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ON KLEIN-MASKIT COMBINATION THEOREM IN SPACE II
LiuLaN Li, KEN’IcHI OHSHIKA AND XIANTAO WANG

Abstract

In this paper, which is sequel to [10], we give a generalisation of the second
Klein-Maskit combination theorem, the one dealing with HNN extensions, to higher
dimension. We give some examples constructed as an application of the main theorem.

1. Introduction

The combination theorems for classical Kleinian groups, i.e. for those in
PSL,C, are ways to generate new Kleinian groups as amalgamated free products
or HNN extensions of given Kleinian groups. The first of such theorems was
given by Klein [9] in the case of free products. Maskit in [12, 13, 14, 15, 16, 17]
gave several generalisations of Klein’s combination theorem, among which are
the first combination theorem dealing with amalgamated free products and the
second combination theorem dealing with HNN extensions.

In our previous paper [10], we considered a generalisation of the first com-
bination theorem of Maskit to higher dimension. In the present paper, which
is its sequel, we shall generalise his second combination theorem. Maskit’s
second combination theorem asserts that under some conditions, two Kleinian
groups Gy, Gp, where G; = {f) is infinite cyclic and Gy has two isomorphic
geometrically finite subgroups J; and J, conjugated by f, generate a Kleinian
group isomorphic to the HNN extension of Gy by f, and also that under the
same conditions the resulting group is geometrically finite if and only if Gy is
geometrically finite.

As in the case of amalgamated free products, a first attempt to generalise
Maskit’s second combination theorem to higher dimension was likewise made
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by Apanasov in his pioneering work [3, 4]. Ivascu [8] also dealt with such a
generalisation with a bit different approach. In particular, they showed that
under the same assumptions as Maskit combined with some extra conditions, one
can get a discrete group which is an HNN extension of a discrete group of
n-dimensional Mobius transformations and a Mobius transformation with infinite
order. To be more precise, what they proved is the following.

THEOREM 1.1 [Apanasov, Ivascu]. Let Gy be an n-dimensional Kleinian group
with subgroups Hy and H,. Suppose that closed domains Dy and D, bounded by
hypersurfaces Sy and Sy of n-sphere S™ are precisely invariant in Gy with respect
to Hy and Hy, respectively. Suppose also that an n-dimensional Mdbius transfor-
mation f maps D) onto S™\D,, and that the following conditions hold:

(1) For fundamental domains Ay, Ay and Fy = Ay NA; of the groups H,, H

and Gy, there exist neighbourhoods V\ and V, of the surfaces Sy and S,
such that ANVic Fy, i=1,2

(2) A;\ND; = D;N Fy.

(3) F = (FoN(S"\(D1UD»)))° # 0, where B° is the interior of B in S".

4) fHif™ = H>.

(5) g(D1)NDy =0 for all ge Gy\{id}.

Then we have the following.

(1) The group G = <G, f) is a Kleinian group and isomorphic to Goxs, the

HNN extension of Gy by f.

(2) F is a fundamental domain for the group G.

(3) mu(A(G)) =0 if and only if my(A(Gy)) = 0.

(4) Each elliptic or parabolic element of G is conjugate in G to an element

Of G().

In this paper, we shall give a generalisation of the second Maskit combi-
nation theorem in higher dimension without any additional assumptions, impos-
ing only natural ones corresponding to those in Maskit’'s. Our theorem also
asserts that the group obtained as an HNN extension is geometrically finite if and
only if the original group is, under some conditions. We note that in the present
paper as in the previous one, we say that a Kleinian group is geometrically finite
when the e-neighbourhood of its convex core has finite volume for some ¢ > 0,
and there is an upper bound for the orders of torsions in the group. We do
not assume that the group has a finite-sided fundamental polyhedron. Our main
result (Theorem 3.1) and its proof will appear in §3.

The authors would like to express their gratitude to the referee for his/her
careful reading of the manuscript and valuable suggestions.

2. Preliminaries

2.1. Basic notions. We follow the notations used in [10]. We use the
symbol R”" to denote the one-point compactification of the n-dimensional
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Euclidean space R” and M(R") to denote the group of orientation-preserving
Mébius transformations. We identify R” with the sphere at infinity of the
hyperbolic n + 1-space. We shall use both the ball model and the upper half-
space model for the hyperbolic space. We use the symbol B""!' for the ball
model and H"*!' for the upper half-space model.

We denote the limit set of a discrete group G = M(R") by A(G). We call
points of A(G) limit points. The complement Q(G) =R"\A(G) is called the
region of discontinuity of G.

A discrete group G = M(R") is said to act discontinuously at a point x € R”
if there is a neighbourhood U of x such that {ge G|g(U)N U # 0} is a finite set.
The group G acts discontinuously at every point of Q(G), and at no point of
A(G).

The complement of the fixed points of elliptic elements in Q(G) is called the
free regular set, and is denoted by °Q(G). When °Q(G) # 0, a fundamental set
of G is defined to be a set which contains one representative of each orbit G(y) of
y € °Q(G). It is obvious that °Q(G) # 0 if and only if Q(G) # 0. If Q(G) # 0,
then we call G a Kleinian group.

For the limit set A(G), we have the following useful lemma ([10]).

Lemma 2.1. Let {g.} be a sequence of distinct elements of the Kleinian
group G = M(R"). Then there are a subsequence {g,,} and limit points x and
y of G such that g,,(z) — x uniformly on every compact subset of R"\{y}.

We shall use the following terms in the same way as in [10].

DEFINITION 2.1.  Let H be a subgroup of a group G of M(R"). A subset V'
is said to be precisely invariant under H in G if h(V) =V for all he H and
gV)NV =0 for all ge G— H.

DeFmNiTION 2.2, Let Ty,...,T, be sets and Ji,...,J, be subgroups of
the group G = M(R"). We say that (Ty,...,T,) is precisely invariant under
(J1,...,Jm) in G, if each Ty is precisely invariant under J; in G, and if for i # j,
and for all ge G, g(T:)NT; =0.

For the domain of discontinuity Q(G), we have the following proposition.
Refer to Proposition IL.E.4 in Maskit [15] or Theorem 5.3.12 in Beardon [5].

PROPOSITION 2.2.  Suppose that Q(G) is not empty. Then a point x € R" is
contained in Q(G) if and only if
(1) the stabiliser Stabg(x) ={ge G|g(x) =x} of x in G is finite, and
(2) there is a neighbourhood U of x in R" which is precisely invariant under
Stabg(x) in G.

DerINITION 2.3, A fundamental domain for a discrete group G of M(R")
with non-empty region of discontinuity is an open subset D of Q(G) satisfying
the following.
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(1) D is precisely invariant under the trivial subgroup in G.

(2) For every z € Q(G), there is an element g € G such that g(z) is contained
in D, where D denotes the closure of D in R”.

