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On Kinetic Stability.
By Horace Lams, F.R.S.

(Received November 21,—Read December 12,—Revised December 19, 1907.)

1. The object of this paper is to illustrate the theory of kinetic stability,
so far as such a theory can be said to exist, by a few simple examples. As
the theory itself appears to be by no means widely known, some preliminary
recapitulation seems advisable.

The difficulty of framing a definition of kinetic stability which shall be
comprehensive and at the same time conform to natural prepossessions has
long been recognised.* Thus, according to one definition which has been
proposed, the vertical fall of a particle under gravity would be unstable;
according to another the revolution of a particle in a cireular orbit about I
a centre of force varying inversely as the cube of the distance would be
reckoned as stable, although the slightest disturbance would cause the
particle either to fall ultimately into the centre, or to recede to infinity,
after describing in either case a spiral path with an infinite number of
convolutions.

There are, however, certain restricted classes of cases where a natural
definition of stability is possible and the corresponding criterion can be
formulated. Suppose, in the first place, that we have a dynamical system
which is the seat of cylic motions whose momenta (in the generalised sense)
are constant.} Apart from the cyclic motions the configuration depends on
a certain number of “palpable” co-ordinates ¢1, ¢ ..., gn, and an “equi-
librium ¥ configuration is one in which these co-ordinates can remain
constant when the system is left to itself. Such an equilibrium configura-
tion is said to be stable when the extreme variations of these co-ordinates,
consequent on an arbitrary disturbance, are confined within limits which
diminish indefinitely with the energy of the disturbance. Any arrangement
of frictionless gyrostats gives a system of this kind; on a larger scale
we have the problem of the free rotation of a liquid mass under its own
gravitation.

In a second class of cases we have (again) certain co-ordinates whose
values do not affect the kinetic or the potential energy, and the corre-

* ¢f. F. Klein u. A. Sommerfeld, * Ueber die Theorie des Kreisels, Leipzig, 1898, ...,
p. 342.

t Cf. Thomson and Tait, ‘Na.tural Philosophy,’ § 819, example (G); Lamb, ‘ Hydro-
dynamies,’ 1906, §§ 140, 141.
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sponding veloeities are mow supposed to be maintained constant by the
application of suitable forces.* We have then to investigate the stability
(in the same sense as before) of an “equilibrium ” configuration in which
the remaining co-ordinates ¢i, ¢a, ..., ¢» have constant values. As an example,
the system may be attached to a rigid body which rotates with constant
speed. The theory of the stability of an ocean covering a rotating globe
also comes under this class.t

It has been customary, in treatises on dynamics, to discuss all such
questions by the classical method of “small oscillations.” If the variations
of the co-ordinates ¢y, ¢a, ..., ¢g» be regarded as infinitely small, the solution
of the equations of disturbed motion is obtained in the form

89, = 2 Ce*M, (1)

the values of A? being determined by an algebraical or (in the case of
an infinite number of degrees of freedom) a transcendental equation. If
these values of A? are found to be all real and negative, the undisturbed
configuration is reckoned as stable, whilst if any of them are positive or
complex, it is accounted as unstable. As familiar instances of problems
discussed from this standpoint, we have the stability of the conical pendulum,
of the steady precessional motion of a top, and so on. The general theory
of the method, including the conditions of stability (in this sense), has been
investigated by Routh.f

M. Poincaré§ has, however, insisted on the fact that this method may,
from a practical point of view, be altogether misleading as to the ultimate
behaviour of the system. If deviations from the equilibrium configuration
be resisted (as in practice they always are) by forces of a viscous character
affecting the co-ordinates ¢, g, ..., s, then in the case of absolute (statical)
equilibrium the usnal ecriterion of stability, viz, that the potential energy
must be a minimum, is not affected. But in such cases of kinetic
equilibrium as have heen referred to, it may happen that the effect of the
viscous forces is gradually to imerease the deviation, even although the
equilibrium configuration is primd facie (i.e., from the “classical ” standpoint)
thoroughly stable. A distinction is accordingly drawn between “ordinary ”
or “temporary” stability, i.c, stability as judged by the method of small
oscillations, and “secular” or “permanent” stability, .., stability when
regard is had to possible viscous forces affecting the co-ordinates

¥ Thomson and Tait, § 319, example (F’).

t ‘Hydrodynamics,’ 1906, §§ 202, 203, 204.

