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Zero Knowledge (XC) theory formed the basis for practical identification and signature 
cryptosysems (invented by Fiat and Shamir). It also was used to construct a key distribution 
scheme (invented by Bauspiess and Knobloch); however, it seems that the ZK concept is less 
appropriate for key distribution systems (KDS), where the main cost is the number of 
communications. We propose relaxed criteria for the security of KDS, which we assert are 
sufficient, and present a system which meets most of the criteria. Our system is not ZK (it leaks 
few bits), but in return it is very simple. It is a Diffie-Hellman variation. Its security is equivalent 
to RSA, but it runs faster. 

Our definition for the surity of KDS is based on a new definition of security for one-way 
functions recently proposed by Goldreich and Levin. For a given system and given cracking- 
algorithm, I, the cracking rate is roughly the average of the inverse of the running-time over all 
instances (if on some instance it tails, that inverse is zero). of there exists a function s fl +N, 
s.t for all 1, the cracking-rate for security parameter n is 0 (1)/s (n ). then we say that the 
system has at least security s . We use this concept to define the security of KDS for malicious 
adversary (the passive adversary is a special case). Our definition of a malicious adversary is 
relatively restricted, but we assert it is general enough for KDS. This restriction enables the proof 
of security results for simple and practical systems, We further modify the definition to allow 
past keys-and their protocol messages in the input data to a cracking dgoridun. The resulting 
security function is called the “amortized security” of the system. This is j&tied by current 
usage of KDS, where the keys are often used with cryptosystems of moderate strength. We 
demonstrate the above m-one&s on some Diffie-Hellman KDS variants which also authenticate 
the parties. In particular, we give evidence that one of the variants has super-polynomial security 
against any malicious adversary, assuming RSA modulus is hard to factor. We also give evidence 
that its amortized security is super-polynomial. (Ihe original DH scheme does not authenticate, 
and the version with public directory has a Exed key, i.e. rem amortized security.) 

Zero Knowledge theory [GMR] formed the basis for some practical identification and 

signature cryptosystems, most notably the Fiat-Shamir [FS] identification scheme. 

Recently, a zero-knowledge key distribution system was proposed [BK]. The advantage 

of a zero knowledge system is that no information leaks from the system; therefore, 

repeated use of the system does not make it less secure. This is true for the case of a 

malicious adversary, too. 

However, it seems that the ZK concept is less appropriate for key 

(KJX), where the main cost is the number of communications. 
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allowing some insignificant leak of information we can achieve simpler systems. 

We propose relaxed criteria for the security of KDS, which we assert are sufficient, and 
present a system which meets most of the criteria. Our system is not ZK (it leaks few 

bits), but in return it is very simple. It is a Diffie-Hellman variation. Its security is 
equivalent to RSA, but it runs faster. 

Our definition for the security of Key-Distribution Systems is based on a new definition 
of security for one-way functions recently proposed by Goldreich and Levin [GL]. For a 

given system and given cracking-algorithm, I, the cracking rate is roughly the average of 
the inverse of the running-time over all instances (if on some instance it fails, that inverse 
is zero). If there exists a function s f l + N ,  s.t. for a l l  I ,  the cracking- rate for security 
parameter n is 0 (l)/s(n), then we say that the system has at least security s. We use 
this concept to define the security of KDS for a malicious adversary (the passive 
adversary is a special case). Our definition of a malicious adversary is relatively 
restricted (compared to [ G W ) ,  but we assert it is general enough for KDS. This 
restriction enables the proof of security results €or simple and practical systems. We 
further modify the definition to allow past keys and their protocol messages in the input 
data to a cracking algorithm (similarly to known-plaintext attack on cryptosystems). The 
resulting security function is named the “amortized security” of the system. This is 
justified by current usage of KDS, where the keys are often used with cryptosystems of 
moderate strength, e.g. DES. Ideally we would like the amomzed-security to equal the 
security, and be super-polynomial. 