(3) Fr D, the frontier of D in R”, consists of limit points of G, and a finite
or countable collection of codimension-1 compact smooth submanifolds
with boundary, whose boundary is contained in Q(G) except for a subset
with (n — 1)-dimensional Lebesgue measure 0. The intersection of each
submanifold with Q(G) is called a side of D.

(4) For any side o of D, there are another side ¢’ of D, which may coincide
with ¢, and a nontrivial element g € G such that g(o) =¢’. Such an
element ¢ is called the side-pairing transformation from o to o’.

(5) If {o,} is a sequence of distinct sides of D, then the diameter of g, with
respect to the ordinary spherical metric on R” goes to 0.

(6) For any compact subset K of Q(G), there are only finitely many trans-
lates of D that intersect K.

A fundamental set F for a discrete subgroup G whose interior is a
fundamental domain is called a constrained fundamental set.

2.2. Normal forms. Let Gy, be a discrete subgroup of M(R”") with
isomorphic subgroups J; and J,, and f a transformation in M(R") of infinite
order satisfying fJ, /' =J, and GoN<{f) = {id}. Following Maskit [15], we
define normal forms as follows.

A normal form is a word of the form

fangn"'f“lgla

such that

(1) each g is contained in Gy,

(2) gx is not the identity except possibly for the last one g,

(3) the exponents oy are assumed to be non-zero except for the first one o,

4) if ax <0 and gg1 € J1 — {id}, then o4y <0, and
(5) if o >0 and gx1 € J» — {id}, then oy > 0.
The length of a normal form g = f"g,--- f*g; is defined to be |g| = |ox|.
Two normal forms are defined to be equivalent if we can transform one to the
other by repeating the following operations finitely many times: inserting a word
of the form fjif ~'(fif ')~" for some jeJ; and deleting a word of the same
form. The set of the equivalence classes of normal forms with concatenation
as binary operation corresponds one-to-one to the HNN extension of Gy by f,
which we denote by Go*, preserving the group structures.

We call a normal form g = f*g,--- f%g; positive if o, >0, negative if
o, <0, and null if o, =0. More specifically, we call g a (j,k)-form, with j
either + or —, or 0 when g is positive or negative or null, respectively, and k = +
if o >0, k=—if a1 <O.

Let {Gy, f> be the subgroup of M(R") generated by Gy and <{f). Then,
there is a natural homomorphism @ : Goxy — {Gp, > which is defined by
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O(f%g, - fUg)) = f"ogyo---0f"og, for a normal form f¥g, .- fng,
representing an element of Goxs, and ®(j) = for je Gy. It is easy to see
that this is independent of a choice of a representative of the equivalence
class. The map is obviously an epimorphism. If ® is an isomorphism, then
we write (Go, f) also as Gp*, identifying elements of Gy, and their images
by @.

Since Gy is embedded in {Gy, /), each non-trivial element in the kernel of
® can be written in a normal form. Therefore the following is obvious.

Lemma 2.3, {Go, f)> = Goxs if and only if ® maps no non-trivial normal
forms to the identity.

2.3. Interactive triples. Following Maskit, we shall define interactive triples
as follows.

We assume that Gy is a discrete subgroup of M(R”) with isomorphic
subgroups J; and J,, and f € M(R") has infinite order, where fJ;f~' =J, and
GoN<{fy = {id}. Let Z, X;, X, be disjoint nonempty subsets of R”. The triple
(Z,X1,X,) is said to be an interactive triple (for Gy, f, J; and J,) when the
following hold.

(1) (X1,X>) is precisely invariant under (J;,J2) in Gp.

(2) For every ge Gy and m = 1,2, we have g(X,,) = ZU X,,.

(3) We have f(ZUX>) < X, and f~'(ZU X)) < X.

If there exists a non-empty Go-invariant subset of Z\Go(X;UX3), then the
interactive triple is said to be proper. We can easily see that if (Z,X;,X3) is
an interactive triple and g e Gy — J;, then g(X;) = Z, and also if ge Gy — J»,
then g(X) < Z.

Example 2.1. For n>2, let ¢y, eq,...,e,_1 be the standard basis of R”,
where ey = (1,0,...,0). Set X; ={x=>",xe_1 eR"|x, <0}, X = {xeR"|
x, >0}, and Z={0}. We define Gy =J; =J> to be {ji,/2,-..,ju1y, Where
Jix)=x+e_; (i=12,...,n—1). Let f(x)=x+e,_;. It is obvious that
(Z,X1,X,) is an interactive triple for Gy, f, Ji and J>. Since Z\Gy(X; U X3)
= Z does not have a Gy-invariant subset however, (Z, X, X>) is not proper.

If we change Z above to Z' = {x =>"", x;e;_1 € R"|x, = 0} preserving X;
and X, to be the same as above, then (Z’, X}, X3) is also an interactive triple
for Gy, f, Ji and J,, and (Z’, X1, X3) is proper since Z'\Go(X1UX,) = Z' itself
is Gy-invariant.

The following lemma due to Maskit holds also in higher dimension without
any change.

Lemma 2.4 (Lemma VILD.11 in [15]). Suppose that (Z,X,,X3) is an
interactive triple for Gy, f, J1 and J,, and that Ay is a non-empty Go-invariant
subset of Z, which has trivial intersection with Go(X,UX3). Let g= f"g,---
f*g1 be a non-trivial normal form in Gox;.
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() If g is a (4+,4)-form, then ®(g)(AoU X>) = X>.
(2) If g is a (+,—)-form, then ®(g)(4AoU X)) = X>.
(3) If g is a (—,+)-form, then ®(g)(4AoUX3) < X.
@) If g is a (—,—)-form, then ®(g)(4oU X)) = X.
S) If g is a (0,4)-form, then there is an element he Gy such that

D(g)(AgUX2) < h(B) =« Z, where B=X, if 0,1 <0, and B=X, if

6) If g is a (0,—)-form, then there is an element he Gy such that
D(g9) (40U X)) c h(B) = Z, where B=X; if 0,1 <0, and B=X, if
Op—1 > 0.

The existence of a proper interactive triple forces ® to be isomorphic.
(Theorem VII.D.12 in Maskit [15] in the case when n=2. The proof is the
same in higher dimension using Lemmata 2.3 and 2.4.)

THEOREM 2.5. Let Gy, f, J, and Jy be as above and suppose that there is
a proper interactive triple for Gy, f, J1 and Jo. Then {Gy, f) = Go*;.

Using Theorem 2.5, we get the following straightforward generalisation of
Theorem VII.D.13 in [15].

THEOREM 2.6. Let Gy be a discrete group. Suppose that (Z,X,,X3) is an
interactive triple for Gy, f, Ji and J, and that Ay = Z\Go(X; U X3) is a non-empty
Go-invariant set. Then Ay is precisely invariant under Gy in {Gy, f) = Go*s.