1 “Stability of Motion,’ 1877; ¢ Advanced Rigid Dynamies, 6th ed., 1905, chap. vi.

§ “Sur VEquilibre d’une Masse Fluide animée d’un Mouvement de Rotation,” ¢ Acta
Math.,’ 1885, vol. 7, p. 259. ;
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1, G2, «- > fn  The question of permanent stability is, of course, the
important one in physical and cosmical applications,

Fortunately, the criteria of permanent stability are much simpler than
the elaborate criteria of temporary stability investigated by Routh. In the
former class of problems (that of constant eyclic momenta), the condition
is that a certain function V4K should be a minimum, where V is the
potential energy, and K denotes the kinetic energy of the cyclic motions
alone. In the second class of cases (where certain velocities are maintained
constant), the condition is that the “kinetic potential” V—T; should be
a minimum ; here T, denotes the kinetic energy of the system when at
“rest” in any prescribed configuration (¢, ¢a, ..., gn).*

These principles were clearly laid down by Poincaré in 1885, and applied
to the problem of rotating fluid; but it is doubtful whether they have
received adequate recognition beyond the necessarily somewhat narrow circle
of writers who have been concerned with the special question.t It is for
this reason only that I venture to call attention to a few practical
exemplifications of the theory. These relate to the second class of cases
above referred to, and in particular to the question of stability of equilibrium
relative to a rigid body which is maintained in constant rotation about
a fixed axis.

2. The trivial character of the first example may be excused on the ground
that it shows almost intuitively the necessity for some qualification to the |
doctrine of “ordinary ” stability. We consider a particle movable on the
inner surface of a spherical bowl which rotates with constant angular
velocity (w) about the vertical diameter. If the bowl be smooth the
equilibrium of the particle when in the lowest position is “ordinarily”
stable, since the rotation of the bowl is quite irrelevant. But if we admit
the existence of friction, however slight, between the particle and the bowl,
the lowest position is “ permanently ” stable only so long as o<,/ (g/a),
where a is the radius. This results immediately from the consideration of
the formula for the kinetic potential,

V—-T, = —Myga cos § — }Mw?*sin® 6, (2)
where M is the mass of the particle, and @ is its angular distance from the

lowest point. When the above value of w is exceeded, the only permanently
stable position is that in which

cos @ =-;%—a, (3)

* See Poinearé, loc. cit., or the author’s  Hydrodynamics,' Il. cit.
+ The latest edition (1905) of Routh’s ¢ Advanced Rigid Dynamics’ contains no reference !
to the matter.
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when the particle rotates with the bowl like the bob of a conical pendulum.
To examine in detail the initial stage when the particle is slightly disturbed
from its lowest position we may (for mathematical convenience) adopt the
hypothesis of a frictional force varying as the relative velocity. If we
employ horizontal rectangular axes Oz, Oy passing through the lowest point,
and rotating with the bowl, we have, when 2, ¥ are small,

: =20y —wr = — k-2,

(17 4
- - 2 ". ',;’/ ( )
?/+2(DJJ—-(4) Y = —]ly_«a .

where X is the frictional coefficient. These equations may be combined into
E+(2im+F) f+<§—m2>§= 0, (5)

where ¢ = z+1y. If we assume

{ = CeM, (6)
‘e find = —ilw+1i g1k g\ 7,
we find A= —iw+ti /\/ : é]\ <1+w ,\/L), ( )

if the square of % be neglected. If§ & n be Cartesian
co-ordinates referred to fized axes through O, the com-
plete solution is

E+,’:7’ — gciwt = Cﬁ}’“‘”“-}-()g{?"*'—w’, (8)
i = ‘Z A —_ -1/ 1T g.
where o = ,\/a, pz} 3k (l+w '\/y)' (9)

If this be put in real form we perceive that the motion
is made up of two superposed circular vibrations, in
opposite directions, of period 2m/e ; moreover that, if
@®>gfa, py is positive, so that that circular vibration
whose sense agrees with w continually increases in
amplitude. The particle works its way outwards in an
ever widening spiral path, approximating to the stable
position of relative equilibrium indicated by (3).