There is a mvial solution to the problem of achieving key-dismbution together with party 

authentication using public-key cryptosystems. This solution has a disadvantage though, 
when using RSA or its derivatives. We need a distinct modulus for each user, and this 
complicates computations. A potential family of KDS which can use a common modulus 
is the Diffie-Hellman PKJ scheme and its variants. The original Diffie-Hellman 
scheme does not authenticate, and the version with public directory (see section 3) has a 
fixed key, i.e. zero amomzed security. We propose a simple and practical KDS (two 

exponentiations and one transmission per party) which authenticates the parties, and we 
give evidence for its super-polynomial security for any malicious adversary, assuming 
RSA modulus is hard to factor. We also give evidence that its amomzed security is super 

polynomial. 

In section 2 we define 01s security criteria, in section 3 we present some variants of the 

Diffie-Hellrnan KDS, and show their pitfalls, and in section 4 we show a relatively secure 

Diffie-Hellman variant In the appendix, we modify the Goldreich-Levin definition of 
security for cryptosystems, taking into account the long neglected fact that messages of 
low probability may often be the most important ones (according to information theory 

they have high information content). 

While some encryption schemes offer very good protection to every bit of information 
[GW, it may happen that the same protection value could be achieved with simpler 
systems, which concenuate on protecting the most important messages. This is captured 
by our new definition. 

Some other KDS were proposed in [GI, [KO], [MTIIand [O], with new features, but with 

no proofs of security. Bauspiess and Knobloch [BK] published a zero-knowledge D S ,  
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but their system is more complicated than ours. We argue that at the cost of leaking few 
bits of our secrets we buy simplicity. 

2. Proposed Criteria 

2.1 General 

We first give the Goldreich-Levin [GL] definition of security for one-way functions. We 
use their notation. Let S be the set of finite and R of infinite strings over { 0,1}, and let 
S,sS be the set of strings of length n .  Let N =  {OJ,..}. E,f ( x )  denotes the expected 

value of f (for a given dismbution function x=d(r ) ) .  Let Z(o,y) be a probabilistic 
algorithm which attempts to invert a function f , i.e. to recover x E S from y =f (x ), using 
ma. Let T ~ ( w y )  be I‘s running time. Let Z’s “success bit” 
S ~ ~ ( o s r ) = l  if Z(of (x>)==x  and 0 otherwise. The inverting rate 

Definition 1 [GLI: A function f is called one-way on distribution d with security 
s fl +N if&$ p (n )=O (l)/s (n )‘, for some E>O and all probabilistic algorithms I .  

We next define our general KDS, restricting our attention to two-party systems. These 
(honest) parties try to establish a session-key, to be used later in some crypto-system. 
Each of the parties has a Secret key and a public key. The parties exchange messages 
according to some protocol. At the end of the protocol they compute the session-key. 
That is 

A 2 party Key Dism‘bution System (KDS) is defined by the following i/o relation: 

Input: clear: P=(P1,P2),x=Cr1,.xq); secrer:U=(UlrU2). 

Output: secret: K = f ~ ( P , U l ; r ) = f  2(P,U2;x) 

For security parameter n , each of the variables Pi ,Ui Ji ,k is in Sn . P is the set of public 

keys, U is the set of secret keys, and x is the ordered set of messages exchanged between 
the parties during the execution of the protocol. Usually q is very small. K is the 
resulting session-key. f 1 and f 2 are polynomial time functions, mapping binary strings 

to binary strings. 

The distribution of P ,U J is determined by some multidimensional distribution function 
d with random variable r , r E N  , as input. 

2.2 Passive Adversary 

R I f  p (n  I=& .o(S/ f ( a d  ( r  >>n; (of (d  (r )>)I. 

We give here a variant of Definition 1 which we tailor for KDS (see above). Let 

Z(o,P J) be any probabilistic algorithm trying to compute K. I models an adversary that 
mes to crack the system. Let TI(w,PJ) be 1’s running time. k t  Z’s  “success bit” 

SIf(o,P, ,S~)=l  if I ( o , P  j ) = K  (and 0 otherwise). The cracking race for security 

parameter n i s R I f d ( n ) = E , , c o ( S I J ( 0 9 , U r \ ) ~ ~ ( w 9 1 x ) ) ,  where Pi,UiJi,k are in sn. 

Definition 2: A KDS has at least securiry s f l + N  against passive adversaries if 

RI fd (n )=O( l ) / s  ( n )  for dl probabilistic algorithms 1. 

