# ON KLEIN-MASKIT COMBINATION THEOREM IN SPACE II 

Liulan Li, Ken’ichi Ohshika and Xiantao Wang


#### Abstract

In this paper, which is sequel to [10], we give a generalisation of the second Klein-Maskit combination theorem, the one dealing with HNN extensions, to higher dimension. We give some examples constructed as an application of the main theorem.


## 1. Introduction

The combination theorems for classical Kleinian groups, i.e. for those in $P S L_{2} \mathbf{C}$, are ways to generate new Kleinian groups as amalgamated free products or HNN extensions of given Kleinian groups. The first of such theorems was given by Klein [9] in the case of free products. Maskit in [12, 13, 14, 15, 16, 17] gave several generalisations of Klein's combination theorem, among which are the first combination theorem dealing with amalgamated free products and the second combination theorem dealing with HNN extensions.

In our previous paper [10], we considered a generalisation of the first combination theorem of Maskit to higher dimension. In the present paper, which is its sequel, we shall generalise his second combination theorem. Maskit's second combination theorem asserts that under some conditions, two Kleinian groups $G_{0}, G_{1}$, where $G_{1}=\langle f\rangle$ is infinite cyclic and $G_{0}$ has two isomorphic geometrically finite subgroups $J_{1}$ and $J_{2}$ conjugated by $f$, generate a Kleinian group isomorphic to the HNN extension of $G_{0}$ by $f$, and also that under the same conditions the resulting group is geometrically finite if and only if $G_{0}$ is geometrically finite.

As in the case of amalgamated free products, a first attempt to generalise Maskit's second combination theorem to higher dimension was likewise made

[^0]by Apanasov in his pioneering work [3, 4]. Ivascu [8] also dealt with such a generalisation with a bit different approach. In particular, they showed that under the same assumptions as Maskit combined with some extra conditions, one can get a discrete group which is an HNN extension of a discrete group of $n$-dimensional Möbius transformations and a Möbius transformation with infinite order. To be more precise, what they proved is the following.

Theorem 1.1 [Apanasov, Ivascu]. Let $G_{0}$ be an n-dimensional Kleinian group with subgroups $H_{1}$ and $H_{2}$. Suppose that closed domains $\bar{D}_{1}$ and $\bar{D}_{2}$ bounded by hypersurfaces $S_{1}$ and $S_{2}$ of $n$-sphere $S^{n}$ are precisely invariant in $G_{0}$ with respect to $H_{1}$ and $H_{2}$, respectively. Suppose also that an n-dimensional Möbius transformation $f$ maps $D_{1}$ onto $S^{n} \backslash D_{2}$, and that the following conditions hold:
(1) For fundamental domains $\Delta_{1}, \Delta_{2}$ and $F_{0} \subset \Delta_{1} \cap \Delta_{2}$ of the groups $H_{1}, H_{2}$ and $G_{0}$, there exist neighbourhoods $V_{1}$ and $V_{2}$ of the surfaces $S_{1}$ and $S_{2}$ such that $\Delta_{i} \cap V_{i} \subset F_{0}, i=1,2$.
(2) $\Delta_{i} \cap \bar{D}_{i}=\bar{D}_{i} \cap F_{0}$.
(3) $F=\left(F_{0} \cap\left(S^{n} \backslash\left(\bar{D}_{1} \cup \bar{D}_{2}\right)\right)\right)^{\circ} \neq \emptyset$, where $B^{\circ}$ is the interior of $B$ in $S^{n}$.
(4) $f H_{1} f^{-1}=H_{2}$.
(5) $g\left(\bar{D}_{1}\right) \cap \bar{D}_{2}=\emptyset$ for all $g \in G_{0} \backslash\{$ id $\}$.

Then we have the following.
(1) The group $G=\left\langle G_{0}, f\right\rangle$ is a Kleinian group and isomorphic to $G_{0} *_{f}$, the $H N N$ extension of $G_{0}$ by $f$.
(2) $F$ is a fundamental domain for the group $G$.
(3) $m_{n}(\Lambda(G))=0$ if and only if $m_{n}\left(\Lambda\left(G_{0}\right)\right)=0$.
(4) Each elliptic or parabolic element of $G$ is conjugate in $G$ to an element of $G_{0}$.

In this paper, we shall give a generalisation of the second Maskit combination theorem in higher dimension without any additional assumptions, imposing only natural ones corresponding to those in Maskit's. Our theorem also asserts that the group obtained as an HNN extension is geometrically finite if and only if the original group is, under some conditions. We note that in the present paper as in the previous one, we say that a Kleinian group is geometrically finite when the $\varepsilon$-neighbourhood of its convex core has finite volume for some $\varepsilon>0$, and there is an upper bound for the orders of torsions in the group. We do not assume that the group has a finite-sided fundamental polyhedron. Our main result (Theorem 3.1) and its proof will appear in $\S 3$.

The authors would like to express their gratitude to the referee for his/her careful reading of the manuscript and valuable suggestions.

## 2. Preliminaries

2.1. Basic notions. We follow the notations used in [10]. We use the symbol $\overline{\mathbf{R}}^{n}$ to denote the one-point compactification of the $n$-dimensional

Euclidean space $\mathbf{R}^{n}$ and $M\left(\overline{\mathbf{R}}^{n}\right)$ to denote the group of orientation-preserving Möbius transformations. We identify $\overline{\mathbf{R}}^{n}$ with the sphere at infinity of the hyperbolic $n+1$-space. We shall use both the ball model and the upper halfspace model for the hyperbolic space. We use the symbol $\mathbf{B}^{n+1}$ for the ball model and $\mathbf{H}^{n+1}$ for the upper half-space model.

We denote the limit set of a discrete group $G \subset M\left(\overline{\mathbf{R}}^{n}\right)$ by $\Lambda(G)$. We call points of $\Lambda(G)$ limit points. The complement $\Omega(G)=\overline{\mathbf{R}}^{n} \backslash \Lambda(G)$ is called the region of discontinuity of $G$.

A discrete group $G \subset M\left(\overline{\mathbf{R}}^{n}\right)$ is said to act discontinuously at a point $x \in \overline{\mathbf{R}}^{n}$ if there is a neighbourhood $U$ of $x$ such that $\{g \in G \mid g(U) \cap U \neq \emptyset\}$ is a finite set. The group $G$ acts discontinuously at every point of $\Omega(G)$, and at no point of $\Lambda(G)$.

The complement of the fixed points of elliptic elements in $\Omega(G)$ is called the free regular set, and is denoted by ${ }^{\circ} \Omega(G)$. When ${ }^{\circ} \Omega(G) \neq \emptyset$, a fundamental set of $G$ is defined to be a set which contains one representative of each orbit $G(y)$ of $y \in{ }^{\circ} \Omega(G)$. It is obvious that ${ }^{\circ} \Omega(G) \neq \emptyset$ if and only if $\Omega(G) \neq \emptyset$. If $\Omega(G) \neq \emptyset$, then we call $G$ a Kleinian group.

For the limit set $\Lambda(G)$, we have the following useful lemma ([10]).
Lemma 2.1. Let $\left\{g_{m}\right\}$ be a sequence of distinct elements of the Kleinian group $G \subset M\left(\overline{\mathbf{R}}^{n}\right)$. Then there are a subsequence $\left\{g_{m_{i}}\right\}$ and limit points $x$ and $y$ of $G$ such that $g_{m_{i}}(z) \rightarrow x$ uniformly on every compact subset of $\overline{\mathbf{R}}^{n+1} \backslash\{y\}$.

We shall use the following terms in the same way as in [10].
Definition 2.1. Let $H$ be a subgroup of a group $G$ of $M\left(\overline{\mathbf{R}}^{n}\right)$. A subset $V$ is said to be precisely invariant under $H$ in $G$ if $h(V)=V$ for all $h \in H$ and $g(V) \cap V=\emptyset$ for all $g \in G-H$.

Definition 2.2. Let $T_{1}, \ldots, T_{m}$ be sets and $J_{1}, \ldots, J_{m}$ be subgroups of the group $G \subset M\left(\overline{\mathbf{R}}^{n}\right)$. We say that $\left(T_{1}, \ldots, T_{m}\right)$ is precisely invariant under $\left(J_{1}, \ldots, J_{m}\right)$ in $G$, if each $T_{k}$ is precisely invariant under $J_{k}$ in $G$, and if for $i \neq j$, and for all $g \in G, g\left(T_{i}\right) \cap T_{j}=\emptyset$.

For the domain of discontinuity $\Omega(G)$, we have the following proposition. Refer to Proposition II.E. 4 in Maskit [15] or Theorem 5.3.12 in Beardon [5].

Proposition 2.2. Suppose that $\Omega(G)$ is not empty. Then a point $x \in \overline{\mathbf{R}}^{n}$ is contained in $\Omega(G)$ if and only if
(1) the stabiliser $\operatorname{Stab}_{G}(x)=\{g \in G \mid g(x)=x\}$ of $x$ in $G$ is finite, and
(2) there is a neighbourhood $U$ of $x$ in $\overline{\mathbf{R}}^{n}$ which is precisely invariant under $\operatorname{Stab}_{G}(x)$ in $G$.

Definition 2.3. A fundamental domain for a discrete group $G$ of $M\left(\overline{\mathbf{R}}^{n}\right)$ with non-empty region of discontinuity is an open subset $D$ of $\Omega(G)$ satisfying the following.
(1) $D$ is precisely invariant under the trivial subgroup in $G$.
(2) For every $z \in \boldsymbol{\Omega}(G)$, there is an element $g \in G$ such that $g(z)$ is contained in $\bar{D}$, where $\bar{D}$ denotes the closure of $D$ in $\overline{\mathbf{R}}^{n}$.
(3) Fr $D$, the frontier of $D$ in $\overline{\mathbf{R}}^{n}$, consists of limit points of $G$, and a finite or countable collection of codimension-1 compact smooth submanifolds with boundary, whose boundary is contained in $\Omega(G)$ except for a subset with $(n-1)$-dimensional Lebesgue measure 0 . The intersection of each submanifold with $\Omega(G)$ is called a side of $D$.
(4) For any side $\sigma$ of $D$, there are another side $\sigma^{\prime}$ of $D$, which may coincide with $\sigma$, and a nontrivial element $g \in G$ such that $g(\sigma)=\sigma^{\prime}$. Such an element $g$ is called the side-pairing transformation from $\sigma$ to $\sigma^{\prime}$.
(5) If $\left\{\sigma_{m}\right\}$ is a sequence of distinct sides of $D$, then the diameter of $\sigma_{m}$ with respect to the ordinary spherical metric on $\overline{\mathbf{R}}^{n}$ goes to 0 .
(6) For any compact subset $K$ of $\Omega(G)$, there are only finitely many translates of $D$ that intersect $K$.

A fundamental set $F$ for a discrete subgroup $G$ whose interior is a fundamental domain is called a constrained fundamental set.
2.2. Normal forms. Let $G_{0}$ be a discrete subgroup of $M\left(\overline{\mathbf{R}}^{n}\right)$ with isomorphic subgroups $J_{1}$ and $J_{2}$, and $f$ a transformation in $M\left(\overline{\mathbf{R}}^{n}\right)$ of infinite order satisfying $f J_{1} f^{-1}=J_{2}$ and $G_{0} \cap\langle f\rangle=\{i d\}$. Following Maskit [15], we define normal forms as follows.

A normal form is a word of the form

$$
f^{\alpha_{n}} g_{n} \cdots f^{\alpha_{1}} g_{1}
$$

such that
(1) each $g_{k}$ is contained in $G_{0}$,
(2) $g_{k}$ is not the identity except possibly for the last one $g_{1}$,
(3) the exponents $\alpha_{k}$ are assumed to be non-zero except for the first one $\alpha_{n}$,
(4) if $\alpha_{k}<0$ and $g_{k+1} \in J_{1}-\{i d\}$, then $\alpha_{k+1}<0$, and
(5) if $\alpha_{k}>0$ and $g_{k+1} \in J_{2}-\{i d\}$, then $\alpha_{k+1}>0$.

The length of a normal form $g=f^{\alpha_{n}} g_{n} \cdots f^{\alpha_{1}} g_{1}$ is defined to be $|g|=\sum\left|\alpha_{k}\right|$. Two normal forms are defined to be equivalent if we can transform one to the other by repeating the following operations finitely many times: inserting a word of the form $f j f^{-1}\left(f j f^{-1}\right)^{-1}$ for some $j \in J_{1}$ and deleting a word of the same form. The set of the equivalence classes of normal forms with concatenation as binary operation corresponds one-to-one to the HNN extension of $G_{0}$ by $f$, which we denote by $G_{0} *_{f}$ preserving the group structures.

