
ON KLEIN'S COMBINATION THEOREM

BY

BERNARD MASKIT(i)

The combination theorem of Klein, Der Prozess der Ineinanderschiebung,

in [4], was first stated essentially as follows. Let Gx and G2 be finitely generated

discontinuous groups of Möbius transformations, and let Dy and D2 be funda-

mental domains for Gy and G2, respectively. Assume that the interior of Dy

contains the boundary and exterior of D2, and that the interior of D2 contains

the boundary and exterior of Dy. Then G, the group generated by Gt and G2, is

again discontinuous, and £) = D1nD2isa fundamental domain for G.

Proofs of the above theorem appear in most of the standard references (for

example, [2, pp. 56-59], [3, pp. 190-194]). These proofs use different definitions

of "fundamental domain", none of which are very general.

In this paper, we give a new version of this theorem, which uses fundamental

sets rather than fundamental domains, and which does not have the restriction

that Gy and G2 are finitely generated. We also have somewhat different goemetric

hypotheses. The new conditions involve the existence of a certain Jordan curve.

In Chapter HI there is an example which shows that such a condition is needed.

This example corresponds, in the formulation given above, to the case that the

boundaries of Dy and D2 are not disjoint.

One of the conclusions of the combination theorem is that G is the free product

of Gy and G2. In [5] I proved a weak generalization of this theorem for the case

that G is the free product of Gy and G2 with an amalgamated subgroup. In this

paper, there is a stronger generalization, in which the amalgamated subgroup is

cyclic.

In order to state the main theorem of this paper, certain definitions and notations

are needed. These are given in Chapter I, which also contains some basic facts

about Kleinian groups. Chapter II contains the formulation of the main theorem

and the proof. Chapter III contains the example mentioned above.

It was proven in [5] that a rather wide class of Kleinian groups can be con-

structed from very simple groups using the construction that appears in this paper,

and another construction. This other construction will be discussed in a subsequent

paper.
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The two constructions mentioned above are also used by Nielsen-Fenchel [1]

to construct all finitely generated Fuchsian groups, starting with certain "ele-

mentary" groups.

This problem was originally suggested to me by L. Bers. I would like to take

this opportunity to thank him, and L. Keen, for many informative conversations.

I. Basic facts.

1. We denote the extended complex plane, or Riemann sphere, by E. A Möbius

transformation is a mapping z -» (az + b)(cz + d) ~\ where a, fo, c, d are complex

numbers with ad — be # 0.

A group G of Möbius transformations is said to be discontinuous at the point z,

if there is a neighborhood U of z, such that g(U) O U = 0, for all geG, other

than the identity; i.e. if x, ye U, geG, g(x) = y, then x = y and g = l.

A Kleinian group is a group of Möbius transformations which is discontinuous

at some point z. Throughout this chapter, the letter G will denote a Kleinian group.

The following notation will be used throughout this paper. If S cz 2 and H

is some set of Möbius transformations, then

n(S,//)=  \JKS).)
hell

2. Given a Kleinian group G, there are two natural subsets of S which one

can associate with G. The regular set R(G) consists of those points of £ at which

G is discontinuous. The limit set L(G) consists of those points z for which there

is a point z0, and a sequence {g„}, of distinct elements of G, with gn(z0) -» z.

One easily sees that these sets are invariant under G, that R(G) is open, that

L(G) is closed, and that R(G) n L(G) = 0.

3. A set D is called a partial fundamental set (PFS) for G,  if

(a) D*0,
(b) D cz R(G), and

(c) g(D) nD = 0, for all geG,g^ 1.

If, in addition to (a), (b), and (c), D satisfies property

(d)Y[(D,G) = R(G),
then D is called a fundamental set (FS) for G.

Conditions (c) and (d) are the usual conditions for a fundamental set. Condition

(c) asserts that no two points of D axe equivalent under G, and condition (d)

asserts that every point of R(G) is equivalent to some point of D.

We remark that, using the definition of discontinuity, condition (c) can be

restated as follows : if x, ye D, geG, g(x) = y, then x = y and g = I.

