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ON KLEIN-MASKIT COMBINATION THEOREM IN SPACE II
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Abstract

In this paper, which is sequel to [10], we give a generalisation of the second

Klein-Maskit combination theorem, the one dealing with HNN extensions, to higher

dimension. We give some examples constructed as an application of the main theorem.

1. Introduction

The combination theorems for classical Kleinian groups, i.e. for those in
PSL2C, are ways to generate new Kleinian groups as amalgamated free products
or HNN extensions of given Kleinian groups. The first of such theorems was
given by Klein [9] in the case of free products. Maskit in [12, 13, 14, 15, 16, 17]
gave several generalisations of Klein’s combination theorem, among which are
the first combination theorem dealing with amalgamated free products and the
second combination theorem dealing with HNN extensions.

In our previous paper [10], we considered a generalisation of the first com-
bination theorem of Maskit to higher dimension. In the present paper, which
is its sequel, we shall generalise his second combination theorem. Maskit’s
second combination theorem asserts that under some conditions, two Kleinian
groups G0, G1, where G1 ¼ h f i is infinite cyclic and G0 has two isomorphic
geometrically finite subgroups J1 and J2 conjugated by f , generate a Kleinian
group isomorphic to the HNN extension of G0 by f , and also that under the
same conditions the resulting group is geometrically finite if and only if G0 is
geometrically finite.

As in the case of amalgamated free products, a first attempt to generalise
Maskit’s second combination theorem to higher dimension was likewise made
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by Apanasov in his pioneering work [3, 4]. Ivascu [8] also dealt with such a
generalisation with a bit di¤erent approach. In particular, they showed that
under the same assumptions as Maskit combined with some extra conditions, one
can get a discrete group which is an HNN extension of a discrete group of
n-dimensional Möbius transformations and a Möbius transformation with infinite
order. To be more precise, what they proved is the following.

Theorem 1.1 [Apanasov, Ivascu]. Let G0 be an n-dimensional Kleinian group
with subgroups H1 and H2. Suppose that closed domains D1 and D2 bounded by
hypersurfaces S1 and S2 of n-sphere Sn are precisely invariant in G0 with respect
to H1 and H2, respectively. Suppose also that an n-dimensional Möbius transfor-
mation f maps D1 onto SnnD2, and that the following conditions hold:

(1) For fundamental domains D1, D2 and F0 HD1 VD2 of the groups H1, H2

and G0, there exist neighbourhoods V1 and V2 of the surfaces S1 and S2

such that Di VVi HF0, i ¼ 1; 2.
(2) Di VDi ¼ Di VF0.
(3) F ¼ ðF0 V ðSnnðD1 UD2ÞÞÞ� 0j, where B� is the interior of B in Sn.
(4) fH1 f

�1 ¼ H2.
(5) gðD1ÞVD2 ¼ j for all g A G0nfidg.
Then we have the following.
(1) The group G ¼ hG0; f i is a Kleinian group and isomorphic to G0�f , the

HNN extension of G0 by f .
(2) F is a fundamental domain for the group G.
(3) mnðLðGÞÞ ¼ 0 if and only if mnðLðG0ÞÞ ¼ 0.
(4) Each elliptic or parabolic element of G is conjugate in G to an element

of G0.

In this paper, we shall give a generalisation of the second Maskit combi-
nation theorem in higher dimension without any additional assumptions, impos-
ing only natural ones corresponding to those in Maskit’s. Our theorem also
asserts that the group obtained as an HNN extension is geometrically finite if and
only if the original group is, under some conditions. We note that in the present
paper as in the previous one, we say that a Kleinian group is geometrically finite
when the e-neighbourhood of its convex core has finite volume for some e > 0,
and there is an upper bound for the orders of torsions in the group. We do
not assume that the group has a finite-sided fundamental polyhedron. Our main
result (Theorem 3.1) and its proof will appear in §3.

The authors would like to express their gratitude to the referee for his/her
careful reading of the manuscript and valuable suggestions.

2. Preliminaries

2.1. Basic notions. We follow the notations used in [10]. We use the
symbol Rn to denote the one-point compactification of the n-dimensional
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Euclidean space Rn and MðRnÞ to denote the group of orientation-preserving
Möbius transformations. We identify Rn with the sphere at infinity of the
hyperbolic nþ 1-space. We shall use both the ball model and the upper half-
space model for the hyperbolic space. We use the symbol Bnþ1 for the ball
model and Hnþ1 for the upper half-space model.

We denote the limit set of a discrete group GHMðRnÞ by LðGÞ. We call
points of LðGÞ limit points. The complement WðGÞ ¼ RnnLðGÞ is called the
region of discontinuity of G.

A discrete group GHMðRnÞ is said to act discontinuously at a point x A Rn

if there is a neighbourhood U of x such that fg A G j gðUÞVU 0jg is a finite set.
The group G acts discontinuously at every point of WðGÞ, and at no point of
LðGÞ.

The complement of the fixed points of elliptic elements in WðGÞ is called the
free regular set, and is denoted by �WðGÞ. When �WðGÞ0j, a fundamental set
of G is defined to be a set which contains one representative of each orbit GðyÞ of
y A �WðGÞ. It is obvious that �WðGÞ0j if and only if WðGÞ0j. If WðGÞ0j,
then we call G a Kleinian group.

For the limit set LðGÞ, we have the following useful lemma ([10]).

Lemma 2.1. Let fgmg be a sequence of distinct elements of the Kleinian
group GHMðRnÞ. Then there are a subsequence fgmi

g and limit points x and
y of G such that gmi

ðzÞ ! x uniformly on every compact subset of Rnþ1nfyg.

We shall use the following terms in the same way as in [10].

Definition 2.1. Let H be a subgroup of a group G of MðRnÞ. A subset V
is said to be precisely invariant under H in G if hðVÞ ¼ V for all h A H and
gðVÞVV ¼ j for all g A G �H.

Definition 2.2. Let T1; . . . ;Tm be sets and J1; . . . ; Jm be subgroups of
the group GHMðRnÞ. We say that ðT1; . . . ;TmÞ is precisely invariant under
ðJ1; . . . ; JmÞ in G, if each Tk is precisely invariant under Jk in G, and if for i0 j,
and for all g A G, gðTiÞVTj ¼ j.

For the domain of discontinuity WðGÞ, we have the following proposition.
Refer to Proposition II.E.4 in Maskit [15] or Theorem 5.3.12 in Beardon [5].

Proposition 2.2. Suppose that WðGÞ is not empty. Then a point x A Rn is
contained in WðGÞ if and only if

(1) the stabiliser StabGðxÞ ¼ fg A G j gðxÞ ¼ xg of x in G is finite, and

(2) there is a neighbourhood U of x in Rn which is precisely invariant under
StabGðxÞ in G.

Definition 2.3. A fundamental domain for a discrete group G of MðRnÞ
with non-empty region of discontinuity is an open subset D of WðGÞ satisfying
the following.
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(1) D is precisely invariant under the trivial subgroup in G.
(2) For every z A WðGÞ, there is an element g A G such that gðzÞ is contained

in D, where D denotes the closure of D in Rn.
(3) Fr D, the frontier of D in Rn, consists of limit points of G, and a finite

or countable collection of codimension-1 compact smooth submanifolds
with boundary, whose boundary is contained in WðGÞ except for a subset
with ðn� 1Þ-dimensional Lebesgue measure 0. The intersection of each
submanifold with WðGÞ is called a side of D.

(4) For any side s of D, there are another side s 0 of D, which may coincide
with s, and a nontrivial element g A G such that gðsÞ ¼ s 0. Such an
element g is called the side-pairing transformation from s to s 0.

(5) If fsmg is a sequence of distinct sides of D, then the diameter of sm with
respect to the ordinary spherical metric on Rn goes to 0.

(6) For any compact subset K of WðGÞ, there are only finitely many trans-
lates of D that intersect K .

