ON KLEIN'S COMBINATION THEOREM

BY
BERNARD MASKIT(${ }^{1}$)

The combination theorem of Klein, Der Prozess der Ineinanderschiebung, in [4], was first stated essentially as follows. Let G_{1} and G_{2} be finitely generated discontinuous groups of Möbius transformations, and let D_{1} and D_{2} be fundamental domains for G_{1} and G_{2}, respectively. Assume that the interior of D_{1} contains the boundary and exterior of D_{2}, and that the interior of D_{2} contains the boundary and exterior of D_{1}. Then G, the group generated by G_{1} and G_{2}, is again discontinuous, and $D=D_{1} \cap D_{2}$ is a fundamental domain for G.

Proofs of the above theorem appear in most of the standard references (for example, [2, pp. 56-59], [3, pp. 190-194]). These proofs use different definitions of "fundamental domain', none of which are very general.

In this paper, we give a new version of this theorem, which uses fundamental sets rather than fundamental domains, and which does not have the restriction that G_{1} and G_{2} are finitely generated. We also have somewhat different goemetric hypotheses. The new conditions involve the existence of a certain Jordan curve. In Chapter III there is an example which shows that such a condition is needed. This example corresponds, in the formulation given above, to the case that the boundaries of D_{1} and D_{2} are not disjoint.

One of the conclusions of the combination theorem is that G is the free product of G_{1} and G_{2}. In [5] I proved a weak generalization of this theorem for the case that G is the free product of G_{1} and G_{2} with an amalgamated subgroup. In this paper, there is a stronger generalization, in which the amalgamated subgroup is cyclic.

In order to state the main theorem of this paper, certain definitions and notations are needed. These are given in Chapter I, which also contains some basic facts about Kleinian groups. Chapter II contains the formulation of the main theorem and the proof. Chapter III contains the example mentioned above.

It was proven in [5] that a rather wide class of Kleinian groups can be constructed from very simple groups using the construction that appears in this paper, and another construction. This other construction will be discussed in a subsequent paper.

[^0]The two constructions mentioned above are also used by Nielsen-Fenchel [1] to construct all finitely generated Fuchsian groups, starting with certain "elementary' groups.

This problem was originally suggested to me by L. Bers. I would like to take this opportunity to thank him, and L. Keen, for many informative conversations.

I. Basic facts.

1. We denote the extended complex plane, or Riemann sphere, by Σ. A Möbius transformation is a mapping $z \rightarrow(a z+b)(c z+d)^{-1}$, where a, b, c, d are complex numbers with $a d-b c \neq 0$.
A group G of Möbius transformations is said to be discontinuous at the point z, if there is a neighborhood U of z, such that $g(U) \cap U=\varnothing$, for all $g \in G$, other than the identity; i.e. if $x, y \in U, g \in G, g(x)=y$, then $x=y$ and $g=1$.

A Kleinian group is a group of Möbius transformations which is discontinuous at some point z. Throughout this chapter, the letter G will denote a Kleinian group.

The following notation will be used throughout this paper. If $S \subset \Sigma$ and H is some set of Möbius transformations, then

$$
\Pi(S, H)=\bigcup_{h \in H} h(S) . ?
$$

2. Given a Kleinian group G, there are two natural subsets of Σ which one can associate with G. The regular set $R(G)$ consists of those points of Σ at which G is discontinuous. The limit set $L(G)$ consists of those points z for which there is a point z_{0}, and a sequence $\left\{g_{n}\right\}$, of distinct elements of G, with $g_{n}\left(z_{0}\right) \rightarrow z$.
One easily sees that these sets are invariant under G, that $R(G)$ is open, that $L(G)$ is closed, and that $R(G) \cap L(G)=\varnothing$.
3. A set D is called a partial fundamental set (PFS) for G, if
(a) $D \neq \varnothing$,
(b) $D \subset R(G)$, and
(c) $g(D) \cap D=\varnothing$, for all $g \in G, g \neq 1$.

If, in addition to (a), (b), and (c), D satisfies property
(d) $\Pi(D, G)=R(G)$,
then D is called a fundamental set $(F S)$ for G.
Conditions (c) and (d) are the usual conditions for a fundamental set. Condition (c) asserts that no two points of D are equivalent under G, and condition (d) asserts that every point of $R(G)$ is equivalent to some point of D.

We remark that, using the definition of discontinuity, condition (c) can be restated as follows: if $x, y \in D, g \in G, g(x)=y$, then $x=y$ and $g=1$.
5. In this section we prove three basic lemmas about Kleinian groups.

Lemma 1. Let x be some point of Σ, and let $\left\{g_{n}\right\}$ be a sequence of distinct elements of G Then $A=\left\{z \mid g_{n}(z) \rightarrow x\right\}$ is both open and closed in $R(G)$.