Note that we defined a lower bound on the security, not “exact” security. Also, we 

omited the E, since we want to distinguish between security functions which are 
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plynomially related (however, this point is not significant). 

2.3 Malicious Adversary 

Goldreich, Micali and Wigderson [GMW] treat the problem of finding a secure protocol 
for carrying out any feasible distributed protocol. They d e h e  a malicious adversary as a 
machine that can deviate from its prescribed program in any possible action, and 
describe a way to transform any protocol into a protocol which is secure against any 
minority of malicious adversaries. 

In KDS protocols we have three players, namely, the two (honest) parties, trying to 

authenticate each other, and establish a session key, and the adversary, playing in the 

middle, trying to compute the key, in the the case of a passive adversary, or trying to 
establish some key with each of the parties, pretending to be his counterpart, in the case. 
of a malicious adversary. So, since the adversary is a minority, by [ G W  we know that 
a secure polynomial time protocol exists (i.e. such that it overcomes any possible 
malicious adversary). 

Our aim, therefore, is to use the fact that ours is a special case to achieve a very efficient 

protocol which overcomes any malicious adversary. In section 4 we show a KDS 
protocol which requires just two exponentiations for each of the parties, and the proof of 
its security is very simple, 

A malicious adversary can interfere in a KDS protocol in various ways, he can initiate a 
protocol, cut the line of a user and connect himself instead, waiting to receive some 
initiative, he may initiate a KDS protocol with two sides simultaneously, or interfere 
between two honest parties trying to run KDS protocol. 

Let &I,.&) be the ordered set of messages exchanged between a malicious adversary z 

and an honest party in the course of KDS protocol, and let zi=(xl,.&), for i=l,  ...,q. If 

the honest party initiates then xl=xl. If z initiates then z l = h l ( P  ,Uz,xl), where x1 is a 

legitimate protocol message that the honest party could get when communicating with 
the party he assumes he communicates with, and h1 (and later we use hi) is any 
probabilistic polynomial time algorithm. h may have any other non-secret input. TO 
simplify denotations we omitted it. 

Definition 3: A malicious adversary z interferes with KDS protocols in such a way 
that a legitimate party ends up with protocol messages x_%q, where for 

i=1,2, ..4, &=hi (P ,Uz zi-l). Accordingly, the legitimate party computes K=f (P ,U &I. 
instead of the key K . The attack is successful if z can efficiently compute K, . 

The case in which z interferes between two legitimate parties trying to carry out a KDS 
protocol is called “two-way impersonation attack.” See M for an example of such a 
successful attack. Note that, in this case, the malicious adversary may compute two 

distinct keys, one with each of the honest parties. He doesn’t even have to use the same 
functions hi (.) in both directions. 

The definition of secun’ty for malicious adversary is the same as for passive adversary 
with one modification, namely, the function I is replaced by I(wJ’ x) trying to compute 
- K .  
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Clearly, the passive adversary is a special case of the malicious adversary for which g=x 
and K = K .  

2.4 Amortized Security 

The amortized secwiry of a KDS is roughly the complexity of its cracking problem 
given a history of keys and their respective protocol messages x . It is very similar to the 
definition of a “known cleartext attack” for cryptosystems. The motivation for this 
definition in the context of KDS stems from current usage of public KDS, where the 
resulting key is used in conventional cryptosystems, like DES, which are of moderate 
strength. Ideally we would like the complexity of this problem to be independent of the 
extra information contained in the old keys and their sessions. We consider amortized 
security for passive and malicious adversaries. The definitions of security are the same 
as before, only the algorithm I, which mes to crack the system, is modified to get more 
information, old keys and their sessions. 

3. Some Diffie-Hellman variations 

Next, we discuss some Diffie-Hellman @H) KDS variations, which authenticate the 
parties, and show that their amortized security is low. In all the DH variations presented 
in this paper the parties should compute identical keys, if nobody cheated. 
Authentication is completed by trying to use the resulting key on recognizable messages 
(e.g., a message appended with 20 zeros). 