A fundamental set F for a discrete subgroup G whose interior is a
fundamental domain is called a constrained fundamental set.

2.2. Normal forms. Let G0 be a discrete subgroup of MðRnÞ with
isomorphic subgroups J1 and J2, and f a transformation in MðRnÞ of infinite
order satisfying fJ1 f

�1 ¼ J2 and G0 Vh f i ¼ fidg. Following Maskit [15], we
define normal forms as follows.

A normal form is a word of the form

f angn � � � f a1g1;

such that
(1) each gk is contained in G0,
(2) gk is not the identity except possibly for the last one g1,
(3) the exponents ak are assumed to be non-zero except for the first one an,
(4) if ak < 0 and gkþ1 A J1 � fidg, then akþ1 < 0, and
(5) if ak > 0 and gkþ1 A J2 � fidg, then akþ1 > 0.

The length of a normal form g ¼ f angn � � � f a1g1 is defined to be jgj ¼
P

jakj.
Two normal forms are defined to be equivalent if we can transform one to the
other by repeating the following operations finitely many times: inserting a word
of the form fj f �1ð fjf �1Þ�1 for some j A J1 and deleting a word of the same
form. The set of the equivalence classes of normal forms with concatenation
as binary operation corresponds one-to-one to the HNN extension of G0 by f ,
which we denote by G0�f preserving the group structures.

We call a normal form g ¼ f angn � � � f a1g1 positive if an > 0, negative if
an < 0, and null if an ¼ 0. More specifically, we call g a ð j; kÞ-form, with j
either þ or �, or 0 when g is positive or negative or null, respectively, and k ¼ þ
if a1 > 0, k ¼ � if a1 < 0.

Let hG0; f i be the subgroup of MðRnÞ generated by G0 and h f i. Then,
there is a natural homomorphism F : G0�f ! hG0; f i which is defined by
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Fð f angn � � � f a1g1Þ ¼ f an � gn � � � � � f a1 � g1 for a normal form f angn � � � f a1g1
representing an element of G0�f , and Fð jÞ ¼ j for j A G0. It is easy to see
that this is independent of a choice of a representative of the equivalence
class. The map is obviously an epimorphism. If F is an isomorphism, then
we write hG0; f i also as G0�f identifying elements of G0�f and their images
by F.

Since G0 is embedded in hG0; f i, each non-trivial element in the kernel of
F can be written in a normal form. Therefore the following is obvious.

Lemma 2.3. hG0; f i ¼ G0�f if and only if F maps no non-trivial normal
forms to the identity.

2.3. Interactive triples. Following Maskit, we shall define interactive triples
as follows.

We assume that G0 is a discrete subgroup of MðRnÞ with isomorphic
subgroups J1 and J2, and f A MðRnÞ has infinite order, where fJ1 f

�1 ¼ J2 and
G0 Vh f i ¼ fidg. Let Z, X1, X2 be disjoint nonempty subsets of Rn. The triple
ðZ;X1;X2Þ is said to be an interactive triple (for G0, f , J1 and J2) when the
following hold.

(1) ðX1;X2Þ is precisely invariant under ðJ1; J2Þ in G0.
(2) For every g A G0 and m ¼ 1; 2, we have gðXmÞHZUXm.
(3) We have f ðZUX2ÞHX2 and f �1ðZUX1ÞHX1.

If there exists a non-empty G0-invariant subset of ZnG0ðX1 UX2Þ, then the
interactive triple is said to be proper. We can easily see that if ðZ;X1;X2Þ is
an interactive triple and g A G0 � J1, then gðX1ÞHZ, and also if g A G0 � J2,
then gðX2ÞHZ.

Example 2.1. For nb 2, let e0; e1; . . . ; en�1 be the standard basis of Rn,
where e0 ¼ ð1; 0; . . . ; 0Þ. Set X1 ¼ fx ¼

Pn
i¼1 xiei�1 A Rn j xn < 0g, X2 ¼ fx A Rn j

xn > 0g, and Z ¼ f0g. We define G0 ¼ J1 ¼ J2 to be h j1; j2; . . . ; jn�1i, where
jiðxÞ ¼ xþ ei�1 ði ¼ 1; 2; . . . ; n� 1Þ. Let f ðxÞ ¼ xþ en�1. It is obvious that
ðZ;X1;X2Þ is an interactive triple for G0, f , J1 and J2. Since ZnG0ðX1 UX2Þ
¼ Z does not have a G0-invariant subset however, ðZ;X1;X2Þ is not proper.

If we change Z above to Z 0 ¼ fx ¼
Pn

i¼1 xiei�1 A Rn j xn ¼ 0g preserving X1

and X2 to be the same as above, then ðZ 0;X1;X2Þ is also an interactive triple
for G0, f , J1 and J2, and ðZ 0;X1;X2Þ is proper since Z 0nG0ðX1 UX2Þ ¼ Z 0 itself
is G0-invariant.

The following lemma due to Maskit holds also in higher dimension without
any change.

Lemma 2.4 (Lemma VII.D.11 in [15]). Suppose that ðZ;X1;X2Þ is an
interactive triple for G0, f , J1 and J2, and that A0 is a non-empty G0-invariant
subset of Z, which has trivial intersection with G0ðX1 UX2Þ. Let g ¼ f angn � � �
f a1g1 be a non-trivial normal form in G0�f .
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(1) If g is a ðþ;þÞ-form, then FðgÞðA0 UX2ÞHX2.
(2) If g is a ðþ;�Þ-form, then FðgÞðA0 UX1ÞHX2.
(3) If g is a ð�;þÞ-form, then FðgÞðA0 UX2ÞHX1.
(4) If g is a ð�;�Þ-form, then FðgÞðA0 UX1ÞHX1.
(5) If g is a ð0;þÞ-form, then there is an element h A G0 such that

FðgÞðA0 UX2ÞH hðBÞHZ, where B ¼ X1 if an�1 < 0, and B ¼ X2 if
an�1 > 0.

(6) If g is a ð0;�Þ-form, then there is an element h A G0 such that
FðgÞðA0 UX1ÞH hðBÞHZ, where B ¼ X1 if an�1 < 0, and B ¼ X2 if
an�1 > 0.

The existence of a proper interactive triple forces F to be isomorphic.
(Theorem VII.D.12 in Maskit [15] in the case when n ¼ 2. The proof is the
same in higher dimension using Lemmata 2.3 and 2.4.)

Theorem 2.5. Let G0, f , J1 and J2 be as above and suppose that there is
a proper interactive triple for G0, f , J1 and J2. Then hG0; f i ¼ G0�f .

Using Theorem 2.5, we get the following straightforward generalisation of
Theorem VII.D.13 in [15].

Theorem 2.6. Let G0 be a discrete group. Suppose that ðZ;X1;X2Þ is an
interactive triple for G0, f , J1 and J2 and that A0 HZnG0ðX1 UX2Þ is a non-empty
G0-invariant set. Then A0 is precisely invariant under G0 in hG0; f i ¼ G0�f .

Let D0 be a fundamental set for G0 satisfying JðD0 VXmÞ ¼ Xm V �WðJmÞ for
m ¼ 1; 2, and set D ¼ D0 VA0. If D is non-empty, then D is precisely invariant
under fidg in hG0; f i.

2.4. Geometric finiteness. As in the previous paper [10], we use the follow-
ing definition of geometric finiteness, not assuming the existence of finite-sided
fundamental polyhedron.

Definition 2.4. Let G be a discrete subgroup of MðRnÞ. We denote by
HullðLðGÞÞ, the minimal convex set of Hnþ1 containing all geodesics whose
endpoints lie on LðGÞ. This set is evidently G-invariant, and its quotient
HullðGÞ=G is called the convex core of G, and is denoted by CoreðGÞ. The
group G is said to be geometrically finite if the following two conditions are
satisfied:

(1) there exists e > 0 such that the e-neighbourhood of CoreðGÞ in Hnþ1=G
has finite volume, and

(2) there is an upper bound for the orders of torsions in G.