Proof. If $z \in A \cap R(G)$, then we can find a neighborhood U of z where $g(U) \cap U=\varnothing$ for every $g \in G$ other than the identity, and U is the interior of a circular disc. Then, for every $n, g_{n}(U)$ is again the interior of a circular disc. Since the g_{n} are all distinct, $g_{n}(U) \cap g_{m}(U)=\varnothing$ for all $n \neq m$, and so, in terms of the metric on the sphere, the area of $g_{n}(U)$ converges to zero. It follows that the diameter of $g_{n}(U)$ converges to zero, and so $g_{n}(y) \rightarrow x$, for every $y \in U$; i.e. A is open in $R(G)$.

Now let $z_{k} \rightarrow z \in R(G)$, where each $z_{k} \in A \cap R(G)$. Pick a neighborhood U of z, as above. For k sufficiently large, $z_{k} \in U$, and so, by the above argument, $z \in A$; i.e. A is closed in $R(G)$.

Lemma 2. Let $z_{n} \rightarrow z \in R(G)$, and let $\left\{g_{n}\right\}$ be a sequence of distinct elements of G, with $g_{n}\left(z_{n}\right) \rightarrow x$. Then $g_{n}(z) \rightarrow x$.

Proof. As in the proof of Lemma 1 , let U be a neighborhood of z where U is the interior of a circular disc, and $g(U) \cap U=\varnothing$ for all $g \in G$ other than the identity. Then, for n sufficiently large, $z_{n} \in U$. Since the diameter of $g_{n}(U)$ converges to zero, $g_{n}(z) \rightarrow x$.

The following lemma was essentially proven by Ford [2, pp. 39-41]:
Lemma 3. Let $z_{0} \in R(G)$ and let $\left\{g_{n}\right\}$ be a sequence of distinct elements of G. Assume that $g_{n}\left(z_{0}\right) \rightarrow x$. Then there is a subsequence $\left\{g_{n_{i}}\right\}$ such that $g_{n_{i}}(z) \rightarrow x$ for all $z \in \Sigma$ with at most one exception.

Proof. We can assume, without loss of generality, that z_{0} is the point at infinity. Since $z_{0} \in R(G)$, the isometric circles of all the elements of G are bounded. Let a_{n}, a_{n}^{\prime} be the centers of the isometric circles of g_{n}, g_{n}^{-1}, respectively, and let r_{n} be the radius of these isometric circles. Each g_{n} then maps $\left\{z \| z-a_{n} \mid>r_{n}\right\}$ onto $\left\{z\left|\left|z-a_{n}^{\prime}\right|<r_{n}\right\}\right.$, and in particular, $g_{n}\left(z_{0}\right)=a_{n}^{\prime}$. By assumption, $g_{n}\left(z_{0}\right)=a_{n}^{\prime} \rightarrow x$. We now pick the subsequence $\left\{g_{n_{i}}\right\}$ so that $\left\{a_{n_{i}}\right\}$ converges to some point a.

Now let $z^{\prime} \neq a$ be a some point of Σ. Since the $\left\{g_{n_{i}}\right\}$ are all distinct, the sequence $r_{n_{i}}$ converges to zero. It follows then, that for n_{i} sufficiently large, $\left|z^{\prime}-a_{n_{i}}\right|>r_{n_{i}}$, and so $\left|g_{n_{i}}\left(z^{\prime}\right)-a_{n}^{\prime}\right|<r_{n_{i}}$. The result now follows, since $a_{n}^{\prime} \rightarrow x$, and $r_{n_{i}} \rightarrow 0$.

II. The Combination Theorem.

6. The following theorem was proven in [5].

Theorem 1. Let G_{1} and G_{2} be Kleinian groups, and let H be a common subgroup of G_{1} and G_{2}. Let D_{1}, D_{2}, Δ be PFS's for G_{1}, G_{2}, H, respectively. For $i=1,2$, set $E_{i}=\prod\left(D_{i}, H\right)$. Assume that $D^{\prime}=\operatorname{int}\left(E_{1} \cap E_{2} \cap \Delta\right) \neq \varnothing$, and that $E_{1} \cup E_{2}=R\left(G_{1}\right) \cup R\left(G_{2}\right)$. Then G, the group generated by G_{1} and G_{2}, is Kleinian, D^{\prime} is a PFS for G, G is the free product of G_{1} and G_{2} with amalgamated subgroup H, and, if we set $D=E_{1} \cap E_{2} \cap \Delta$, then $g(D) \cap D=\varnothing$, for all $g \in G$, $g \neq 1$.