We call a normal form $g=f^{\alpha_{n}} g_{n} \cdots f^{\alpha_{1}} g_{1}$ positive if $\alpha_{n}>0$, negative if $\alpha_{n}<0$, and null if $\alpha_{n}=0$. More specifically, we call $g$ a $(j, k)$-form, with $j$ either + or - , or 0 when $g$ is positive or negative or null, respectively, and $k=+$ if $\alpha_{1}>0, k=-$ if $\alpha_{1}<0$.

Let $\left\langle G_{0}, f\right\rangle$ be the subgroup of $M\left(\overline{\mathbf{R}}^{n}\right)$ generated by $G_{0}$ and $\langle f\rangle$. Then, there is a natural homomorphism $\Phi: G_{0} *_{f} \rightarrow\left\langle G_{0}, f\right\rangle$ which is defined by
$\Phi\left(f^{\alpha_{n}} g_{n} \cdots f^{\alpha_{1}} g_{1}\right)=f^{\alpha_{n}} \circ g_{n} \circ \cdots \circ f^{\alpha_{1}} \circ g_{1}$ for a normal form $f^{\alpha_{n}} g_{n} \cdots f^{\alpha_{1}} g_{1}$ representing an element of $G_{0} *_{f}$, and $\Phi(j)=j$ for $j \in G_{0}$. It is easy to see that this is independent of a choice of a representative of the equivalence class. The map is obviously an epimorphism. If $\Phi$ is an isomorphism, then we write $\left\langle G_{0}, f\right\rangle$ also as $G_{0} *_{f}$ identifying elements of $G_{0} *_{f}$ and their images by $\Phi$.

Since $G_{0}$ is embedded in $\left\langle G_{0}, f\right\rangle$, each non-trivial element in the kernel of $\Phi$ can be written in a normal form. Therefore the following is obvious.

Lemma 2.3. $\left\langle G_{0}, f\right\rangle=G_{0} *_{f}$ if and only if $\Phi$ maps no non-trivial normal forms to the identity.
2.3. Interactive triples. Following Maskit, we shall define interactive triples as follows.

We assume that $G_{0}$ is a discrete subgroup of $M\left(\overline{\mathbf{R}}^{n}\right)$ with isomorphic subgroups $J_{1}$ and $J_{2}$, and $f \in M\left(\overline{\mathbf{R}}^{n}\right)$ has infinite order, where $f J_{1} f^{-1}=J_{2}$ and $G_{0} \cap\langle f\rangle=\{i d\}$. Let $Z, X_{1}, X_{2}$ be disjoint nonempty subsets of $\overline{\mathbf{R}}^{n}$. The triple $\left(Z, X_{1}, X_{2}\right)$ is said to be an interactive triple (for $G_{0}, f, J_{1}$ and $J_{2}$ ) when the following hold.
(1) $\left(X_{1}, X_{2}\right)$ is precisely invariant under $\left(J_{1}, J_{2}\right)$ in $G_{0}$.
(2) For every $g \in G_{0}$ and $m=1,2$, we have $g\left(X_{m}\right) \subset Z \cup X_{m}$.
(3) We have $f\left(Z \cup X_{2}\right) \subset X_{2}$ and $f^{-1}\left(Z \cup X_{1}\right) \subset X_{1}$.

If there exists a non-empty $G_{0}$-invariant subset of $Z \backslash G_{0}\left(X_{1} \cup X_{2}\right)$, then the interactive triple is said to be proper. We can easily see that if $\left(Z, X_{1}, X_{2}\right)$ is an interactive triple and $g \in G_{0}-J_{1}$, then $g\left(X_{1}\right) \subset Z$, and also if $g \in G_{0}-J_{2}$, then $g\left(X_{2}\right) \subset Z$.

Example 2.1. For $n \geq 2$, let $e_{0}, e_{1}, \ldots, e_{n-1}$ be the standard basis of $\mathbf{R}^{n}$, where $e_{0}=(1,0, \ldots, 0)$. Set $X_{1}=\left\{x=\sum_{i=1}^{n} x_{i} e_{i-1} \in \mathbf{R}^{n} \mid x_{n}<0\right\}, X_{2}=\left\{x \in \mathbf{R}^{n} \mid\right.$ $\left.x_{n}>0\right\}$, and $Z=\{\mathbf{0}\}$. We define $G_{0}=J_{1}=J_{2}$ to be $\left\langle j_{1}, j_{2}, \ldots, j_{n-1}\right\rangle$, where $j_{i}(x)=x+e_{i-1} \quad(i=1,2, \ldots, n-1)$. Let $f(x)=x+e_{n-1}$. It is obvious that $\left(Z, X_{1}, X_{2}\right)$ is an interactive triple for $G_{0}, f, J_{1}$ and $J_{2}$. Since $Z \backslash G_{0}\left(X_{1} \cup X_{2}\right)$ $=Z$ does not have a $G_{0}$-invariant subset however, $\left(Z, X_{1}, X_{2}\right)$ is not proper.

If we change $Z$ above to $Z^{\prime}=\left\{x=\sum_{i=1}^{n} x_{i} e_{i-1} \in \mathbf{R}^{n} \mid x_{n}=0\right\}$ preserving $X_{1}$ and $X_{2}$ to be the same as above, then $\left(Z^{\prime}, X_{1}, X_{2}\right)$ is also an interactive triple for $G_{0}, f, J_{1}$ and $J_{2}$, and $\left(Z^{\prime}, X_{1}, X_{2}\right)$ is proper since $Z^{\prime} \backslash G_{0}\left(X_{1} \cup X_{2}\right)=Z^{\prime}$ itself is $G_{0}$-invariant.

The following lemma due to Maskit holds also in higher dimension without any change.

Lemma 2.4 (Lemma VII.D. 11 in [15]). Suppose that $\left(Z, X_{1}, X_{2}\right)$ is an interactive triple for $G_{0}, f, J_{1}$ and $J_{2}$, and that $A_{0}$ is a non-empty $G_{0}$-invariant subset of $Z$, which has trivial intersection with $G_{0}\left(X_{1} \cup X_{2}\right)$. Let $g=f^{\alpha_{n}} g_{n} \ldots$ $f^{\alpha_{1}} g_{1}$ be a non-trivial normal form in $G_{0} *_{f}$.
(1) If $g$ is $a(+,+)$-form, then $\Phi(g)\left(A_{0} \cup X_{2}\right) \subset X_{2}$.
(2) If $g$ is a $(+,-)$-form, then $\Phi(g)\left(A_{0} \cup X_{1}\right) \subset X_{2}$.
(3) If $g$ is a $(-,+)$-form, then $\Phi(g)\left(A_{0} \cup X_{2}\right) \subset X_{1}$.
(4) If $g$ is a $(-,-)$-form, then $\Phi(g)\left(A_{0} \cup X_{1}\right) \subset X_{1}$.
(5) If $g$ is a $(0,+)$-form, then there is an element $h \in G_{0}$ such that $\Phi(g)\left(A_{0} \cup X_{2}\right) \subset h(B) \subset Z$, where $B=X_{1}$ if $\alpha_{n-1}<0$, and $B=X_{2}$ if $\alpha_{n-1}>0$.
(6) If $g$ is a (0,-)-form, then there is an element $h \in G_{0}$ such that $\Phi(g)\left(A_{0} \cup X_{1}\right) \subset h(B) \subset Z$, where $B=X_{1}$ if $\alpha_{n-1}<0$, and $B=X_{2}$ if $\alpha_{n-1}>0$.

The existence of a proper interactive triple forces $\Phi$ to be isomorphic. (Theorem VII.D. 12 in Maskit [15] in the case when $n=2$. The proof is the same in higher dimension using Lemmata 2.3 and 2.4.)

Theorem 2.5. Let $G_{0}, f, J_{1}$ and $J_{2}$ be as above and suppose that there is a proper interactive triple for $G_{0}, f, J_{1}$ and $J_{2}$. Then $\left\langle G_{0}, f\right\rangle=G_{0} *_{f}$.

Using Theorem 2.5, we get the following straightforward generalisation of Theorem VII.D. 13 in [15].

Theorem 2.6. Let $G_{0}$ be a discrete group. Suppose that $\left(Z, X_{1}, X_{2}\right)$ is an interactive triple for $G_{0}, f, J_{1}$ and $J_{2}$ and that $A_{0} \subset Z \backslash G_{0}\left(X_{1} \cup X_{2}\right)$ is a non-empty $G_{0}$-invariant set. Then $A_{0}$ is precisely invariant under $G_{0}$ in $\left\langle G_{0}, f\right\rangle=G_{0} *_{f}$.

Let $D_{0}$ be a fundamental set for $G_{0}$ satisfying $J\left(D_{0} \cap X_{m}\right)=X_{m} \cap{ }^{\circ} \Omega\left(J_{m}\right)$ for $m=1,2$, and set $D=D_{0} \cap A_{0}$. If $D$ is non-empty, then $D$ is precisely invariant under $\{i d\}$ in $\left\langle G_{0}, f\right\rangle$.
2.4. Geometric finiteness. As in the previous paper [10], we use the following definition of geometric finiteness, not assuming the existence of finite-sided fundamental polyhedron.

Definition 2.4. Let $G$ be a discrete subgroup of $M\left(\overline{\mathbf{R}}^{n}\right)$. We denote by $\operatorname{Hull}(\Lambda(G))$, the minimal convex set of $\mathbf{H}^{n+1}$ containing all geodesics whose endpoints lie on $\Lambda(G)$. This set is evidently $G$-invariant, and its quotient $\operatorname{Hull}(G) / G$ is called the convex core of $G$, and is denoted by Core $(G)$. The group $G$ is said to be geometrically finite if the following two conditions are satisfied:
(1) there exists $\varepsilon>0$ such that the $\varepsilon$-neighbourhood of $\operatorname{Core}(G)$ in $\mathbf{H}^{n+1} / G$ has finite volume, and
(2) there is an upper bound for the orders of torsions in $G$.

A point $x$ of $\Lambda(G)$ of a discrete group $G$ of Möbius transformations is called a parabolic fixed point if $\operatorname{Stab}_{G}(x)$ contains parabolic elements. For a para-
bolic fixed point $z$, a horoball in $\mathbf{B}^{n+1}$ touching $\overline{\mathbf{R}}^{n}$ at $z$ is invariant under $\operatorname{Stab}_{G}(z)$. In the case when $\operatorname{Stab}_{G}(z)$ has rank less than $n$, it is useful to consider a domain larger than a horoball, which we call an extended horoball.

Definition 2.5. Let $G$ be a discrete subgroup of $M\left(\overline{\mathbf{R}}^{n}\right)$, and $z$ a parabolic fixed point of $G$. Let $\operatorname{Stab}_{G}^{*}(z)$ be the maximal free abelian subgroup of the stabiliser $\operatorname{Stab}_{G}(z)$ of $z$ in $G$. Suppose that the rank $k$ of $\operatorname{Stab}_{G}^{*}(z)$ is less than $n$. Then there is a closed subset $B_{z} \subset \mathbf{B}^{n+1}$ invariant under $\operatorname{Stab}_{G}(z)$ which is in the form

$$
B_{z}=h^{-1}\left\{x \in \mathbf{B}^{n+1} \mid \sum_{i=k+1}^{n+1} x_{i}^{2} \geq t\right\}
$$

where $t(>0)$ is a constant and $h \in M\left(\overline{\mathbf{R}}^{n}\right)$ is a Möbius transformation such that $h(z)=\infty$. We call $B_{z}$ an extended horoball of $G$ around $z$.

Related to this, there is a set called a peak domain, which was introduced by Apanasov.

Definition 2.6. A peak domain of a discrete group $G$ of $M\left(\overline{\mathbf{R}}^{n}\right)$ at the parabolic fixed point $z$ of $G$ is an open subset $U_{z} \subset \overline{\mathbf{R}}^{n}$ such that
(1) $U_{z}$ is precisely invariant under $\operatorname{Stab}_{G}(z)$ in $G$, and
(2) there exist a $t>0$, and a transformation $h \in M\left(\overline{\mathbf{R}}^{n}\right)$ with $h(z)=\infty$ such that

$$
\left\{x \in \mathbf{R}^{n} \mid \sum_{i=k+1}^{n} x_{i}^{2}>t\right\}=h\left(U_{z}\right),
$$

where $k=\operatorname{rank} \operatorname{Stab}_{G}^{*}(z), 1 \leq k \leq n-1$.
Definition 2.7. Let $z$ be a parabolic fixed point of the discrete group $G \subset M\left(\overline{\mathbf{R}}^{n}\right)$. If $G$ has an extended horoball $B$ around $z$, then the interior of its intersection with $\overline{\mathbf{R}}^{n}$ is a peak domain. Following Bowditch [6], we use the term standard parabolic region at $z$ to mean an extended horoball when the rank of $\operatorname{Stab}_{G}(z)$ is less than $n$, and a horoball when the rank of $\operatorname{Stab}_{G}(z)$ is $n$.

