õ(d
√
T ) regret. We remark that a sim-

ilar O(ln3/2 T ) factor improvement, as obtained by IGP-

UCB over GP-UCB, was achieved in the linear parametric

setting by (Abbasi-Yadkori et al., 2011) in the OFUL al-

gorithm, over its predecessor ConfidenceBall (Dani et al.,

2008). Finally we see that the for linear bandit problem

with infinitely many actions, IGP-UCB attains the infor-

mation theoretic lower bound of Ω(d
√
T ) (see (Dani et al.,

2008)), but GP-TS is a factor of
√
d away from it.

5. Overview of Techniques

We briefly outline here the key arguments for all the theo-

rems in Section 4. See Chowdhury & Gopalan (2017) for

complete proofs.

Proof Sketch for Theorem 1. It is convenient to as-

sume that Kt, the induced kernel matrix at time t, is in-

vertible, since this is where the crux of the argument lies.

First we show that for any function g : D → R and

for all t ≥ 0, thanks to the sub-Gaussian property (1),

the process
{

Mg
t := exp(εT1:tg1:t − 1

2 ‖g1:t‖
2
)
}

t
is a non-

negative super-martingale with respect to the filtration Ft,

where g1:t := [g(x1), . . . , g(xt)]
T and in fact satisfies

E [Mg
t ] ≤ 1. The chief difficulty is to handle the behav-

ior of Mt at a (random) stopping time, since the sizes of

quantities such as ε1:t at the stopping time will be random.

We next construct a mixture martingale Mt by mix-

ing Mg
t over g drawn from an independent GPD(0, k)

Gaussian process, which is a measure over a large

space of functions, i.e., the space R
D. Then, by a

change of measure argument, we show that this induces

a mixture distribution which is essentially N (0,Kt) over

any desired finite dimension t, thus obtaining Mt =
1√

det(I+Kt)
exp

(

1
2 ‖ε1:t‖

2
(I+K−1

t )−1

)

. Next from the fact

that E [Mτ ] ≤ 1 and from Markov’s inequality, for any

δ ∈ (0, 1), we obtain

P

[

‖ε1:τ‖2(K−1
τ +I)−1 > 2 ln

(

√

det(I +Kτ )/δ
)]

≤ δ.

Finally, we lift this bound for all t through a standard stop-

ping time construction as in Abbasi-Yadkori et al. (2011).

Proof Sketch for Theorem 2. Here we sketch the

special case of η = 0, i.e. λ = 1. Ob-

serve that |µt(x)− f(x)| is upper bounded by sum of

two terms, P :=
∣

∣kt(x)
T (Kt + I)−1ε1:t

∣

∣ and Q :=
∣

∣kt(x)
T (Kt + I)−1f1:t − f(x)

∣

∣. Now we observe that

σ2
t (x) = ϕ(x)T (ΦT

t Φt + I)−1ϕ(x) and use this obser-

vation to show that P =
∣

∣ϕ(x)T (ΦT
t Φt + I)−1ΦT

t ε1:t
∣

∣

and Q =
∣

∣ϕ(x)T (ΦT
t Φt + I)−1f

∣

∣, which are in turn up-

per bounded by the terms σt(x) ‖St‖V −1

t
and ‖f‖k σt(x)

respectively. Then the result follows using Theorem 1,

along with the assumption that ‖f‖k ≤ B and the fact that
1
2 ln(det(I +Kt)) ≤ γt a.s. when Kt is invertible.



On Kernelized Multi-armed Bandits

Proof Sketch for Theorem 3. First from Theorem 2 and

the choice of xt in Algorithm 1, we show that the instanta-

neous regret rt at round t is upper bounded by 2βtσt−1(xt)
with probability at least 1 − δ. Then the result follows by

bounding the term
∑T

t=1 σt−1(xt) by O(
√
TγT ).

Proof Sketch for Theorem 4. We follow a similar ap-

proach given in Agrawal & Goyal (2013) to prove the re-

gret bound of GP-TS. First observe that from our choice of

discretization sets Dt, the instantaneous regret at round t
is given by rt = f(x⋆) − f([x⋆]t) + f([x⋆]t) − f(xt) ≤
1
t2 + ∆t(xt), where ∆t(x) := f([x⋆]t) − f(x) and [x⋆]t
is the closest point to x⋆ in Dt. Now at each round t, af-

ter an action is chosen, our algorithm improves the confi-

dence about true reward function f , via an update of µt(·)
and kt(·, ·). However, if we play a suboptimal arm, the re-

gret suffered can be much higher than the improvement of

our knowledge. To overcome this difficulty, at any round

t, we divide the arms (in the present discretization Dt)

into two groups: saturated arms, St, defined as those with

∆t(x) > ctσt−1(x) and unsaturated otherwise, where ct
is an appropriate constant. The idea is to show that the

probability of playing a saturated arm is small and then

bound the regret of playing an unsaturated arm in terms

of standard deviation. This is useful because the inequality
∑T

t=1 σt−1(xt) ≤ O(
√
TγT ) allows us to bound the total

regret due to unsaturated arms.