5. In this section we prove three basic lemmas about Kleinian groups.

Lemma 1. Let x be some point ofE, and let {gn} be a sequence of distinct

elements of G Then A = {z|g„(z)-»x} is both open and closed in R(G).
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Proof. If z e An R(G), then we can find a neighborhood U of z where

g(U) n U = 0 for every geG other than the identity, and U is the interior of a

circular disc. Then, for every n, g„(U) is again the interior of a circular disc.

Since the g„ are all distinct, g„(U) n gm(U) = 0 for all n^m, and so, in terms

of the metric on the sphere, the area of gn(U) converges to zero. It follows that

the diameter of gn(U) converges to zero, and so g„(y)->x, for every ye U; i.e.

A is open in R(G).

Now let Zjt -> z e R(G), where each zk e A n R(G). Pick a neighborhood U

of z, as above. For k sufficiently large, zke U, and so, by the above argument,

z e A ; i.e. A is closed in R(G).

Lemma 2. Let z„-*zeR(G), and let {g„} be a sequence of distinct elements

ofG, with g„(z„) -► x. Then gn(z) -► x.

Proof. As in the proof of Lemma 1, let U be a neighborhood of z where U

is the interior of a circular disc, and g(U) nU = 0 for all geG other than the

identity. Then, for n sufficiently large, z„e U. Since the diameter of g„(U) con-

verges to zero, gn(z) -* x.

The following lemma was essentially proven by Ford [2, pp. 39-41] :

Lemma 3. Let z0eR(G) and let {g„} be a sequence of distinct elements of G.

Assume that g„(z0)-*x. Then there is a subsequence {g„} such that gnt(z)-*x

for all zeZ with at most one exception.

Proof. We can assume, without loss of generality, that z0 is the point at

infinity. Since z0 e R(G), the isometric circles of all the elements of G are bounded.

Let a„, a'„ be the centers of the isometric circles of gn, g~1, respectively, and let r„

be the radius of these isometric circles. Each gn then maps {z 11 z — an | > r„} onto

{z11z - a'tt| < r„}, and in particular, g„(z0) = a'„.By assumption, g„(z0) = a'„->x.

We now pick the subsequence {g„t} so that {a„J converges to some point a.

Now let z' # a be a some point of 2. Since the {gnt} are all distinct, the sequence

rni converges to zero. It follows then, that for n¡ sufficiently large, | z' — ant | > r„t,

and so | gnt(z') - a„'| < rni. The result now follows, since a'n -> x, and rn¡ -» 0.

II. The Combination Theorem.

6. The following theorem was proven in [5].

Theorem 1. Let Gy and G2 be Kleinian groups, and let H be a common

subgroup of G y and G2. Let Dy, D2, A be PFS'sfor Gy, G2, H, respectively. For

i = 1,2, set E¡ = Yl(D¡,H). Assume that D' = int^ n £2 n A) ± 0, and that

EyyJE2 = R(Gf) U R(G2). Then G, the group generated by Gx and G2, is

Kleinian, D' is a PFSfor G, G is the free product ofGy and G2 with amalgamated

subgroup H, and, if we set D = £1n£2nA, then g(D) nD = 0, for all geG,

8*1-
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The principal aim of this paper is to find suitable conditions under which D is

a FS when Dy, D2 and A are. The precise statement is as follows:

Theorem 2. Let Gy and G2 be Kleinian groups. Let H be a common subgroup

ofGy and G2 where H is either cyclic or consists only of the identity. Let Dy, D2,

A be FS's for Gy, G2, H, respectively. For i = 1, 2, set E¡ = Y[(D¡, H). Assume

that EyUE2 = R(H), and that mt(E1nE2r\A)¥:0. Assume further that

there is a simple closed curve y, contained in int(£x U £2) U L(H); y is invariant

under H; the closure o/yOA is contained in int(£1n£2)> and y separates

Ey — E2 and E2 — Ey. Then G, the group generated by Gy and G2 is Kleinian,

G is the free product of Gy and G2 with amalgamated subgroup H, and

D = EyC\E2r\Aisa FSfor G.

We already know, from Theorem l,that Gis Kleinian, that G is the free product

of Gy and G2 with amalgamated subgroup H, and that D satisfies properties

(a) and (c) in the definition of FS; i.e. D^0, and g(D) n D = 0 for all g e G,

g # 1. In the remainder of this chapter, we will prove that D satisfies properties

(b) and (d) in the definition of FS; i.e. D c R(G), and ]J(D, G) = R(G). This will
then complete the proof of Theorem 2.