We shall present definitions of terms which are commonly used in studying geometrically finite groups in $M\left(\overline{\mathbf{R}}^{n}\right)$.

Definition 2.8. A point $z \in \overline{\mathbf{R}}^{n}$ fixed by a parabolic element of a discrete group $G \subset M\left(\overline{\mathbf{R}}^{n}\right)$ is said to be a parabolic vertex of $G$ if one of the following conditions is satisfied.
(1) The subgroup $\operatorname{Stab}_{G}^{*}(z)$ has rank $n$.
(2) There exists a peak domain $U_{z}$ at the point $z$.

Definition 2.9. Let $G$ be a discrete subgroup of $M\left(\overline{\mathbf{R}}^{n}\right)$. A point $x \in \overline{\mathbf{R}}^{n}$ is said to be a conical limit point (or a point of approximation in some literature) if there are $z \in \mathbf{H}^{n+1}$ and a geodesic ray $l$ in $\mathbf{H}^{n+1}$ tending to $x$ whose $r$-neighbourhood with some $r \in \mathbf{R}$ contains infinitely many translates of $z$.

As was shown in Theorem 12.2.5 in Ratcliffe [18], we have a characterisation of conical limit points as follows.

Proposition 2.7. Let $G$ be a discrete group of $M\left(\overline{\mathbf{R}}^{n}\right)$ regarded as acting on $\mathbf{B}^{n+1}$ by hyperbolic isometries. Then a point $z \in \partial \mathbf{B}^{n+1}$ is a conical limit point of $G$ if and only if there exist $\delta>0$, distinct elements $g_{m}$ of $G$, and $x \in \partial \mathbf{B}^{n+1} \backslash\{z\}$ such that $g_{m}^{-1}(\mathbf{0})$ converges to $z$ while $\left|g_{m}(x)-g_{m}(z)\right|>\delta$ for all $m$. Furthermore, if this condition holds, then for every $x \in \partial \mathbf{B}^{n+1} \backslash\{z\}$, there is $\delta>0$ such that $\left|g_{m}(x)-g_{m}(z)\right|>\delta$ for all $m$.

The following result due to Bowditch [6] or [7] will be essentially used in the proof of our main theorem.

Proposition 2.8. Let $G \subset M\left(\overline{\mathbf{R}}^{n}\right)(n \geq 2)$ be a discrete group. Then $G$ is geometrically finite if and only if every point of $\Lambda(G)$ is either a parabolic vertex or a conical limit point.
2.5. Dirichlet domains. Among fundamental domains of hyperbolic manifolds, what are called Dirichlet domains are most useful for us.

Definition 2.10. Let $G$ be a discrete subgroup of $M\left(\overline{\mathbf{R}}^{n}\right)$, and $x$ a point in $\mathbf{H}^{n+1}$, which is not fixed by any nontrivial element of $G$. Then, the set $\left\{y \in \mathbf{H}^{n+1} \mid d_{h}(y, x) \leq d_{h}(y, g(x)) \forall g \in G\right\}$ is called the Dirichlet domain centred at $x$ for $G$, where $d_{h}$ denotes the hyperbolic distance.

We shall make use of the following result of Bowditch [6]. For a $G$-invariant set $S$ on $\overline{\mathbf{R}}^{n}$, we say a collection of subsets $\left\{A_{s}\right\}_{s \in S}$ is strongly invariant if $g A_{s}=A_{g s}$ and for any $s \neq t \in S, A_{s} \cap A_{t}=\emptyset$. We should note that each $A_{s}$ is in particular precisely invariant under $\operatorname{Stab}_{G}(s)$ in $G$.

Lemma 2.9. Let $\Pi$ be the set of all parabolic vertices of a discrete group $G \subset M\left(\overline{\mathbf{R}}^{n}\right)$. Then we can choose a standard parabolic region $B_{p}$ for each $p \in \Pi$ in such a way that $\left\{B_{p} \mid p \in \Pi\right\}$ is strongly invariant.
2.6. Blocks. Throughout this subsection, we assume that $G$ is a discrete subgroup of $M\left(\overline{\mathbf{R}}^{n}\right)$, and $J$ denotes a subgroup of $G$.

Definition 2.11. A closed $J$-invariant set $B$ in $\overline{\mathbf{R}}^{n}$, containing at lease two points, is called a block, or more specifically $(J, G)$-block if it satisfies the following conditions.
(1) $B \cap \Omega(G)=B \cap \Omega(J)$, and $B \cap \Omega(G)$ is precisely invariant under $J$ in $G$.
(2) If $U$ is a peak domain for a parabolic fixed point $z$ of $J$ with the rank of $\operatorname{Stab}_{J}(z)$ being less than $n$, then there is a smaller peak domain $U^{\prime} \subset U$ such that $U^{\prime} \cap \operatorname{Fr} B=\emptyset$.

Let $S$ be a topological $(n-1)$-dimensional sphere in $\overline{\mathbf{R}}^{n}$. Then $S$ separates $\overline{\mathbf{R}}^{n}$ into two open sets. We say that $S$ is precisely embedded in $G$ if $g(S)$ is disjoint from one of the two open sets for any $g \in G$.

A $(J, G)$-block is said to be strong if every parabolic fixed point of $J$ is a parabolic vertex of $G$.

We have the following in [10].
Theorem 2.10. Let $J$ be a geometrically finite subgroup of $G$ and $B \subset \overline{\mathbf{R}}^{n}$ be a $(J, G)$-block such that for every parabolic fixed point $z$ of $J$ with the rank of $\operatorname{Stab}_{J}(z)$ being less than $n$, there is a peak domain $U_{z}$ for $J$ with $U_{z} \cap B=\emptyset$. Let $G=\bigcup g_{k} J$ be a coset decomposition. If $\left\{g_{k}(B)\right\}$ is a sequence of distinct translates of $B$, then we have $\operatorname{diam}\left(g_{k}(B)\right) \rightarrow 0$, where $\operatorname{diam}(M)$ denotes the diameter of the set $M$ with respect to the ordinary spherical metric on $\overline{\mathbf{R}}^{n}$.

## 3. The second Klein-Maskit combination theorem

In this section, we shall show our main theorem (Theorem 3.1).
Definition 3.1. Let $J_{1}$ and $J_{2}$ be subgroups of a discrete group $G_{0} \subset$ $M\left(\overline{\mathbf{R}}^{n}\right)$, and let $f \in M\left(\overline{\mathbf{R}}^{n}\right)$ be an element of infinite order. Following Maskit, we say that two closed topological $n$-dimensional balls $B_{1}$ and $B_{2}$ in $\overline{\mathbf{R}}^{n}$, are jointly $f$-blocked if the following conditions are satisfied.
(1) $B_{m}$ is a $\left(J_{m}, G_{0}\right)$-block for $m=1,2$,
(2) $\left(B_{1} \cap \Omega\left(G_{0}\right), B_{2} \cap \Omega\left(G_{0}\right)\right)$ is precisely invariant under $\left(J_{1}, J_{2}\right)$ in $G_{0}$,
(3) $f$ maps the exterior of $B_{1}$ in $\overline{\mathbf{R}}^{n}$ onto the interior of $B_{2}$ in $\overline{\mathbf{R}}^{n}$, and
(4) $f J_{1} f^{-1}=J_{2}$.

If $B_{1}$ and $B_{2}$ are jointly $f$-blocked, then following Maskit, we say that a fundamental set $D_{0}$ for $G_{0}$ is maximal if $D_{0} \cap B_{m}$ is a fundamental set for the action of $J_{m}$ on $B_{m}$ and $f\left(D_{0} \cap \operatorname{Fr} B_{1}\right)=D_{0} \cap \operatorname{Fr} B_{2}$ for $m=1,2$.

Definition 3.2. Let $\left\{S_{j}\right\}$ be a collection of topological $(n-1)$-spheres. We say that the sequence $\left\{S_{j}\right\}$ nests about a point $x$ if the following are satisfied.
(1) The spheres $S_{j}$ are pairwise disjoint.
(2) Each sphere $S_{j}$ separates $x$ from the precedent $S_{j-1}$.
(3) For any point $z_{j} \in S_{j}$, the sequence $\left\{z_{j}\right\}$ converges to $x$.

Now we state our main theorem.
Theorem 3.1. Let $G_{0} \subset M\left(\overline{\mathbf{R}}^{n}\right)$ be a discrete group with geometrically finite subgroups $J_{1}$ and $J_{2}$, and $f \in M\left(\overline{\mathbf{R}}^{n}\right)$ an element of infinite order with
$G_{0} \cap\langle f\rangle=\{i d\}$. Let $B_{1}$ and $B_{2}$ be closed topological balls in $\overline{\mathbf{R}}^{n}$. Suppose that $B_{1}$ and $B_{2}$ are jointly $f$-blocked and that $A_{0}=\overline{\mathbf{R}}^{\eta} \backslash G_{0}\left(B_{1} \cup B_{2}\right)$ is non-empty. Let $D_{0}$ be a maximal fundamental set for $G_{0}$. Set $A=\overline{\mathbf{R}}^{\eta} \backslash\left(B_{1} \cup B_{2}\right), G=\left\langle G_{0}, f\right\rangle$ and $D=D_{0} \cap\left(A \cup \operatorname{Fr} B_{1}\right)$. Then the following hold.
(1) $G=G_{0} *_{f}$.
(2) $G$ is discrete.
(3) $\operatorname{Fr} B_{m}(m=1,2)$ is a precisely embedded $\left(J_{m}, G\right)$-block.
(4) If an element $g$ of $G$ is not loxodromic, then one of the following holds.
(a) $g$ is conjugate to an element of $G_{0}$.
(b) $g$ is parabolic and is conjugate to an element fixing a parabolic fixed point of either $J_{1}$ or $J_{2}$.
(5) If $\left\{W_{k}^{\prime}\right\}$ is a sequence of distinct $G$-translates of $\operatorname{Fr} B_{m}$, then $\operatorname{diam}\left(W_{k}^{\prime}\right) \rightarrow 0$ as $k \rightarrow \infty$.
(6) There is a sequence of distinct translates of $\operatorname{Fr} B_{m}$ nesting about the point $x$ if and only if $x \in \Lambda(G) \backslash G\left(\Lambda\left(G_{0}\right)\right)$.
(7) $D$ is a fundamental set for $G$. If $D_{0}$ is constrained, $\left(\operatorname{Fr} B_{1} \cup \operatorname{Fr} B_{2}\right) \cap$ Fr $D_{0}$ consists of finitely many connected components, and the sum of their $(n-1)$-dimensional measures vanishes, then $D$ is also constrained.
(8) Let $Q=\left(A_{0} \cup G_{0}\left(\operatorname{Fr} B_{1}\right)\right) \cap \Omega\left(G_{0}\right)$. Then $\Omega(G) / G=Q / G_{0}$, and its boundary, which is possibly disconnected or empty, is equal to $\left(\operatorname{Fr} B_{1} \cap \Omega\left(G_{0}\right)\right) / J_{1}=\left(\operatorname{Fr} B_{2} \cap \Omega\left(G_{0}\right)\right) / J_{2}$.
Furthermore, under the assumption that each $\operatorname{Fr} B_{m}$ is a strong $\left(J_{m}, G\right)$-block for $m=1,2$ if and only if each $B_{m}$ is a strong $\left(J_{m}, G_{0}\right)$-block, two more statements hold.
(9) If each $B_{m}$ is a strong $\left(J_{m}, G_{0}\right)$-block, then, except for $G$-translates of limit points of $G_{0}$, every limit point of $G$ is a conical limit point of $G$.
(10) $G$ is geometrically finite if and only if $G_{0}$ is geometrically finite.

Let us explain what this theorem claims intuitively. We are given two geometrically finite subgroups $J_{1}, J_{2}$ of $G_{0}$ and a Möbius transformation $f$ conjugating $J_{1}$ to $J_{2}$, none of whose non-zero powers is contained in $G_{0}$. The two topological balls $B_{1}$ and $B_{2}$ are invariant sets under $J_{1}$ and $J_{2}$ with some good conditions respectively, and $f$ translates $\operatorname{Fr} B_{1}$ to $\operatorname{Fr} B_{2}$ inside out. In this situation, the theorem says that the group generated by $G_{0}$ and $f$ is discrete and isomorphic to the HNN-extension of $G_{0}$ by $f$. The group $G$ may contain a parabolic element which is not contained in $G_{0}$, but then it is conjugate to a parabolic element whose fixed point coincides with the fixed point of a parabolic element of $J_{1}$ (or $J_{2}$ ). Moreover, with further assumptions on parabolic fixed points, the theorem claims that the group $G$ is also geometrically finite.