Let Dy be a fundamental set for Gy satisfying J(DoN Xp) = Xy N °Q(J,y,) for
m=1,2, and set D= DyNAy. If D is non-empty, then D is precisely invariant
under {id} in {Gy, .

2.4. Geometric finiteness. As in the previous paper [10], we use the follow-
ing definition of geometric finiteness, not assuming the existence of finite-sided
fundamental polyhedron.

DEerINITION 2.4. Let G be a discrete subgroup of M(R"). We denote by
Hull(A(G)), the minimal convex set of H"'' containing all geodesics whose
endpoints lie on A(G). This set is evidently G-invariant, and its quotient
Hull(G)/G is called the convex core of G, and is denoted by Core(G). The
group G is said to be geometrically finite if the following two conditions are
satisfied:

(1) there exists ¢ > 0 such that the e-neighbourhood of Core(G) in H"™!/G

has finite volume, and

(2) there is an upper bound for the orders of torsions in G.

A point x of A(G) of a discrete group G of M&bius transformations is called
a parabolic fixed point if Stabg(x) contains parabolic elements. For a para-
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bolic fixed point z, a horoball in B"*! touching R” at z is invariant under
Stabg(z). In the case when Stabg(z) has rank less than n, it is useful to consider
a domain larger than a horoball, which we call an extended horoball.

DEFINITION 2.5. Let G be a discrete subgroup of M(R"), and z a parabolic
fixed point of G. Let Stab;(z) be the maximal free abelian subgroup of the
stabiliser Stabg(z) of z in G. Suppose that the rank k of Stab.(z) is less than .
Then there is a closed subset B. = B""! invariant under Stabg(z) which is in the
form

B.=h"! {x e B!

n+1
S e,

i=k+1

where ¢ (> 0) is a constant and 4 € M(R") is a M{bius transformation such that
h(z) = o0o. We call B, an extended horoball of G around z.

Related to this, there is a set called a peak domain, which was introduced by
Apanasov.

DErFINITION 2.6. A peak domain of a discrete group G of M (R™) at the
parabolic fixed point z of G is an open subset U, = R” such that

(1) U. is precisely invariant under Stabg(z) in G, and
(2) there exist a ¢ > 0, and a transformation 7 € M(R") with A(z) = co such

that
{x eR”

where k = rank Stabj(z), | <k <n-— 1.

i x> t} =h(U,),

i=k+1

DerINITION 2.7. Let z be a parabolic fixed point of the discrete group
G < M(R"). If G has an extended horoball B around z, then the interior of its
intersection with R” is a peak domain. Following Bowditch [6], we use the term
standard parabolic region at z to mean an extended horoball when the rank of
Stabg(z) is less than n, and a horoball when the rank of Stabg(z) is n.

We shall present definitions of terms which are commonly used in studying
geometrically finite groups in M(R").

DEFINITION 2.8. A point z € R” fixed by a parabolic element of a discrete
group G = M(R") is said to be a parabolic vertex of G if one of the following
conditions is satisfied.

(1) The subgroup Stab((z) has rank n.

(2) There exists a peak domain U. at the point z.
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DErFINITION 2.9. Let G be a discrete subgroup of M(R"). A point x € R”
is said to be a conical limit point (or a point of approximation in some liter-
ature) if there are ze H'™™! and a geodesic ray / in H""! tending to x whose
r-neighbourhood with some r € R contains infinitely many translates of z.

As was shown in Theorem 12.2.5 in Ratcliffe [18], we have a characterisation
of conical limit points as follows.

PROPOSITION 2.7. Let G be a discrete group of M(R") regarded as acting on
B"*! by hyperbolic isometries. Then a point z € 0B"" is a conical limit point of
G if and only if there exist 6 > 0, distinct elements g,, of G, and x € IB"1\{z}
such that g,'(0) converges to z while |g,,(x) — gmgz)| > 6 for all m.  Furthermore,
if this condition holds, then for every x e dB""'\{z}, there is 6 >0 such that
|gm(x) — gm(2)| > 0 for all m.

The following result due to Bowditch [6] or [7] will be essentially used in the
proof of our main theorem.

PROPOSITION 2.8. Let G = M(R") (n>2) be a discrete group. Then G is
geometrically finite if and only if every point of A(G) is either a parabolic vertex
or a conical limit point.

2.5. Dirichlet domains. Among fundamental domains of hyperbolic mani-
folds, what are called Dirichlet domains are most useful for us.

DerINITION 2.10. Let G be a discrete subgroup of M(R"), and x a point
in H™"', which is not fixed by any nontrivial element of G. Then, the set
{ye H"" | d),(p,x) <dy(p,9(x)) Yge G} is called the Dirichlet domain centred
at x for G, where dj, denotes the hyperbolic distance.

We shall make use of the following result of Bowditch [6]. For a
G-invariant set S on R”, we say a collection of subsets {4}, g is strongly
invariant if gA; = Ay and for any s #te S, A;N A4, =0. We should note that
each A, is in particular precisely invariant under Stabg(s) in G.

LemmA 2.9.  Let I be the set of all parabolic vertices of a discrete group
G < M(R"). Then we can choose a standard parabolic region B, for each p €Il
in such a way that {B,|p eIl} is strongly invariant.

2.6. Blocks. Throughout this subsection, we assume that G is a discrete
subgroup of M(R"), and J denotes a subgroup of G.

DerINITION 2.11. A closed J-invariant set B in R”, containing at lease two
points, is called a block, or more specifically (J, G)-block if it satisfies the
following conditions.



ON KLEIN-MASKIT COMBINATION THEOREM IN SPACE II 9

(1) BNQ(G) = BNQ(J), and BNQ(G) is precisely invariant under J in G.

(2) If U is a peak domain for a parabolic fixed point z of J with the rank of
Stab;(z) being less than n, then there is a smaller peak domain U’ < U
such that U'NFr B = 0.

Let S be a topological (n — 1)-dimensional sphere in R”. Then S separates
R” into two open sets. We say that S is precisely embedded in G if g(S) is
disjoint from one of the two open sets for any g € G.

A (J, G)-block is said to be strong if every parabolic fixed point of J is a
parabolic vertex of G.

We have the following in [10].

THEOREM 2.10. Let J be a geometrically finite subgroup of G and B = R”"
be a (J,G)-block such that for every parabolic fixed point z of J with the rank
of Staby(z) being less than n, there is a peak domain U, for J with U,N B = {.
Let G=\JgiJ be a coset decomposition. If {gi(B)} is a sequence of distinct
translates of B, then we have diam(gy(B)) — 0, where diam(M) denotes the
diameter of the set M with respect to the ordinary spherical metric on R™.

3. The second Klein-Maskit combination theorem

In this section, we shall show our main theorem (Theorem 3.1).