The proof of property (b) is mainly technical and simply involves chasing

points around with appropriate applications of Lemma 2.

After having proven that D satisfies property (b), we will then know that

[~[(D,G) c R(G). We also will know that points not in R(Gy), and points not in

R(G2), cannot be in R(G), and therefore that the images of these points under G

also cannot be in R(G). We will then show that every other point zofL is

uniquely determined by a nested sequence of images of y under G, and that

zeL(G).

7. We first observe that £t and £2 are invariant under H, and, in fact, they are

precisely invariant under H; that is, if gyeGy — H, then gy(Ey)r\Ey= 0,

and similarly, if g2eG2 — H, then g2(E2)C\E2 = 0. The proof of this fact is

quite simple. If, for example, xegy(Ey)C\Ey, then there are points zt, z2eDx,

and there are elements hx, h2eH, so that x = gyO hy(zy) = h2(z2). It follows

at once that gy = h2o hy1 eH.

We also observe that £x n £2 = FT (D, H). For if zeEyC\E2, then

z e R(Gy) n R(G2) cz R(H), and so there is an h e H, with h(z) e A. Then, since

Ey n £2 is invariant under H, h(z)eEy n £2 n A = D, and sozef](D,H).

Conversely, if z e f| (D, H), then z = h(y), where yeD = EyC\E2C\A. Again,

Ey 0£2 is invariant under H, and so zeEyC\E2.

Finally, we remark that since H is cyclic, L(H) consists of either 0,1, or 2 points.

These simple but important remarks will be used throughout this chapter

without further mention.

8. In this section, we show that D n bd(£J c R(G).
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Lemma 4. Let z0eEy nbd(Ey). Let geGy, and let U be a connected neigh-

borhood ofz0, where U cz R(Gy). If g(U) e\z E2, then there is a point x e g(U) n y.

Proof. Since U c R(Gy), g(U) c RiGy), and so g(t/) c J?(H). If g(U) d: £2,

then there are points of g(C7) which are not in £2, and, since £t U £2 = RiH),

there are points of g(U) which are in Ey — £2.

If g $ H, then g(z0) i Ey, and so g(z0) e E2 - Ey.

If geH, then g(z0) e bd^), and so g(l/) contains points not in £x ; i.e. g(t7)

contains points of £2 — Ey.

Therefore g(C/) is a connected open set containing points of Ey — E2 and points

of £2 — Ey. Since y separates these two sets, y passes through g(U).

Lemma 5. Let Zoeßnbd^.), and let geGy, then there is a neighborhood

U of z0, with giU) ezz E2.

Proof. Since z0eD, z0eRiGy), hence we can find a nested sequence {U„} of

connected neighborhoods of z0, where each U„ ezz RiGy). Now by Lemma 4, if

g({7„)d: £2, for every n, there is an x„egiU„)ny. Then lim„_00xn =g(z0)ey.

This is a contradiction since y.c int(£t n E2) U L(/T), and giz0) $ L(H) U int(£t).

Lemma 6. Let z0eDnbd(£,). Then there is a neighborhood U of z0, with

giU) <= E2,for every geGy.

Proof. Assume not, and let {Un} be a nested sequence of connected neighbor-

hoods of z0, where each Un c RiGy). Then, for each n, there is a gneGy, with

gjfjf) +- E2. By Lemma 5, we can pick out a subsequence so that the gn are all

distinct, and in fact, since £2 is invariant under H, we can pick the subsequence

so that the g„ represent distinct elements of H¡Gy.

By Lemma 4, for each n, there is a point x„ e g„iUn) n y. Since U„ is open

we can assume that x„ £ LiH). We define a sequence h„ e H, by n„(x„) = y„ e A n y.

We now choose a subsequence which we again call by the same name, so that

y„ -> y e closure (y O A) <= int (£j n Ef) <= R iGf).

We now have that yn-*y e RiGy), g~1 -h~l (y„)^z0, and the elements g'1 -h'1

are all distinct. Hence, by Lemma 2, g'1 o h~ 1iy) -» z0,and so z0 ^RiGy), which

is a contradiction.