First we lower bound the probability of playing an unsatu-

rated arm at round t. We define a filtration F ′

t−1 as the his-

tory Ht−1 up to round t − 1 and prove that for “most” (in

a high probability sense) F ′

t−1, P
[

xt ∈ Dt \ St

∣

∣ F ′

t−1

]

≥
p−1/t2, where p = 1/4e

√
π. This observation, along with

concentration bounds for ft(x) and f(x) and “smoothness”

of f , allow us to show that the expected regret at round

t is upper bounded in terms of σt−1(xt), i.e. in terms

of regret due to playing an unsaturated arm. More pre-

cisely, we show that for “most” F ′

t−1, E

[

rt
∣

∣ F ′

t−1

]

≤
11ct
p E

[

σt−1(xt)
∣

∣ F ′

t−1

]

+ 2B+1
t2 , and use it to prove

that Xt ≃ rt − 11ct
p σt−1(xt) − 2B+1

t2 ; t ≥ 1 is a

super-martingale difference sequence adapted to filtration

{F ′

t}t≥1. Now, using the Azuma-Hoeffding inequality,

along with the bound on
∑T

t=1 σt−1(xt), we obtain the de-

sired high-probability regret bound.

6. Experiments

In this section we provide numerical results on both syn-

thetically generated test functions and functions from real-

world data. We compare GP-UCB, IGP-UCB and GP-TS

with GP-EI and GP-PI11.

11GP-EI and PI perform similarly and thus are not separately
distinguishable in the plots.
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Figure 1. Cumulative regret for functions lying in the RKHS cor-

responding to (a) Squared Exponential kernel and (b) Matérn ker-

nel.
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Figure 2. Cumulative regret for functions lying in the GP corre-

sponding to (a) Squared Exponential kernel and (b) Matérn ker-

nel.

Synthetic Test Functions. We use the following procedure

to generate test functions from the RKHS. First we sample

100 points uniformly from the interval [0, 1] and use that as

our decision set. Then we compute a kernel matrix K on

those points and draw reward vector y ∼ N (0,K). Finally,

the mean of the resulting posterior distribution is used as

the test function f . We set noise parameter R2 to be 1%
of function range and use λ = R2. We used Squared Ex-

ponential kernel with lengthscale parameter l = 0.2 and

Matérn kernel with parameters ν = 2.5, l = 0.2. Pa-

rameters βt, β̃t, vt of IGP-UCB, GP-UCB and GP-TS are

chosen as given in Section 3, with δ = 0.1, B2 = fTKf
and γt set according to theoretical upper bounds for corre-

sponding kernels. We run each algorithm for T = 30000
iterations, over 25 independent trials (samples from the

RKHS) and plot the average cumulative regret along with

standard deviations (Figure 1). We see a significant im-

provement in the performance of IGP-UCB over GP-UCB.

In fact IGP-UCB performs the best in the pool of competi-

tors, while GP-TS also fares reasonably well compared to

GP-UCB and GP-EI/GP-PI.

We next sample 25 random functions from the GP (0,K)
and perform the same experiment (Figure 2) for both ker-

nels with exactly same set of parameters. The relative per-

formance of all methods is similar to that in the previous

experiment, which is the arguably harder “agnostic” setting

of a fixed, unknown target function.

Standard Test Functions. We consider 2 well-known
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Figure 3. Cumulative regret for (a) Rosenbrock and (b) Hartman3

benchmark function.

synthetic benchmark functions for Bayesian Optimization:

Rosenbrock and Hartman3 (see Azimi et al. (2012) for ex-

act analytical expressions). We sample 100 d points uni-

formly from the domain of each benchmark function, d be-

ing the dimension of respective domain, as the decision set.

We consider the Squared Exponential kernel with l = 0.2
and set all parameters exactly as in previous experiment.

The cumulative regret for 25 independent trials on Rosen-

brock and Hartman3 benchmarks is shown in Figure 3. We

see GP-EI/PI perform better than the rest, while IGP-UCB

and GP-TS show competitive performance. Here no al-

gorithm is aware of the underlying kernel function, hence

we conjecture that the UCB- and TS- based algorithms are

somewhat less robust on the choice of kernel than EI/PI.

