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0. Sgumaxry. For testing the hypothesis of symmetry (about a specified point), a
simple Kolmogorov-Smirnov-type test is proposed. The exact and asymptotic (null
hypothesis) distributions of some allied statistics are obtained, and the Bahadur-

efficiency of the test is studied.

1. %ﬂ%ﬁ%%%%%%%%' Let {Xi} be a sequence of independent real valued random
variables with continuous distribution functions (df) {Fi(x)}, all defined on
(-»,») and not necessarily identical. Based on a sample (Xl,...,Xn), we want to
test the null hypothesis (Ho) that all the d4f Fl,...,Fn are symmetric around their
respective (specified) medians. Without any loss of generality, we may take all

these medians to be equal to zero, and thus frame Ho as

(1.1) Ho: Fi(x)+Fi(—x)=1, ¥ x>0, and i=1,...,n.

Let c(u) be equal to 0 or 1 according as u < or > 0, and let

(1.2) Fx(x)=n"1] B e(x-X,), F,_. x)=n" ]2 F (x), -oxx<e,
‘ n i=1 i (n) i=1"1

Thus, Fﬁ is the empirical df and it estimates unbiasedly the average df f(n)

(a.e.). In testing the null hypothesis'(l.B), we are interested in the following

alternative hypotheses:

. Sup - ., Inf -
(1.3) Byt oSOF gy GO oy (0151, Hyr (TOIF 0 GOHE () (30 1<
(1.4) Hy=H UH: S“P|F oy GHF L) (00-1]>0.
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When Fl=...=Fn=F, (1.3) [(1.4)] relates to one [two-] sided skewness. In many
practical problems, though it may be unwise to impose the restriction that
Fl=...=Fn=F, it may not be unreasonable to assume that Fl,...,Fn have a common
pattern of skewness, when (1.3) does not hold. For example, let Fi(x) =
Fg([x-ui]/ci), and Fge 36’ i=1,...,n, where 56 = {F: F(x)+F(-x) = 1 a.e.}, and

the My and o, are the location and scale parameters. If the My have all the same
sign, Fl,...,Fn are either all positively or all negatively skewed, no matter
whatever be their forms and the oi(>0). We also note that whereas in the classical
one-sample goodness of fit problem (where the Kolmogorov-Smirnov-type tests apply)
we require to assume the form of the true df, the same is not needed here. Also,
unlike the one-sample location problem, we are not necessarily confining ourselves
only to translation alternatives. In fact, even if all the medians of the df
Fl,...,Fn are equal to 0, the alternatives in (1.3) and (1.4) may hold. In

addition, the homogeneity of F Fn is totally inessential.

l,ooa’

For testing the null hypothesis, we consider the following Kolmogorov-Smirnov-

type statistics whose appeals are evident from (1.3) and (1.4):

+ o Supro, —x=)- = = SUPTY pk(x)-F% (~x=)1:
(1.5) D Xzo[Fn(XHF;‘I( x-)-1], D Xzo[l F¥ (x)-F%(-x-)1;
(1.6) D_ = max[D ,D]] = SUP|F#(x)+F* (-x-)-1
’ n n’ n x>0'"n n )

Note that Fg is a step-function, and hence, to avoid some complications in the
distributipn theory, we have taken Fg(—x—) for Fﬁ(-x), x>0.

The small sample null distributions of D:, D; and Dn are deduced in Section 2,
and tabulated too, for n<l6. Section 3 deals with asymptotic null distributions
of these statistics. The last section is devoted to the study of the Bahadur-

efficiency of the test based on Dn with respect to the sign test.
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Fg is a step-function assuming the values i/n, i=1,...,n, the process
{n[Fg(x)+Fg(—x—)—l]: xZO} can only assume the integral values between -n to n.
Thus, the permissible values of nD:, nD; and nDn are the integers 0,1,...,n, but

not all of these are admissible. We denote by En = (Fl,...,Fn), and

(2.1) 3. =1{£: Fed, i=1,...,n}.

Then, we have the following theorem.

Theorem 2.1. For every gneﬁﬁ and k=1,...,n,

(2.2) P{mD >k} = P{mD >k} = 2], % (D2 -5, (H2 7",

where s = [%(n-k)] is the largest integer contained in L(n-k), 6k = 0 or 1 according
as n-k = odd or even, and

1, k=0,1,
(2.3) P{nDnzk} = . j N
22j=o (-1)7 P{mD >(2j+1)k}, k-1,

where u = [n/2k]-1, k=1,...,n.