Lemma 7. D n bd (£J <= R(G).

Proof. Let z0 e D n bd(£j). Then, by Lemma 6, we can find a neighborhood U

of z0 with the following properties:

(i)  gilOc^forallgeG.., and

(ii) giU) n U = 0, for all geGug¥>l.
Now let g ^ 1 be any element of G. If g e Gy, then we already know by property

(ii) that giU) n U = 0. If g t Gy, then we can write g = gno gn_yO ■■■ o g2o gy,

where g2J e G2, g2j_y e Gy, and for j>\, g}$ H.
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By property (i), gy(U) c £2. Then, since g2$H, g2ogy(U)icz Ey - E2. Simi-

larly g3 o g2 o gy(U) cz £2 — Ey, and so on. Hence g(U) cz Ey — E2 if n is even,

and g(U) cz E2 — Ey if n is odd.

If n is even, then U c £2, and g(U) cz Ey — E2, hence g(U) n U = 0.

Now let n be odd and assume that g(U) n 1/ # 0. We have already observed

that g(l/) n l/=0 for ge Gy, and so n ^ 3. We have that g„o—o gy(U)r\l}^0,

or, equivalent^ g„-yO ■■■ o gy(U) n ^*(l/) # 0. Since n is odd,

Vi° •••ogi([/)c£i-£2, g'^eGy, and so, by property (i),gn-1 (l/)<=£2.

Hence g„_ i o • ••o gl((J) ng;1(U) = 0.

9. Since Gi, Dx, Ey, and G2, D2, £2 appear symmetrically in the hypotheses

of Theorem 2, we can interchange these everywhere in §8, and so prove

Lemma  8. D n bd(£2) c R(G).

In order to complete the proof that D cz R(G), it remains only to show that

those points of D which are on the boundary of A are contained in R(G).

Lemma 9. (D - (bd (Ey) u bd (£2)) n bd (A)) c R(G).

Proof. If z0 is a point of O — (bd(£j)ubd(£2)), then we easily see that

z0 e int(£j n £2). Now, we can find a neighborhood U of z0) such that g(U)nlf=0,

for all g e fi, and 1/ c int^ n £2). Since g(Ey n £2) n (£t n £2) = 0 for all

geG —H y we see at once that g(t/)nl/ = 0, for all geG, g^l, and so

z0eR(G).

Putting together Theorem 1 and Lemmas 7, 8, and 9, we have

Lemma  10. D c R(G).

10. To complete the proof of this theorem, we have to show that Y[ (D, G) = R(G).

We have already shown that Y\(D,G)cz R(G).

Set R0 - 11(0. G), L, = n(Z - *(Gi), G), L2 = [1(2 - Ä(G2), G),
T = S - (R0 U Li U L2). For i = 1,2, L¡ n R(G) = 0, and so, if R0 were properly

contained in R(G), TnR(G) would not be empty. We will in fact show that

T c L(G).

Let z0 be some point of T. Then z0$Ly and so, in particular, z0eR(Gy).

Therefore there is a gy eGt with gi(z0)eDi. Since R0, Li, and L2 are invariant

under G, T is invariant under G, and so gy(z0) e T. We next observe that gy(z0) $ E2,

foxEyC\E2 czR(G).

Since gy(z0)eT, gy(z0) £L2, and so there must be a g2 e G2, with g2 o gi(z0)e D2.

As before, g2o gi(z0)^£i, and so g2$H.

We can continue in this manner to get a sequence {g„} of elements of G with

the following properties:

(1) g2ieG2,

(2) #21+1 eGi,

(3)ft#H,i>l,
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(4) gn o ••• o gyizo) eDy-E2,ifnis odd,

(5) g„o ••• o gyizQ)eD2- Ey, if n is even,

(6)g„o-og1(z0)eT.

We set/, = ign o ••• o g y) 1 and y„ = j„(y).

Since y c: £t n £2 U L(íí), ynT = 0. T is invariant under G, and so

y,nT=0, for every n. Since z0 e T, z0 lies in the interior of one of the topological

discs bounded by y„. Let S„ be the closed disc, bounded by y„, which contains z0.

Lemma  11. S„ r> S„+1for every n.