The following lemma constitutes the key step for the proof of our main theorem.

Lemma 3.2. Let $m=1,2$. Under the assumptions of Theorem 3.1, the following naturally follow.
(1) $\operatorname{Fr} B_{m}$ is a $\left(J_{m}, G_{0}\right)$-block.
(2) $\Lambda\left(G_{0}\right) \cap \operatorname{Fr} B_{m}=\Lambda\left(J_{m}\right) \cap \operatorname{Fr} B_{m}=\Lambda\left(J_{m}\right)$.
(3) $B_{1}^{\circ} \cup B_{2}^{\circ} \subset \Omega\left(G_{0}\right)$, where $B_{m}^{\circ}$ is the interior of $B_{m}$ in $\overline{\mathbf{R}}^{n}$ for each $m$.
(4) $B_{m}^{\circ}$ is precisely invariant under $J_{m}$ in $G_{0}$.
(5) For any $g \in G_{0}$, we have $g\left(B_{m}\right) \cap B_{3-m}=g\left(\operatorname{Fr} B_{m}\right) \cap \operatorname{Fr} B_{3-m} \subset \Lambda\left(G_{0}\right)$.
(6) For any $g \in G_{0}-J_{m}$, we have $g\left(B_{m}\right) \cap B_{m}=g\left(\operatorname{Fr} B_{m}\right) \cap \operatorname{Fr} B_{m} \subset \Lambda\left(J_{m}\right)$.
(7) Let $G_{0}=\bigcup_{k} g_{k, m} J_{m}$ be a coset decomposition. If $\left\{g_{k, m}\left(B_{m}\right)\right\}$ is a sequence of distinct translates of $B_{m}$, then $\operatorname{diam}\left(g_{k, m}\left(B_{m}\right)\right) \rightarrow 0$ as $k \rightarrow \infty$.
(8) $\left(A, B_{1}^{\circ}, B_{2}^{\circ}\right)$ is an interactive triple, and $A_{0}$ is precisely invariant under $G_{0}$ in $G$.
(9) $f\left(\operatorname{Fr} B_{1} \cap \Omega\left(J_{1}\right)\right)=\operatorname{Fr} B_{2} \cap \Omega\left(J_{2}\right)$.
(10) We have $D_{0} \cap A=D_{0} \cap A_{0}$.

Proof. We only need to prove (7) and (8).
(7) By (1), we know that $\operatorname{Fr} B_{m}$ is a $\left(J_{m}, G_{0}\right)$-block. Since $J_{m}$ is geometrically finite, then by Theorem 2.10, we have $\operatorname{diam}\left(g_{k, m}\left(\operatorname{Fr} B_{m}\right)\right) \rightarrow 0$. The assumption that $B_{m}$ is a $\left(J_{m}, G_{0}\right)$-block implies that $\operatorname{diam}\left(g_{k, m}\left(B_{m}\right)\right)=$ $\operatorname{diam}\left(g_{k, m}\left(\operatorname{Fr} B_{m}\right)\right) \rightarrow 0$, which shows (7).
(8) By (4), $B_{m}^{\circ}$ is precisely invariant under $J_{m}$ in $G_{0}$. If $g \in J_{m}$, then $g\left(B_{m}^{\circ}\right)=B_{m}^{\circ}$. If $g \in G_{0}-J_{m}$, then $g\left(B_{m}^{\circ}\right) \cap B_{m}=\emptyset \quad$ and $g\left(B_{m}^{\circ}\right) \cap B_{3-m}=\emptyset$. Therefore for any $g \in G_{0}$, we have $g\left(B_{m}^{\circ}\right) \subset B_{m}^{\circ} \cup A$.

Since $f$ maps the exterior of $B_{1}$ onto the interior of $B_{2}$, we have $f\left(A \cup B_{2}^{\circ}\right) \subset f\left(\overline{\mathbf{R}}^{n} \backslash B_{1}\right)=B_{2}^{\circ} \quad$ and $\quad f\left(B_{1}^{\circ}\right)=\overline{\mathbf{R}}^{n} \backslash B_{2}$. Hence $\quad f^{-1}\left(A \cup B_{1}^{\circ}\right) \subset$ $f^{-1}\left(\overline{\mathbf{R}}^{n} \backslash B_{2}\right)=B_{1}^{\circ}$. Thus we have shown that $\left(A, B_{1}^{\circ}, B_{2}^{\circ}\right)$ is an interactive triple.

It is easy to see that $A_{0}=\overline{\mathbf{R}}^{n} \backslash G_{0}\left(B_{1} \cup B_{2}\right) \subset A \backslash G_{0}\left(B_{1}^{\circ} \cup B_{2}^{\circ}\right)$. Therefore, $A_{0}$ is $G_{0}$-invariant. By Theorem 2.6, $A_{0}$ is precisely invariant under $G_{0}$ in $G$.

Now we prove Theorem 3.1. Since the proofs of (1)-(8) of Theorem 3.1 are similar to those in $[10,15]$, we give proofs only for (9) and (10).

Proof of (9). Since we are assuming each $B_{m}$ is a strong ( $J_{m}, G_{0}$ )-block for $m=1,2$, by our assumption mentioned above, $\operatorname{Fr} B_{1}$ is a strong $\left(J_{1}, G\right)$-block, and $\operatorname{Fr} B_{2}$ is a strong $\left(J_{2}, G\right)$-block. Let $x$ be a limit point of $G$, which is not a translate of a limit point of $G_{0}$. By (6), there is a sequence $\left\{g_{k}\left(\operatorname{Fr} B_{1}\right)\right\}$ of distinct $G$-translates of $\operatorname{Fr} B_{1}$ with $\left|g_{k}\right| \rightarrow \infty$ such that $\left\{g_{k}\left(\operatorname{Fr} B_{1}\right)\right\}$ nests about $x$. We can assume that $g_{1}=i d$. Then $g_{k}^{-1}(x)$ and $g_{k}^{-1}\left(\operatorname{Fr} B_{1}\right)$ lie on opposite sides of $\operatorname{Fr} B_{1}$.

Since $J_{1}$ is geometrically finite, by Proposition 2.16 in [10], which is originally due to Bowditch, there are a Dirichlet domain $P$ for $J_{1}$ and standard parabolic regions $B_{p_{1}}, \ldots, B_{p_{k}}$ such that $\bar{P} \backslash \bigcup_{j}\left(\right.$ Int $\left.B_{p_{j}} \cup\left\{p_{j}\right\}\right)$ is compact and contains no limit point of $J_{1}$. Since $P$ is a Dirichlet domain, the interior of $S=\bar{P} \cap \overline{\mathbf{R}}^{n}$ is a fundamental domain for $J_{1}$. Since $g_{k}^{-1}(x)$ is contained in $\Omega\left(J_{1}\right)$
for each $k$, there is an element $q_{k} \in J_{1}$ such that $q_{k} g_{k}^{-1}(x) \in S$. We denote $q_{k} g_{k}^{-1}$ by $f_{k}$.

We claim that $\left\{f_{k}(x)\right\}$ stays away from $\operatorname{Fr} B_{1}$. Suppose, seeking for a contradiction, that $f_{k}(x) \rightarrow w \in \operatorname{Fr} B_{1} \cap \Lambda(G)=\operatorname{Fr} B_{1} \cap \Lambda\left(J_{1}\right)$ passing to a subsequence. Then $w$ is a parabolic fixed point of $J_{1}$, where the rank of $\operatorname{Stab}_{J_{1}}(w)$ is less than $n$, since $S$ intersects $\Lambda\left(J_{1}\right)$ only at the $p_{j}$. This means that all $f_{k}(x)$ lie in some extended horoball $B_{p_{j}}$ if we take a subsequence, where $p_{j}=w$. Let the rank of $\operatorname{Stab}_{J_{1}}(w)$ be $s$ and the rank of $\operatorname{Stab}_{G}(w)$ be $m$.

If $s=m$, then we can assume that the interior of $B_{w} \cap \overline{\mathbf{R}}^{n}$, which is denoted by $U_{w}$, is also a peak domain for $G$. Hence we may assume that $\bar{U}_{w} \backslash\{w\}$ is contained in $\Omega(G)$. On the other hand, since $x$ lies in $\Lambda(G)$, we have $f_{k}(x) \in$ $\Lambda(G)$, which is a contradiction.

Therefore, there is $\delta>0$ such that $d\left(f_{k}(x), z\right)>\delta$ for any $z \in \operatorname{Fr} B_{1}$, where $d$ denotes the ordinary spherical metric on $\overline{\mathbf{R}}^{n}$. Since $\mathrm{Fr} B_{1}$ separates $g_{k}^{-1}\left(\mathrm{Fr} B_{1}\right)$ from $g_{k}^{-1}(x)$, we see that for all $z$ on $\operatorname{Fr} B_{1}$ we have $\delta<d\left(f_{k}(x), z\right)<$ $d\left(f_{k}(x), f_{k}(z)\right)$. On the other hand, since $g_{k}\left(\operatorname{Fr} B_{1}\right)$ nest around $x$, we see that for any point $y$ on $\operatorname{Fr} B_{1}$, the points $f_{k}^{-1}(y)$ converge to $x$. We now apply Proposition 2.7 to conclude that $x$ is a conical limit point of $G$.

If $s<m$, by conjugation and Bieberbach's theorem (also refer to Theorem 2.10 in [10]), we may assume that $w=\infty$,

$$
\operatorname{Stab}_{G}^{*}(w)=\left\langle j_{1}, \ldots, j_{m}\right\rangle \quad \text { and } \quad \operatorname{Stab}_{J_{1}}^{*}(w)=\left\langle h_{1}, \ldots, h_{s}\right\rangle
$$

where $\quad j_{i}(y)=A_{i}(y)+e_{i-1} \quad(i=1, \ldots, m), \quad h_{j}(y)=U_{j}(y)+e_{j-1} \quad(j=1, \ldots, s)$, $y \in \mathbf{R}^{n}, A_{i}$ and $U_{j}$ are rotations, and $A_{i}$ and $U_{j}$ act on $\mathbf{R}^{m}$ trivially. It follows from $\left\{f_{k}(x)\right\} \subset B_{w}$ that $\sum_{i=1}^{s}\left|f_{k}(x)\right|_{i}^{2}$ are bounded away from $\infty$ for all $k$. Since Fr $B_{1}$ is a strong $\left(J_{1}, G\right)$-block, there is $t>0$ such that

$$
U=\left\{z \in \mathbf{R}^{n}: \sum_{i=m+1}^{n}\left|z_{i}\right|^{2}>t\right\}
$$

is a peak domain for $G$ and $\bar{U} \backslash\{\infty\} \subset \Omega(G)$. We know that $\left\{f_{k}(x)\right\} \subset \Lambda(G)$. Hence $\sum_{i=m+1}^{n}\left|f_{k}(x)\right|_{i}^{2}<t$. It follows from $f_{k}(x) \rightarrow \infty$ as $k \rightarrow \infty$ that

$$
\sum_{i=s+1}^{m}\left|f_{k}(x)\right|_{i}^{2} \rightarrow \infty
$$

For each $i=s+1, \ldots, m$, if $\left|f_{k}(x)\right|_{i}^{2} \rightarrow \infty \quad(k \rightarrow \infty)$, then we choose a sequence $\left\{i_{k}\right\}$ of integers such that for all $k,\left|j_{i}^{i_{k}} f_{k}(x)\right|_{i}^{2}<M_{1}$, where $M_{1}>0$; if $\left|f_{k}(x)\right|_{i}^{2}<M_{2}$ for some $M_{2}>0$, we let $i_{k}=0$. Let $l_{k}=j_{m}^{m_{k}} \cdots j_{s+1}^{(s+1)_{k}}$. It follows that $\left|l_{k}\left(f_{k}(x)\right)\right|^{2}<M_{3}\left(M_{3}>0\right)$, and for any $y \in \operatorname{Fr} B_{1}$

$$
\left|l_{k}(y)\right|^{2}=\left|j_{s+1}^{(s+1)_{k}}(y)\right|_{s+1}^{2}+\cdots+\left|j_{m}^{m_{k}}(y)\right|_{m}^{2} \rightarrow \infty
$$

Therefore, there is $\delta>0$ such that $d\left(l_{k} f_{k}(x), l_{k}(z)\right)>\delta$ for all $z \in \operatorname{Fr} B_{1}$. Since $\operatorname{Fr} B_{1}$ separates $g_{k}^{-1}(x)$ from $g_{k}^{-1}\left(\operatorname{Fr} B_{1}\right)$ and hence Fr $B_{1}$ separates $f_{k}(x)$
from $f_{k}\left(\operatorname{Fr} B_{1}\right)$, we see that for all $z$ on $\operatorname{Fr} B_{1}$ we have $\delta<d\left(l_{k} f_{k}(x), l_{k}(z)\right) \leq$ $d\left(l_{k} f_{k}(x), l_{k} f_{k}(z)\right)$. By Lemma 2.1 and choosing a subsequence, we know that $l_{k} f_{k}(z) \rightarrow z^{\prime}$ for all $z \in \overline{\mathbf{R}}^{n+1} \backslash\{x\}$ and $l_{k} f_{k}(x) \rightarrow x^{\prime}$, where $z^{\prime} \neq x^{\prime}$. We now conclude that $x$ is a conical limit point of $G$.