The principal aim of this paper is to find suitable conditions under which D is a $F S$ when D_{1}, D_{2} and Δ are. The precise statement is as follows:

Theorem 2. Let G_{1} and G_{2} be Kleinian groups. Let H be a common subgroup of G_{1} and G_{2} where H is either cyclic or consists only of the identity. Let D_{1}, D_{2}, Δ be FS's for G_{1}, G_{2}, H, respectively. For $i=1,2$, set $E_{i}=\prod\left(D_{i}, H\right)$. Assume that $E_{1} \cup E_{2}=R(H)$, and that $\operatorname{int}\left(E_{1} \cap E_{2} \cap \Delta\right) \neq \varnothing$. Assume further that there is a simple closed curve γ, contained in $\operatorname{int}\left(E_{1} \cup E_{2}\right) \cup L(H) ; \gamma$ is invariant under H; the closure of $\gamma \cap \Delta$ is contained in $\operatorname{int}\left(E_{1} \cap E_{2}\right)$, and γ separates $E_{1}-E_{2}$ and $E_{2}-E_{1}$. Then G, the group generated by G_{1} and G_{2} is Kleinian, G is the free product of G_{1} and G_{2} with amalgamated subgroup H, and $D=E_{1} \cap E_{2} \cap \Delta$ is a FS for G.

We already know, from Theorem 1, that G is Kleinian, that G is the free product of G_{1} and G_{2} with amalgamated subgroup H, and that D satisfies properties (a) and (c) in the definition of $F S$; i.e. $D \neq \varnothing$, and $g(D) \cap D=\varnothing$ for all $g \in G$, $g \neq 1$. In the remainder of this chapter, we will prove that D satisfies properties (b) and (d) in the definition of $F S$; i.e. $D \subset R(G)$, and $\prod(D, G)=R(G)$. This will then complete the proof of Theorem 2.
The proof of property (b) is mainly technical and simply involves chasing points around with appropriate applications of Lemma 2.
After having proven that D satisfies property (b), we will then know that $\Pi(D, G) \subset R(G)$. We also will know that points not in $R\left(G_{1}\right)$, and points not in $R\left(G_{2}\right)$, cannot be in $R(G)$, and therefore that the images of these points under G also cannot be in $R(G)$. We will then show that every other point z of Σ is uniquely determined by a nested sequence of images of γ under G, and that $z \in L(G)$.
7. We first observe that E_{1} and E_{2} are invariant under H, and, in fact, they are precisely invariant under H; that is, if $g_{1} \in G_{1}-H$, then $g_{1}\left(E_{1}\right) \cap E_{1}=\varnothing$, and similarly, if $g_{2} \in G_{2}-H$, then $g_{2}\left(E_{2}\right) \cap E_{2}=\varnothing$. The proof of this fact is quite simple. If, for example, $x \in g_{1}\left(E_{1}\right) \cap E_{1}$, then there are points $z_{1}, z_{2} \in D_{1}$, and there are elements $h_{1}, h_{2} \in H$, so that $x=g_{1} \circ h_{1}\left(z_{1}\right)=h_{2}\left(z_{2}\right)$. It follows at once that $g_{1}=h_{2} \circ h_{1}^{-1} \in H$.

We also observe that $E_{1} \cap E_{2}=\prod(D, H)$. For if $z \in E_{1} \cap E_{2}$, then $z \in R\left(G_{1}\right) \cap R\left(G_{2}\right) \subset R(H)$, and so there is an $h \in H$, with $h(z) \in \Delta$. Then, since $E_{1} \cap E_{2}$ is invariant under $H, h(z) \in E_{1} \cap E_{2} \cap \Delta=D$, and so $z \in \prod(D, H)$.

Conversely, if $z \in \prod(D, H)$, then $z=h(y)$, where $y \in D=E_{1} \cap E_{2} \cap \Delta$. Again, $E_{1} \cap E_{2}$ is invariant under H, and so $z \in E_{1} \cap E_{2}$.

Finally, we remark that since H is cyclic, $L(H)$ consists of either 0,1 , or 2 points.
These simple but important remarks will be used throughout this chapter without further mention.
8. In this section, we show that $D \cap \operatorname{bd}\left(E_{1}\right) \subset R(G)$.

Lemma 4. Let $z_{0} \in E_{1} \cap \operatorname{bd}\left(E_{1}\right)$. Let $g \in G_{1}$, and let U be a connected neighborhood of z_{0}, where $U \subset R\left(G_{1}\right)$. If $g(U) \notin E_{2}$, then there is a point $x \in g(U) \cap \gamma$.

Proof. Since $U \subset R\left(G_{1}\right), g(U) \subset R\left(G_{1}\right)$, and so $g(U) \subset R(H)$. If $g(U) \nsubseteq E_{2}$, then there are points of $g(U)$ which are not in E_{2}, and, since $E_{1} \cup E_{2}=R(H)$, there are points of $g(U)$ which are in $E_{1}-E_{2}$.

If $g \notin H$, then $g\left(z_{0}\right) \notin E_{1}$, and so $g\left(z_{0}\right) \in E_{2}-E_{1}$.
If $g \in H$, then $g\left(z_{0}\right) \in \operatorname{bd}\left(E_{1}\right)$, and so $g(U)$ contains points not in E_{1}; i.e. $g(U)$ contains points of $E_{2}-E_{1}$.