Proof. Let le...zyn be the ordered values of IXll,...,Ian, arranged in

descending order of magnitude. Let t , = F (-Y.), for 1<i<n, so that
n,i (n) i7* — =

F =L C=F ¢ i e symmetric
Qitn,litn,25'°‘itn,nﬁr(n)(o) 5 (as En€§n=¢'F(n)85;). Since, F;,...,F are symm

and continuous, ties among IXll,...,Ian, and hence, among tn,l""’tn,n can be

neglected in probability. Thus,

(2.4) 0<tn 15t 2<...<tn n<%, in probability.
H] b 9

1
2

. ~-len =

= * - * = -
Define then Vn(t) n [Gn(t) t], 0<t<1l, where Gn(t) n zi=1c(t F(n)(xi))’ and
let

(2-5) VE(E) =V (t-)+V_(1-t), O<t<hs.



L
For <t 10 n V*(t) =0, At t=t_ 4, n*

T V*(t) is either +1 or -1, depending upon

whether the random variable Xi associated with Yn has negative or positive sign.

1
The process névg(t) continues to have the same value until t= t Zh where it

makes another jump of +1 or -1, depending on whether the Xi associated with Yn—l
is negative or not. And thus the process continues. Hence, on I=(0,k),
n%Vg(t) makes n jumps (at tn,l""’tn,n) and each jump is either +1 or -1.

Let pij = P{Yn_i+l=|Xj|}, i,j=1,...,n, (thus zjzlpij=l’ i=1l,...,n). Since,

for anﬂﬁ, the df of X, is symmetric about 0, I<i<n,

(2.6) P{Y

n—itl corresponds to a positive Xj}

- 23 1p13 P{x >OI|X ' n-1+1} 623 lplj =’

as the distribution of sign Xi is independent of IXil when Fieﬁz, i=l,...,n.

Thus, the jumps (+1 or -1) at t 4 are both equally likely with probability k.

s

Moreover, for Ensﬁﬁ, the vector (Sign Xl,...,Sign Xn) is distributed independently
of (]Xll,...,Ian) and Sign X;5++.,51gn X are also mutually stochastically in-
1
dependent. Hence, the jumps of n?V *(t) at t n.1°'e oty are mutually independent.
’

?

Finally, the values of nD: (= :ug 2V*(t)), nD_ (- SuPPnZV*(t)]) and nD (- Sup, V;(t)l)

are independent of the particular realization of §n=(tn’l,...,tn’n)el. Hence, we
conclude that (i) the distribution of nD: (or nD;) (under Ho) is the same as that
of the maximum positive (or negative) displacement in n steps of a symmetric
random walk starting from the origin, and (ii) tﬁe distribution of nDn agrees with
that of the corresponding maximum absolute displacement. Thus, the distribution
problem is reduced to that of a symmetric random walk problem. Note that nD: and
nD; are both non-negative, and hence, P{nD;zQ} = P{nD;zp} = 1, Also, at tn,l’

1/2

*(t) is either +1 or -1. Hence, nDnzl, with probability one. So, to prove

(2.2), we consider k>1, and for (2.3), k>2.



We now use theorem 1 (Section 8) of Takacs (1967, p. 24), and obtain that

for k>1,
+ - vk
(2.7) P{nD >k} = P{nD >k} = jzk-g P{Nj = j-k} ,
where
2‘j(i), j-k=2r, 1=0,1,2,...,
(2.8) P{Nj = j-k} =

0, j-k = 2r+l; j>k>1,

Using an alternative standard expression given in Uspensky (1937, p. 149), (2.7)
P
can be written as
-(n-1)v s ,n n,,-n
(2.9) 2 Leoo() k(2 s
where s and 6k are defined after (2.2).

Thus, the proof of (2.2) is completed. Writing now Q+(a,n) (or Q(a,n)) for the
probability that a particle starting a symmetric random walk at the origin with
the absorbing barrier at a (or barriers at *a), a>0, will be absorbed at the

barrier in course of time n, we have

(2.10) P{nD_ < k'} = 1-2Q(k'+1,n);

(2.11) P(uD} < k'} = 1" (k'+1,n).
Also, from Uspensky (1937, p. 156), we obtain that

(2.12)  Q(k'+1,n) = Q' (k'+1,n)-qT(3k'+3,n)+Qt (5k'+5,n)

— e D% (QuEDR 1) 5 w = [(/2k1)-1].

Then, (2.3) readily follows from (2.10), (2.11), (2.12) and (2.2), by letting
k' = k-1, Q.E.D.
The probabilities in (2.2) and (2.3) are quite simple to be computed, and

are presented below for n<16.
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3. éRXmR&QE%QVQ%%EEEB%E%%@vEQ%Q&X' We consider first the null case. Here, we
%

L - L )
provide asymptotic expressions for (a) P{n D:zy}, P{nanzy} and P{nanzy} and

(b) P{D:Zy}, P{D;zy} and P{DnZy}, where y(0<y<») is fixed. For this, let

- Y
(3.1) o(y) = (2m7 2 [ [exp(-4t?)1dt,  —w<y<wm,

=00

Then, we have the following theorem.