A point x of LðGÞ of a discrete group G of Möbius transformations is called
a parabolic fixed point if StabGðxÞ contains parabolic elements. For a para-

6 liulan li, ken’ichi ohshika and xiantao wang



bolic fixed point z, a horoball in Bnþ1 touching Rn at z is invariant under
StabGðzÞ. In the case when StabGðzÞ has rank less than n, it is useful to consider
a domain larger than a horoball, which we call an extended horoball.

Definition 2.5. Let G be a discrete subgroup of MðRnÞ, and z a parabolic
fixed point of G. Let Stab�

GðzÞ be the maximal free abelian subgroup of the
stabiliser StabGðzÞ of z in G. Suppose that the rank k of Stab�

GðzÞ is less than n.
Then there is a closed subset Bz HBnþ1 invariant under StabGðzÞ which is in the
form

Bz ¼ h�1 x A Bnþ1

���� Xnþ1

i¼kþ1

x2
i b t

( )
;

where t ð> 0Þ is a constant and h A MðRnÞ is a Möbius transformation such that
hðzÞ ¼ y. We call Bz an extended horoball of G around z.

Related to this, there is a set called a peak domain, which was introduced by
Apanasov.

Definition 2.6. A peak domain of a discrete group G of MðRnÞ at the
parabolic fixed point z of G is an open subset Uz HRn such that

(1) Uz is precisely invariant under StabGðzÞ in G, and
(2) there exist a t > 0, and a transformation h A MðRnÞ with hðzÞ ¼ y such

that

x A Rn

���� Xn
i¼kþ1

x2
i > t

( )
¼ hðUzÞ;

where k ¼ rank Stab�
GðzÞ, 1a ka n� 1.

Definition 2.7. Let z be a parabolic fixed point of the discrete group
GHMðRnÞ. If G has an extended horoball B around z, then the interior of its
intersection with Rn is a peak domain. Following Bowditch [6], we use the term
standard parabolic region at z to mean an extended horoball when the rank of
StabGðzÞ is less than n, and a horoball when the rank of StabGðzÞ is n.

We shall present definitions of terms which are commonly used in studying
geometrically finite groups in MðRnÞ.

Definition 2.8. A point z A Rn fixed by a parabolic element of a discrete
group GHMðRnÞ is said to be a parabolic vertex of G if one of the following
conditions is satisfied.

(1) The subgroup Stab�
GðzÞ has rank n.

(2) There exists a peak domain Uz at the point z.
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Definition 2.9. Let G be a discrete subgroup of MðRnÞ. A point x A Rn

is said to be a conical limit point (or a point of approximation in some liter-
ature) if there are z A Hnþ1 and a geodesic ray l in Hnþ1 tending to x whose
r-neighbourhood with some r A R contains infinitely many translates of z.

As was shown in Theorem 12.2.5 in Ratcli¤e [18], we have a characterisation
of conical limit points as follows.

Proposition 2.7. Let G be a discrete group of MðRnÞ regarded as acting on
Bnþ1 by hyperbolic isometries. Then a point z A qBnþ1 is a conical limit point of
G if and only if there exist d > 0, distinct elements gm of G, and x A qBnþ1nfzg
such that g�1

m ð0Þ converges to z while jgmðxÞ � gmðzÞj > d for all m. Furthermore,
if this condition holds, then for every x A qBnþ1nfzg, there is d > 0 such that
jgmðxÞ � gmðzÞj > d for all m.

The following result due to Bowditch [6] or [7] will be essentially used in the
proof of our main theorem.

Proposition 2.8. Let GHMðRnÞ ðnb 2Þ be a discrete group. Then G is
geometrically finite if and only if every point of LðGÞ is either a parabolic vertex
or a conical limit point.

2.5. Dirichlet domains. Among fundamental domains of hyperbolic mani-
folds, what are called Dirichlet domains are most useful for us.

Definition 2.10. Let G be a discrete subgroup of MðRnÞ, and x a point
in Hnþ1, which is not fixed by any nontrivial element of G. Then, the set
fy A Hnþ1 j dhðy; xÞa dhðy; gðxÞÞ Eg A Gg is called the Dirichlet domain centred
at x for G, where dh denotes the hyperbolic distance.

We shall make use of the following result of Bowditch [6]. For a
G-invariant set S on Rn, we say a collection of subsets fAsgs AS is strongly
invariant if gAs ¼ Ags and for any s0 t A S, As VAt ¼ j. We should note that
each As is in particular precisely invariant under StabGðsÞ in G.

Lemma 2.9. Let P be the set of all parabolic vertices of a discrete group
GHMðRnÞ. Then we can choose a standard parabolic region Bp for each p A P
in such a way that fBp j p A Pg is strongly invariant.

2.6. Blocks. Throughout this subsection, we assume that G is a discrete
subgroup of MðRnÞ, and J denotes a subgroup of G.

Definition 2.11. A closed J-invariant set B in Rn, containing at lease two
points, is called a block, or more specifically ðJ;GÞ-block if it satisfies the
following conditions.
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(1) BVWðGÞ ¼ BVWðJÞ, and BVWðGÞ is precisely invariant under J in G.
(2) If U is a peak domain for a parabolic fixed point z of J with the rank of

StabJðzÞ being less than n, then there is a smaller peak domain U 0 HU
such that U 0 VFr B ¼ j.

Let S be a topological ðn� 1Þ-dimensional sphere in Rn. Then S separates
Rn into two open sets. We say that S is precisely embedded in G if gðSÞ is
disjoint from one of the two open sets for any g A G.

A ðJ;GÞ-block is said to be strong if every parabolic fixed point of J is a
parabolic vertex of G.

We have the following in [10].

Theorem 2.10. Let J be a geometrically finite subgroup of G and BHRn

be a ðJ;GÞ-block such that for every parabolic fixed point z of J with the rank
of StabJðzÞ being less than n, there is a peak domain Uz for J with Uz VB ¼ j.
Let G ¼ 6 gkJ be a coset decomposition. If fgkðBÞg is a sequence of distinct
translates of B, then we have diamðgkðBÞÞ ! 0; where diamðMÞ denotes the
diameter of the set M with respect to the ordinary spherical metric on Rn.

3. The second Klein-Maskit combination theorem

In this section, we shall show our main theorem (Theorem 3.1).

Definition 3.1. Let J1 and J2 be subgroups of a discrete group G0 H
MðRnÞ, and let f A MðRnÞ be an element of infinite order. Following Maskit,
we say that two closed topological n-dimensional balls B1 and B2 in Rn, are
jointly f -blocked if the following conditions are satisfied.

(1) Bm is a ðJm;G0Þ-block for m ¼ 1; 2,
(2) ðB1 VWðG0Þ;B2 VWðG0ÞÞ is precisely invariant under ðJ1; J2Þ in G0,
(3) f maps the exterior of B1 in Rn onto the interior of B2 in Rn, and
(4) fJ1 f

�1 ¼ J2.
If B1 and B2 are jointly f -blocked, then following Maskit, we say that a
fundamental set D0 for G0 is maximal if D0 VBm is a fundamental set for the
action of Jm on Bm and f ðD0 VFr B1Þ ¼ D0 VFr B2 for m ¼ 1; 2.

Definition 3.2. Let fSjg be a collection of topological ðn� 1Þ-spheres.
We say that the sequence fSjg nests about a point x if the following are satisfied.

(1) The spheres Sj are pairwise disjoint.
(2) Each sphere Sj separates x from the precedent Sj�1.
(3) For any point zj A Sj, the sequence fzjg converges to x.

Now we state our main theorem.