Therefore $g(U)$ is a connected open set containing points of $E_{1}-E_{2}$ and points of $E_{2}-E_{1}$. Since γ separates these two sets, γ passes through $g(U)$.

Lemma 5. Let $z_{0} \in D \cap \operatorname{bd}\left(E_{1}\right)$, and let $g \in G_{1}$, then there is a neighborhood U of z_{0}, with $g(U) \subset E_{2}$.

Proof. Since $z_{0} \in D, z_{0} \in R\left(G_{1}\right)$, hence we can find a nested sequence $\left\{U_{n}\right\}$ of connected neighborhoods of z_{0}, where each $U_{n} \subset R\left(G_{1}\right)$. Now by Lemma 4, if $g\left(U_{n}\right) \not \ddagger E_{2}$, for every n, there is an $x_{n} \in g\left(U_{n}\right) \cap \gamma$. Then $\lim _{n \rightarrow \infty} x_{n}=g\left(z_{0}\right) \in \gamma$. This is a contradiction since $\gamma \subset \operatorname{int}\left(E_{1} \cap E_{2}\right) \cup L(H)$, and $g\left(z_{0}\right) \notin L(H) \cup \operatorname{int}\left(E_{1}\right)$.

Lemma 6. Let $z_{0} \in D \cap \operatorname{bd}\left(E_{1}\right)$. Then there is a neighborhood U of z_{0}, with $g(U) \subset E_{2}$, for every $g \in G_{1}$.

Proof. Assume not, and let $\left\{U_{n}\right\}$ be a nested sequence of connected neighborhoods of z_{0}, where each $U_{n} \subset R\left(G_{1}\right)$. Then, for each n, there is a $g_{n} \in G_{1}$, with $g_{n}\left(U_{n}\right) \notin E_{2}$. By Lemma 5 , we can pick out a subsequence so that the g_{n} are all distinct, and in fact, since E_{2} is invariant under H, we can pick the subsequence so that the g_{n} represent distinct elements of H / G_{1}.

By Lemma 4, for each n, there is a point $x_{n} \in g_{n}\left(U_{n}\right) \cap \gamma$. Since U_{n} is open we can assume that $x_{n} \notin L(H)$. We define a sequence $h_{n} \in H$, by $h_{n}\left(x_{n}\right)=y_{n} \in \Delta \cap \gamma$. We now choose a subsequence which we again call by the same name, so that $y_{n} \rightarrow y \in \operatorname{closure}(\gamma \cap \Delta) \subset \operatorname{int}\left(E_{1} \cap E_{2}\right) \subset R\left(G_{1}\right)$.

We now have that $y_{n} \rightarrow y \in R\left(G_{1}\right), g_{n}^{-1} \cdot h_{n}^{-1}\left(y_{n}\right) \rightarrow z_{0}$, and the elements $g_{n}^{-1} \cdot h_{n}^{-1}$ are all distinct. Hence, by Lemma $2, g_{n}^{-1} \circ h_{n}^{-1}(y) \rightarrow z_{0}$, and so $z_{0} \notin R\left(G_{1}\right)$, which is a contradiction.

Lemma 7. $D \cap \mathrm{bd}\left(E_{1}\right) \subset R(G)$.
Proof. Let $z_{0} \in D \cap \operatorname{bd}\left(E_{1}\right)$. Then, by Lemma 6, we can find a neighborhood U of z_{0} with the following properties:
(i) $g(U) \subset E_{2}$ for all $g \in G_{1}$, and
(ii) $g(U) \cap U=\varnothing$, for all $g \in G_{1}, g \neq 1$.

Now let $g \neq 1$ be any element of G. If $g \in G_{1}$, then we already know by property (ii) that $g(U) \cap U=\varnothing$. If $g \notin G_{1}$, then we can write $g=g_{n} \circ g_{n-1} \circ \cdots \circ g_{2} \circ g_{1}$, where $g_{2 j} \in G_{2}, g_{2 j-1} \in G_{1}$, and for $j>1, g_{j} \notin H$.

By property (i), $g_{1}(U) \subset E_{2}$. Then, since $g_{2} \notin H, g_{2} \circ g_{1}(U)!\subset E_{1}-E_{2}$. Similarly $g_{3} \circ g_{2} \circ g_{1}(U) \subset E_{2}-E_{1}$, and so on. Hence $g(U) \subset E_{1}-E_{2}$ if n is even, and $g(U) \subset E_{2}-E_{1}$ if n is odd.