3.1 The original Diffie-Hellman system 

The original DH KDS DH] has a variation which enables authentication of the parties. 
In this system there is a public trusted read-only directory in which the name, phone 
number, and public key of each participant appears. The public-key of participant i is 
Pi%@ mod m , where xi is randomly chosen by i , and known only to i . In the original 

scheme rn was a prime, and a a generator in GF (m). Let Zm denote the ring of integers 
modulo rn , for any m . Recently some other groups were suggested for this application, 
where m is a composite, and a generates a large enough fraction of Zm (e.g., a quarter of 
it). See for example [Sl and MI. 

When j wants to communicate secretly with i , he computes Kj,i*i”j mod m ,  and tells 
i in the clear that he wants to secretly communicate with her. Party i computes Ki,j 

likewise, so that Ki,,=K,,i.  Clearly, this system can authenticate and establish a session 
key, but, since whenever two specific parties i and j establish a key, they end up with the 
same key, this system has zero amortized security for a passive adversary. 

3.2 Time dependent Diffie-Hellman variation 

Here we assume that at each moment there is time t known to every participant When i 
wants to establish a session key with j she computes K ; j t a ( K i j ) ‘  mod m ,  where K i j  is 

as before, tells j in the clear that she, i f  wants to communicate with him, and j computes 
(Kj , i )r .  As before, Ki,;t=K;,i,r, if nobody cheated. 
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Given two keys Kij ,r  and Ki j , l+ l  one can easily compute any key 

If the adversary has Ki.j,l+&, for some small 6, instead of K i j s + l ,  then he still can 
compute every key of the form K i d , s p ,  for every integer p . Therefore, this system has a 

negligible amortized security for a passive adversary. 

K i j / r ( K i j , t + l . K i ~ ’ , ~ ) “  mod m . 

3.3 Randomized Diffie-Hellman variation 

Let K i j  be as before. Here the parties randomly choose Ri and R;, and exchange these 

values in the clear. They now compute ~ ’ i  ,, E ( K ~  j FtR, mod m . 
A malicious adversary, who knows one key K‘i,j and wants to impersonate j as a 
receiver, can disconnect j , and connect himself instead. Whenever i initiates a call to j , 
sending her R’i, the adversary responds with R’,=Ri+R;-R’i (this is not a modular 

operation, since the adversary doesn’t know $(m)). The result is a “new” key which 
equals the known one. Therefore, this system has zero amortized complexity for a 
malicious adversary. 

4. A relatively secure Diffie-Hellman variation 

In this section we describe another Diffie-Hellman variation which authenticates the 
parties, and we give evidence that its security is super-polynomial for passive and 
malicious adversary. We do not know the status of its amomzed security, but believe it 
to be super-polynomial. 

4.1 Description 

Shmuely [ S ] ,  and later McCurley MI, gave evidence that the Composite Diffie-Hellman 
(CDH) scheme (i.e. DH scheme with RSA-like modulus) is hard to break, in the sense 
that if there was an efficient algorithm which breaks a iixed fraction 6, 0<6<1, of the 
instances, then we could factor the modulus with high probability in time proportional to 
6-l .  If the system uses an “RSA modulus,” believed to be hard to factor “almost 
everywhere,” we conclude that it is probably impossible to break a fixed fraction 6, for 
any 6, of the instances of CDH. The proof may be extended to any n4 (*) fraction, where 
R is the problem size in bits, In this case we claim that if there exists an efficient 
algorithm which cracks n4(l) of the instances of CDH, then it could be used to 
efficiently factor the modulus with high probability. 

With the proper (now conventional) assumptions about the difficulty of factoring the 
modulus (RSA modulus), one can show that CDH KDS has a super-polynomial security. 

We base our system on this CDH system, and inherit this important property for passive 
and malicious adversaries. 