Temperature Sensor Data. We use temperature data12

collected from 54 sensors deployed in the Intel Berkeley

Research lab between February 28th and April 5th, 2004

with samples collected at 30 second intervals. We tested all

algorithms in the context of learning the maximum read-

ing of the sensors collected between 8 am to 9 am. We

take measurements of first 5 consecutive days (starting Feb.

28th 2004) to learn algorithm parameters. Following Srini-

vas et al. (2009), we calculate the empirical covariance ma-

trix of the sensor measurements and use it as the kernel

matrix in the algorithms. Here R2 is set to be 5% of the

average empirical variance of sensor readings and other al-

gorithm parameters is set similarly as in the previous exper-

iment with γt = 1 (found via cross-validation). The func-

tions for testing consist of one set of measurements from all

sensors in the two following days and the cumulative regret

is plotted over all such test functions. From Figure 4, we

see that IGP-UCB and GP-UCB performs the same, while

GP-TS outperforms all its competitors.

Light Sensor Data. We take light sensor data collected

in the CMU Intelligent Workplace in Nov 2005, which is

available online as Matlab structure13 and contains loca-

tions of 41 sensors, 601 train samples and 192 test samples.

12http://db.csail.mit.edu/labdata/labdata.

html
13http://www.cs.cmu.edu/˜guestrin/Class/

10708-F08/projects/lightsensor.zip
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Figure 4. Cumulative regret plots for (a) temperature data and (b)

light sensor data.

We compute the kernel matrix, estimate the noise and set

other algorithm parameters exactly as in the previous ex-

periment. Here also GP-TS is found to perform better than

the others, with IGP-UCB performing better than GP-EI/PI

(Figure 4).

Related work. An alternative line of work pertaining to

X -armed bandits (Kleinberg et al., 2008; Bubeck et al.,

2011; Carpentier & Valko, 2015; Azar et al., 2014) stud-

ies continuum-armed bandits with smoothness structure.

For instance, Bubeck et al. (2011) show that with a Lip-

schitzness assumption on the reward function, algorithms

based on discretizing the domain yield nontrivial regret

guarantees, of order Ω(T
d+1

d+2 ) in R
d. Other Bayesian

approaches to function optimization are GP-EI (Močkus,

1975), GP-PI (Kushner, 1964), GP-EST (Wang et al.,

2016) and GP-UCB, including the contextual (Krause &

Ong, 2011), high-dimensional (Djolonga et al., 2013; Wang

et al., 2013), time-varying (Bogunovic et al., 2016) safety-

aware (Gotovos et al., 2015), budget-constraint (Hoffman

et al., 2013) and noise-free (De Freitas et al., 2012) set-

tings. Other relevant work focuses on best arm identifica-

tion problem in the Bayesian setup considering pure explo-

ration (Grünewälder et al., 2010). For Thompson sampling

(TS), Russo & Van Roy (2014) analyze the Bayesian regret

of TS, which includes the case where the target function is

sampled from a GP prior. Our work obtains the first fre-

quentist regret of TS for unknown, fixed functions from an

RKHS.

7. Conclusion

For bandit optimization, we have improved upon the exist-

ing GP-UCB algorithm, and introduced a new GP-TS al-

gorithm. The proposed algorithms perform well in practice

both on synthetic and real-world data. An interesting case

is when the kernel function is also not known to the algo-

rithms a priori and needs to be learnt adaptively. Moreover,

one can consider classes of time varying functions from the

RKHS, and general reinforcement learning with GP tech-

niques. There are also important questions on computa-

tional aspects of optimizing functions drawn from GPs.

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
http://www.cs.cmu.edu/~guestrin/Class/10708-F08/projects/lightsensor.zip
http://www.cs.cmu.edu/~guestrin/Class/10708-F08/projects/lightsensor.zip
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Thompson sampling: An asymptotically optimal finite-

time analysis. In International Conference on Algorith-

mic Learning Theory, pp. 199–213. Springer, 2012.

Kleinberg, Robert, Slivkins, Aleksandrs, and Upfal, Eli.

Multi-armed bandits in metric spaces. In Proceedings of

the fortieth annual ACM symposium on Theory of com-

puting, pp. 681–690. ACM, 2008.

Krause, Andreas and Ong, Cheng S. Contextual gaussian

process bandit optimization. In Advances in Neural In-

formation Processing Systems, pp. 2447–2455, 2011.



On Kernelized Multi-armed Bandits

Kushner, Harold J. A new method of locating the maxi-

mum point of an arbitrary multipeak curve in the pres-

ence of noise. Journal of Basic Engineering, 86(1):97–

106, 1964.

Maillard, Odalric-Ambrym. Self-normalization techniques

for streaming confident regression. 2016.
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