3. The next illustration is of a more practical

character, and admits of being realised with consider- L

able exactness. A pendulum symmetrical about a —— |d
longitudinal axis hangs by a Hooke’s joint from a U

vertical spindle which is made to rotate with a constant C;

angular velocity . The pendulum used by the writer Fu‘} ;

was constructed originally without any reference to the
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present question ; no speeial pains were taken with the Hooke’s joint, and the
friction there was appreciable. Under these conditions, the instability of the
vertical position when the rotation o exceeds
z a certain critical value becomes rapidly appa-
“rent; the originally vertical axis of the pen-
dulum describes an ever widening cone, tending
towards the inclined position in which it can
rotate as one body with the spindle. To
4 examine the problem mathematically, let 6
dencte the inclination of one arm A of the
joint, the other arm being, of course, horizontal,
and let ¢ be the angle which a plane through
the axis A and the axis of symmetry (C) makes
Fia. 2. with the vertical plane through A. The kinetic
energy is then given by

2T = A (¢ + wsin 8+ B (6 cos p—w cos @ sin ¢p)?+ C (0 sin ¢+ o cos O cos ¢)2,

(10)

where A.B C denote the principal moments of inertia of the pendulum at
the centre of the joint. Hence, if A = g, we have

V=T, = —Mygh cos 0 cos p—1w* {A—(A—C)cos®*Gcos’ ¢}, - (11)

provided % denote the distance of the centre of gravity from the joint. This
expression ceases to be a minimum for = 0, ¢ = 0, if
o . Mgh
L e 12
! > (12)
and the only stable positions are then those in which the pendulum makes
an angle y with the vertical, given by

cos y = cos 0 cos p = (—Aﬂ%—‘};—ax”' (13)

To examine the motion about the vertical position we neglect, in (10),
terms in € and ¢ of higher order than the second. Thus
2T = A (674 ¢%) + 2Aw (8¢ — 6¢) + 2Cw Op + (A —C) w? (82 + ¢*) + const.,
(14)
2V = Myh (6*+ ¢*). (15)
Hence Lagrange’s equations give
A—(2A—C) wp—{(A—C) 0*—Mgh} 6 = 0,
A+ (2A—C)wb—{(A—C)w?*=Mygh} ¢ = 0.
As in the case of (4), we find that these are satisfied by
0 +ip = Feiot, (17)

(16)
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provided Ac?+(2A—-C)wo+(A—C) w*—Mgh = 0, (18)
4 ir V/(C*w®+4AMgh
L o= —(1-5;)o% o L] (19)

The vertical position is therefore “ordinarily” stable, whatever the value

of w.
It .is evident that 8, ¢ are the rectangular co-ordinates, relative to

rotating axes, of a point on the axis of the pendulum. For the corre-
sponding co-ordinates relative to fixed axes we have

o : E+in = (0+ig) et = Feilr+wy, (20)
& M 3,3
%here e cm+\/(c‘;.;x +4AMygh) B

ifhe motion is therefore made up of two superposed circular vibrations of

Qifferent periods 27 /(o + ), the more rapid vibration being the one whose

girection of revolution agrees with that of the spindle.

B To investigate the question of permanent stability we introduce into the
2ft-hand members of (16) terms 48, kg to represent the viscous forces at the

@mt The modified equations are satisfied by

= 0+ip = Fe¥, 22)
%ovided AN+ {(2A=C)iw+ Lk} A—{(A=C)w*—Mygh} = 0. (23)
% a1, o2 be the two values of o given by (19), this may be written

7% A (A—io1) (N—iog)+ N = 0, (24)
:b:lle two roots of which are, if we neglect the square of %,