DeriniTION 3.1, Let J; and J, be subgroups of a discrete group Gy <
M(R"), and let f € M(R") be an element of infinite order. Following Maskit,
we say that two closed topological n-dimensional balls By and B, in R”, are
jointly f-blocked if the following conditions are satisfied.

(1) By, is a (J,, Gp)-block for m = 1,2,

(2) (BiNQ(Gy), B,NQ(Gy)) is precisely invariant under (J;,J2) in Gy,

(3) f maps the exterior of By in R” onto the interior of B, in R”, and

(4) fJ1f71 =J5.

If By and B, are jointly f-blocked, then following Maskit, we say that a
fundamental set Dy for Gy is maximal if DyN B,, is a fundamental set for the
action of J, on B, and f(DyNFr By) = DyNFr B, for m=1,2.

DerNITION 3.2, Let {S;} be a collection of topological (n— 1)-spheres.
We say that the sequence {S;} nests about a point x if the following are satisfied.

(1) The spheres S; are pairwise disjoint.

(2) Each sphere S; separates x from the precedent S;_;.

(3) For any point z; € S;, the sequence {z;} converges to x.

Now we state our main theorem.

Tueorem 3.1. Let Gy = M(R") be a discrete group with geometrically
finite subgroups J, and J,, and f € M(R") an element of infinite order with
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GoN<{fy={id}. Let By and B, be closed topological balls in R". Suppose that
By and B, are jointly f-blocked and that Ay = R"\Go(By U B,) is non-empty. Let
Dy be a maximal fundamental set for Gy. Set A =R"\(BiUB,), G =Gy, [>
and D = DyN(AUFr By). Then the following hold.
(1) G = Goxy.
(2) G is discrete.
(3) Fr B,, (m=1,2) is a precisely embedded (J,,, G)-block.
(4) If an element g of G is not loxodromic, then one of the following holds.
(@) g is comjugate to an element of Gy.
(b) g is parabolic and is conjugate to an element fixing a parabolic fixed
point of either Ji or J.
(5) If {W/} is a sequence of distinct G-translates of Fr B, then
diam(W)) — 0 as k — oo.
(6) There is a sequence of distinct translates of Fr B, nesting about the
point x if and only if x € A(G)\G(A(Gy)).
(7) D is a fundamental set for G. If Dy is constrained, (Fr BjUFr B;)N
Fr Dy consists of finitely many connected components, and the sum of
their (n — 1)-dimensional measures vanishes, then D is also constrained.
(8) Let Q= (AoUGo(Fr B)))NQ(Gy). Then Q(G)/G = Q/Gy, and its
boundary, which is possibly disconnected or empty, is equal to
(FI‘ B] N Q(G()))/J] = (Fl" Bz N Q(G()))/Jz
Furthermore, under the assumption that each Fr B, is a strong (J,,, G)-block
for m = 1,2 if and only if each B, is a strong (J,,, Go)-block, two more statements
hold.
(9) If each B, is a strong (J,,Go)-block, then, except for G-translates
of limit points of Gy, every limit point of G is a conical limit point
of G.
(10) G is geometrically finite if and only if Gy is geometrically finite.

Let us explain what this theorem claims intuitively. We are given two
geometrically finite subgroups Ji, J, of Gy and a Mobius transformation f
conjugating J; to J>, none of whose non-zero powers is contained in Gy. The
two topological balls B; and B, are invariant sets under J; and J, with some
good conditions respectively, and f translates Fr B; to Fr B, inside out. In this
situation, the theorem says that the group generated by Gy and f is discrete and
isomorphic to the HNN-extension of Gy by f. The group G may contain a
parabolic element which is not contained in G, but then it is conjugate to a
parabolic element whose fixed point coincides with the fixed point of a parabolic
element of J; (or J,). Moreover, with further assumptions on parabolic fixed
points, the theorem claims that the group G is also geometrically finite.

The following lemma constitutes the key step for the proof of our main
theorem.

Lemma 3.2. Let m=1,2. Under the assumptions of Theorem 3.1, the
following naturally follow.
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(1) Fr By, is a (Ju, Go)-block.

(2) A(Go)NFr B,, = A(J,,) NFr B, = A(J,).

(3) By UBS = Q(Gy), where B:, is the interior of B, in R" for each m.

(4) By, is precisely invariant under J,, in G.

(5) For any g€ Gy, we have g(B,,) N B;s_,, = g(Fr B,,) NFr B;_,, = A(Gy).

(6) For any g € Gy — J,,, we have g(B,,) N\ B,, = g(Fr B,) NFr B,, = A(J,;).

(7) Let Gy = Uk Gie.mdm be a coset decomposition. If {gi.m(Bn)} is a
sequence of distinct translates of B, then diam(gi ,(Bn)) — 0 as
k — 0.

(8) (4, By, B5) is an interactive triple, and Ay is precisely invariant under Gy
in G.

(9) f(FI' Bl N Q(Jl)) =Fr B2 n Q(Jz).

(10) We have DyNA = DyN A,.

Proof. We only need to prove (7) and (8).

(7) By (1), we know that Fr B, is a (J,,, Gp)-block. Since J,, is geomet-
rically finite, then by Theorem 2.10, we have diam(gi ,(Fr B,)) — 0. The
assumption that B, is a (J,, Go)-block implies that diam(gk m(Bw)) =
diam(gx m(Fr By)) — 0, which shows (7).

(8) By (4), By, is precisely invariant under J, in Gy. If geJ,, then
gB:)=B,. If geGy—Jy,, then g(B,)NB,=0 and g(B,)NBs_, =0.
Therefore for any g € Gy, we have g(By,) < By, U 4.

Since f maps the exterior of B; onto the interior of B;, we have
f(AUBs) = f(R"\B;)=B; and f(B})=R"\B,. Hence [ '(AUB)c
S7Y(R™\B,) = B;. Thus we have shown that (4,Bj,B;) is an interactive
triple.

It is easy to see that Ag = R"\Gy(ByUBy) = A\Go(B{UB5). Therefore,
Ag is Gyp-invariant. By Theorem 2.6, A4, is precisely invariant under Gy in G.

O

Now we prove Theorem 3.1. Since the proofs of (1)—(8) of Theorem 3.1 are
similar to those in [10, 15], we give proofs only for (9) and (10).

Proof of (9). Since we are assuming each B,, is a strong (J,,, Gy)-block for
m = 1,2, by our assumption mentioned above, Fr B; is a strong (J;, G)-block,
and Fr B, is a strong (J>, G)-block. Let x be a limit point of G, which is not
a translate of a limit point of Gy. By (6), there is a sequence {gi(Fr B;)} of
distinct G-translates of Fr By with |gi| — oo such that {gi(Fr B;)} nests about x.
We can assume that g; = id. Then g;'(x) and g;'(Fr By) lie on opposite sides
of Fr B;.