Proof of (10). We first assume that $G_{0}$ is geometrically finite. Then $B_{1}$ and $B_{2}$ are both strong blocks of $G_{0}$, and hence each $\operatorname{Fr} B_{m}$ is a strong $\left(J_{m}, G\right)$-block by our assumption.

Take any point $x \in \Lambda(G)$. Suppose first that $x$ is a parabolic fixed point, where the rank of $H=\operatorname{Stab}_{G}(x)$ is $\kappa<n$. By (9), $x$ is a translate of a limit point of $G_{0}$. Without loss of generality, we may assume that $x$ lies on $\Lambda\left(G_{0}\right)$. Since $G_{0}$ is geometrically finite, $x$ is a parabolic vertex or a conical limit point of $G_{0}$. If $x$ is a conical limit point for $G_{0}$, then so is it for $G$. Since a parabolic fixed point cannot be a conical limit point, $x$ is a parabolic vertex for $G_{0}$. If $x$ lies in $G_{0}\left(\operatorname{Fr} B_{1} \cup \mathrm{Fr} B_{2}\right)$, then, since each $\mathrm{Fr} B_{m}$ is a strong $\left(J_{m}, G\right)$-block, $x$ is a parabolic vertex of $G$. On the other hand, since $G_{0}\left(B_{1}^{\circ} \cup B_{2}^{\circ}\right) \subset \Omega\left(G_{0}\right)$, if $x$ does not lie on any $G_{0}$-translate of either $\operatorname{Fr} B_{1}$ or $\operatorname{Fr} B_{2}$, then $x$ is contained in $A_{0}$. Since $A_{0}$ is precisely invariant under $G_{0}$, we see that $H$ is contained in $G_{0}$. Therefore we have $H=\operatorname{Stab}_{G_{0}}(x)$. There is a peak domain $U$ centred at $x$ for $G_{0}$. Since $U \cap \Lambda\left(G_{0}\right)$ is empty, by choosing $U$ to be sufficiently small, we can assume that $\bar{U} \backslash\{x\} \subset \Omega\left(G_{0}\right)$. By conjugation, we may assume that $x=\infty$. By Bieberbach's theorem, we may further assume that for any $g \in H, g(z)=$ $A z+\mathbf{a}$, where $\mathbf{a} \in \mathbf{R}^{\kappa}$ and $A$ preserves the subspaces $\mathbf{R}^{\kappa}$ and $\mathbf{R}^{n-\kappa}$, respectively. Then $U$ is in the form

$$
U=\left\{x \in \mathbf{R}^{n}: \sum_{i=\kappa+1}^{n} x_{i}^{2}>t\right\},
$$

for $t>0$.
Claim 1. We can choose $U$ small enough so that $U \subset A_{0}$.
Proof. Since $B_{1}$ and $B_{2}$ are bounded and for any $g \in H, \sum_{i=k+1}^{n}|g(x)|_{i}^{2}=$ $\sum_{i=\kappa+1}^{n}|x|_{i}^{2}$, by taking sufficiently large $t$, we can make $g\left(B_{1} \cup B_{2}\right) \cap U=\emptyset$ for any $g \in H$. Hence no $H$-translates of $B_{1}$ or $B_{2}$ intersect $U$ if we choose $U$ to be small enough.

Suppose that there is a sequence $\left\{g_{k}(B)\right\}$ of distinct $G_{0}$-translates of $B_{1}$ or $B_{2}$ such that the projections of $g_{k}(B)$ to the subspace $\mathbf{R}^{n-\kappa}$ converge to $\infty$ for $B=B_{1}$ or $B=B_{2}$. Without loss of generality, we may assume that $B=B_{1}$. Then taking a subsequence, we may assume that $g_{k} \in G_{0}-\left(H \cup J_{1}\right)$ since $J_{1}$ fixes $B_{1}$. Lemma 3.2-(7) implies that $g_{k}(y) \rightarrow \infty$ for all $y \in B_{1}$. Since $g_{k}(U) \cap U=$ $\emptyset$, the projections of $g_{k}(U)$ to the subspace $\mathbf{R}^{n-\kappa}$ are bounded. By Bieberbach's theorem, for each $g_{k}$, we can choose an element $j_{k} \in H$ so that all the $j_{k} \circ g_{k}\left(y_{0}\right)$ lie in a bounded set for a fixed $y_{0} \in U$. Since the projections of $g_{k}\left(B_{1}\right)$ to the
subspace $\mathbf{R}^{n-\kappa}$ converge to $\infty, \infty \notin g_{k}\left(B_{1}\right)$ and $\sum_{i=\kappa+1}^{n}\left|j_{k}(x)\right|_{i}^{2}=\sum_{i=\kappa+1}^{n}|x|_{i}^{2}$, we may assume that all the $j_{k} \circ g_{k}\left(B_{1}\right)$ are distinct and that the projections of $j_{k} \circ g_{k}\left(B_{1}\right)$ to the subspace $\mathbf{R}^{n-\kappa}$ converge to $\infty$ by taking a subsequence. Lemma 3.2-(7) again implies that $j_{k} \circ g_{k}(y) \rightarrow \infty$ for all $y \in B_{1}$. By Lemma 2.1, we may assume that $j_{k} \circ g_{k}(y) \rightarrow \infty$ for all $y$ except for a limit point of $G_{0}$. This leads to a contradiction since $y_{0} \in \Omega\left(G_{0}\right)$ and $j_{k} \circ g_{k}\left(y_{0}\right) \nrightarrow \infty$.

Claim 1 implies that $U \subset A_{0}$ is precisely invariant under $H$ in $G$, which means that $x$ is a parabolic vertex for $G$.

Next assume that $x$ is a limit point of $G$, which is not a parabolic fixed point. If $x$ is a translate of a limit point of $G_{0}$, then $x$ is a conical limit point for $G_{0}$, and hence for $G$. If $x$ is not a translate of a limit point of $G_{0}$, then $x$ is a conical limit point for $G$ by (9). This completes the proof of the "if" part.

To prove the "only if" part, we assume that $G$ is geometrically finite. Then each $\operatorname{Fr} B_{m}$ is a strong $\left(J_{m}, G\right)$-block, and hence each $B_{m}$ is a strong $\left(J_{m}, G_{0}\right)$ block by our assumption. Let $x$ be a point in $\Lambda\left(G_{0}\right)$. Since $G_{0}\left(B_{1}^{\circ} \cup B_{2}^{\circ}\right) \subset$ $\Omega\left(G_{0}\right)$, we have either $x \in G_{0}\left(\operatorname{Fr} B_{1} \cup \operatorname{Fr} B_{2}\right)$ or $x \in A_{0}$.

If $x \in G_{0}\left(\operatorname{Fr} B_{1} \cup \operatorname{Fr} B_{2}\right)$, then for simplicity, we may assume that $x \in \operatorname{Fr} B_{1}$. So we have $x \in \operatorname{Fr} B_{1} \cap \Lambda\left(J_{1}\right)=\operatorname{Fr} B_{1} \cap \Lambda\left(G_{0}\right)$. Since $J_{1}$ is a geometrically finite subgroup of $G_{0}$, we see that $x$ is either a conical limit point for $J_{1}$ or a parabolic fixed point for $J_{1}$. In the former case, $x$ is a conical limit point for $G_{0}$. In the latter case, since $B_{1}$ is a strong $\left(J_{1}, G_{0}\right)$-block, $x$ is a parabolic vertex for $G_{0}$.

Now let $x$ be a point in $A_{0}$. If $x$ is a parabolic fixed point of $G$, then since $A_{0}$ is precisely invariant under $G_{0}$ in $G, \operatorname{Stab}_{G}(x)=\operatorname{Stab}_{G_{0}}(x)$, which shows that $x$ is a parabolic fixed point of $G_{0}$. We assume that the rank of $\operatorname{Stab}_{G}(x)$ is $\kappa<n$. Since $G$ is geometrically finite, there is a peak domain $U$ centred at $x$ for $G$, which is also a peak domain for $G_{0}$. Therefore, $x$ is a parabolic vertex for $G_{0}$. Suppose that $x$ is not a parabolic fixed point of $G$, which means that it is a conical limit point for $G$. In this case, there is a sequence $\left\{h_{k}\right\}$ of distinct elements of $G$ with $d\left(h_{k}(z), h_{k}(x)\right)$ is bounded away from zero for all $z \in \overline{\mathbf{R}}^{n} \backslash\{x\}$ and $h_{k}^{-1}\left(z_{0}\right) \rightarrow x$ for some $z_{0} \in \mathbf{H}^{n+1}$ by Proposition 2.7. Then there are points $x^{\prime} \neq z^{\prime} \in \overline{\mathbf{R}}^{n}$ such that $h_{k}(z) \rightarrow z^{\prime}$ for any $z \in \overline{\mathbf{R}}^{n} \backslash\{x\}$ and $h_{k}(x) \rightarrow x^{\prime}$ by passing to a subsequence if necessary.

Claim 2. By taking a subsequence, we can assume that all the $h_{k}\left(\operatorname{Fr} B_{m}\right)$ are distinct for $m=1,2$.

Proof. If this is not the case, by taking a subsequence, we can assume that all the $h_{k}\left(\operatorname{Fr} B_{m}\right)$ are the same for all $k$. Then $h_{1}^{-1} \circ h_{k}\left(\operatorname{Fr} B_{m}\right)=\operatorname{Fr} B_{m}$. Hence, for each $k$, there is an element $j_{k} \in J_{m}$ such that $h_{k}=h_{1} \circ j_{k}$, where $j_{1}=i d$. Since the $h_{k}$ are distinct elements of $G$, the $j_{k}$ are distinct elements of $J_{m}$. Then $h_{k}^{-1}\left(z_{0}\right)=j_{k}^{-1}\left(h_{1}^{-1}\left(z_{0}\right)\right) \rightarrow x$ for $h_{1}^{-1}\left(z_{0}\right) \in \mathbf{H}^{n+1}$. This shows
that $x$ is a limit point of $J_{m}$, which is a contradiction since $x \in A_{0}$ and $\Lambda\left(J_{m}\right) \subset \operatorname{Fr} B_{m}$.