Theorem 3.1. For every fixed y(0<y<»), under H (i.e., Vv Eneﬁﬁ),

(3.2) Unp 0ty = Hlpn7oy) = 20(-y);
(3.3) Hnpn >y} = 41,5 <D o= -Dy)].

Proof. Let r be the number of successes in n independent Bernoullian trials

with probability %. Then, by (2.2),

(3.4) P{n®}>y} = Pla®D >y} = 22{r_<s }-6,Plr =s }
= 2P{n—%(2rn—n) 5_n—%(an—n)}—dkP{rn-sn},

1 =1
where s, = [n/Z—%néy], so that n 2

(an—n) + -y, as n»o, Algso, by the DeMoivre-
Laplace theorem, the right hand side of (3.4) tends to ¢(-y) as n>~. Hence,

(3.2) follows from (3.4). A similar proof applies to (3.3). Q.E.D.

Remark. By standard arguments [such as in Feller (1965, p. 230)], one could

have approximated the random walk of section 2 by a Brownian movement process,

and then used the well-known results on the maximum (or absolute maximum) dis-
placement of such a process [viz., Parthasarathy (1967, pp. 224-230), particularly,
corollaries 5.1 and 5.2] to give alternative derivation for the proofs of

(3.2) and (3.3). For simplicity of presentation, we do not consider this approach.

Let us now define, for every e: 0<e<)s,



e

(3.5) p(e) = (1+26)” ) 126y 05 &)y [y = 0 for eon

It is then easy to verify that p(e) is strictly ¥ in €: 0<e<), with p(0) = 1 and

1im€+%p(€) = %. Hence for any A>1
(3.6) p(Ae)/p(e) < 1, for all O<e<hh .

Theorem 3.2. Under Ho’ for every e: 0<e<1,

(3.7) p{D)>e} = P{D >} < 2[p(e/2)1",
(3.8) iig[n-llog P{Dzzg}] = log p(e/2);
(3.9) P{D e} < 4[p(e/2)]", and 1 7[n"log P(D_>e}] = log p(e/2).

+ R -
= % % = -
Proof. By (2.2) and (3.4), P{Dniﬁ} P{Dnzg} 5_2P{rn§§n}, where s¥ [kn(1l-€)]
Since, r is a sum of independent and bounded valued random variables, (3.7)
follows from the theorem 1 of Hoeffding (1963), and (3.8) follows from lemma 1
of Abrahamson (1967), attributed to Bahadur and Rao (1960). Also, noting that for

every €>0 and n>1,

(3.10) P{D:ze} < P{D >e} < P{D:_>_e} + P{D;ze},

(3.9) follows readily from (3.7) and (3.8). Q.E.D.
Let us now consider the non-null case. To simplify the expressions, we
assume the homogeneity of the cdf's, viz., F1=...=Fn=F, for all n>1. For a

cdf F(x), we define for x>0 and £>0,

(3.11) 01 (x,8) = Lot e R (-x) e "H{F () -F (-x) HH{1-F () }eF1},
. pp(xse) = L ple TIF(-x)e "HF(x)-F(-x)}+{1-F(x)}e ]};



(3.13) p*(x,e) = maX[pl(x,e),pz(x,E)] and p*(F,e) = 2280*(&8)-

Note that when F(x)e db’ pl(x,s) = pz(x,e).

Theorem 3.3. For every continuous F and every e: 0<e<l,

(3.14) lim[n_llog P{DnZE}] = log p*(F,e).

n->o

Outline of the proof. By definition in (1.6), for every n and >0,

(3.15) P{D >e} > P{IF:;(X)+F§(—><—)-1| > e} for any x>0.

Since, Fg(x)+Fg(—x—)—l = n_liizlg(xi), where g(u) = 1, 0 or -1 according as
u<-x, -x<u<x or u>x, and as g(Xl),...,g(Xn) are all independent and bounded valued
random variables, using the well-known results of Bahadur and Rao (1960) (see

also lemma 1 of Abrahamson (1967)), we obtain by some simple steps that

(3.16) iim[n—llog P{IF;(X)+F§(—x—)-l]2§}] = log p*(x,c), x>0.

at]

Thus, by (3.14), (3.15) and (3.16), we have

(3.17) Hm inf [n—liog P{DHZS}].Z S:p log p*(x,e) = log p*(F,e).

n x>0

Hence, the proof of (3.14) will follow, if we can show that

(3.18) llmnsup[n_llog P{D_>e}] < log p*(F,e).