Since J; is geometrically finite, by Proposition 2.16 in [10], which is
originally due to Bowditch, there are a Dirichlet domain P for J; and standard
parabolic regions By,,..., B, such that P\|J(Int B, U{p;}) is compact and
contains no limit point of J;. Since P is a Dirichlet domain, the interior of
S = PNR" is a fundamental domain for J;. Since g;!'(x) is contained in Q(J;)
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for each k, there is an element g € J; such that gig; '(x) e S. We denote 9z !
by fi-

We claim that {f;(x)} stays away from Fr B;. Suppose, seeking for a
contradiction, that f;(x) — we Fr BiNA(G) = Fr BiNA(J}) passing to a sub-
sequence. Then w is a parabolic fixed point of J;, where the rank of Staby, (w)
is less than n, since S intersects A(J;) only at the p;. This means that all f;(x)
lie in some extended horoball B, if we take a subsequence, where p; = w. Let
the rank of Staby (w) be s and the rank of Stabg(w) be m.

If s = m, then we can assume that the interior of B, NR”, which is denoted
by U,, is also a peak domain for G. Hence we may assume that U,\{w} is
contained in Q(G). On the other hand, since x lies in A(G), we have fi(x) €
A(G), which is a contradiction.

Therefore, there is 0 > 0 such that d(fy(x),z) > o for any z € Fr B;, where
d denotes the ordinary spherical metric on R”. Since Fr By separates g; ' (Fr By)
from g;!(x), we see that for all z on FrB; we have &< d(fi(x),z) <
d(fr(x), fr(z)). On the other hand, since gx(Fr B;) nest around x, we see that
for any point y on Fr Bj, the points fk‘l( y) converge to x. We now apply
Proposition 2.7 to conclude that x is a conical limit point of G.

If s < m, by conjugation and Bieberbach’s theorem (also refer to Theorem
2.10 in [10]), we may assume that w = oo,

Stabg(w) = {j1,---,jmy and Stabj (w) = <{hy,..., Ao,

where ji(y) =Ai(y)+ei1 (i=1,....m), h(y)=Ul(y)+e-1 (j=1,...,5),
y€eR", A; and U; are rotations, dnd A and U; act on R" trivially. It follows
from {fi(x)} = B11 that >°7 | | fk( )|7 are bounded away from co for all k. Since
Fr B, is a strong (J;, G)-block, there is ¢ > 0 such that

n
U:{ZER": Z Z,‘|2>l}

i=m+1

is a peak domain for G and U\{wo} = Q(G). We know that {fi(x)} = A(G).
Hence >/, |/fi(x )\ <t It follows from f;(x) — oo as k — oo that

AT

i=s+1
For each i=s+1,...,m, if |fi(x )\l — o (k— oo) then we choose a
sequence {zk} of integers such that for all k, |j*fi(x )| < M, where M| > 0;

if |fi(x )| < M, for some M, >0, we let i =0. Let [ = ---]‘ffll). It

follows that |I(fi(x))|* < M3(M5 > 0), and for any y e Fr B,

1c 2 i 2
)2 = S )2 + -+ 1 ()2 — oo

Therefore, there is 6 >0 such thdt d(Iefi(x),lk(z)) >0 for all zeFr By.
Since Fr B separates g;!(x) from g !(Fr By) and hence Fr By separates fi(x)
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from f;(Fr By), we see that for all z on Fr By we have & < d(I fi(x),k(z2)) <
d(l fi(x), Ik fie(2)). By Lemma 2.1 and choosing a subsequence, we know that
I fi(z) — 2’ for all ze R™!\{x} and [ fi(x) — x’, where z' # x’. We now
conclude that x is a conical limit point of G. O

Proof of (10). We first assume that Gj is geometrically finite. Then B; and
B, are both strong blocks of Gy, and hence each Fr B, is a strong (J,,, G)-block
by our assumption.

Take any point x € A(G). Suppose first that x is a parabolic fixed point,
where the rank of H = Stabg(x) is k < n. By (9), x is a translate of a limit point
of Gy. Without loss of generality, we may assume that x lies on A(Gy). Since
Gy is geometrically finite, x is a parabolic vertex or a conical limit point of
Gy. If x is a conical limit point for Gy, then so is it for G. Since a parabolic
fixed point cannot be a conical limit point, x is a parabolic vertex for Gy. If x
lies in Go(Fr By UFr B,), then, since each Fr B, is a strong (J,,, G)-block, x is
a parabolic vertex of G. On the other hand, since Gy(B;U B3) < Q(Gy), if x
does not lie on any Gy-translate of either Fr B; or Fr B,, then x is contained in
Ay. Since Ay is precisely invariant under Gy, we see that H is contained in
Go. Therefore we have H = Stabg,(x). There is a peak domain U centred at x
for Gyp. Since UNA(Gy) is empty, by choosing U to be sufficiently small, we
can assume that U\{x} = Q(Gy). By conjugation, we may assume that x = co.
By Bieberbach’s theorem, we may further assume that for any g€ H, ¢(z) =
Az +a, where a € R" and A preserves the subspaces R* and R"™", respectively.
Then U is in the form

i=Kk+1

U:{xeR”: En:xf>t}7

for ¢t > 0.
Cram 1. We can choose U small enough so that U < Aj.

Proof Since By and B, are bounded and for any ge H, > . |g9(x )|
Yo |x|,, by taking sufficiently large ¢, we can make g(B; UBz)ﬂ U= for
any g € H. Hence no H-translates of B; or B, intersect U if we choose U to
be small enough.

Suppose that there is a sequence {gx(B)} of distinct Gy-translates of By or B
such that the projections of gi(B) to the subspace R"™™ converge to oo for
B=B; or B=B,. Without loss of generality, we may assume that B = Bj.
Then taking a subsequence, we may assume that g, € Gy — (H U J}) since J; fixes
By. Lemma 3.2-(7) implies that g;(y) — oo for all ye By. Since gx(U)NU =
0, the projections of gx(U) to the subspace R"™™ are bounded. By Bieberbach’s
theorem, for each g, we can choose an element ji € H so that all the ji o gr(yo)
lie in a bounded set for a fixed yp e U. Since the projections of gx(B;) to the
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subspace R"™ converge to 0, o ¢ gx(B1) and 31, k()7 = S0 67, we
may assume that all the ji ogx(B;) are distinct and that the projections of
Jrogr(By) to the subspace R"™ converge to oo by taking a subsequence.
Lemma 3.2-(7) again implies that j; o gx(y) — oo for all y € B;. By Lemma 2.1,
we may assume that ji o gr(y) — oo for all y except for a limit point of Gy.
This leads to a contradiction since yy € Q(Gy) and ji o gx(yo) /A 0. O

Claim 1 implies that U < A4 is precisely invariant under H in G, which
means that x is a parabolic vertex for G.