Theorem 3.1. Let G0 HMðRnÞ be a discrete group with geometrically
finite subgroups J1 and J2, and f A MðRnÞ an element of infinite order with
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G0 Vh f i ¼ fidg. Let B1 and B2 be closed topological balls in Rn. Suppose that
B1 and B2 are jointly f -blocked and that A0 ¼ RnnG0ðB1 UB2Þ is non-empty. Let
D0 be a maximal fundamental set for G0. Set A ¼ RnnðB1 UB2Þ, G ¼ hG0; f i
and D ¼ D0 V ðAUFr B1Þ. Then the following hold.

(1) G ¼ G0�f .
(2) G is discrete.
(3) Fr Bm ðm ¼ 1; 2Þ is a precisely embedded ðJm;GÞ-block.
(4) If an element g of G is not loxodromic, then one of the following holds.

(a) g is conjugate to an element of G0.
(b) g is parabolic and is conjugate to an element fixing a parabolic fixed

point of either J1 or J2.
(5) If fW 0

kg is a sequence of distinct G-translates of Fr Bm, then
diamðW 0

kÞ ! 0 as k ! y.
(6) There is a sequence of distinct translates of Fr Bm nesting about the

point x if and only if x A LðGÞnGðLðG0ÞÞ.
(7) D is a fundamental set for G. If D0 is constrained, ðFr B1 UFr B2ÞV

Fr D0 consists of finitely many connected components, and the sum of
their ðn� 1Þ-dimensional measures vanishes, then D is also constrained.

(8) Let Q ¼ ðA0 UG0ðFr B1ÞÞVWðG0Þ. Then WðGÞ=G ¼ Q=G0, and its
boundary, which is possibly disconnected or empty, is equal to
ðFr B1 VWðG0ÞÞ=J1 ¼ ðFr B2 VWðG0ÞÞ=J2.

Furthermore, under the assumption that each Fr Bm is a strong ðJm;GÞ-block
for m ¼ 1; 2 if and only if each Bm is a strong ðJm;G0Þ-block, two more statements
hold.

(9) If each Bm is a strong ðJm;G0Þ-block, then, except for G-translates
of limit points of G0, every limit point of G is a conical limit point
of G.

(10) G is geometrically finite if and only if G0 is geometrically finite.

Let us explain what this theorem claims intuitively. We are given two
geometrically finite subgroups J1, J2 of G0 and a Möbius transformation f
conjugating J1 to J2, none of whose non-zero powers is contained in G0. The
two topological balls B1 and B2 are invariant sets under J1 and J2 with some
good conditions respectively, and f translates Fr B1 to Fr B2 inside out. In this
situation, the theorem says that the group generated by G0 and f is discrete and
isomorphic to the HNN-extension of G0 by f . The group G may contain a
parabolic element which is not contained in G0, but then it is conjugate to a
parabolic element whose fixed point coincides with the fixed point of a parabolic
element of J1 (or J2). Moreover, with further assumptions on parabolic fixed
points, the theorem claims that the group G is also geometrically finite.

The following lemma constitutes the key step for the proof of our main
theorem.

Lemma 3.2. Let m ¼ 1; 2. Under the assumptions of Theorem 3.1, the
following naturally follow.
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(1) Fr Bm is a ðJm;G0Þ-block.
(2) LðG0ÞVFr Bm ¼ LðJmÞVFr Bm ¼ LðJmÞ.
(3) B�

1 UB�
2 HWðG0Þ, where B�

m is the interior of Bm in Rn for each m.
(4) B�

m is precisely invariant under Jm in G0.
(5) For any g A G0, we have gðBmÞVB3�m ¼ gðFr BmÞVFr B3�m HLðG0Þ.
(6) For any g A G0 � Jm, we have gðBmÞVBm ¼ gðFr BmÞVFr Bm HLðJmÞ.
(7) Let G0 ¼ 6

k
gk;mJm be a coset decomposition. If fgk;mðBmÞg is a

sequence of distinct translates of Bm, then diamðgk;mðBmÞÞ ! 0 as
k ! y.

(8) ðA;B�
1 ;B

�
2 Þ is an interactive triple, and A0 is precisely invariant under G0

in G.
(9) f ðFr B1 VWðJ1ÞÞ ¼ Fr B2 VWðJ2Þ.

(10) We have D0 VA ¼ D0 VA0.

Proof. We only need to prove (7) and (8).
(7) By (1), we know that Fr Bm is a ðJm;G0Þ-block. Since Jm is geomet-

rically finite, then by Theorem 2.10, we have diamðgk;mðFr BmÞÞ ! 0. The
assumption that Bm is a ðJm;G0Þ-block implies that diamðgk;mðBmÞÞ ¼
diamðgk;mðFr BmÞÞ ! 0, which shows (7).

(8) By (4), B�
m is precisely invariant under Jm in G0. If g A Jm, then

gðB�
mÞ ¼ B�

m. If g A G0 � Jm, then gðB�
mÞVBm ¼ j and gðB�

mÞVB3�m ¼ j.
Therefore for any g A G0, we have gðB�

mÞHB�
m UA.

Since f maps the exterior of B1 onto the interior of B2, we have
f ðAUB�

2 ÞH f ðRnnB1Þ ¼ B�
2 and f ðB�

1 Þ ¼ RnnB2. Hence f �1ðAUB�
1 ÞH

f �1ðRnnB2Þ ¼ B�
1 : Thus we have shown that ðA;B�

1 ;B
�
2 Þ is an interactive

triple.
It is easy to see that A0 ¼ RnnG0ðB1 UB2ÞHAnG0ðB�

1 UB�
2 Þ. Therefore,

A0 is G0-invariant. By Theorem 2.6, A0 is precisely invariant under G0 in G.
r

Now we prove Theorem 3.1. Since the proofs of (1)–(8) of Theorem 3.1 are
similar to those in [10, 15], we give proofs only for (9) and (10).

Proof of (9). Since we are assuming each Bm is a strong ðJm;G0Þ-block for
m ¼ 1; 2, by our assumption mentioned above, Fr B1 is a strong ðJ1;GÞ-block,
and Fr B2 is a strong ðJ2;GÞ-block. Let x be a limit point of G, which is not
a translate of a limit point of G0. By ð6Þ, there is a sequence fgkðFr B1Þg of
distinct G-translates of Fr B1 with jgkj ! y such that fgkðFr B1Þg nests about x.
We can assume that g1 ¼ id. Then g�1

k ðxÞ and g�1
k ðFr B1Þ lie on opposite sides

of Fr B1.
Since J1 is geometrically finite, by Proposition 2.16 in [10], which is

originally due to Bowditch, there are a Dirichlet domain P for J1 and standard
parabolic regions Bp1 ; . . . ;Bpk such that Pn6

j
ðInt Bpj U fpjgÞ is compact and

contains no limit point of J1. Since P is a Dirichlet domain, the interior of
S ¼ PVRn is a fundamental domain for J1. Since g�1

k ðxÞ is contained in WðJ1Þ
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for each k, there is an element qk A J1 such that qkg
�1
k ðxÞ A S. We denote qkg

�1
k

by fk.
We claim that f fkðxÞg stays away from Fr B1. Suppose, seeking for a

contradiction, that fkðxÞ ! w A Fr B1 VLðGÞ ¼ Fr B1 VLðJ1Þ passing to a sub-
sequence. Then w is a parabolic fixed point of J1, where the rank of StabJ1ðwÞ
is less than n, since S intersects LðJ1Þ only at the pj . This means that all fkðxÞ
lie in some extended horoball Bpj if we take a subsequence, where pj ¼ w. Let
the rank of StabJ1ðwÞ be s and the rank of StabGðwÞ be m.

If s ¼ m, then we can assume that the interior of Bw VRn, which is denoted
by Uw, is also a peak domain for G. Hence we may assume that Uwnfwg is
contained in WðGÞ. On the other hand, since x lies in LðGÞ, we have fkðxÞ A
LðGÞ, which is a contradiction.

