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Abstract: There is now a renewed interest [1]–[4] to a Hurwitz τ -function, counting the

isomorphism classes of Belyi pairs, arising in the study of equilateral triangulations and

Grothiendicks’s dessins d’enfant. It is distinguished by belonging to a particular fam-

ily of Hurwitz τ -functions, possessing conventional Toda/KP integrability properties. We

explain how the variety of recent observations about this function fits into the general

theory of matrix model τ -functions. All such quantities possess a number of different de-

scriptions, related in a standard way: these include Toda/KP integrability, several kinds

of W -representations (we describe four), two kinds of integral (multi-matrix model) de-

scriptions (of Hermitian and Kontsevich types), Virasoro constraints, character expansion,

embedding into generic set of Hurwitz τ -functions and relation to knot theory. When ap-

proached in this way, the family of models in the literature has a natural extension, and

additional integrability with respect to associated new time-variables. Another member of

this extended family is the Itsykson-Zuber integral.
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8.4 Operators Ô(u1, . . . , un) 19

8.5 Hierarchy in n 20

9 Description in terms of the w∞-algebra 20

9.1 Combined Casimir operators
ˆ̃
C as distinguished Ŵ
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1 Introduction

Hurwitz τ -function [5–8] is a new important subject of theoretical physics, which seems

relevant to description of non-perturbative phenomena beyond 2d conformal field theory,

actually beginning from the 3d Chern-Simons and knot theory, see [9–11]. In general,

Hurwitz τ -functions do not belong [7, 8] to a narrower well-studied class of KP/Toda

τ -functions, i.e. are not straightforwardly reducible to free fermions (Û(1) Kac-Moody

algebras) and Plucker relations (the Universal Grassmannian). However, the special cases,

when they do, help to establish links between the known and unknown, and are very

instructive for development of terminology and research directions. A particular case of

the previously known example of this type [12, 13] was recently considered again in [1]–[4]
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and finally seems to attract reasonable attention. In the present paper we further extend it

and consider from the perspective of the modern τ -function theory, thus slightly broadening

the consideration in those papers.

In systematic presentation, the story begins from the celebrated formula [14] for the

Hurwitz numbers,

N∆1,...,∆k
=
∑

R

d2R ϕR(∆1) . . . ϕR(∆k) (1.1)

which expresses them through the properly normalized symmetric-group characters ϕR(∆).

Here ∆1, . . . ,∆k and R are Young diagrams and dR is the dimension of representation R of

the symmetric group S|R| divided by |R|!, [15–18]. The ordinary Hurwitz numbers (counting

ramified coverings of the Riemann sphere with ramifications of a given type) arise when

all ∆1, . . . ,∆k have the same size (the same number of boxes), then the sum in (1.1) goes

over R of the same size. If the size |∆| > |R|, then ϕR(∆) = 0, if |∆| < |R|, then

ϕR(∆) =
(|R| − |∆|+ k)!

k!(|R| − |∆|)!
ϕR(∆, 1

|R|−|∆|) (1.2)

where at the r.h.s. |R| − |∆| lines of unit length is added to the Young diagram ∆, and k

is the number of lines of unit length in the diagram ∆. See [5, 6, 19] and especially [7, 8]

for more details about all this.

The symmetric group characters ϕR(∆) are related to the linear group ones (the Schur

functions)

χR[X] = χR{p}
∣∣∣
pn=TrXn

(1.3)

as follows [15–18]

χR{p} =
∑

∆

dRϕR(∆)p∆ · δ|R|,|∆| (1.4)

or [19]

χR{pm + δm,1} =
∑

∆

dRϕR(∆)p∆ (1.5)

The difference between the two is that in (1.4) the sum goes only over |∆| of size |R|, while

in (1.5) there is no restriction. For a Young diagram ∆ : = δ1 ≥ δ2 ≥ . . . ≥ δl(∆), which

is an ordered partition of |∆| into a sum of l(∆) integers δi, associated is the multi-time

variable

p∆ = pδ1pδ2 . . . pδl(∆)
(1.6)

In the particular case when all pn are the same, pn = N , i.e. when X is an N × N unit

matrix, X = IN , eq. (1.4) provides ϕ-decomposition of the dimensions DR(N) of the

irreducible representation R of the Lie algebra gl(N)

DR(N) = χR[IN ] =
∑

∆

dRϕR(∆)N l(∆) δ|R|,|∆| (1.7)

The standard definition of these dimensions is the celebrated hook formula [15–18]

DR(N)

dR
=
∏

i,j∈R

(N + i− j) =
∏

i

(λi +N − i)!