If n is even, then $U \subset E_{2}$, and $g(U) \subset E_{1}-E_{2}$, hence $g(U) \cap U=\varnothing$.
Now let n be odd and assume that $g(U) \cap U \neq \varnothing$. We have already observed that $g(U) \cap U=\varnothing$ for $g \in G_{1}$, and so $n \geqq 3$. We have that $g_{n} \circ \cdots \circ g_{1}(U) \cap U \neq \varnothing$, or, equivalently $g_{n-1} \circ \cdots \circ g_{1}(U) \cap g_{n}^{-1}(U) \neq \varnothing$. Since n is odd, $g_{n-1} \circ \cdots \circ g_{1}(U) \subset E_{1}-E_{2}, g_{n}^{-1} \in G_{1}$, and so, by property (i), $g_{n}^{-1}(U) \subset E_{2}$. Hence $g_{n-1} \circ \cdots \circ g_{1}(U) \cap g_{n}^{-1}(U)=\varnothing$.
9. Since G_{1}, D_{1}, E_{1}, and G_{2}, D_{2}, E_{2} appear symmetrically in the hypotheses of Theorem 2, we can interchange these everywhere in $\S 8$, and so prove

Lemma 8. $D \cap \operatorname{bd}\left(E_{2}\right) \subset R(G)$.
In order to complete the proof that $D \subset R(G)$, it remains only to show that those points of D which are on the boundary of Δ are contained in $R(G)$.

Lemma 9. $\left(D-\left(\mathrm{bd}\left(E_{1}\right) \cup \mathrm{bd}\left(E_{2}\right)\right) \cap \mathrm{bd}(\Delta)\right) \subset R(G)$.
Proof. If z_{0} is a point of $D-\left(\operatorname{bd}\left(E_{1}\right) \cup b d\left(E_{2}\right)\right)$, then we easily see that $z_{0} \in \operatorname{int}\left(E_{1} \cap E_{2}\right)$. Now, we canfind a neighborhood U of z_{0}, such that $g(U) \cap U=\varnothing$, for all $g \in H$, and $U \subset \operatorname{int}\left(E_{1} \cap E_{2}\right)$. Since $g\left(E_{1} \cap E_{2}\right) \cap\left(E_{1} \cap E_{2}\right)=\varnothing$ for all $g \in G-H_{1}$ we see at once that $g(U) \cap U=\varnothing$, for all $g \in G, g \neq 1$, and so $z_{0} \in R(G)$.

Putting together Theorem 1 and Lemmas 7, 8, and 9, we have
Lemma 10. $D \subset R(G)$.
10. To complete the proof of this theorem, we have to show that $\prod(D, G)=R(G)$. We have already shown that $\Pi(D, G) \subset R(G)$.
Set $\quad R_{0}=\prod(D, G), \quad L_{1}=\Pi\left(\Sigma-R\left(G_{1}\right), G\right), \quad L_{2}=\prod\left(\Sigma-R\left(G_{2}\right), G\right)$, $T=\Sigma-\left(R_{0} \cup L_{1} \cup L_{2}\right)$. For $i=1,2, L_{i} \cap R(G)=\varnothing$, and so, if R_{0} were properly contained in $R(G), T \cap R(G)$ would not be empty. We will in fact show that $T \subset L(G)$.

Let z_{0} be some point of T. Then $z_{0} \notin L_{1}$ and so, in particular, $z_{0} \in R\left(G_{1}\right)$. Therefore there is a $g_{1} \in G_{1}$ with $g_{1}\left(z_{0}\right) \in D_{1}$. Since R_{0}, L_{1}, and L_{2} are invariant under G, T is invariant under G, and so $g_{1}\left(z_{0}\right) \in T$. We next observe that $g_{1}\left(z_{0}\right) \notin E_{2}$, for $E_{1} \cap E_{2} \subset R(G)$.

Since $g_{1}\left(z_{0}\right) \in T, g_{1}\left(z_{0}\right) \notin L_{2}$, and so there must be a $g_{2} \in G_{2}$, with $g_{2} \circ g_{1}\left(z_{0}\right) \in D_{2}$. As before, $g_{2} \circ g_{1}\left(z_{0}\right) \notin E_{1}$, and so $g_{2} \notin H$.

We can continue in this manner to get a sequence $\left\{g_{n}\right\}$ of elements of G with the following properties:
(1) $g_{2 i} \in G_{2}$,
(2) $g_{2 i+1} \in G_{1}$,
(3) $g_{i} \notin H, i>1$,
(4) $g_{n} \circ \cdots \circ g_{1}\left(z_{0}\right) \in D_{1}-E_{2}$, if n is odd,
(5) $g_{n} \circ \cdots \circ g_{1}\left(z_{0}\right) \in D_{2}-E_{1}$, if n is even,
(6) $g_{n} \circ \cdots \circ g_{1}\left(z_{0}\right) \in T$.

We set $j_{n}=\left(g_{n} \circ \cdots \circ g_{1}\right)^{-1}$ and $\gamma_{n}=j_{n}(\gamma)$.
Since $\gamma \subset E_{1} \cap E_{2} \cup L(H), \quad \gamma \cap T=\varnothing . T$ is invariant under G, and so $\gamma_{n} \cap T=\varnothing$, for every n. Since $z_{0} \in T, z_{0}$ lies in the interior of one of the topological discs bounded by γ_{n}. Let S_{n} be the closed disc, bounded by γ_{n}, which contains z_{0}.