Proof. Let zey n Ey n E2. Assume first that n is odd. Then

y'»Vi(zo)e£2 - Ey and /„V, o Liz) = g„ + 1 o g„ o ••• o gl o g¡"x o — o g~xiz)

= gn+1iz)eEy-E2, since g„+leG2-H. Therefore y separates j~+\ o ¿.(z)

and y'nVi/zo). Applying 7'n+1 to each of the expressions in this statement, we find

that jn+I(y) = y„+1 separates j„(z) and z0 ; i.e., ;„(y) lies outside S„+1, except for

the at most two points of y which lie in L(/i). This shows that Sn zz> Sn+ y for n odd.

Interchanging Gy, Ey, and G2, £2, in the above argument, we get S„zz> Sn+1

for n even.

Now let S = p)„S„, and let S be the boundary of S.

Lemma 12. If L(/F) = 0, then S consists of at most one point.

Proof. Let xe S. Then x can be realized as the limit of a sequence xn, where

x„ebd(S,) = y„. Set y„ =J„"1(x„). The sequence {y„} has at least one limit point y.

Since LiH) = 0, ycint(£1n£2)cR(G), and so yeRiG). By Lemma 2,

./„(y) ->x, and then by Lemma 1, /„(z) -> x for every zey.

If x' were a different point of 5, then we would have equally well that

L.(z)->x', for every zey, which is an obvious contradiction.

Lemma 13. IfLiH) consists of two points, then S contains at most two points.

Proof. The proof involves picking appropriate subsequences so that various

things converge. To avoid cumbersome notation, we will call the subsequence

by the same name as the original sequence.

Let z, z' be the two points of L(H). We first pick a subsequence so that j„(z) -> x,

y'„(z')->x'. Now assume that there is some point x" e 5, x" # x,x'. Since x" e S,

there is a sequence x„ e y„, with x„ -> x". Since x" # x, x', we can pick a subsequence

so that, for every n, x„ ^j„iz), J„(z'). Then y„ =j~1ix„)eRiH), and so there is

an n„ e H, with wn = h„iy„) e A. Observe that wn in fact lies in D n y, for y is

invariant under H. We again choose a subsequence so that w„ -> w. One of the

hypotheses of Theorem 2 is that closure (D Oy) c int(£t n£2), and so weRiG).

We now have wn-*we K(G), and y'„ o h~ 1(wn) —> x". Hence, by Lemma 2,

j„o n„_1(w)->x". Now, by Lemma 3, we can choose a subsequence so that

Jn ° h~Xit)-*x"> for all tell, with at most one exception. In particular, either

j„o /i~1(z)->x", or j„o h~1iz')-*x". However, z and z' are fixed points of
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elements of H, and so we have that either j„(z)->x", or jn(z')-*x". We have

reached a contradiction since jn(z)->x, j„(z')^x', and we have assumed that

Lemma  14. IfLLH) consists of one point, then S contains at most one point.

As in the proof of Lemma 13, the proof here consists in appropriately choosing

subsequences. We again use the same notation for both the subsequence and the

original sequence.

Let z be the one point of L(H). We first choose a subsequence so that j„(z) -* x.

We now assume that there is a point x' ^ x in S. Then there is a sequence xneyn

where x„-»x'. Let y„ = jn~1(x„). Since x' # x, we can choose a subsequence so

that yn¥=z for all n. Since y„#z, yneR(H) and so there is an h„eH, with

w„ = h„(y„) e A. Since yn ey, wne y, and so wn e D n y. We choose another

subsequence so that wn-* w. Since wneD C\y, weR(G). We are now in a position

to apply Lemma 2, for w„-+weR(G), and jn o fo„_1(wn) = x„ -> x'. Hence

/'„ o h~ 1(w) -> x'. Since z is the fixed point of all elements of H, we also have that

JnoK1(z)^x.

Now let h ^ 1 be some fixed element of H. We set j„' =j„oh~1,

K=j'n°no(j'„)~\ j'n(w) = un, j'noh(w) = u'n, j'n(z) = vn. Then «„ is a parabolic

Möbius transformation in G with fixed point v„, and /iA(w„) = u'„. We also know

that v„-► x, m„ -► x' ^ x, and, by Lemma 1, u'„-*x'.