Therefore, there is d > 0 such that dð fkðxÞ; zÞ > d for any z A Fr B1, where

d denotes the ordinary spherical metric on Rn. Since Fr B1 separates g�1
k ðFr B1Þ

from g�1
k ðxÞ, we see that for all z on Fr B1 we have d < dð fkðxÞ; zÞ <

dð fkðxÞ; fkðzÞÞ. On the other hand, since gkðFr B1Þ nest around x, we see that
for any point y on Fr B1, the points f �1

k ðyÞ converge to x. We now apply
Proposition 2.7 to conclude that x is a conical limit point of G.

If s < m, by conjugation and Bieberbach’s theorem (also refer to Theorem
2.10 in [10]), we may assume that w ¼ y,

Stab�
GðwÞ ¼ h j1; . . . ; jmi and Stab�

J1
ðwÞ ¼ hh1; . . . ; hsi;

where jiðyÞ ¼ AiðyÞ þ ei�1 (i ¼ 1; . . . ;m), hjðyÞ ¼ UjðyÞ þ ej�1 ( j ¼ 1; . . . ; s),
y A Rn, Ai and Uj are rotations, and Ai and Uj act on Rm trivially. It follows
from f fkðxÞgHBw that

Ps
i¼1 j fkðxÞj

2
i are bounded away from y for all k. Since

Fr B1 is a strong ðJ1;GÞ-block, there is t > 0 such that

U ¼ z A Rn :
Xn

i¼mþ1

jzij2 > t

( )

is a peak domain for G and UnfygHWðGÞ. We know that f fkðxÞgHLðGÞ.
Hence

Pn
i¼mþ1 j fkðxÞj

2
i < t. It follows from fkðxÞ ! y as k ! y that

Xm
i¼sþ1

j fkðxÞj2i ! y:

For each i ¼ sþ 1; . . . ;m, if j fkðxÞj2i ! y (k ! y), then we choose a
sequence fikg of integers such that for all k, j j iki fkðxÞj

2
i < M1, where M1 > 0;

if j fkðxÞj2i < M2 for some M2 > 0, we let ik ¼ 0. Let lk ¼ j mk
m � � � j ðsþ1Þk

sþ1 . It
follows that jlkð fkðxÞÞj2 < M3ðM3 > 0Þ; and for any y A Fr B1

jlkðyÞj2 ¼ j j ðsþ1Þk
sþ1 ðyÞj2sþ1 þ � � � þ j jmk

m ðyÞj2m ! y:

Therefore, there is d > 0 such that dðlk fkðxÞ; lkðzÞÞ > d for all z A Fr B1.
Since Fr B1 separates g�1

k ðxÞ from g�1
k ðFr B1Þ and hence Fr B1 separates fkðxÞ
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from fkðFr B1Þ, we see that for all z on Fr B1 we have d < dðlk fkðxÞ; lkðzÞÞa
dðlk fkðxÞ; lk fkðzÞÞ. By Lemma 2.1 and choosing a subsequence, we know that
lk fkðzÞ ! z 0 for all z A Rnþ1nfxg and lk fkðxÞ ! x 0, where z 0 0 x 0. We now
conclude that x is a conical limit point of G. r

Proof of (10). We first assume that G0 is geometrically finite. Then B1 and
B2 are both strong blocks of G0, and hence each Fr Bm is a strong ðJm;GÞ-block
by our assumption.

Take any point x A LðGÞ. Suppose first that x is a parabolic fixed point,
where the rank of H ¼ StabGðxÞ is k < n. By (9), x is a translate of a limit point
of G0. Without loss of generality, we may assume that x lies on LðG0Þ. Since
G0 is geometrically finite, x is a parabolic vertex or a conical limit point of
G0. If x is a conical limit point for G0, then so is it for G. Since a parabolic
fixed point cannot be a conical limit point, x is a parabolic vertex for G0. If x
lies in G0ðFr B1 UFr B2Þ, then, since each Fr Bm is a strong ðJm;GÞ-block, x is
a parabolic vertex of G. On the other hand, since G0ðB�

1 UB�
2 ÞHWðG0Þ, if x

does not lie on any G0-translate of either Fr B1 or Fr B2, then x is contained in
A0. Since A0 is precisely invariant under G0, we see that H is contained in
G0. Therefore we have H ¼ StabG0

ðxÞ. There is a peak domain U centred at x
for G0. Since U VLðG0Þ is empty, by choosing U to be su‰ciently small, we
can assume that UnfxgHWðG0Þ. By conjugation, we may assume that x ¼ y.
By Bieberbach’s theorem, we may further assume that for any g A H, gðzÞ ¼
Azþ a, where a A Rk and A preserves the subspaces Rk and Rn�k, respectively.
Then U is in the form

U ¼ x A Rn :
Xn
i¼kþ1

x2
i > t

( )
;

for t > 0.

Claim 1. We can choose U small enough so that U HA0.

Proof. Since B1 and B2 are bounded and for any g A H,
Pn

i¼kþ1 jgðxÞj
2
i ¼Pn

i¼kþ1 jxj
2
i , by taking su‰ciently large t, we can make gðB1 UB2ÞVU ¼ j for

any g A H. Hence no H-translates of B1 or B2 intersect U if we choose U to
be small enough.

Suppose that there is a sequence fgkðBÞg of distinct G0-translates of B1 or B2

such that the projections of gkðBÞ to the subspace Rn�k converge to y for
B ¼ B1 or B ¼ B2. Without loss of generality, we may assume that B ¼ B1.
Then taking a subsequence, we may assume that gk A G0 � ðH U J1Þ since J1 fixes
B1. Lemma 3.2-(7) implies that gkðyÞ ! y for all y A B1. Since gkðUÞVU ¼
j, the projections of gkðUÞ to the subspace Rn�k are bounded. By Bieberbach’s
theorem, for each gk, we can choose an element jk A H so that all the jk � gkðy0Þ
lie in a bounded set for a fixed y0 A U . Since the projections of gkðB1Þ to the
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subspace Rn�k converge to y, y B gkðB1Þ and
Pn

i¼kþ1 j jkðxÞj
2
i ¼

Pn
i¼kþ1 jxj

2
i , we

may assume that all the jk � gkðB1Þ are distinct and that the projections of
jk � gkðB1Þ to the subspace Rn�k converge to y by taking a subsequence.
Lemma 3.2-(7) again implies that jk � gkðyÞ ! y for all y A B1. By Lemma 2.1,
we may assume that jk � gkðyÞ ! y for all y except for a limit point of G0.
This leads to a contradiction since y0 A WðG0Þ and jk � gkðy0Þ 6! y. r

Claim 1 implies that U HA0 is precisely invariant under H in G, which
means that x is a parabolic vertex for G.

Next assume that x is a limit point of G, which is not a parabolic fixed
point. If x is a translate of a limit point of G0, then x is a conical limit point
for G0, and hence for G. If x is not a translate of a limit point of G0, then x
is a conical limit point for G by (9). This completes the proof of the ‘‘if ’’
part.

To prove the ‘‘only if ’’ part, we assume that G is geometrically finite. Then
each Fr Bm is a strong ðJm;GÞ-block, and hence each Bm is a strong ðJm;G0Þ-
block by our assumption. Let x be a point in LðG0Þ. Since G0ðB�

1 UB�
2 ÞH

WðG0Þ, we have either x A G0ðFr B1 UFr B2Þ or x A A0.
If x A G0ðFr B1 UFr B2Þ, then for simplicity, we may assume that x A Fr B1.

So we have x A Fr B1 VLðJ1Þ ¼ Fr B1 VLðG0Þ. Since J1 is a geometrically finite
subgroup of G0, we see that x is either a conical limit point for J1 or a
parabolic fixed point for J1. In the former case, x is a conical limit point for
G0. In the latter case, since B1 is a strong ðJ1;G0Þ-block, x is a parabolic vertex
for G0.