Now we shall prove that $x$ is a conical limit point of $G_{0}$.
If $\left|h_{k}\right|=\left|f^{\alpha_{k_{n}}} \circ g_{k_{n}} \circ \cdots \circ f^{\alpha_{k_{1}}} \circ g_{k_{1}}\right| \geq 2$, then by taking a subsequence, we may assume that $\alpha_{k_{1}}>0$ for all $k$; for the case $\alpha_{k_{1}}<0$ can be dealt with in the same way. For each $k$, let $h_{k}^{\prime}$ be $h_{k} \circ g_{k_{1}}^{-1} \circ f^{-1}$. Then we have

$$
h_{k}\left(\bar{A}_{0}\right)=h_{k}^{\prime} \circ f \circ g_{k_{1}}\left(\bar{A}_{0}\right) \subset h_{k}^{\prime}\left(B_{2}\right)
$$

since $\bar{A}_{0}$ is $G_{0}$-invariant and $f\left(\bar{A}_{0}\right) \subset f\left(\overline{\mathbf{R}}^{n} \backslash B_{1}^{\circ}\right)=B_{2}$. If all the $h_{k}^{\prime}\left(\operatorname{Fr} B_{2}\right)$ are distinct, then $\operatorname{diam}\left(h_{k}^{\prime}\left(\operatorname{Fr} B_{2}\right)\right) \rightarrow 0$ for $\operatorname{Fr} B_{2}$ is a $\left(J_{2}, G\right)$-block satisfying the conditions in Theorem 2.10. It follows that $\operatorname{diam}\left(h_{k}^{\prime}\left(B_{2}\right)\right)=\operatorname{diam}\left(h_{k}^{\prime}\left(\operatorname{Fr} B_{2}\right)\right) \rightarrow$ 0 and $d\left(h_{k}(z), h_{k}(x)\right) \rightarrow 0$ for all $z \in \operatorname{Fr} B_{1} \subset \bar{A}_{0}$, which is a contradiction. Therefore, we may assume that $h_{k}^{\prime}\left(\operatorname{Fr} B_{2}\right)=h_{1}^{\prime}\left(\operatorname{Fr} B_{2}\right)$ for all $k$ by taking a subsequence. For each $k$, there is an element $j_{k} \in J_{2}$ with $h_{k}^{\prime}=h_{1}^{\prime} \circ j_{k}$, where $j_{1}=i d$. Since $j_{k}$ is contained in $J_{2}$, there is an element $i_{k} \in J_{1}$ such that $f \circ i_{k}=j_{k} \circ f$. These imply that $h_{k}=h_{1}^{\prime} \circ f \circ i_{k} \circ g_{k_{1}}$. Since all the $h_{k}\left(\operatorname{Fr} B_{2}\right)$ are distinct, $\left\{i_{k} \circ g_{k_{1}}\right\}$ is a sequence of distinct elements of $G_{0}$. This implies that $g_{k_{1}}^{-1} \circ i_{k}^{-1}\left(\left(h_{1}^{\prime} \circ f\right)^{-1}\left(z_{0}\right)\right) \rightarrow x$ and that there is $\varepsilon>0$ such that $d\left(i_{k} \circ g_{k_{1}}(z)\right.$, $\left.i_{k} \circ g_{k_{1}}(x)\right)>\varepsilon$ for all $k$ and any $z \in \overline{\mathbf{R}}^{\eta} \backslash\{x\}$. This implies that $x$ is a conical limit point of $G_{0}$ by Proposition 2.7.

If $\left|h_{k}\right|=1$ for all $k$, then set $h_{k}$ to be $g_{k_{2}} \circ f^{\varepsilon_{k}} \circ g_{k_{1}}$, where $\varepsilon_{k}= \pm 1$. By taking a subsequence, we may assume that $\varepsilon_{k}=1$ for all $k$. Then $g_{k_{2}}=i d$ or $g_{k_{2}} \notin J_{2}$. If $g_{k_{2}}=i d$ for all $k$, then $\left\{g_{k_{1}}\right\}$ is a sequence of distinct elements of $G_{0}$ since all the $h_{k}\left(\operatorname{Fr} B_{1}\right)$ are distinct. Thus, $g_{k_{1}}(x) \rightarrow f^{-1}\left(x^{\prime}\right)$ and $g_{k_{1}}(z) \rightarrow$ $f^{-1}\left(z^{\prime}\right)$ for all $z \neq x$. Therefore, for all $z \in \overline{\mathbf{R}}^{\backslash} \backslash\{x\}$ there is $\varepsilon>0$ such that $d\left(g_{k_{1}}(z), g_{k_{1}}(x)\right)>\varepsilon$. Since $g_{k_{1}}^{-1}\left(f^{-1}\left(z_{0}\right)\right) \rightarrow x$ for $f^{-1}\left(z_{0}\right) \in \mathbf{H}^{n+1}, x$ is a conical limit point of $G_{0}$ by Proposition 2.7.

If $g_{k_{2}} \notin J_{2}$ for all $k$, then $h_{k}\left(\bar{A}_{0}\right) \subset g_{k_{2}}\left(B_{2}\right)$. If all the $g_{k_{2}}\left(B_{2}\right)$ are distinct, then $\operatorname{diam}\left(g_{k_{2}}\left(B_{2}\right)\right)=\operatorname{diam}\left(g_{k_{2}}\left(\operatorname{Fr} B_{2}\right)\right) \rightarrow 0$ by Lemma 3.2-(7), which violates the fact that $d\left(h_{k}(z), h_{k}(x)\right)$ is bounded away from zero for all $z \in \overline{\mathbf{R}}^{n} \backslash\{x\}$. Therefore we can assume that all the $g_{k_{2}}\left(B_{2}\right)$ are the same by taking a subsequence. For each $k$, there is an element $j_{k} \in J_{2}$ with $g_{k_{2}}=g_{1_{2}} \circ j_{k}$, with $j_{1}=i d$, where $g_{1_{2}}$ denotes $g_{k_{2}}$ with $k=1$. Since $j_{k} \in J_{2}$, there is an element $i_{k} \in J_{1}$ such that $f \circ i_{k}=j_{k} \circ f$. These imply that $h_{k}=g_{1_{2}} \circ f \circ i_{k} \circ g_{k_{1}}$. Since all $h_{k}\left(\operatorname{Fr} B_{2}\right)$ are distinct, $\left\{i_{k} \circ g_{k_{1}}\right\}$ is a sequence of distinct elements of $G_{0}$. It follows that $\left(i_{k} \circ g_{k_{1}}\right)^{-1}\left(\left(g_{1_{2}} \circ f\right)^{-1}\left(z_{0}\right)\right) \rightarrow x$, where $\left(g_{1_{2}} \circ f\right)^{-1}\left(z_{0}\right) \in \mathbf{H}^{n+1}$, and for all $z \in \overline{\mathbf{R}}^{n} \backslash\{x\}$

$$
i_{k} \circ g_{k_{1}}(z) \rightarrow f^{-1} \circ g_{1_{2}}^{-1}\left(z^{\prime}\right)
$$

and $i_{k} \circ g_{k_{1}}(x) \rightarrow f^{-1} \circ g_{1_{2}}^{-1}\left(x^{\prime}\right)$. Therefore, for all $z \in \overline{\mathbf{R}}^{n} \backslash\{x\}$, there is a $\varepsilon>0$ such that $d\left(i_{k} \circ g_{k_{1}}(z), i_{k} \circ g_{k_{1}}(x)\right)>\varepsilon$. Then Proposition 2.7 implies that $x$ is a conical limit point of $G_{0}$. We can argue in the same way even when all $h_{k}$ are in the form $g_{k_{2}} \circ f^{-1} \circ g_{k_{1}}$.

This completes the proof.

Now for an element $g=f^{\alpha_{n}} \circ g_{n} \circ \cdots \circ f^{\alpha_{1}} \circ g_{1} \in G$, we write $g \leq 0$ if either $g_{1} \notin J_{1}$, or $g_{1} \in J_{1}$ and $\alpha_{1}<0 ; g>0$ if $g_{1} \in J_{1}$ and $\alpha_{1}>0 ; g \geq 0$ if either $g_{1} \notin J_{2}$, or $g_{1} \in J_{2}$ and $\alpha_{1}>0$; and $g<0$ if $g_{1} \in J_{2}$ and $\alpha_{1}<0$.

Using this notation, we consider a coset decomposition of $G$ with respect to $J_{m}$ for $m=1,2$ as follows.

$$
\begin{aligned}
& G=J_{1} \cup\left(\bigcup_{l, k} a_{l, k} J_{1}\right) \cup\left(\bigcup_{l, k} b_{l, k} J_{1}\right), \\
& G=J_{2} \cup\left(\bigcup_{l, k} c_{l, k} J_{2}\right) \cup\left(\bigcup_{l, k} d_{l, k} J_{2}\right),
\end{aligned}
$$

where $\left|a_{l, k}\right|=\left|b_{l, k}\right|=\left|c_{l, k}\right|=\left|d_{l, k}\right|=l, a_{l, k} \leq 0, b_{l, k}>0, c_{l, k} \geq 0$ and $d_{l, k}<0$.
Following Maskit, set $T_{0, m}=G_{0}\left(B_{m}\right)$ for $m=1,2$ and $T_{0}=T_{0,1} \cup T_{0,2}$. Let $C_{0}$ be the complement of $T_{0}$ in $\overline{\mathbf{R}}^{n}$. For $l>0$, we set $T_{l, 1}=\bigcup_{k} a_{l, k}\left(B_{1}\right)$ and $T_{l, 2}=\bigcup_{k} c_{l, k}\left(B_{2}\right)$, where $\left|a_{l, k}\right|=\left|c_{l, k}\right|=l, \quad a_{l, k} \leq 0$ and $c_{l, k} \geq 0$. We denote $T_{l, 1} \cup T_{l, 2}$ by $T_{l}$, and let $C_{l}$ be the complement of $T_{l}$ in $\overline{\mathbf{R}}^{n}$. It is easy to prove that $\left\{T_{n}\right\}$ is a decreasing sequence with respect to the inclusion, that is, $T_{0} \supset T_{1} \supset T_{2} \supset \cdots$.

Corollary 3.3. Under the hypotheses of Theorem 3.1, if $\left(B_{1}, B_{2}\right)$ is precisely invariant under $\left(J_{1}, J_{2}\right)$ in $G_{0}$, then each $\partial B_{m}$ is a strong $\left(J_{m}, G\right)$-block if and only if each $B_{m}$ is a strong $\left(J_{m}, G_{0}\right)$-block and hence all the conclusions in Theorem 3.1 hold.

Proof. By assumption, we know that $\operatorname{Fr} B_{m}$ is precisely invariant under $J_{m}$ in $G$. Let $x$ be a parabolic fixed point of $J_{1}$. Since $\operatorname{Fr} B_{1}$ is precisely invariant under $J_{1}$ in $G$, we know that

$$
\operatorname{Stab}_{J_{1}}(x)=\operatorname{Stab}_{G_{0}}(x)=\operatorname{Stab}_{G}(x) .
$$

Set $H=\operatorname{Stab}_{G}(x)$.
The "if" part. We first assume that each $B_{m}$ is a strong $\left(J_{m}, G_{0}\right)$-block. Let $x$ be a parabolic fixed point of $J_{1}$, where the rank of $H$ is $\kappa<n$. Then there is a peak domain $U$ centred at $x$ for $G_{0}$. By making $U$ smaller if necessary, we have the following conditions:
(1) $f(U)$ is a peak domain centred at $f(x)$ for $G_{0}$;
(2) $G_{0}(U) \cap f(U)=\emptyset$ by Lemma 2.9;
(3) $\bar{U} \backslash\{x\} \subset \Omega\left(G_{0}\right)$ and $f(\bar{U}) \backslash\{f(x)\} \subset \Omega\left(G_{0}\right)$ since $(U \cup f(U)) \cap \Lambda\left(G_{0}\right)=$ $\emptyset$.
By conjugation, we may assume that $x=\infty$. Decompose $\mathbf{R}^{n}$ into $\mathbf{R}^{\kappa} \times \mathbf{R}^{n-\kappa}$. By Bieberbach's theorem, we may assume that $\operatorname{Stab}_{G}^{*}(\infty)$ is the maximal abelian subgroup of finite index in $\operatorname{Stab}_{G}(\infty)$ which appeared in Definition 2.5, so that for any $g \in \operatorname{Stab}_{G}(\infty), g(z)=A z+\mathbf{b}$, where the rotation $A$ leaves $\mathbf{R}^{\kappa}$ and $\mathbf{R}^{n-\kappa}$ invariant and the vector $\mathbf{b}$ lies in the subspace $\mathbf{R}^{\kappa}$,
whereas if $g$ lies in $\operatorname{Stab}_{G}^{*}(\infty)$, then its restriction to the subspace $\mathbf{R}^{\kappa}$ is a translation. Thus we have $U$ in the form

$$
U=\left\{x \in \mathbf{R}^{n}: \sum_{i=\kappa+1}^{n} x_{i}^{2}>t^{2}\right\},
$$

with $t>0$.
If $\kappa=n-1$, then $U$ is the union of two open sets $U_{1}$ and $U_{2}$, where $U_{1}=\left\{x \in \mathbf{R}^{n}: x_{n}>t\right\} \subset B_{1}^{\circ}$ and $U_{2}=\left\{x \in \mathbf{R}^{n}: x_{n}<-t\right\}$ is in the exterior of $B_{1} \cup B_{2}$.

Claim 3. We can choose $U$ to be small enough so that $U_{2} \subset A_{0}$ and $f\left(U_{1}\right) \subset A_{0}$.