We can assume, without loss of generality that none of the points x, v„, u„, u'n

is the point at infinity. Then each h„ can be uniquely represented by a matrix,

with determinant + 1, of the form

/;„
f 1 + PrPn - Pn»l '

Vn 1 - PnV„    -

Since h„(u„) = u'n, we have

"n = [(1 + PAK - P„v„] [P„"n + 1 - Pnvn] ~1-

Solving for p„, we obtain

P„ = ("„ -O ("n - vn) ~HK- kT l ■

Since un, u'„-*x', v„-*x # x', we see at once that p„->-0. Then, since the v„

axe all bounded, the sequence of transformations {h„} converges to the identity.

It follows then that G is not discontinuous, and we have reached a contradiction.

Hence S contains at most one point.

Lemmas 12, 13, and 14 exhaust all possible cases and show that S contains

at most two points. Since Sis the boundary of the intersection of a nested sequence

of closed discs, it follows at once that S = S = {z0} where z0 is the point of T
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with which we started. Since 7„(z)->z0 for every zey, we have shown that

z0eLiG), which is the desired conclusion. The proof of Theorem 2 is now

complete.

11. It should be remarked that, in the case that H consists only of the identity,

the fact that we are dealing with Möbius transformations enters into the proof

of Theorem 2 only through Lemmas 1 and 2. These lemmas remain equally valid

for groups of Möbius transformations on the n-sphere S". (One regards S" as

Euclidean n-space with the one point compactification, and the Möbius trans-

formations are generated by reflections in hyperplanes, rotations, translations,

and inversions in hyperspheres.) One easily sees that, for this case, the proof

of Theorem 2 remains valid if one sets I = S", and y is an embedded S"-1 which

separates S" into two n-discs.

As a particular application of the above remark, we mention that, again for

the case that H consists only of the identity, we need not restrict ourselves to

orientation preserving transformations of the Riemann sphere, and we can allow

transformations of the form

z^iaz+ b)icz + d)~l.

III. An example.

12. In this chapter we give an example which shows that the hypotheses of

Theorem 2 cannot be substantially weakened. In this example Gt and G2 are both

cyclic, and H consists only of the identity.

Let G y be the group generated by the transformation A : z -> 3z. One sees

at once that

Dy = {z\lz%\z\<3}

is a FS for Gy. For G2 we take the group generated by the transformation

B: z -> ( — 2z + 5)(z — 2)_1. One easily sees that

D2 = {z 11 z - 21 = 1, | z + 21 > 1, z # 1} U {z = - 3}

is a FS for G2.

Gy and G2, with FS's Dy and D2, satisfy some of the hypotheses of Theorem 2;

Dy\JD2 = E, and intiDy nD2) ^ 0, but there is no Jordan curve lying in the

interior of Dy n D2 which separates Dy — D2 and D2 — Dy. We wish to show that

D = Dy nD2 is not a FS for G, the group generated by Gy and G2. Since the

hypotheses of Theorem 1 are satisfiied, we know that G is discontinuous, and in

fact we can prove that D <zz R(G), and that D is a PFS for G.

To prove that D is not a FS for G, we observe that the extended real axis R is

invariant under G, and that R nD = 0. Hence it suffices >to show that

RnRiG)¥=0.

In order to show that R n Ä(G) ^ 0, we define new FS's D\ and D2 for Gy

and G2 respectively. D[ and D2 are shown in Figures 1 and 2. These sets are
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Figure 1

D'z

*■ X

Figure 2

bounded by arcs of circles orthogonal to the real axis. The inner boundary of

D'y is bounded by |z\ = 1, the circles passing through 3/5 and 7/5, and the circle

passing through — 3/5 and — 7/5. The outer boundary is obtained from the inner

boundary by applying the transformation A. The boundary of D2 in the right half
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plane is bounded by \z — 2| = 1, the circle passing through 1/2 and 3/2, and

the circle passing through 8/3 and 4. The other boundary of D'2 is obtained by

applying B to this boundary. One easily sees that int(D2) is symmetric with respect

to the imaginary axis. One also easily sees that Gy and G2 with FS's D[ and D'2

satisfy the hypotheses of Theorem 2, and that, for example, the open interval

(4, 21/5) lies in int (Din De-
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