Next assume that x is a limit point of G, which is not a parabolic fixed
point. If x is a translate of a limit point of Gy, then x is a conical limit point
for Gy, and hence for G. If x is not a translate of a limit point of Gy, then x
is a conical limit point for G by (9). This completes the proof of the “if”
part.

To prove the “only if”” part, we assume that G is geometrically finite. Then
each Fr By, is a strong (J,,, G)-block, and hence each B, is a strong (J,,, Gy)-
block by our assumption. Let x be a point in A(Gp). Since Gy(ByUB5) <
Q(Gp), we have either x € Go(Fr By UFr By) or x € Ay.

If x € Go(Fr By UFr B,), then for simplicity, we may assume that x € Fr Bj.
So we have x € Fr BiNA(J;) = Fr BN A(Gy). Since J; is a geometrically finite
subgroup of Gp, we see that x is either a conical limit point for J; or a
parabolic fixed point for J;. In the former case, x is a conical limit point for
Go. In the latter case, since Bj is a strong (J, Gy)-block, x is a parabolic vertex
for G().

Now let x be a point in 4y. If x is a parabolic fixed point of G, then since
Ay is precisely invariant under Gy in G, Stabg(x) = Stabg,(x), which shows that
x is a parabolic fixed point of Gy. We assume that the rank of Stabg(x) is
K < n. Since G is geometrically finite, there is a peak domain U centred at x for
G, which is also a peak domain for Gy. Therefore, x is a parabolic vertex for
Gy. Suppose that x is not a parabolic fixed point of G, which means that it is
a conical limit point for G. In this case, there is a sequence {/;} of distinct
elements of G with d(h(z),h(x)) is bounded away from zero for all z € R"\{x}
and h;!(z9) — x for some zj € H"*! by Proposition 2.7. Then there are points
x' # z' € R" such that /i (z) — z’ for any z € R"\{x} and /;(x) — x’ by passing
to a subsequence if necessary.

CLAM 2. By taking a subsequence, we can assume that all the hi(Fr B,,) are
distinct for m =1,2.

Proof. If this is not the case, by taking a subsequence, we can assume
that all the /i (Fr B,) are the same for all k. Then hfl o hi(Fr B,,) = Fr B,,.
Hence, for each k, there is an element j; € J, such that h; = hj o ji, where
ji =id. Since the h; are distinct elements of G, the j; are distinct ele-
ments of J,,. Then ;'(z9) = ji ' (h; ' (20)) — x for hy'(zp) e H""'. This shows
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that x is a limit point of J,, which is a contradiction since x e Ay and
A(Jy) = Fr B, O

Now we shall prove that x is a conical limit point of Gj.

If |hg|=|f" ogg, o 0 f% ogg|=>2, then by taking a subsequence, we
may assume that oy, > 0 for all k; for the case ax, < 0 can be dealt with in the
same way. For each k, let i be 7y ogl:ll o f~!. Then we have

hi(Ao) = hy o [ 0 gi, (Ao) = Iy (B2)

since Ay is Gy-invariant and f(4y) = f(R"\B}) = B,. 1If all the & (Fr B;) are
distinct, then diam(/; (Fr B;)) — 0 for Fr B, is a (J», G)-block satisfying the
conditions in Theorem 2.10. It follows that diam(/;(B,)) = diam(/; (Fr B,)) —
0 and d(h(z),he(x)) — 0 for all zeFr B; = 4y, which is a contradiction.
Therefore, we may assume that A (Fr B,) = h{(Fr B,) for all k by taking a
subsequence. For each k, there is an element ji € J, with A, = hj o ji, where
j1 =id. Since jj is contained in J,, there is an element i, € J; such that
foir=jrof. These imply that i = hjo foirogi. Since all the /i (Fr B)
are distinct, {ix o gy, } is a sequence of distinct elements of Gp. This implies
that g;' o i ((h] o f)'(z0)) — x and that there is ¢ > 0 such that d(ix o g, (2),
i o gk, (x)) > ¢ for all k and any ze R"\{x}. This implies that x is a conical
limit point of Gy by Proposition 2.7.

If |h| =1 for all k, then set A to be gi, o f% og,, where g = +1. By
taking a subsequence, we may assume that g =1 for all k. Then gy, = id or
Gk, € Jo. If g, = id for all k, then {gi } is a sequence of distinct elements of
Gy since all the A (Fr B)) are distinct. Thus, g4, (x) — f~1(x') and gy, (z) —
f7Y(z") for all z+# x. Therefore, for all ze R"\{x} there is ¢ >0 such that
d(gi,(2), 91, (x)) > . Since gi'(f~(z0)) — x for f~!(z0) e H"'!, x is a conical
limit point of Gy by Proposition 2.7.

If gi, ¢ J» for all k, then & (Ay) < gr,(By). If all the gy, (B,) are distinct,
then diam(gg,(B,)) = diam(gy, (Fr B;)) — 0 by Lemma 3.2-(7), which violates
the fact that d(/(z),hi(x)) is bounded away from zero for all ze R"\{x}.
Therefore we can assume that all the g, (B,) are the same by taking a
subsequence. For each k, there is an element ji € J, with gi, = g1, o jk, with
J1 =id, where g;, denotes gi, with k =1. Since ji € Jo, there is an element
ir € J1 such that foir = jro f. These imply that i =g, 0 foirogi,. Since
all /. (Fr B,) are distinct, {ir ogx, } is a sequence of distinct elements of Gy. Tt
follows that (i o g, ) " ((g1, 0 /) ' (z0)) — x, where (g1, 0 f) ' (z0) e H"*', and
for all ze R"\{x}

ik © gy (2) = /7 0 g3, ()
and i o gi,(x) — [P ogy ! (x'). Therefore, for all z e R"\{x}, there is a ¢>0
such that d(ix o gk, (2), ik © gk, (x)) > &. Then Proposition 2.7 implies that x is a
conical limit point of G;. We can argue in the same way even when all /; are
in the form gy, o f~!ogy,.

This completes the proof. O
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Now for an element g = f* o0g,0---0 f" o g € G, we write g < 0 if either
gi1¢Ji,orgredyand o <0; g >0 if gy € J; and o7 > 0; g > 0 if either g, ¢ J>,
or gieJ, and o; > 0; and g <0 if g; €J, and o < 0.

Using this notation, we consider a coset decomposition of G with respect to
Jn for m=1,2 as follows.

G = J1 u <U al,kJ1> U <U bl,kJ1>7
Ik Lk

G = Jz u (U Cl,ka) U (U dl,k-]2>;
Ik Lk

where |a11k| = |b1"k| = |C1,k| = |d1,k| = l, arg < 0, bl,k > 0, ClLk = 0 and dl,k < 0.