Now let x be a point in A0. If x is a parabolic fixed point of G, then since
A0 is precisely invariant under G0 in G, StabGðxÞ ¼ StabG0

ðxÞ, which shows that
x is a parabolic fixed point of G0. We assume that the rank of StabGðxÞ is
k < n. Since G is geometrically finite, there is a peak domain U centred at x for
G, which is also a peak domain for G0. Therefore, x is a parabolic vertex for
G0. Suppose that x is not a parabolic fixed point of G, which means that it is
a conical limit point for G. In this case, there is a sequence fhkg of distinct
elements of G with dðhkðzÞ; hkðxÞÞ is bounded away from zero for all z A Rnnfxg
and h�1

k ðz0Þ ! x for some z0 A Hnþ1 by Proposition 2.7. Then there are points
x 0 0 z 0 A Rn such that hkðzÞ ! z 0 for any z A Rnnfxg and hkðxÞ ! x 0 by passing
to a subsequence if necessary.

Claim 2. By taking a subsequence, we can assume that all the hkðFr BmÞ are
distinct for m ¼ 1; 2.

Proof. If this is not the case, by taking a subsequence, we can assume
that all the hkðFr BmÞ are the same for all k. Then h�1

1 � hkðFr BmÞ ¼ Fr Bm.
Hence, for each k, there is an element jk A Jm such that hk ¼ h1 � jk, where
j1 ¼ id. Since the hk are distinct elements of G, the jk are distinct ele-
ments of Jm. Then h�1

k ðz0Þ ¼ j�1
k ðh�1

1 ðz0ÞÞ ! x for h�1
1 ðz0Þ A Hnþ1. This shows
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that x is a limit point of Jm, which is a contradiction since x A A0 and
LðJmÞHFr Bm. r

Now we shall prove that x is a conical limit point of G0.
If jhkj ¼ j f akn � gkn � � � � � f ak1 � gk1 jb 2, then by taking a subsequence, we

may assume that ak1 > 0 for all k; for the case ak1 < 0 can be dealt with in the
same way. For each k, let h 0

k be hk � g�1
k1

� f �1. Then we have

hkðA0Þ ¼ h 0
k � f � gk1ðA0ÞH h 0

kðB2Þ
since A0 is G0-invariant and f ðA0ÞH f ðRnnB�

1 Þ ¼ B2. If all the h 0
kðFr B2Þ are

distinct, then diamðh 0
kðFr B2ÞÞ ! 0 for Fr B2 is a ðJ2;GÞ-block satisfying the

conditions in Theorem 2.10. It follows that diamðh 0
kðB2ÞÞ ¼ diamðh 0

kðFr B2ÞÞ !
0 and dðhkðzÞ; hkðxÞÞ ! 0 for all z A Fr B1 HA0, which is a contradiction.
Therefore, we may assume that h 0

kðFr B2Þ ¼ h 0
1ðFr B2Þ for all k by taking a

subsequence. For each k, there is an element jk A J2 with h 0
k ¼ h 0

1 � jk, where
j1 ¼ id. Since jk is contained in J2, there is an element ik A J1 such that
f � ik ¼ jk � f . These imply that hk ¼ h 0

1 � f � ik � gk1 . Since all the hkðFr B2Þ
are distinct, fik � gk1g is a sequence of distinct elements of G0. This implies
that g�1

k1
� i�1

k ððh 0
1 � f Þ�1ðz0ÞÞ ! x and that there is e > 0 such that dðik � gk1ðzÞ;

ik � gk1ðxÞÞ > e for all k and any z A Rnnfxg. This implies that x is a conical
limit point of G0 by Proposition 2.7.

If jhkj ¼ 1 for all k, then set hk to be gk2 � f ek � gk1 , where ek ¼G1. By
taking a subsequence, we may assume that ek ¼ 1 for all k. Then gk2 ¼ id or
gk2 B J2. If gk2 ¼ id for all k, then fgk1g is a sequence of distinct elements of
G0 since all the hkðFr B1Þ are distinct. Thus, gk1ðxÞ ! f �1ðx 0Þ and gk1ðzÞ !
f �1ðz 0Þ for all z0 x. Therefore, for all z A Rnnfxg there is e > 0 such that

dðgk1ðzÞ; gk1ðxÞÞ > e. Since g�1
k1
ð f �1ðz0ÞÞ ! x for f �1ðz0Þ A Hnþ1, x is a conical

limit point of G0 by Proposition 2.7.
If gk2 B J2 for all k, then hkðA0ÞH gk2ðB2Þ. If all the gk2ðB2Þ are distinct,

then diamðgk2ðB2ÞÞ ¼ diamðgk2ðFr B2ÞÞ ! 0 by Lemma 3.2-(7), which violates
the fact that dðhkðzÞ; hkðxÞÞ is bounded away from zero for all z A Rnnfxg.
Therefore we can assume that all the gk2ðB2Þ are the same by taking a
subsequence. For each k, there is an element jk A J2 with gk2 ¼ g12 � jk, with
j1 ¼ id, where g12 denotes gk2 with k ¼ 1. Since jk A J2, there is an element
ik A J1 such that f � ik ¼ jk � f . These imply that hk ¼ g12 � f � ik � gk1 . Since
all hkðFr B2Þ are distinct, fik � gk1g is a sequence of distinct elements of G0. It

follows that ðik � gk1Þ
�1ððg12 � f Þ�1ðz0ÞÞ ! x, where ðg12 � f Þ�1ðz0Þ A Hnþ1, and

for all z A Rnnfxg
ik � gk1ðzÞ ! f �1 � g�1

12
ðz 0Þ

and ik � gk1ðxÞ ! f �1 � g�1
12
ðx 0Þ. Therefore, for all z A Rnnfxg, there is a e > 0

such that dðik � gk1ðzÞ; ik � gk1ðxÞÞ > e. Then Proposition 2.7 implies that x is a
conical limit point of G0. We can argue in the same way even when all hk are
in the form gk2 � f �1 � gk1 .

This completes the proof. r
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Now for an element g ¼ f an � gn � � � � � f a1 � g1 A G, we write ga 0 if either
g1 B J1, or g1 A J1 and a1 < 0; g > 0 if g1 A J1 and a1 > 0; gb 0 if either g1 B J2,
or g1 A J2 and a1 > 0; and g < 0 if g1 A J2 and a1 < 0.

Using this notation, we consider a coset decomposition of G with respect to
Jm for m ¼ 1; 2 as follows.

G ¼ J1 U 6
l;k

al;kJ1

 !
U 6

l;k

bl;kJ1

 !
;

G ¼ J2 U 6
l;k

cl;kJ2

 !
U 6

l;k

dl;kJ2

 !
;

where jal;kj ¼ jbl;kj ¼ jcl;kj ¼ jdl;kj ¼ l, al;k a 0, bl;k > 0, cl;k b 0 and dl;k < 0.
Following Maskit, set T0;m ¼ G0ðBmÞ for m ¼ 1; 2 and T0 ¼ T0;1 UT0;2. Let

C0 be the complement of T0 in Rn. For l > 0, we set Tl;1 ¼ 6
k
al;kðB1Þ and

Tl;2 ¼ 6
k
cl;kðB2Þ, where jal;kj ¼ jcl;kj ¼ l, al;k a 0 and cl;k b 0. We denote

Tl;1 UTl;2 by Tl , and let Cl be the complement of Tl in Rn. It is easy to
prove that fTng is a decreasing sequence with respect to the inclusion, that is,
T0 IT1 IT2 I � � � .

Corollary 3.3. Under the hypotheses of Theorem 3.1, if ðB1;B2Þ is precisely
invariant under ðJ1; J2Þ in G0, then each qBm is a strong ðJm;GÞ-block if and only if
each Bm is a strong ðJm;G0Þ-block and hence all the conclusions in Theorem 3.1
hold.

Proof. By assumption, we know that Fr Bm is precisely invariant under Jm
in G. Let x be a parabolic fixed point of J1. Since Fr B1 is precisely invariant
under J1 in G, we know that

StabJ1ðxÞ ¼ StabG0
ðxÞ ¼ StabGðxÞ:

Set H ¼ StabGðxÞ.