(N − i)!
(1.8)
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In fact, for study of integrability important is just the fact that all pn are the same, and

in what follows we mostly use the letter u instead of N , to downplay association with the

representation dimensions and emphasize that u does not need to be a positive integer.

Combining (1.1) and (1.4), it is natural to consider the generating function1

hk{p
(1), . . . , p(k)} =

∑

∆1,...,∆k

N∆1,...,∆k
p∆1 . . . p∆k

=
∑

R

d2R

k∏

i=1

χR{p
(i)}

dR
(1.9)

It is well known that for k = 1 and k = 2 these h-functions are KP and Toda lattice

τ -functions respectively; moreover, they are trivial τ -functions:

h1{p} =
∑

R

dRχR{p} = ep1 ,

h2{p̄, p} =
∑

R

χR{p̄}χR{p} = exp

(
∑

m

1

m
p̄mpm

) (1.10)

It is also known [7, 8] that for k ≥ 3 with generic p(i≥3) these h-functions do not belong

to the KP/Toda family as functions of {p(1)} or {p(1), p(2)}. However, of course, this can

happen for particular choices of {p(i≥3)}, and they do, provided all p
(i)
m = u(i) for all m.

In other words, making use of (1.7) we restrict h-functions to more specific generating

functions:

Z(k,n)(s, u1, . . . , un | p
(i)) =

∑

R

s|R|d2−k−nR

(
k∏

i=1

χR{p
(i)}

)(
n∏

i=1

DR(ui)

)
(1.11)

at k = 1, 2, which, given their origin and properties, we call hypergeometric (following [12,

13]) Hurwitz τ -functions. The formally continued to negative values (2,−1) member of

this family Z(2,−1) is the celebrated Itsykson-Zuber integral:

Z(2,−1){p̄, p} =
∑

R

dRχR[X]χR[Y ]

DR(N)
= JIZ(N) (1.12)

with pn = trXn and p̄n = trY n (see eq. (77) in [20]), note that for representations R

with DR(N) = 0 the characters in the numerator are also vanishing, and these R do not

contribute to the sum. For (1, 0) and (1, 1) we get just the trivial exponentials

Z(1,0) =
∑

R

s|R|dRχR{p} = esp1 (1.13)

and

Z(1,1) =
∑

R

s|R|DR(N)χR{p} = exp

(
N

N∑

m=1

smpm
m

)
(1.14)

1This definition could depend slightly on whether one imposes restrictions like |∆i| = |∆j | and |R| = |∆i|

in the sums.
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The particular case Z(1,2) of generating numbers of isomorphism classes of the Belyi pairs

was studied in [2–4].2

In fact, models Z(1,n) with n > 2 are far more interesting. This becomes obvious already

for N = 1, when only symmetric diagrams R = [m] contribute, with D[m](N = 1) = 1 and

d[m] = 1/m!, so that (1.11) turns into a simple series

Z(1,n)

(

all ui = 1
)

=
∞
∑

m=0

s
m
χ[m]{p}d

1−n
[m] D

n
[k] =

∞
∑

m=0

(m!)n−1
s
m
χ[m]{p} =

∞
∑

m=0

(m!)n−2(sp1)
m +O(p2, . . .)