Proof. We need only to prove that by choosing $U_{2}$ small enough, no $G_{0}$ translates of $B_{1}$ or $B_{2}$ intersect $U_{2}$. Suppose, on the contrary, that there is a sequence $\left\{g_{k}(B)\right\}$ of distinct $G_{0}$-translates of $B_{1}$ or $B_{2}$ intersecting $\left\{x \in \mathbf{R}^{n}\right.$ : $\left.x_{n}<-s\right\}$ for any large $s(s>0)$, where $B=B_{1}$ or $B_{2}$. By taking a subsequence and interchanging the indices if necessary, we may assume that $B=B_{1}$. This means that the projections of $g_{k}\left(B_{1}\right)$ to the subspace $\mathbf{R}^{n-(n-1)}$ converge to $\infty$. We may assume that $g_{k}$ lies in $G_{0}-J_{1}$ since $J_{1}$ stabilises $B_{1}$. Then Lemma 3.2-(7) implies that $\operatorname{diam}\left(g_{k}\left(B_{1}\right)\right) \rightarrow 0$. Hence $g_{k}(y) \rightarrow \infty$ for all $y \in B_{1}$ since $\left\{g_{k}\left(B_{1}\right)\right\}$ accumulates at $\infty$. By Lemma 2.1 and by choosing a suitable subsequence of $\left\{g_{k}\right\}$ (still denoted by the same symbol), we have $g_{k}(y) \rightarrow \infty$ for all $y$ with at most one exception, which must be a limit point of $G_{0}$. Since $U \subset \Omega\left(G_{0}\right), g_{k}(y) \rightarrow \infty$ for all $y \in U$. Since $g_{k}(U) \cap U=\emptyset$, the projections of $g_{k}(U)$ to the subspace $\mathbf{R}^{n-(n-1)}$ are bounded. By Theorem 2.9, for some fixed $y_{0} \in U$ and for each $k$, we can choose an element $j_{k} \in H$ so that all $j_{k} \circ g_{k}\left(y_{0}\right)$ lie in a bounded set. Since for each $k, \infty \notin g_{k}\left(B_{1}\right), \infty \notin j_{k} g_{k}\left(B_{1}\right)$. Since $\left|\left(j_{k} g_{k}(y)\right)\right|_{n}=\left|\left(g_{k}(y)\right)\right|_{n}$ and the projections of $g_{k}\left(B_{1}\right)$ to the subspace $\mathbf{R}^{n-(n-1)}$ converge to $\infty$, we see that all the $j_{k} g_{k}$ are distinct and $\left\{j_{k} g_{k}\left(B_{1}\right)\right\}$ also accumulates at $\infty$. By Lemma 3.2-(7), $j_{k} g_{k}(y) \rightarrow \infty$ for all $y \in B_{1}$. By Lemma 2.1, $j_{k} g_{k}(y) \rightarrow \infty$ for all $y$ except for a limit point of $G_{0}$ by passing to a subsequence if necessary. This is a contradiction since $\left\{j_{k} g_{k}\left(y_{0}\right)\right\}$ does not converge to $\infty$ and $y_{0} \in \Omega\left(G_{0}\right)$. By a similar argument, we can assume that $f\left(U_{1}\right) \subset A_{0}$. This proves our claim.

Then for any $g \in G-G_{0}$,

$$
g(U) \cap U=\left(g\left(U_{1}\right) \cap U_{1}\right) \cup\left(g\left(U_{1}\right) \cap U_{2}\right) \cup\left(g\left(U_{2}\right) \cap U_{1}\right) \cup\left(g\left(U_{2}\right) \cap U_{2}\right),
$$

where $g\left(U_{2}\right) \cap U_{2}=\emptyset$ since $U_{2} \subset A_{0}$ and $A_{0}$ is precisely invariant under $G_{0}$ in $G$ by Lemma 3.2-(8). By dividing the proof into three cases, we will show that $g(U) \cap U=\emptyset$ for any $g \in G-G_{0}$ when $\kappa=n-1$. Let $g=f^{\alpha_{n}} \circ g_{\alpha_{n}} \circ \cdots \circ$ $f^{\alpha_{1}} \circ g_{\alpha_{1}} \in G-G_{0}$ be a normal form with length $l(l>0)$.

CASE 1. $g\left(U_{1}\right) \cap U_{1}=\emptyset$ for any $g \in G-G_{0}$.
If $f \circ g \circ f^{-1} \in G_{0}$, then there is an element $j \in G_{0}$ with $g=f^{-1} \circ j \circ f$. Since $g$ is a normal form, $j \not \ddagger J_{2}$. Thus $j \notin \operatorname{Stab}_{G_{0}}(f(x))$ since $\operatorname{Stab}_{G_{0}}(f(x))=$ $\operatorname{Stab}_{J_{2}}(f(x))$, and hence $j \circ f\left(U_{1}\right) \cap f\left(U_{1}\right)=\emptyset$ for $f(U)$ is a peak domain centred at $f(x)$ for $G_{0}$. Therefore, $g\left(U_{1}\right) \cap U_{1}=\emptyset$ for this case. If $f \circ g \circ$ $f^{-1} \notin G_{0}$, then $f\left(g\left(U_{1}\right) \cap U_{1}\right)=f \circ g \circ f^{-1}\left(f\left(U_{1}\right)\right) \cap f\left(U_{1}\right) \subset f \circ g \circ f^{-1}\left(A_{0}\right) \cap$ $A_{0}=\emptyset$ for $A_{0}$ is precisely invariant under $G_{0}$ in $G$.

CASE 2. $g\left(U_{1}\right) \cap U_{2}=\emptyset$ for any $g \in G-G_{0}$.
If $g_{1} \in J_{1}$ and $\alpha_{1}<0$ or $g_{1} \notin J_{1}$, then $g\left(U_{1}\right) \subset g\left(B_{1}^{\circ}\right) \subset T_{n}^{\circ} \subset T_{0}^{\circ}$. It follows that in this case $g\left(U_{1}\right) \cap U_{2}=\emptyset$. If $\alpha_{1}>0$ and $g_{1} \in J_{1}$, then there is an element $h_{1} \in J_{2}$ with $f \circ g_{1}=h_{1} \circ f$. Thus $g=f^{\alpha_{n}} \circ g_{n} \circ \cdots \circ f^{\alpha_{1}-1} \circ h_{1} \circ f$ is a normal form of length $l$. If $l>1$, then $f^{\alpha_{n}} \circ g_{n} \circ \cdots \circ f^{\alpha_{1}-1}$ is a normal form of length $l-1$ and $g\left(U_{1}\right)=f^{\alpha_{n}} \circ g_{n} \circ \cdots \circ f^{\alpha_{1}-1} \circ h_{1} \circ f\left(U_{1}\right) \subset f^{\alpha_{n}} \circ g_{n} \circ \cdots \circ f^{\alpha_{1}-1} \circ h_{1}\left(A_{0}\right)$ $=f^{\alpha_{n}} \circ g_{n} \circ \cdots \circ f^{\alpha_{1}-1}\left(A_{0}\right) \subset T_{0}^{\circ}$ by Lemma 2.6. If $l=1$, then $g=g_{2} \circ f \circ g_{1}=$ $g_{2} \circ h_{1} \circ f$ and $g\left(U_{1}\right) \cap U_{2}=g_{2} \circ h_{1}\left(f\left(U_{1}\right)\right) \cap U_{2} \subset g_{2} \circ h_{1}(f(U)) \cap U=\emptyset$ by the second assumption for $U$ and $f(U)$. Thus for this case, $g\left(U_{1}\right) \cap U_{2}=\emptyset$.

CASE 3. $g\left(U_{2}\right) \cap U_{1}=\emptyset$ for any $g \in G-G_{0}$.
Since $g \notin G_{0}, g^{-1} \notin G_{0}$ and $g\left(U_{2}\right) \cap U_{1}=g\left(U_{2} \cap g^{-1}\left(U_{1}\right)\right)=\emptyset$ by Case 2 .
These discussions show that $U$ is precisely invariant under $H$ in $G$, i.e., $U$ is a peak domain centred at $x$ for $G$ and $x$ is a parabolic vertex of $G$.

If $\kappa<n-1$, then we can assume that $U$ lies in $B_{1}^{\circ}$ or in the exterior of $B_{1}$ and $B_{2}$. If $U \subset B_{1}^{\circ}$, then we may assume that $f(U) \subset A_{0}$ by the same argument as in Claim 3. It follows that $g(U) \cap U=\emptyset$ for all $g \in G-G_{0}$ by similar discussions as in Case 1. If $U$ is in the exterior of $B_{1} \cup B_{2}$, we may assume that $U \subset A_{0}$ by similar discussions as in Claim 3. Thus $g(U) \cap U \subset g\left(A_{0}\right) \cap A_{0}=\emptyset$ for all $g \in G-G_{0}$. In either case, we can choose $U$ small enough so that $U$ is a peak domain for $G$. Thus $x$ is a parabolic vertex of $G$. We thus have shown that $\operatorname{Fr} B_{1}$ is a strong $\left(J_{1}, G\right)$-block.

We now consider $\operatorname{Fr} B_{2}$. Let $x$ be a parabolic fixed point of $J_{2}$ in $\operatorname{Fr} B_{2}$. Then $f^{-1}(x)$ is a parabolic fixed point of $G$ in $\operatorname{Fr} B_{1}$. Since $\operatorname{Fr} B_{1}$ is a strong $\left(J_{1}, G\right)$-block, $f^{-1}(x)$ is a parabolic vertex of $G$. Thus $x$ is a parabolic vertex of $G$ and $\operatorname{Fr} B_{2}$ is a strong $\left(J_{2}, G\right)$-block.

The "only if" part. We assume that $\operatorname{Fr} B_{1}$ is a strong $\left(J_{1}, G\right)$-block. For any parabolic fixed point $x \in \operatorname{Fr} B_{1}$ of $G_{0}$, if the rank of $\operatorname{Stab}_{G_{0}}(x)$ is $\kappa<n$, then so is $\operatorname{Stab}_{G}(x)$ for $\operatorname{Stab}_{G}(x)=\operatorname{Stab}_{J_{1}}(x)=\operatorname{Stab}_{G_{0}}(x)$. Then there is a peak domain $U$ centred at $x$ for $G$, which is also a peak domain for $G_{0}$. Therefore $B_{1}$ is a strong ( $J_{1}, G_{0}$ )-block since $B_{1}^{\circ} \subset \Omega\left(G_{0}\right)$. If $x \in \operatorname{Fr} B_{2}$ is a parabolic fixed point of $G_{0}$, where the rank of $\operatorname{Stab}_{G_{0}}(x)$ is $\kappa<n$, then $f^{-1}(x) \in \operatorname{Fr} B_{1}$ is a parabolic fixed point of $G_{0}$ with rank $k$. Since $B_{1}$ is strong, there is a peak domain $U$ centred at $f^{-1}(x)$ for $G_{0}$. Then $f(U)$ is a peak domain centred at $x$ for $G_{0}$. This shows that $B_{m}$ is a strongly $\left(J_{m}, G_{0}\right)$-block for each $m(m=1,2)$.

If we assume that $\operatorname{Fr} B_{2}$ is a strong $\left(J_{2}, G\right)$-block, then by the reasoning similar to the above, we can show that each $B_{m}$ is a strong $\left(J_{m}, G_{0}\right)$-block.

## 4. Applications

4.1. The statement of Theorem 4.1. Following [19] or [20], we denote by $\operatorname{PSL}\left(2, \Gamma_{n}\right)$ the $n$-dimensional Clifford matrix group. Then $\operatorname{PSL}\left(2, \Gamma_{n}\right)$ is isomorphic to $M\left(\overline{\mathbf{R}}^{n}\right)$ (cf. [1]).

We assume that $n=3$. We denote the standard basis of $\mathbf{R}^{3}$ by $1, e_{1}$ and $e_{2}$. Each element $x \in \mathbf{R}^{3}$ is expressed as

$$
x=x_{1}+x_{2} e_{1}+x_{3} e_{2} .
$$

We set

$$
\begin{gathered}
j_{1}=\left(\begin{array}{cc}
e_{1} & 0 \\
0 & -e_{1}
\end{array}\right), \quad j_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad j_{3}=\left(\begin{array}{cc}
e_{1} & 1 \\
0 & -e_{1}
\end{array}\right), \\
j_{4}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad f=\left(\begin{array}{cc}
1 & -10 e_{2} \\
0 & 1
\end{array}\right)
\end{gathered}
$$

and

$$
J_{1}=J_{2}=\left\langle j_{1}, j_{2}, j_{3}\right\rangle, \quad G_{0}=\left\langle j_{4}, J_{1}\right\rangle, \quad G_{1}=\langle f\rangle \quad \text { and } \quad G=\left\langle G_{0}, G_{1}\right\rangle .
$$

By the definition of Clifford algebra, $j_{1}, j_{2}, j_{3}, j_{4}$ and $f$ act on $\mathbf{R}^{3}$ as follows.

$$
\begin{aligned}
& j_{1}(x)=-x_{1}-x_{2} e_{1}+x_{3} e_{2}, \quad j_{2}(x)=\left(x_{1}+1\right)+x_{2} e_{1}+x_{3} e_{2}, \\
& j_{3}(x)=-x_{1}+\left(1-x_{2}\right) e_{1}+x_{3} e_{2}, \\
& j_{4}(x)=\frac{-x_{1}+x_{2} e_{1}+x_{3} e_{2}}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}, \quad f(x)=x_{1}+x_{2} e_{1}+\left(x_{3}-10\right) e_{2},
\end{aligned}
$$

where $x=x_{1}+x_{2} e_{1}+x_{3} e_{2}$.
Then we have the following.
Theorem 4.1. $G$ is geometrically finite.
We shall prove this theorem in the remainder of the paper.