Following Maskit, set Ty ,, = Go(By,) for m=1,2 and Ty = Ty, 1 U Ty ». Let
Cy be the complement of T in R”. For />0, we set T = | J, a;x(B1) and
Ti> =, cix(Ba), where |aji|=|cii] =1, ajx <0 and ¢, >0. We denote
T;:UT;, by T, and let C; be the complement of 7; in R”. It is easy to
prove that {7,} is a decreasing sequence with respect to the inclusion, that is,
ToDTl DTzD

COROLLARY 3.3.  Under the hypotheses of Theorem 3.1, if (By, B,) is precisely
invariant under (J1,J,) in Gy, then each 0B, is a strong (J,,, G)-block if and only if
each By, is a strong (J,,, Go)-block and hence all the conclusions in Theorem 3.1
hold.

Proof. By assumption, we know that Fr B, is precisely invariant under J,
in G. Let x be a parabolic fixed point of J;. Since Fr B is precisely invariant
under J; in G, we know that

Staby, (x) = Stabg, (x) = Stabg(x).
Set H = Stabg(x).

The “if” part. We first assume that each B, is a strong (J,,, Go)-block. Let x
be a parabolic fixed point of J;, where the rank of H is ¥ < n. Then there is a
peak domain U centred at x for Gy. By making U smaller if necessary, we have
the following conditions:

(1) f(U) is a peak domain centred at f(x) for Gy;

(2) Go(U)N f(U) =0 by Lemma 2.9;

(3) éf\{x} < Q(Gy) and f(U)\{f(x)} = Q(Go) since (UU f(U)) NA(Go) =

By conjugation, we may assume that x = oo. Decompose R" into
R" x R"™™. By Bieberbach’s theorem, we may assume that Stabj(co) is the
maximal abelian subgroup of finite index in Stabg(oo) which appeared in
Definition 2.5, so that for any g e Stabg(w), ¢g(z) = Az+b, where the rota-
tion 4 leaves R* and R"™™ invariant and the vector b lies in the subspace R",
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whereas if ¢ lies in Stabg(co0), then its restriction to the subspace R" is a
translation. Thus we have U in the form

U:{xeR”: Z xi2>t2},

i=K+1

with ¢ > 0.

If k=n—1, then U is the union of two open sets U; and U,, where
U={xeR":x,>t} =B} and U, ={xeR":x, < —t} is in the exterior of
B, UB,.

CLamM 3. We can choose U to be small enough so that U, = Ay and
f(Uy) = Ay.

Proof. We need only to prove that by choosing U, small enough, no G-
translates of B) or B, intersect U,. Suppose, on the contrary, that there is a
sequence {gx(B)} of distinct Gy-translates of B; or B, intersecting {x e R":
x, < —s} for any large s (s > 0), where B= B; or B,. By taking a subsequence
and interchanging the indices if necessary, we may assume that B= B;. This
means that the projections of gi(B;) to the subspace R"~"~!) converge to .
We may assume that g; lies in Gy — J; since J; stabilises B;. Then Lemma
3.2-(7) implies that diam(g(B;)) — 0. Hence gx(y) — oo for all y e B; since
{gx(B1)} accumulates at oo. By Lemma 2.1 and by choosing a suitable
subsequence of {gx} (still denoted by the same symbol), we have gi(y) —
for all y with at most one exception, which must be a limit point of Gy. Since
U < Q(Gy), gi(y) — oo for all ye U. Since gx(U)NU =0, the projections of
gx(U) to the subspace R" "~V are bounded. By Theorem 2.9, for some fixed
yo € U and for each k, we can choose an element j; € H so that all ji o gix(»o)
lie in a bounded set. Since for each k, oo ¢ gi(B)), o0 ¢ jrgx(Bi). Since
|Gikgk (D)), = |(gx())], and the projections of gx(B;) to the subspace R"~"~1
converge to oo, we see that all the jygx are distinct and {jrgr(B1)} also
accumulates at co. By Lemma 3.2-(7), jkgi(y) — oo for all y € B;. By Lemma
2.1, jxgi(y) — oo for all y except for a limit point of Gy by passing to a
subsequence if necessary. This is a contradiction since {jrgr(yo)} does not
converge to oo and yp € Q(Gy). By a similar argument, we can assume that
f(Uy) = Ayg. This proves our claim. O

Then for any g € G — Gy,
g(U)NU = (g(U1) N U) U (g(U1) N Ux) U (g(U2) N UL) U (g(Us) N Ua),
where g(U,) N U, =0 since U, = Ap and Ay is precisely invariant under Gy in
G by Lemma 3.2-(8). By dividing the proof into three cases, we will show

that g(U)NU =0 for any ge G— Gy when k =n—1. Let g= f*og, o---0
f*og, € G— Gy be a normal form with length / (/ > 0).
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Case 1. g(Uy))NU; =0 for any g e G — Gy.

If fogof~'eGy, then there is an element je Gy with g= f~lojo .
Since ¢ is a normal form, j¢J,. Thus j¢ Stabg,(f(x)) since Stabg,(f(x)) =
Staby,(f(x)), and hence jo f(U))Nf(U;)=0 for f(U) is a peak domain
centred at f(x) for Gy. Therefore, g(U)NU; =0 for this case. If fogo
f1 ¢ G, then f(g(U)NU)=fogof '(f(U)Nf(U) < fogof (4N

Ag =0 for Ay is precisely invariant under G, in G.

Case 2. g(U))NU, =0 for any g e G — Gy.

If gy eJy and oy <0 or gy ¢ Jy, then ¢g(U;) < g(By) =« T, < Ty. It follows
that in this case g(U;)NU, = 0. If oy > 0 and gy € J;, then there is an element
hieJ, with fogi=hjof. Thus g= f*og,o---0f*" lohof is a normal
form of length /. If /> 1, then f* og,o0---0 f* ! is a normal form of length
I-1 and g(U1)=f*ogyo---of* tohof(Ur)c f*ogyo--of*toh(dg)
= f"og,0---0f%71(4y) = Ty by Lemma 2.6. If /=1, then g=gro fog) =
gaohiof and g(U)NUs=grom(f(U1))NUs = grom(f(U)) NU =0 by the
second assumption for U and f(U). Thus for this case, g(U;)N U, = 0.

Cast 3. g(U)NU; =0 for any ge G — Gp.
Since g ¢ Gy, g~ ¢ Gy and g(U>)NU; = g(U,Ng~'(Uy)) =0 by Case 2.

These discussions show that U is precisely invariant under H in G, i.e., U is
a peak domain centred at x for G and x is a parabolic vertex of G.

If x <n—1, then we can assume that U lies in By or in the exterior of B;
and B,. If U < Bj, then we may assume that f(U) < 4y by the same argu-
ment as in Claim 3. It follows that g(U)NU = 0 for all g € G — Gy by similar
discussions as in Case 1. If U is in the exterior of B; U B,, we may assume that
U < Ay by similar discussions as in Claim 3. Thus g(U)NU < g(4¢)N Ay =0
for all g € G — Gy. In either case, we can choose U small enough so that U is a
peak domain for G. Thus x is a parabolic vertex of G. We thus have shown
that Fr B; is a strong (J;, G)-block.