The ‘‘if ’’ part. We first assume that each Bm is a strong ðJm;G0Þ-block. Let x
be a parabolic fixed point of J1, where the rank of H is k < n. Then there is a
peak domain U centred at x for G0. By making U smaller if necessary, we have
the following conditions:

(1) f ðUÞ is a peak domain centred at f ðxÞ for G0;
(2) G0ðUÞV f ðUÞ ¼ j by Lemma 2.9;
(3) UnfxgHWðG0Þ and f ðUÞnf f ðxÞgHWðG0Þ since ðU U f ðUÞÞVLðG0Þ ¼

j.
By conjugation, we may assume that x ¼ y. Decompose Rn into

Rk � Rn�k. By Bieberbach’s theorem, we may assume that Stab�
GðyÞ is the

maximal abelian subgroup of finite index in StabGðyÞ which appeared in
Definition 2.5, so that for any g A StabGðyÞ, gðzÞ ¼ Azþ b, where the rota-
tion A leaves Rk and Rn�k invariant and the vector b lies in the subspace Rk,
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whereas if g lies in Stab�
GðyÞ, then its restriction to the subspace Rk is a

translation. Thus we have U in the form

U ¼ x A Rn :
Xn
i¼kþ1

x2
i > t2

( )
;

with t > 0.
If k ¼ n� 1, then U is the union of two open sets U1 and U2, where

U1 ¼ fx A Rn : xn > tgHB�
1 and U2 ¼ fx A Rn : xn < �tg is in the exterior of

B1 UB2.

Claim 3. We can choose U to be small enough so that U2 HA0 and
f ðU1ÞHA0.

Proof. We need only to prove that by choosing U2 small enough, no G0-
translates of B1 or B2 intersect U2. Suppose, on the contrary, that there is a
sequence fgkðBÞg of distinct G0-translates of B1 or B2 intersecting fx A Rn :
xn < �sg for any large s (s > 0), where B ¼ B1 or B2. By taking a subsequence
and interchanging the indices if necessary, we may assume that B ¼ B1. This
means that the projections of gkðB1Þ to the subspace Rn�ðn�1Þ converge to y.
We may assume that gk lies in G0 � J1 since J1 stabilises B1. Then Lemma
3.2-(7) implies that diamðgkðB1ÞÞ ! 0. Hence gkðyÞ ! y for all y A B1 since
fgkðB1Þg accumulates at y. By Lemma 2.1 and by choosing a suitable
subsequence of fgkg (still denoted by the same symbol), we have gkðyÞ ! y
for all y with at most one exception, which must be a limit point of G0. Since
U HWðG0Þ, gkðyÞ ! y for all y A U . Since gkðUÞVU ¼ j, the projections of
gkðUÞ to the subspace Rn�ðn�1Þ are bounded. By Theorem 2.9, for some fixed
y0 A U and for each k, we can choose an element jk A H so that all jk � gkðy0Þ
lie in a bounded set. Since for each k, y B gkðB1Þ, y B jkgkðB1Þ. Since
jð jkgkðyÞÞjn ¼ jðgkðyÞÞjn and the projections of gkðB1Þ to the subspace Rn�ðn�1Þ

converge to y, we see that all the jkgk are distinct and f jkgkðB1Þg also
accumulates at y. By Lemma 3.2-(7), jkgkðyÞ ! y for all y A B1. By Lemma
2.1, jkgkðyÞ ! y for all y except for a limit point of G0 by passing to a
subsequence if necessary. This is a contradiction since f jkgkðy0Þg does not
converge to y and y0 A WðG0Þ. By a similar argument, we can assume that
f ðU1ÞHA0. This proves our claim. r

Then for any g A G � G0,

gðUÞVU ¼ ðgðU1ÞVU1ÞU ðgðU1ÞVU2ÞU ðgðU2ÞVU1ÞU ðgðU2ÞVU2Þ;

where gðU2ÞVU2 ¼ j since U2 HA0 and A0 is precisely invariant under G0 in
G by Lemma 3.2-(8). By dividing the proof into three cases, we will show
that gðUÞVU ¼ j for any g A G � G0 when k ¼ n� 1. Let g ¼ f an � gan � � � � �
f a1 � ga1 A G � G0 be a normal form with length l (l > 0).
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Case 1. gðU1ÞVU1 ¼ j for any g A G � G0.
If f � g � f �1 A G0, then there is an element j A G0 with g ¼ f �1 � j � f .

Since g is a normal form, j B J2. Thus j B StabG0
ð f ðxÞÞ since StabG0

ð f ðxÞÞ ¼
StabJ2ð f ðxÞÞ, and hence j � f ðU1ÞV f ðU1Þ ¼ j for f ðUÞ is a peak domain
centred at f ðxÞ for G0. Therefore, gðU1ÞVU1 ¼ j for this case. If f � g �
f �1 B G0, then f ðgðU1ÞVU1Þ ¼ f � g � f �1ð f ðU1ÞÞV f ðU1ÞH f � g � f �1ðA0ÞV
A0 ¼ j for A0 is precisely invariant under G0 in G.

Case 2. gðU1ÞVU2 ¼ j for any g A G � G0.
If g1 A J1 and a1 < 0 or g1 B J1, then gðU1ÞH gðB�

1 ÞHT �
n HT �

0 . It follows
that in this case gðU1ÞVU2 ¼ j. If a1 > 0 and g1 A J1, then there is an element
h1 A J2 with f � g1 ¼ h1 � f . Thus g ¼ f an � gn � � � � � f a1�1 � h1 � f is a normal
form of length l. If l > 1, then f an � gn � � � � � f a1�1 is a normal form of length
l�1 and gðU1Þ ¼ f an � gn � � � � � f a1�1 � h1 � f ðU1ÞH f an � gn � � � � � f a1�1 � h1ðA0Þ
¼ f an � gn � � � � � f a1�1ðA0ÞHT �

0 by Lemma 2.6. If l ¼ 1, then g ¼ g2 � f � g1 ¼
g2 � h1 � f and gðU1ÞVU2 ¼ g2 � h1ð f ðU1ÞÞVU2 H g2 � h1ð f ðUÞÞ VU ¼ j by the
second assumption for U and f ðUÞ. Thus for this case, gðU1ÞVU2 ¼ j.

Case 3. gðU2ÞVU1 ¼ j for any g A G � G0.
Since g B G0, g�1 B G0 and gðU2ÞVU1 ¼ gðU2 V g�1ðU1ÞÞ ¼ j by Case 2.

These discussions show that U is precisely invariant under H in G, i.e., U is
a peak domain centred at x for G and x is a parabolic vertex of G.

If k < n� 1, then we can assume that U lies in B�
1 or in the exterior of B1

and B2. If U HB�
1 , then we may assume that f ðUÞHA0 by the same argu-

ment as in Claim 3. It follows that gðUÞVU ¼ j for all g A G � G0 by similar
discussions as in Case 1. If U is in the exterior of B1 UB2, we may assume that
U HA0 by similar discussions as in Claim 3. Thus gðUÞVU H gðA0ÞVA0 ¼ j
for all g A G � G0. In either case, we can choose U small enough so that U is a
peak domain for G. Thus x is a parabolic vertex of G. We thus have shown
that Fr B1 is a strong ðJ1;GÞ-block.

We now consider Fr B2. Let x be a parabolic fixed point of J2 in Fr B2.
Then f �1ðxÞ is a parabolic fixed point of G in Fr B1. Since Fr B1 is a strong
ðJ1;GÞ-block, f �1ðxÞ is a parabolic vertex of G. Thus x is a parabolic vertex
of G and Fr B2 is a strong ðJ2;GÞ-block.