Since the proof of (3.18) follows by the same technique as in theorem 1 of
Abrahamson (1967) [namely, as in her (3.12)-(3.15)], we omit the details and

terminate the proof here. Hence the theorem.

Pn ARMRGARRARELRESR:  Following

Abrahamsom (1967), we briefly sketch the Bahadur (1960) efficiency of two

sequences of statistics, when, in particular, we are interested in the hypothesis
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1

as in Section 1, and let 3& be the class of all continuous (univariate) df's,

of symmetry. Here also we assume that F ="'=Fn=F for all n>1. We define Eg

not symmetric about zero. Thus, if we let
(4.1) §(F) = S“P]F(x)+F(-x) 1],

then 6(F) = 0,'VF€3§, while S§(F)>0, for any Fe 3&.
~ Consider now two sequences {Tél)} and {Téz)} of non-negative real valued
statistics, satisfying the following three conditions:

(1) there exists a non-degenerate and continuous df Ti(x), such that for

all F sﬂ% and real r(0<r<w),

lim

n—>rco

(4.2) PF{T(i)<r} =¥, (r),

(2) there exists a non-negative function li on [0,*] such that (i)

zi(z)>0 for all ze(0,®), and (ii) whenever {un} is a seqﬁence of real numbers

2

for which n_lun + ze(0,%), we have

(4.3) - am/myteg R (TN } = 8 (2),
uniformly in Feaz, and for Fe% ,

=L (4
(4.4) 3) n 2T§1) > b, (F)(>0) a.s., as n*», for i=1,2.

Then, we define the exact asymptotic efficiency of Til) with respect to Téz)
as equal to

(4.5) et 3 () = 2 (20 /8,52 (E)),
and with the metric §(F), defined by (4.1), the limit

(4.6) 1) = siiysg ory®
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is defined the exact asymptotic limiting efficiency, both defined after Bahadur

(1960), as further interpreted in Abrahamson (1967).

(1) ¢ (1)

Let now T =nD_ . Under H : Fe?, the distribution of T is inde-
n n o o n
pendent of F, and by (3.3), we have
4.7) ¥o(r) = 1-4], % (-1)* o (- (2k-1)1) , O<r<wo, v Fe B
' 1 k=1 > : o’

Further, using theorem 3.2, (3.5) and some standard computations we obtain that

for {un} for which ui/n+ze(0,l),

lim ¢D) _ v o k _
(4.8) T mo(3/m)10g B{T Tou b = ] 12 /k(2k-1),V Fe .
Finally, by the Glivenko-Cantelli theorem, iiz S;p]F;(x)—F(x)l =0, a.s., and

hence, by (1.6) and (4.1),
(4.9) “ap (1) | D _»§8(F) 00
. n T " =D » 8.8., as niw,

So for Dn’ all the three conditions are satisfied.

Let us now consider the sign statistic Sn’ defined by

I . = 7D
(4.10) Sn =1 (Zrn—n), r = Zi=1c(xi)’

where c(u) is defined after (1.1). If we then let T(z)

n = ISnI, we have

(4.11) ¥, (r) = o(x)-0(-r), O<r<e, VFe 3 .

Also, using lemma 1 of Abrahamsom (1967) and some standard computations, we

have, parallel to (4.8),

(4.12) - mme2/nylog BT P>u } = T 2/6(2-1), Y Fed

n->oo

Finally, it is well-known that as n>o,
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(4.13) n_l/zTr(lz) - n_l(2rn—n)->60(F) = 2F(0)-1, a.s..

Hence, the conditions are also satisfied for the sign statistic., Thus, the
asymptotic efficiencies of Dn with respect to Sn’ as defined by (4.5) and

(4.6), are equal to

(4.14) D = (L2060 near-11/1,%, 16, 0 ea-11,
(4.15) B @) - i smr/s, 2.

Now, note that by (4.1) and (4.13), 6(F)2§0(F),¥’F832\)3i. Hence, from (4.14)

and (4.15), we arrive at the following:
(4.16) e > @5y 5 1, for ai1 7.

Thus, the proposed test is at least as efficient (asymptotically) as the sign-
test for all F. In particular, if F(x) (63;5 is symmetric and unimodal, and
we are interested only in shift alternatives, then §(F) = GO(F), so that in
(4.16), the equality signs hold; the conclusion is not necessarily true when
F(x) is not strictly unimodal [viz., the uniform df]. On the other hand, for
certain specific type of asymmetry (of F), SO(F) may be exactly or nearly equal
to zero, but §(F) can still be positive, making (4.14) or (4.15) either « or
indefinitely large.

For other tests for symmetry, the Bahadur efficiency of Dn may be computed

in a similar way; for brevity the details are omitted.
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