The system 

Each user i possesses a public key Pi, and a secret key S i ,  Pi,Si~[O,nt), where 

Pi~a’’ mod m, rn is an “RSA modulus’’ and a is a base element which generates a 
large enough fi-action of Zm , the ring of integers modulo m . Suppose that two legitimate 
users of this system i and j want to establish session key Ki j . They follow this protocol: 
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begin 

i selects a random number Ri E [ O p  ) and sends the message Xi =Ri+Si E [ O , h  -1) to j, 
who reciprocates likewise computing and sending Xi to i, 

i computes K i j r ( G j * P ~ l ~ d i R j  mod m and j reciprocates likewise computing Kjj, 
which equals Ki , j  if nobody cheated. 

end 

Note that in this system none of the users needs to know the factorization of the modulus 
m. However, the central authority, which publishes the public directory, and is 
responsible for its integrity, must be able to prove that indeed m is a legitimate RSA 
modulus. Galil, Haber and Yung [GHY] showed a direct, efficient method to prove in 
zero-knowledge that a given number m is of the form p q  , where p and q are primes. In 
principle all the other properties of our modulus, i.e. that p -1=2p’, and that p -q >b , for 
some given b ,  can k proven in zero-knowledge, since the corresponding decision 
problems are in NP . However, we know of no direct, efficient proof of these properties. 
To implement the proofs of [GHYJ, the central authority must know the factorization of 
m. 

4.2 Distributional problem 

A distributional problem is a decision problem with probability of appearance attached to 
each of the instances. For a detailed explanation the reader is referred to PCGL] page 
206. The notion of dismbutional problem is crucial to the definition of randomized 
reductions (which preserve average case complexity). In our system, 
we assume that Ri and Si are uniformly distributed in [ O p ) .  This implies that Xi=Ri+Si 
has a triangular distribution in [0,2m-1), i.e. Pr(Xi=x 102 <m)=x/m2, and 
~r (Xi =x I m sx <2m -1 )=(h -x)/m2. 

In [BCGL] there is also a definition of randomized Turing reduction of the kind we 
need. It has to be efficient, valid, and has to have the dominarion property, which roughly 
means that the “natural” probability of each instance of C (assuming we reduce B to C) 
must be 2 the probability to get that instance via a reduction from B ,  given B ’ s  
distribution of instances. 

4.3 Passive adversary 

As mentioned before, the passive adversary is a special case of the malicious adversary, 
therefore it is sufficient to prove for the latter. However, we believe that reading the 
proof for the passive adversary helps in understanding the malicious adversary case, 
therefore we do not omit it. We prove that cracking this system passively, i.e., finding 
the key K i j  given all the data communicated between the parties is equivalent to 
breaking the CDH KDS believed to be hard. 

The CDH cracking problem (denoted B )  is defined as follows: (everything here is 
modulo m, except operations in the exponents which are modulo $(m), Euler’s totient 
function, so we won’t mention it any more.) 

Input: ax, W ,  u, m find: av mod m 
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The new cracking problem (denoted C) is: 

Input:Xi=R;+Si, X j = R j i S j ,  di, dj, a, m 

We fist show that a passive adversary can deduce on the average less than 2 bits of 
infoxmation. This is negligible. Given Xi the adversary may learn something about Ri or 

Si, which are supposed to be secret. For example, if X i 4  he can deduce that Si=Ri=O. 

Likewise, if X i = h - 2  he knows that R i S i r n - 1 .  We would like to compute the 
average number of bits released to the adversary that way. For simplicity we omit in this 
discussion the subscript i .  So we have x=s+r.  Following the traditional information- 
theoretic approach we define equivocation of a given variable y given x (denoted 
HO, Ix))  to be the expected amount of freedom of choice of the value of y given x ,  
measured in bits. If x E [Om ) then the combined uncertainty of r and s is x (r can have 
any value between 0 and x ,  but once it is fixed there is no M o m  of choice for s). If 
x E [m ,2m-1) then the combined uncertainty of r and s is 2m-x (each of r and s isin 
the range [x -mat ) ,  which is of size m-(x-m)=2m-x ). So, we have two triangular 

functions, which should not be confused. (Here it is the uncertainty function, and 
previously we discussed the distribution function of Xi). To compute the equivocation 

we must take the expected value of the logarithm of the uncertainty from 0 to h, but 
from the symmetry of our uncertainty function and the symmetry of the dismbution 
function of Xi around x =m it follows that it is sufficient to take twice the value from 0 to 

m . Let c =log 2e ~1.44. We approximate the discrete sum by continuous integral, and 

get 

H ( ~ J  Ix)=2(11m2) xZog2(x)dr=2c/m*(’/2r*(f, (~)-‘/2)b=log2(m)-c/2. 