The ‘‘only if ’’ part. We assume that Fr B1 is a strong ðJ1;GÞ-block. For any
parabolic fixed point x A Fr B1 of G0, if the rank of StabG0

ðxÞ is k < n, then so is
StabGðxÞ for StabGðxÞ ¼ StabJ1ðxÞ ¼ StabG0

ðxÞ. Then there is a peak domain U
centred at x for G, which is also a peak domain for G0. Therefore B1 is a
strong ðJ1;G0Þ-block since B�

1 HWðG0Þ. If x A Fr B2 is a parabolic fixed point
of G0, where the rank of StabG0

ðxÞ is k < n, then f �1ðxÞ A Fr B1 is a parabolic
fixed point of G0 with rank k. Since B1 is strong, there is a peak domain U
centred at f �1ðxÞ for G0. Then f ðUÞ is a peak domain centred at x for G0.
This shows that Bm is a strongly ðJm;G0Þ-block for each m (m ¼ 1; 2).
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If we assume that Fr B2 is a strong ðJ2;GÞ-block, then by the reasoning
similar to the above, we can show that each Bm is a strong ðJm;G0Þ-block.

r

4. Applications

4.1. The statement of Theorem 4.1. Following [19] or [20], we denote by
PSLð2;GnÞ the n-dimensional Cli¤ord matrix group. Then PSLð2;GnÞ is iso-
morphic to MðRnÞ (cf. [1]).

We assume that n ¼ 3. We denote the standard basis of R3 by 1, e1 and e2.
Each element x A R3 is expressed as

x ¼ x1 þ x2e1 þ x3e2:

We set

j1 ¼
e1 0

0 �e1

� �
; j2 ¼

1 1

0 1

� �
; j3 ¼

e1 1

0 �e1

� �
;

j4 ¼
0 1

�1 0

� �
; f ¼ 1 �10e2

0 1

� �

and

J1 ¼ J2 ¼ h j1; j2; j3i; G0 ¼ h j4; J1i; G1 ¼ h f i and G ¼ hG0;G1i:

By the definition of Cli¤ord algebra, j1; j2; j3; j4 and f act on R3 as follows.

j1ðxÞ ¼ �x1 � x2e1 þ x3e2; j2ðxÞ ¼ ðx1 þ 1Þ þ x2e1 þ x3e2;

j3ðxÞ ¼ �x1 þ ð1� x2Þe1 þ x3e2;

j4ðxÞ ¼
�x1 þ x2e1 þ x3e2

x2
1 þ x2

2 þ x2
3

; f ðxÞ ¼ x1 þ x2e1 þ ðx3 � 10Þe2;

where x ¼ x1 þ x2e1 þ x3e2.
Then we have the following.

Theorem 4.1. G is geometrically finite.

We shall prove this theorem in the remainder of the paper.

4.2. Several propositions.

Proposition 4.2. StabG0
ðyÞ ¼ J1 ¼ J2, which means that Jm ðm ¼ 1; 2Þ is a

geometrically finite subgroup of G0.
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Proof. We can see that J1 ¼ J2HStabG0
ðyÞ. Now take any g A StabG0

ðyÞ.
Then

g ¼ a b

0 d

� �
:

Since ad ¼ 1 and a, d are Gaussian integers, we may assume that a ¼ d ¼ 1 or
a ¼ e1 and d ¼ �e1.

If a ¼ e1 and d ¼ �e1, then

g ¼ j1
1 �e1b

0 1

� �
;

where �e1b is also a Gaussian integer. Therefore, we only need to consider the

case when a ¼ d ¼ 1, i.e., g ¼ 1 b

0 1

� �
, where b is a Gaussian integer. We can

put b ¼ aþ e1b, where a, b are integers. Then

g ¼ j a2 � ð j�1
1 � j3Þ�b: r

By the statements of Section 5 in [10], we see that

Proposition 4.3. (1) G0 is geometrically finite;
(2) LðG0Þ ¼ G0ðyÞU fthe conical limit points of G0g;
(3) y is a parabolic vertex of G0 and U is a peak domain of y, where

U ¼ fx A R3 : x2
3 > 16g:

Set

Fr B1 ¼ fx ¼ ðx1; x2; x3Þ A R3 : x3 ¼ 5gU fyg; B1 ¼ fx A R3 : x3 b 5gU fyg;
Fr B2 ¼ fx A R3 : x3 ¼ �5gU fyg; B2 ¼ fx A R3 : x3 a�5gU fyg;

A ¼ R3nðB1 UB2Þ and A0 ¼ AnG0ðB1 UB2Þ:

Proposition 4.4. Each Bm is a ðJm;G0Þ-block ðm ¼ 1; 2Þ.

Proof. Obviously, LðJmÞ ¼ fyg and Bm VWðJmÞ ¼ Bm VWðG0Þ ¼ Bmnfyg.
By Propositions 4.2 and 4.3, we know that Bm VWðG0Þ is precisely invariant
under Jm in G0. r

Proposition 4.5. A0 0j.

Proof. Since B�
1 UB�

2 HWðG0Þ by Lemma 3.2-(3), we have LðG0ÞHA0 U
G0ðFr B1 UFr B2Þ. On the other hand, LðG0ÞVG0ðFr B1 UFr B2Þ ¼ G0ðLðJ1ÞU
LðJ2ÞÞ ¼ G0ðyÞ. An easy computation shows that G

ffiffiffi
3

p
are fixed points of a

loxodromic element
2 3

1 2

� �
A G0, they are conical limit points of G0 and are

not G0-equivalent to y. Therefore, G
ffiffiffi
3

p
A A0. r
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Proposition 4.6. B1 and B2 are jointly f -blocked.

Proof. By Propositions 4.3 and 4.4, we know that ðB1 VWðG0Þ;B2 VWðG0ÞÞ
is precisely invariant under ðJ1; J2Þ in G0. By computation, f ðR3nB1Þ ¼ B�

2 and
fJ1 f

�1 ¼ J2. Combining these with Proposition 4.4, we see that B1 and B2 are
jointly f -blocked. r

Proposition 4.7. Set

D0 ¼ x A R3 : � 1

2
< x1 a

1

2
; 0 < x2 a

1

2
; jxjb 1

� ��
ðA1 UA2 UA3Þ;

where A1 ¼
�
x A R3 : x2 ¼ 0;� 1

2 a x1 a 0
	
, A2 ¼

�
x A R3 : x2 ¼ 1

2 ;� 1
2 a x1a 0

	
,

and A3 ¼
�
x A R3 : jxj ¼ 1;� 1

2 a x1 a 0
	
. Then D0 is maximal.

Proof. It is obvious that D0 is a fundamental set for G0. Since D0 VBm

is a fundamental set for the action of Jm on Bm and f ðD0 VFr B1Þ ¼ D0 VFr B2,
D0 is maximal. r

Proposition 4.8. Fr Bm is a strong ðJm;GÞ-block ðm ¼ 1; 2Þ.

Proof. It is obvious that the rank of StabGðyÞ is 3. It follows that y
is a parabolic vertex of G. Obviously, G0 VG1 ¼ fidg. By Theorem 3.1, G ¼
hG0;G1i ¼ G0�f , G is discrete and Fr Bm is a strong ðJm;GÞ-block (m ¼ 1; 2).

r

Now we are ready to prove Theorem 4.1.

4.3. The proof of Theorem 4.1. Since G0 is geometrically finite, each Bm is
a strong ðJm;G0Þ-block. On the other hand, by Proposition 4.8, each Fr Bm is
a strong ðJm;GÞ-block (m ¼ 1; 2). By Theorem 3.1, G is geometrically finite.

From the proof of Theorem 4.1, we can easily get the following corollary.

Corollary 4.9. Bm is not precisely invariant under Jm in G0.

Remark 4.1. The group G in Theorem 4.1 does not satisfy the condition
that ‘‘Bm (m ¼ 1; 2) is precisely invariant under Jm in G0’’, which is required in
Theorem 1.1.
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