Lemma 11. $S_{n} \supset S_{n+1}$ for every n.
Proof. Let $z \in \gamma \cap E_{1} \cap E_{2}$. Assume first that n is odd. Then $j_{n+1}^{-1}\left(z_{0}\right) \in E_{2}-E_{1}$ and $j_{n+1}^{-1} \circ j_{n}(z)=g_{n+1} \circ g_{n} \circ \cdots \circ g_{1} \circ g_{1}^{-1} \circ \cdots \circ g_{n}^{-1}(z)$ $=g_{n+1}(z) \in E_{1}-E_{2}$, since $g_{n+1} \in G_{2}-H$. Therefore γ separates $j_{n+1}^{-1} \circ j_{n}(z)$ and $j_{n+1}^{-1}\left(z_{0}\right)$. Applying j_{n+1} to each of the expressions in this statement, we find that $j_{n+1}(\gamma)=\gamma_{n+1}$ separates $j_{n}(z)$ and z_{0}; i.e., $j_{n}(\gamma)$ lies outside : S_{n+1}, except for the at most two points of γ which lie in $L(H)$. This shows that $S_{n} \supset S_{n+1}$ for n odd.

Interchanging G_{1}, E_{1}, and G_{2}, E_{2}, in the above argument, we get $S_{n} \supset S_{n+1}$ for n even.

Now let $S=\bigcap_{n} S_{n}$, and let \bar{S} be the boundary of S.
Lemma 12. If $L(H)=\varnothing$, then \bar{S} consists of at most one point.
Proof. Let $x \in S$. Then x can be realized as the limit of a sequence x_{n}, where $x_{n} \in \operatorname{bd}\left(S_{1}\right)=\gamma_{n}$. Set $y_{n}=j_{n}^{-1}\left(x_{n}\right)$. The sequence $\left\{y_{n}\right\}$ has at least one limit point y. Since $L(H)=\varnothing, \gamma \subset \operatorname{int}\left(E_{1} \cap E_{2}\right) \subset R(G)$, and so $y \in R(G)$. By Lemma 2, $j_{n}(y) \rightarrow x$, and then by Lemma $1, j_{n}(z) \rightarrow x$ for every $z \in \gamma$.

If x^{\prime} were a different point of S, then we would have equally well that $j_{n}(z) \rightarrow x^{\prime}$, for every $z \in \gamma$, which is an obvious contradiction.

Lemma 13. If $L(H)$ consists of two points, then S contains at most two points.
Proof. The proof involves picking appropriate subsequences so that various things converge. To avoid cumbersome notation, we will call the subsequence by the same name as the original sequence.

Let z, z^{\prime} be the two points of $L(H)$. We first pick a subsequence so that $j_{n}(z) \rightarrow x$, $j_{n}\left(z^{\prime}\right) \rightarrow x^{\prime}$. Now assume that there is some point $x^{\prime \prime} \in \bar{S}, x^{\prime \prime} \neq x, x^{\prime}$. Since $x^{\prime \prime} \in S$, there is a sequence $x_{n} \in \gamma_{n}$, with $x_{n} \rightarrow x^{\prime \prime}$. Since $x^{\prime \prime} \neq x, x^{\prime}$, we can pick a subsequence so that, for every $n, x_{n} \neq j_{n}(z), j_{n}\left(z^{\prime}\right)$. Then $y_{n}=j_{n}^{-1}\left(x_{n}\right) \in R(H)$, and so there is an $h_{n} \in H$, with $w_{n}=h_{n}\left(y_{n}\right) \in \Delta$. Observe that w_{n} in fact lies in $D \cap \gamma$, for γ is invariant under H. We again choose a subsequence so that $w_{n} \rightarrow w$. One of the hypotheses of Theorem 2 is that closure $(D \cap \gamma) \subset \operatorname{int}\left(E_{1} \cap E_{2}\right)$, and so $w \in R(G)$.

We now have $w_{n} \rightarrow w \in R(G)$, and $j_{n} \circ h_{n}^{-1}\left(w_{n}\right) \rightarrow x^{\prime \prime}$. Hence, by Lemma 2, $j_{n} \circ h_{n}^{-1}(w) \rightarrow x^{\prime \prime}$. Now, by Lemma 3, we can choose a subsequence so that $j_{n} \circ h_{n}^{-1}(t) \rightarrow x^{\prime \prime}$, for all $t \in \Sigma$, with at most one exception. In particular, either $j_{n} \circ h_{n}^{-1}(z) \rightarrow x^{\prime \prime}$, or $j_{n} \circ h_{n}^{-1}\left(z^{\prime}\right) \rightarrow x^{\prime \prime}$. However, z and z^{\prime} are fixed points of
elements of H, and so we have that either $j_{n}(z) \rightarrow x^{\prime \prime}$, or $j_{n}\left(z^{\prime}\right) \rightarrow x^{\prime \prime}$. We have reached a contradiction since $j_{n}(z) \rightarrow x, j_{n}\left(z^{\prime}\right) \rightarrow x^{\prime}$, and we have assumed that $x^{\prime \prime} \neq x, x^{\prime}$.