We now consider Fr B,. Let x be a parabolic fixed point of J; in Fr B;.
Then f~!(x) is a parabolic fixed point of G in Fr B;. Since Fr B is a strong
(J1, G)-block, f~!(x) is a parabolic vertex of G. Thus x is a parabolic vertex
of G and Fr B, is a strong (J2, G)-block.

The “only if” part. We assume that Fr B; is a strong (J;, G)-block. For any
parabolic fixed point x € Fr By of Gy, if the rank of Stabg,(x) is ¥ < n, then so is
Stabg(x) for Stabg(x) = Staby, (x) = Stabg,(x). Then there is a peak domain U
centred at x for G, which is also a peak domain for Gj. Therefore B; is a
strong (Ji, Gp)-block since By < Q(Gyp). If xe Fr B, is a parabolic fixed point
of Gp, where the rank of Stabg,(x) is x < n, then f~!(x) € Fr B is a parabolic
fixed point of Gy with rank k. Since B; is strong, there is a peak domain U
centred at f~!(x) for Gy. Then f(U) is a peak domain centred at x for G.
This shows that B,, is a strongly (J,,, Gy)-block for each m (m =1,2).
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If we assume that Fr B, is a strong (J», G)-block, then by the reasoning
similar to the above, we can show that each B, is a strong (J,,, Gy)-block.
l

4. Applications

4.1. The statement of Theorem 4.1. Following [19] or [20], we denote by
PSL(2,T,) the n-dimensional Clifford matrix group. Then PSL(2,T) is iso-
morphic to M(R") (cf. [1]).

We assume that n = 3. We denote the standard basis of R> by 1, e; and es.
Each element x € R? is expressed as

X = X1 + X201 + x3e3.

We set

and
J1:J2:<jlaj27j3>a G0:<j4a']l>a G1:<f> and G:<G07Gl>-

By the definition of Clifford algebra, ji, j», j3, j4+ and f act on R® as follows.

Ji(x) = =x1 — x2e1 + x362,  j2(X) = (x1 + 1) + x2e1 + X302,

J(x) = =x1 + (1 = x2)er + x3e2,

Ja(x) —X1 + X201 + x3€2
4 =
x12 + x% —+ x%

. f(x) =x1 + xe1 + (x3 — 10)es,

where x = x1 + x2e1 + X3€5.
Then we have the following.

THEOREM 4.1. G is geometrically finite.
We shall prove this theorem in the remainder of the paper.
4.2. Several propositions.

ProPOSITION 4.2.  Stabg, (o) = Ji = Ja, which means that J,, (im =1,2) is a
geometrically finite subgroup of Gy.
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Proof:  We can see that J; = J, < Stabg,(c0). Now take any g € Stabg, (c0).

Then
_ab
9=\o a)

Since ad =1 and a, d are Gaussian integers, we may assume that a =d =1 or
a=-e; and d = —e;.
If a=e; and d = —e;, then

. 1 —€1b
g_jl 0 1 9

where —e;b is also a Gaussian integer. Therefore, we only need to consider the
case when a=d =1, 1e.,, g = <O [;), where b is a Gaussian integer. We can
put b = o+ e, where o, f are integers. Then
g=j3o (o)™ 0
By the statements of Section 5 in [10], we see that
ProprosITION 4.3. (1) Gy is geometrically finite,

(2) A(Go) = Go(0) U {the conical limit points of Go};
(3) oo is a parabolic vertex of Gy and U is a peak domain of oo, where

U={xeR®:x}>16}.
Set
FrB = {x=(x;,x2,x3) eR*:x3=5}U{w0}, B ={xeR>:x3>5}U{0},
FrB;={xeR>:x3=-5}U{0}, By={xeR’:x3<-5}U{w0},
A=R’\(BiUB,) and Ay= A\Gy(BUB,).

PropoSITION 4.4.  Each B, is a (Ji, Go)-block (m =1,2).

Proof.  Obviously, A(J,,) = {0} and B, NQ(J,;) = B NQ(Gy) = B, \{0}.
By Propositions 4.2 and 4.3, we know that B, NQ(Gy) is precisely invariant
under J,, in Gp. O

PrROPOSITION 4.5. Ao # 0.

Proof. Since By UB3S < Q(Gy) by Lemma 3.2-(3), we have A(Gp) = 4y U
Go(Fr By UFr B;). On the other hand, A(Gy) N Go(Fr By UFr By) = Go(A(J;)U
A(J2)) = Go(0). An easy computation shows that ++/3 are fixed points of a

. 2 . - .
loxodromic element ( )e Gy, they are conical limit points of Gy and are

1 2
not Gy-equivalent to oo. Therefore, +1/3 € A,. I
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ProproSITION 4.6. B and B, are jointly f-blocked.

Proof. By Propositions 4.3 and 4.4, we know that (B NQ(Go), B, NQ(Gy))
is precisely invariant under (J;,J2) in Go. By computation, f(R*\B;) = B and
fIif~' =J,. Combining these with Proposition 4.4, we see that B; and B, are

jointly f-blocked. Ul
ProprosITION 4.7. Set
3 1 1 1
Dy=¢xeR :—§<X1£§,0<X2S§,|X‘Zl (A1 U A4, U A43),
where A :{xeR3:x2:0,—% <x SO}, AQZ{XGR3 :xzz%,—% <x gO},

and A3 = {xeR’:|x|=1,—-1 <x; <0}. Then Dy is maximal.

Proof. 1t is obvious that D, is a fundamental set for Gy. Since DyN B,
is a fundamental set for the action of J,, on B,, and f(DyNFr B;) = DyNFr By,
Dy is maximal. O

ProrosiTiON 4.8. Fr B, is a strong (J,,, G)-block (m = 1,2).

Proof. 1t is obvious that the rank of Stabg(co) is 3. It follows that oo
is a parabolic vertex of G. Obviously, Go NGy = {id}. By Theorem 3.1, G =
{Go, Gi) = Go*s, G is discrete and Fr B,, is a strong (J,,, G)-block (m =1,2).

]

Now we are ready to prove Theorem 4.1.

4.3. The proof of Theorem 4.1. Since Gy is geometrically finite, each B, is
a strong (J,;, Gp)-block. On the other hand, by Proposition 4.8, each Fr B, is
a strong (J,,, G)-block (m =1,2). By Theorem 3.1, G is geometrically finite.

From the proof of Theorem 4.1, we can easily get the following corollary.

COROLLARY 4.9. B, is not precisely invariant under J,, in Gy.

Remark 4.1. The group G in Theorem 4.1 does not satisfy the condition
that “B,, (m =1,2) is precisely invariant under J,, in Gy”, which is required in
Theorem 1.1.
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