=%

g M= La’;—‘%-) X A2 = loa— ;&—(f%a_l) ; (25)
S

e

en w?<Mgh/(A—C) the two values of ¢ have opposite signs, and the
..gﬂ,al parts of Ay, Ag are both negative. The vertical position is then per-
,glanently, as well as “ordinarily ” stable. But if «?>Mgh/(A—C) both
3alues of o are negative, and if ¢; be the smaller in absolute magnitude, the
éeal part of A; will be positive, and that of A negative. If we pass to fixed
axes, writing as before

E+in = (0+1¢) et = Ferlw)t, (26)

we find that the periods of the two circular vibrations are to a first
approximation unaffected by a small degree of friction, but that the
amplitude of one of these vibrations, viz., the one whose direction of revolu-
tion agrees with that of the spindle, increases exponentially with the time,
whilst the amplitude of the other sinks asymptotically to zero. These points
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are illustrated in a striking manner by the apparatus referred to.* Sul-
stantially the same experiment can be made in a simpler form by means of
a heavy metal ball hanging by a stout string from a hook at the lower end of
the spindle. If due precautions be taken to check the violent evolutions which
the ball is sometimes apt in the first instance to perform, the torsion of the
string soon brings the latter into a state of steady rotation about a vertical
diameter, with practically the angular velocity of the spindle. When the steady
state has been attained the ball may be left to itself, with the string vertical.
The friction of motion relative to the spindle is in this form of the experi-
ment very slight, and although a close observation may soon detect the
tendency to a circular vibration of continually increasing amplitude in the
direction of revolution of the spindle, some time may elapse before this
becomes really conspicuous. The final result is, however, unmistakable.t

4. The question is not seriously modified by a slight amount of deviation
from the theoretical conditions, eg., in the problem of § 3, by a slight defect
of alignment between the axis of rotation of the spindle and the centre
of the joint. The configuration of relative equilibrium about which the
observed oscillations take place is only slightly altered, except in the case
cf approximate agreement between the imposed period of rotation and what
would be the natural period of vibration in the absence of rotation.

The effects of a want of perfect alignment in § 3 can be studied in their
simplest form if we neglect the moment of inertia (C) about the axis of the
pendulum. The case is then that of a particle suspended from the lower
surface of a horizontal dise, which is made to rotate about a vertical axis.
If 7 be the length of the string, and « the distance of the point of suspension
from the axis of rotation, the inclination « of the string to the vertical in a
position of relative equilibrium is given by

_[/5 = cos a-+sin® B cot a, (27)
w?l

where sin? 8 = afl. If : ;”51 < cos® B, (28)

this has three solutions, for two of which sin « is negative ; in one of these,
moreover, sinz is numerically greater, and in the other numerically less,

* It may be worth while to give roughly the dimensions. The steel rod shown in
fig. 1 had a length of 36 in. and a thickness of § in. The diameter of the iron disc d
which conld be fixed in various positions along the rod was 7 in. and its thickness § in.
The spindle was driven from a small electromotor, by means of the small pulley shown, at
speeds ranging up to about 25 revolutions per second.

+ In atypical experiment the ball was 3 in. in diameter, and was suspended by a string
33 in. long ; and the speed was about 7 revolutions per second. The circular vibratiomn
took about 18 minutes to attain an amplitude of 1 inch, ]
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than sin/B. These three positions are shown in fig. 3. The position

is found to be both “ordinarily” and “permanently” stable, whilst the
position IIT is on either reckoning unstable. Case IT is “permanently ”
unstable, but the question of “ordinary” stability is less simple. For
sufficiently great values of @ the equilibrium may become unstable from this
point of view, but there is no difficulty in adjusting the conditions so that

Fia. 3.

tps://royalsocietypublishing.org/ on 09 August 2022

Fhere may be “ ordinary ” stability with “permanent” instability, This
gas illustrated by an experiment in which the excentricity (a/l) was
-Jurposely made appreciable. The metal ball referred to was suspended by
';36 stout string about 3 feet long from a point 1 inch out from the centre of
Zhe rotating disc. If the ball be carefully steadied in the central position
%efore being left to itself, its subsequent demeanour differs in no essential
Avay from what is observed when the suspension is made as nearly axial as
possible.