Lemma 14. If $L(H)$ consists of one point, then S contains at most one point.
As in the proof of Lemma 13, the proof here consists in appropriately choosing subsequences. We again use the same notation for both the subsequence and the original sequence.
Let z be the one point of $L(H)$. We first choose a subsequence so that $j_{n}(z) \rightarrow x$. We now assume that there is a point $x^{\prime} \neq x$ in S. Then there is a sequence $x_{n} \in \gamma_{n}$ where $x_{n} \rightarrow x^{\prime}$. Let $y_{n}=j_{n}^{-1}\left(x_{n}\right)$. Since $x^{\prime} \neq x$, we can choose a subsequence so that $y_{n} \neq z$ for all n. Since $y_{n} \neq z, y_{n} \in R(H)$ and so there is an $h_{n} \in H$, with $w_{n}=h_{n}\left(y_{n}\right) \in \Delta$. Since $y_{n} \in \gamma, w_{n} \in \gamma$, and so $w_{n} \in D \cap \gamma$. We choose another subsequence so that $w_{n} \rightarrow w$. Since $w_{n} \in D \cap \gamma, w \in R(G)$. We are now in a position to apply Lemma 2, for $w_{n} \rightarrow w \in R(G)$, and $j_{n} \circ h_{n}^{-1}\left(w_{n}\right)=x_{n} \rightarrow x^{\prime}$. Hence $j_{n} \circ h_{n}^{-1}(w) \rightarrow x^{\prime}$. Since z is the fixed point of all elements of H, we also have that $j_{n} \circ h_{n}^{-1}(z) \rightarrow x$.

Now let $h \neq 1$ be some fixed element of H. We set $j_{n}^{\prime}=j_{n} \circ h_{n}^{-1}$, $h_{n}=j_{n}^{\prime} \circ h \circ\left(j_{n}^{\prime}\right)^{-1}, j_{n}^{\prime}(w)=u_{n}, j_{n}^{\prime} \circ h(w)=u_{n}^{\prime}, j_{n}^{\prime}(z)=v_{n}$. Then h_{n} is a parabolic Möbius transformation in G with fixed point v_{n}, and $h_{h}\left(u_{n}\right)=u_{n}^{\prime}$. We also know that $v_{n} \rightarrow x, u_{n} \rightarrow x^{\prime} \neq x$, and, by Lemma $1, u_{n}^{\prime} \rightarrow x^{\prime}$.

We can assume, without loss of generality that none of the points $x, v_{n}, u_{n}, u_{n}^{\prime}$ is the point at infinity. Then each h_{n} can be uniquely represented by a matrix, with determinant +1 , of the form

$$
h_{n} \sim\left[\begin{array}{lr}
1+p_{n} v_{n} & -p_{n} v_{n}^{2} \\
p_{n} & 1-p_{n} v_{n}
\end{array}\right]
$$

Since $h_{n}\left(u_{n}\right)=u_{n}^{\prime}$, we have

$$
u_{n}^{\prime}=\left[\left(1+p_{n} v_{n}\right) u_{n}-p_{n} v_{n}^{2}\right]\left[p_{n} u_{n}+1-p_{n} v_{n}\right]^{-1} .
$$

Solving for p_{n}, we obtain

$$
p_{n}=\left(u_{n}-u_{n}^{\prime}\right)\left(u_{n}-v_{n}\right)^{-1}\left(u_{n}^{\prime}-v_{n}\right)^{-1} .
$$

Since $u_{n}{ }^{\text {" }}, u_{n}^{\prime} \rightarrow x^{\prime}, v_{n} \rightarrow x \neq x^{\prime}$, we see at once that $p_{n} \rightarrow 0$. Then, since the v_{n} are all bounded, the sequence of transformations $\left\{h_{n}\right\}$ converges to the identity. Itfollows then that G is not discontinuous, and we have reached a contradiction. Hence S contains at most one point.