Compared to the maximum possible value of H ( r j  Ix), which is fog (2m)=bg (m )+1 we 
lost less than 2 bits. This is the average number of bits that leak per a single interception. 
In later section we analyze the average number of bits leaking when r sessions are 
intercepted, and show it to be of the order of log ( r ) .  

A mvial (worst-case) reduction from B to D can be achieved with 

Xi=Xj=O, di=wX mod m , CY?~=.CTY mod m , however, we need a reduction with 
random Xi and X, to claim super polynomial security for the new system. (In the trivial 
reduction the domination property does not hold. All of B ’s instances are reduced to 
Xi=X,=O, which is of negligible “natural” probability.) 

In problem C , for a given Si , Xi is uniformly distributed in [Si Si+rn). Let D denote the 
same problem, but we allow Xi to be anywhere in the range [0,2m-lj, with the 

previously mentioned triangular distribution. 

In Lemma 1 we show a randomized reduction from B to D . Lemma 2 explains why this 
gives evidence for the super polynomial security of problem C . 

find: aRiRj mod m. 

m 

1 

We assume uniform natural distribution for B .  That is, ax and aY are uniformly 

distributed in [Om). Similarly, we assume for problem D that Ri and Si are uniformly 

distributed in [ O m ) .  As mentioned earlier, this implies that Xi=Si+Ri has triangular 

distribution in [0,2m -1). 
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Pr(Xi=x l O & < m ) = ~ / m ~ ,  and Pr(Xi=x l m l x  < 2 m ) = ( h - ~ ) / r n ~ .  

Lemma 1: There exists a randomized Turing reduction from B to D . 

Proof: Given an instance of B ,  create an instance of D as follows: 

pick random Xi and X j ~ [ 0 , 2 m - l ) ,  with triangular distribution, and set 

d k c r y  mod m; di=crX mod m (which means RiS i+x  mod $(m); 
RjSij+y mod$(m)). 

Therefore, the oracle outputs , ~ i + ~ ) ( x ~ + Y ) ~ ~ i x ~ . ~ i Y . ~ ~ . c L x y  mod m .  The first three 

multiplicands can be calculated easily, therefore we can also compute the fouxth, the 
desired output of B . 

Given the uniform distribution of B ’s variables, this reduction yields distributions for 
D ’s variables, which equals their natural distributions, i.e. the domination property holds. 

Q.E.D. 

Lemma 2: On the average, 213 of D ’s input instances in the construction of lemma 1 

are legitimate instances of C . 

Proof: For each given Si, the “legitimate” Xi’s are in [Si,Si+m), and their probability 

is the area of the triangular distribution in this interval. We must take the expected value 
of this probability over all s ~ [ O ~ t l ) ,  where the distribution of Si=s  is uniform in that 

interval. As before, we use continuous integrals to approximate the discrete sum. 

The implication of lemma 2 is that in the reduction of lemma 1, if instead of using oracle 

D we use oracle C,  in 2 3  of the cases the oracle will yield a correct answer. So, we can 

call oracle C a few times, and use majority voting, to get a negligible probability of 

error. 

This together with the results in [S] and [MI on B imply 

Theorem 1: If factorization of RSA modulus is a one-way function with super- 

polynomial security then the new system has super-polynomial security against passive 
adversaries . 

4.4 Malicious adversary 

We apply Definition 3 (malicious adversary) to our system. Suppose the adversary uses 

some probabilistic ply-time algorithm h (.) on input X, , i.e., he captures X, , and instead 

sends h ( X j )  to i. (As before, h may have other inputs like P ,S,, etc. We.write it this 

way just to simplify notations.) When communicating with j ,  he may act likewise. We 

do not need the assumption that he uses the same algorithm h (.) in both directions. We’ll 

prove just one way, the other way goes likewise. When i receives h (Xi), she follows the 

protocol, computing K...=(~r~(~j)-a-”j)~’ I -  mod rn. We prove now that there is no 
probabilistic poly-time function h (.), for which the malicious adversary can effectively 

compute &,j . 