5. The next example is one in which the number of degrees of freedom
is infinite. For a reason to be given it is hardly a practical one, but it
may serve to illustrate the limitations to which the application of the theory
is subject. We consider a cylindrical shaft rotating in fixed bearings
placed at isolated points, and the question is at what speed the straight
form becomes unstable. If the circumferential velocity of the shaft be
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small compared with the elastic wave-velocities of the material, the angular
momentum about the axis may be ignored. Under this condition it is
obvious that the straight form is “ordinarily ” stable, the fact of the
rotation being irrelevant. To investigate the “permanent” stability, con-
sider, for definiteness, a length / between two bearings A, B. If the axis
of 2 be taken along the length of the shaft, and if y denote the lateral
deviation, we have, by the usual theory of flexure,

4

V = B [ Y2, (29)
0
)

To = $pw®S I vy, (30)
0

where S is the cross-section, «# is the radius of gyration about a diameter,
E denotes Young’s modulus, and p is the density of the material. Hence,

t
V-T,e -" (y'"2—mo*y?) da
0

! 1
°< [y’z/”—;v/y”’] +[ (" —mo'y) yda, (31)
0. i
2
where mept = %‘%ﬂ (32)

The integrated terms vanish if each end be either free, or merely
supported, or fixed also in direction. It is known from the ordinary theory
of transversal vibrations* that any arbitrary function y which is subject to
the given terminal conditions can be expanded, for 0 <z </, in a series of
normal functions,

v = Cun+ Coug+... . (33)
Here wy, us, ... satisfy the differential equations

Y = mbuy, w4 = mg'uy, ..., (34)

and the proper terminal conditions, my, ms, ..., being the roots of a certain
transcendental equation,} arranged in ascending order of magnitude. If we
substitute from (33) in (31), and omit terms which vanish in consequence of
the orthogonal property of diffevent conjugate functions, we find

1 !
V=T, ez (my*—my*) C,? [ wdae 4 (mgt — my*) Cg? [ wldr+4 ... (35)
0

0

* See Rayleigh, * Theory of Bound,” chap. viii.
t+ Thus, if the shaft be merely supported at the ends, the equation is sinml = 0; if it be
fixed in direction at one end and free at the other, we have cos mlcoshml+1 = 0.
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The frequencies (o/27) of the various modes of natural vibration of the
shaft are determined by the relation

o =28 (36)
p

Hence V—T, is a minimum, in the straight condition, or the equilibrium
is permanently stable, only so long as my*<m!, 1.c, so long as the period of
rotation is greater than that of the gravest mode of transverse vibration.
The incipient stages of the instability might be studied as in the previous
Jyroblems. The motion can be analysed into circular vibrations, and it
Sppears that the amplitude of one at least of these, having the same
irection of revolution as the shaft, should increase exponentially with the
Sime, provided mq exceed the smallest root of the transcendental equation
<gvhich determines m.
S We conclude that a truly symmetrical shaft, rotating accurately about its
8xis, in rigidly fixed bearings, with any speed exceeding that of the gravest
?'_ﬁmde of transverse vibration, would be rendered unstable by viscous forces
%ﬂ'ecting the relative motion, such as are, in fact, present owing to the
'Enternal friction of the substance. The instability might, indeed, take time
:_—go develop itself, but the result would be inevitable. The fact that shafts
an be, and are, safely driven at speeds exceeding the critical limit thus
%’ndicated* must be aseribed to the operation of dissipative forces (so far
'ggnored) affecting the absolute as well as the relative vibrations. The seat of
-guch forces is probably to be found in a yielding of the bearings. For a
glmllar reason the “ permanent ” instability illustrated by the experiments of
§§ 2, 3 above might be wholly masked if the resistance of the air were very
_gnuch greater than it actually is, or if the whole apparatus were immersed in
@ viscous liquid.
“" * The observed “ whirling” of shafts at a series of critical speeds is due to a want of
@bsolute symmetry, and is to be regarded as a forced oscillation of exaggerated amplitude,
ue to approximate synchronism. (See Dunkerley, ¢ Phil. Trans.,” A, vol. 185, 1894 ;

todola, ¢ Die Dampfturbinen,” Berlin, 1904, p. 157.)
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