### 4.2. Several propositions.

Proposition 4.2. $\operatorname{Stab}_{G_{0}}(\infty)=J_{1}=J_{2}$, which means that $J_{m}(m=1,2)$ is a geometrically finite subgroup of $G_{0}$.

Proof. We can see that $J_{1}=J_{2} \subset \operatorname{Stab}_{G_{0}}(\infty)$. Now take any $g \in \operatorname{Stab}_{G_{0}}(\infty)$. Then

$$
g=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) .
$$

Since $a d=1$ and $a, d$ are Gaussian integers, we may assume that $a=d=1$ or $a=e_{1}$ and $d=-e_{1}$.

If $a=e_{1}$ and $d=-e_{1}$, then

$$
g=j_{1}\left(\begin{array}{cc}
1 & -e_{1} b \\
0 & 1
\end{array}\right)
$$

where $-e_{1} b$ is also a Gaussian integer. Therefore, we only need to consider the case when $a=d=1$, i.e., $g=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$, where $b$ is a Gaussian integer. We can put $b=\alpha+e_{1} \beta$, where $\alpha, \beta$ are integers. Then

$$
g=j_{2}^{\alpha} \circ\left(j_{1}^{-1} \circ j_{3}\right)^{-\beta} .
$$

By the statements of Section 5 in [10], we see that
Proposition 4.3. (1) $G_{0}$ is geometrically finite;
(2) $\Lambda\left(G_{0}\right)=G_{0}(\infty) \cup\left\{\right.$ the conical limit points of $\left.G_{0}\right\}$;
(3) $\infty$ is a parabolic vertex of $G_{0}$ and $U$ is a peak domain of $\infty$, where

$$
U=\left\{x \in \mathbf{R}^{3}: x_{3}^{2}>16\right\} .
$$

Set

$$
\begin{gathered}
\text { Fr } B_{1}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}: x_{3}=5\right\} \cup\{\infty\}, \quad B_{1}=\left\{x \in \mathbf{R}^{3}: x_{3} \geq 5\right\} \cup\{\infty\}, \\
\text { Fr } B_{2}=\left\{x \in \mathbf{R}^{3}: x_{3}=-5\right\} \cup\{\infty\}, \quad B_{2}=\left\{x \in \mathbf{R}^{3}: x_{3} \leq-5\right\} \cup\{\infty\}, \\
A=\overline{\mathbf{R}}^{3} \backslash\left(B_{1} \cup B_{2}\right) \quad \text { and } \quad A_{0}=A \backslash G_{0}\left(B_{1} \cup B_{2}\right) .
\end{gathered}
$$

Proposition 4.4. Each $B_{m}$ is a $\left(J_{m}, G_{0}\right)$-block $(m=1,2)$.
Proof. Obviously, $\Lambda\left(J_{m}\right)=\{\infty\}$ and $B_{m} \cap \Omega\left(J_{m}\right)=B_{m} \cap \Omega\left(G_{0}\right)=B_{m} \backslash\{\infty\}$. By Propositions 4.2 and 4.3, we know that $B_{m} \cap \Omega\left(G_{0}\right)$ is precisely invariant under $J_{m}$ in $G_{0}$.

Proposition 4.5. $\quad A_{0} \neq \emptyset$.
Proof. Since $B_{1}^{\circ} \cup B_{2}^{\circ} \subset \Omega\left(G_{0}\right)$ by Lemma 3.2-(3), we have $\Lambda\left(G_{0}\right) \subset A_{0} \cup$ $G_{0}\left(\operatorname{Fr} B_{1} \cup \operatorname{Fr} B_{2}\right)$. On the other hand, $\Lambda\left(G_{0}\right) \cap G_{0}\left(\operatorname{Fr} B_{1} \cup \operatorname{Fr} B_{2}\right)=G_{0}\left(\Lambda\left(J_{1}\right) \cup\right.$ $\left.\Lambda\left(J_{2}\right)\right)=G_{0}(\infty)$. An easy computation shows that $\pm \sqrt{3}$ are fixed points of a loxodromic element $\left(\begin{array}{cc}2 & 3 \\ 1 & 2\end{array}\right) \in G_{0}$, they are conical limit points of $G_{0}$ and are not $G_{0}$-equivalent to $\infty$. Therefore, $\pm \sqrt{3} \in A_{0}$.

Proposition 4.6. $B_{1}$ and $B_{2}$ are jointly f-blocked.
Proof. By Propositions 4.3 and 4.4 , we know that $\left(B_{1} \cap \Omega\left(G_{0}\right), B_{2} \cap \Omega\left(G_{0}\right)\right.$ ) is precisely invariant under $\left(J_{1}, J_{2}\right)$ in $G_{0}$. By computation, $f\left(\overline{\mathbf{R}}^{3} \backslash B_{1}\right)=B_{2}^{\circ}$ and $f J_{1} f^{-1}=J_{2}$. Combining these with Proposition 4.4 , we see that $B_{1}$ and $B_{2}$ are jointly $f$-blocked.

Proposition 4.7. Set

$$
D_{0}=\left\{x \in \mathbf{R}^{3}:-\frac{1}{2}<x_{1} \leq \frac{1}{2}, 0<x_{2} \leq \frac{1}{2},|x| \geq 1\right\} \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right),
$$

where $A_{1}=\left\{x \in \mathbf{R}^{3}: x_{2}=0,-\frac{1}{2} \leq x_{1} \leq 0\right\}, A_{2}=\left\{x \in \mathbf{R}^{3}: x_{2}=\frac{1}{2},-\frac{1}{2} \leq x_{1} \leq 0\right\}$, and $A_{3}=\left\{x \in \mathbf{R}^{3}:|x|=1,-\frac{1^{2}}{2} \leq x_{1} \leq 0\right\}$. Then $D_{0}$ is maximal.

Proof. It is obvious that $D_{0}$ is a fundamental set for $G_{0}$. Since $D_{0} \cap B_{m}$ is a fundamental set for the action of $J_{m}$ on $B_{m}$ and $f\left(D_{0} \cap \mathrm{Fr} B_{1}\right)=D_{0} \cap \mathrm{Fr} B_{2}$, $D_{0}$ is maximal.

Proposition 4.8. Fr $B_{m}$ is a strong $\left(J_{m}, G\right)$-block $(m=1,2)$.
Proof. It is obvious that the rank of $\operatorname{Stab}_{G}(\infty)$ is 3. It follows that $\infty$ is a parabolic vertex of $G$. Obviously, $G_{0} \cap G_{1}=\{i d\}$. By Theorem 3.1, $G=$ $\left\langle G_{0}, G_{1}\right\rangle=G_{0} *_{f}, G$ is discrete and $\operatorname{Fr} B_{m}$ is a strong $\left(J_{m}, G\right)$-block ( $m=1,2$ ).

Now we are ready to prove Theorem 4.1.
4.3. The proof of Theorem 4.1. Since $G_{0}$ is geometrically finite, each $B_{m}$ is a strong $\left(J_{m}, G_{0}\right)$-block. On the other hand, by Proposition 4.8, each $\operatorname{Fr} B_{m}$ is a strong $\left(J_{m}, G\right)$-block $(m=1,2)$. By Theorem 3.1, $G$ is geometrically finite.

From the proof of Theorem 4.1, we can easily get the following corollary.
Corollary 4.9. $B_{m}$ is not precisely invariant under $J_{m}$ in $G_{0}$.
Remark 4.1. The group $G$ in Theorem 4.1 does not satisfy the condition that " $B_{m}(m=1,2)$ is precisely invariant under $J_{m}$ in $G_{0}$ ", which is required in Theorem 1.1.

## References

[1] L. V. Ahlfors, On the fixed points of Möbius transformations in $\bar{R}^{n}$, Ann. Acad. Sci. Fen., Ser. A. I. Math. 10 (1985), 15-27.
[2] B. N. Apanasov, Limit set and geometric finiteness of Kleinian groups, Complex Analysis and Applications '81, Varna, 1981, Publ. House Bulgar. Acad. Sci., Sofia, 1984, 14-28.
[3] B. N. Apanasov, Discrete groups in space and uniformization problems, Kluwer Academic Publishers Group, Dordrecht, 1991.
[4] B. N. Apanasov, Conformal geometry of discrete groups and manifolds, de Gruyter expositions in mathematics 32, Walter de Gruyter, Berlin, New York, 2000.
[5] A. F. Beardon, The geometry of discrete groups, Springer-Verlag, New-York/Berlin, 1983.
[6] B. H. Bowditch, Geometric finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), 245-317.
[7] B. H. Bowditch, Geometric finiteness with variable genative curvature, Duke Math. J. 77 (1995), 229-274.
[8] D. Ivascu, On Klein-Maskit combination theorems, Lecture notes in math., Springer, Berlin, 1979.
[9] F. Klein, Neue Beiträge zur Riemann'schen Funktionentheorie, Math. Ann. 21 (1883), 141-214.
[10] L. Li, K. Ohshika and X. Wang, On Klein-Maskit combination theorem in space I, Osaka J. Math. 46 (2009), 1097-1141.
[11] B. Maskit, Construction of Kleinian groups, Proc. Conf. on Complex Analysis, Minnesota, 1964, Springer-Verlag, 1965.
$[12]$ B. Maskit, On Klein's combination theorem, Trans. Amer. Math. Soc. 120 (1965), 499-509.
[13] B. Maskit, On Klein's combination theorem II, Trans. Amer. Math. Soc. 131 (1968), 32-39.
[14] B. Maskit, On Klein's combination theorem III, Advances in the thoery of Riemann surfaces, Ann. of Math. Stud. 66, Princeton Univ. Press, Princeton, N. J., 1971, 297-316.
[15] B. Maskit, Kleinian groups, Graduate text in mathematics, Springer, 1988.
[16] B. Maskit, On Klein's combination theorem IV, Trans. Amer. Math. Soc. 336 (1993), 265-294.
[17] B. Maskit, Decomposition of certain Kleinian groups, Acta Math. 130 (1973), 243-263.
[18] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Springer-Verlag, 1994.
[19] X. Wang and W. Yang, Discreteness criteria of Möbius groups of high dimensions and convergence theorem of Kleinian groups, Adv. in Math. 159 (2001), 68-82.
[20] P. Waterman, Möbius transformations in several dimensions, Adv. in Math. 101 (1993), 87-113.

Liulan Li<br>Department of Mathematics and Computational Science<br>Hengyang Normal University Hengyang<br>Hunan 421008<br>P. R. China<br>E-mail: lanlimail2008@yahoo.com.cn<br>Ken'ichi Ohshika<br>Department of Mathematics<br>Graduate School of Science Osaka University<br>Toyonaka, Osaka 560-0043<br>Japan<br>E-mail: ohshika@math.sci.osaka-u.ac.jp<br>Xiantao Wang<br>Department of Mathematics<br>Shantou University<br>Shantou, Guangdong 515063<br>P. R. China<br>E-mail: xtwang@stu.edu.cn


[^0]:    1991 Mathematics Subject Classification. Primary: 30F40; Secondary: 20H10.
    Key words and phrases. N-dimensional discrete Möbius group; Geometrically finite Möbius group; Dirichlet domain; Block; Standard parabolic region; Parabolic vertex; Conical limit point; HNN extension; The second Klein-Maskit combination theorem.

    The research was supported by NSF of China (No. 11201130), Hunan Provincial Natural Science Foundation of China (No. 14JJ1012) and partly by the construct program of the key discipline in Hunan province. The revision of the paper was finished during the first author's visit to ISI Chennai. The first author thanks the institute for its hospitality during January-March, 2014.

    Xiantao Wang is the corresponding author.
    Received February 5, 2013; revised February 12, 2014.