Lemmas 12, 13, and 14 exhaust all possible cases and show that S contains at most two points. Since S is the boundary of the intersection of a nested sequence of closed discs, it follows at once that $S=S=\left\{z_{0}\right\}$ where z_{0} is the point of T
with which we started. Since $j_{n}(z) \rightarrow z_{0}$ for every $z \in \gamma$, we have shown that $z_{0} \in L(G)$, which is the desired conclusion. The proof of Theorem 2 is now complete.
11. It should be remarked that, in the case that H consists only of the identity, the fact that we are dealing with Möbius transformations enters into the proof of Theorem 2 only through Lemmas 1 and 2 . These lemmas remain equally valid for groups of Möbius transformations on the n-sphere S^{n}. (One regards S^{n} as Euclidean n-space with the one point compactification, and the Möbius transformations are generated by reflections in hyperplanes, rotations, translations, and inversions in hyperspheres.) One easily sees that, for this case, the proof of Theorem 2 remains valid if one sets $\Sigma=S^{n}$, and γ is an embedded S^{n-1} which separates S^{n} into two n-discs.

As a particular application of the above remark, we mention that, again for the case that H consists only of the identity, we need not restrict ourselves to orientation preserving transformations of the Riemann sphere, and we can allow transformations of the form

$$
z \rightarrow(a \bar{z}+b)(c \bar{z}+d)^{-1}
$$

III. An example.

12. In this chapter we give an example which shows that the hypotheses of Theorem 2 cannot be substantially weakened. In this example G_{1} and G_{2} are both cyclic, and H consists only of the identity.

Let G_{1} be the group generated by the transformation $A: z \rightarrow 3 z$. One sees at once that

$$
D_{1}=\{z|1 \leqq|z|<3\}
$$

is a FS for G_{1}. For G_{2} we take the group generated by the transformation $B: z \rightarrow(-2 z+5)(z-2)^{-1}$. One easily sees that

$$
D_{2}=\{z| | z-2|\geqq 1,|z+2|>1, z \neq 1\} \cup\{z=-3\}
$$

is a FS for G_{2}.
G_{1} and G_{2}, with FS's D_{1} and D_{2}, satisfy some of the hypotheses of Theorem 2; $D_{1} \cup D_{2}=\Sigma$, and $\operatorname{int}\left(D_{1} \cap D_{2}\right) \neq \varnothing$, but there is no Jordan curve lying in the interior of $D_{1} \cap D_{2}$ which separates $D_{1}-D_{2}$ and $D_{2}-D_{1}$. We wish to show that $D=D_{1} \cap D_{2}$ is not a FS for G, the group generated by G_{1} and G_{2}. Since the hypotheses of Theorem 1 are satisfiied, we know that G is discontinuous, and in fact we can prove that $D \subset R(G)$, and that D is a PFS for G.

To prove that D is not a FS for G, we observe that the extended real axis R is invariant under G, and that $R \cap D=\varnothing$. Hence it suffices to show that $R \cap R(G) \neq \varnothing$.

In order to show that $R \cap R(G) \neq \varnothing$, we define new FS's D_{1}^{\prime} and D_{2}^{\prime} for G_{1} and G_{2} respectively. D_{1}^{\prime} and D_{2}^{\prime} are shown in Figures 1 and 2. These sets are

Figure 1

Figure 2
bounded by arcs of circles orthogonal to the real axis. The inner boundary of D_{1}^{\prime} is bounded by $|z|=1$, the circles passing through $3 / 5$ and $7 / 5$, and the circle passing through $-3 / 5$ and $-7 / 5$. The outer boundary is obtained from the inner boundary by applying the transformation A. The boundary of D_{2} in the right half
plane is bounded by $|z-2|=1$, the circle passing through $1 / 2$ and $3 / 2$, and the circle passing through $8 / 3$ and 4 . The other boundary of D_{2}^{\prime} is obtained by applying B to this boundary. One easily sees that $\operatorname{int}\left(D_{2}^{\prime}\right)$ is symmetric with respect to the imaginary axis. One also easily sees that G_{1} and G_{2} with FS's D_{1}^{\prime} and D_{2}^{\prime} satisfy the hypotheses of Theorem 2, and that, for example, the open interval $(4,21 / 5)$ lies $\operatorname{in} \operatorname{int}\left(D_{1}^{\prime} \cap D_{2}^{\prime}\right)$.

References

1. W. Fenchel and J. Nielsen, Discontinuous groups of non-Euclidean motions, unpublished manuscript.
2. L. R. Ford, Automorphic functions, 1st ed., McGraw-Hill, New York, 1929.
3. R. Fricke and F. Klein, Vorlesungen über die Theorie der Automorphen Functionen. I, Teubner, Leipzig, 1897.
4. F. Klein, Neue Beiträge zur Riemann'schen Functionentheorie, Math. Ann. 21 (1883), 141-218.
5. B. Maskit, Construction of Kleinian groups, Proc. Conf. on Complex Analysis, Minnesota, 1964.

Institute for Advanced Study, Princeton, New Jersey

[^0]: Received by the editors March 3, 1965.
 ${ }^{(1)}$ Part of this research appeared in the author's doctoral dissertation at New York University. The research was supported by the National Science Foundation through grants NSF-GP779, NSF-GP780, NSF-GP2439, and a graduate fellowship.