Assume the contrary. We show a polynomial reduction from B (see section 4.2) to the 

problem of finding &i, given Xi ,X i  ,dj,di,a,m. This reduction is parametrized by h , 
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i.e., for every given h we give a reduction. We denote this malicious adversary cracking 
problem, for a given function h (.), by Ch . 

The relations between c h  and Dh are the same as between C and D , 

To prove that the new system has a super-polynomial security for malicious adversaries 
we need a randomized reduction from B to Dh , the way we did for passive adversaries. 

Lemma 3: There exists a randomized Turing reduction from B to Dh . 

Proof: Given an instance ax ,W of problem B , we create the following instance of 
problem Dh : Randomly choose X, , Xi E [0,2m -l), with triangular distribution, and set 

The oracle outputs j =(ah('j).W a - h ( X j ) ) R i  mod rn , but Ri S i  -Si Si +x mod Cp(m ), 

hence &,j=W *ay 'xi mod m , but 

By analysis similar to that of Lemma 2, and the following remarks, we conclude: 

Theorem 2: If factorization of RSA modulus is a one-way function with super- 
polynomial security then the new system has super-polynomial security against any 
malicious adversary. 

$ i = c x  mod m ;  $jEcY .ah(xj) mod m f  

is known, hence so is an. Q.E.D. 

4.5 Amortized Security 

We believe that the system leaks on the average the order of log ( r )  bits when r sessions 
are intercepted. Clearly this isn't a zero-knowledge system, but a leak of just a few bits 
buys us much simplicity (compared with PIQ). 

Suppose r X's transmitted by A are intercepted- Denote the largest of them X,. 
Clearly, X,,=S+R,. Since The R's are uniformly distributed in the interval [ O n ) ,  
from elementary order statistics we know that the expected value of R , is m -m / (r+l) ,  
and the variance of R ,  is mlr2. So a reasonable guess for the value of S is just 

Xmn-(m-m/(r+l)), however, this guess of the value of S has the same variance that 
R,, has, so S's uncertainty losses the order of log ( r )  bits. Using the other mean values 
of the X's in a similar way will not further reduce the interval in which S is expected to 

be. 
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5. Appendix: The definition of security for cryptosystems 

We define security for cryptosystems using the previous formalism, combined with 
another measure. We not only assign a probability to each message, but also importance. 
This measure may be, for example, Shannon's information-content, -log (p ), where p is 
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the probability of the message. We use this particular measure throughout this appendix. 
The main idea is that when now defining the cracking rate of a eryptosystem we 
compute an entropy function, instead of simple expected value, thus taking into account 
the “information content” of each cracked message. 

While some encryption schemes offer very good protection to every bit of information 
[GW, it may happen that the same protection value could be achieved with simpler 
systems, which concentrate on protecting the most important messages. This is captured 
by our new definition. 

A cryptosystem (CS ) is defined by the following i/o relation: 

Input: clear: P =(F 1,F2), secret: U=(U1,UZ), rn,  

Output: clear : c :=f ( P  ,Urn)>. 

As before, P is the set of public keys, U is the set of secret keys. m and c are the 
message and cryptogram, respectively. f is a probabilistic polynomial time algorithm. 
For conventional cryptosystems, P is empty, and U+J2=U. f is some general function 

which exists, and therefore we can define i/o relations using it. It is not the actual 
function used by the parties. For Public-Key systems, the actual function uses just one of 
the public keys and none of the secret keys, while for conventional systems the actual 
function has U as a key. 

Let I (UP , c )  be any probabilistic algorithm trying to compute m . Let TI(u,P ,m ) be I ’s 
running time. Let I ’s success bit S ~ J  (w,P ,U m)=l i f f  [(up , c ) a  (and 0 otherwise). 

Let g :N-+N,  be any probabilistic function with o as one of its inputs. Let d be a 
distribution function on N ,  and r a random variable (d’s input). The entropy of g under 
the distribution function d is Hd(g)=-C,,$r (d(r))log(Pr(d(r)))g (a,d(r)). Likewise, 
d may be a multidimensional distribution function generating P ,U j n  . 

The Cracking Entropy for security parameter n is 

Definition 4: A cryptosystem has at least security s f l + N  if CErfd(n)=O (111s (n), 
for all probabilistic algorithms I. 
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