(1.15)

The underlined series is nicely convergent for n = 1 and n = 2, while for n > 2 it

is asymptotic series, defined up to non-perturbative corrections. For n = 3 we get the

archetypical example: ∑

m

m! · sm (1.16)

where non-perturbative ambiguity is proportional to

∮
e−xdx

1− xs
=
e−1/s

s
(1.17)

This example appears in the study of Z(1,3). The usual way to handle the series like (1.15)

is the integral transformation:

f(s) =
∑

m

ams
m −→ F (s) =

∑

m

amm! · sm =
1

s

∫

x+

e−x/sf(x)dx (1.18)

For generic N this formalism turns into the theory of Kontsevich-like models.

Of course, (1.11) are very special, besides they are τ -functions [1, 12, 13], they actually

belong to the class of matrix model τ -functions [45–51]. This not-yet-rigourously-defined

class is characterized by coexistence of a wide variety of very different representations and

properties [52]:

2Belyi pair describes a complex curve as a covering of CP 1, ramified at just three points 0, 1,∞ (the pair

is the curve C and the mapping C −→ CP 1). According to G.Belyi and A.Grothendieck [21–25], existence

of such representation is necessary and sufficient for arithmeticity of the curve and arithmetic curves are

in one-to-one correspondence with the equilateral triangulations (dessins d’enfant). Thus, enumeration of

Belyi pairs is a typical matrix model problem (see more on relations between counting the Belyi maps,

Hurwitz numbers and matrix models in [26–28]), though equivalence of matrix model [29, 30] and sum-

over-metrics descriptions [31, 32], proved in [33, 34] on the lines of [35–41] remains a big mystery from the

point of view of the complicated embedding of moduli space of arithmetic curves into the entire moduli

space, see [42] and, for a related consideration, [43]. The Belyi pairs are enumerated by the triple Hur-

witz numbers N∆0,∆1,∆∞
, but no adequate language is still found to describe the full generating function

h3{p
(1), p(2), p(3)) =

∑

R d−1
R χR(p

(1))χR(p
(2))χR(p

(3)), see [7, 8]. The suggestion of [2] was to sacrifice any

details about ∆0 and ∆1 and keep only information about the numbers l(∆0) and l(∆1) of unglued sheets of

the covering over 0 and 1: then such special generating function Z(1,2) is obviously a KP τ -function. In fact,

it is enough to do so just at one (not obligatory two) of the three points: Z(2,1) is also a conventional Toda lat-

tice τ -function. Presentation of standard results about these quantities and their multi-point counterparts is

the purpose of the present paper. As to triple coverings, enumeration is the simplest, but not the most inter-

esting part of the story. An explicit construction of the Belyi functions is extremely hard: for relatively vast

set of examples see [44]. A crucial problem of string theory remains expressing the Mumford measure and its

constituents (determinants of ∂̄ operators) for arithmetic curves through combinatorial triple ∆1,∆2,∆3.
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– they are KP/Toda τ -functions,

– they possess integral (“matrix-model”) representations of “ordinary” and Kontsevich

types,

– they satisfy Virasoro- or W-like constraints (possess a D-module representation and

obey the AMM/EO topological recursion [53–61]),

– they possess various W -representations [62–64], including ones via Casimir operators

and via cut-and-join operators,

– they possess special linear decompositions into linear- and symmetric-group charac-

ters,

– they are Hurwitz τ -functions.

The purpose of this paper is to describe all these properties within the context of the

hypergeometric Hurwitz τ -functions (1.11).

For illustrative purposes and to avoid notational confusions we list the simplest ex-

amples of dimensions (1.8), linear group characters χR{p}, and appropriately normalized

symmetric group characters ϕR(∆) from [5, 6]:

R DR(N)/dR χR{p} dR ϕR(1) ϕR(2) ϕR(11) ϕR(3) ϕR(21) ϕR(111) . . .

[1] N p1 1 1

[2] N(N + 1)
p2+p21

2
1
2 2 1 1

[11] N(N − 1)
−p2+p21

2
1
2 2 −1 1

[3] N(N + 1)(N + 2)
2p3+3p2p1+p31

6
1
6 3 3 3 2 3 1

[21] (N − 1)N(N + 1)
−p3+p31

3
1
3 3 0 3 −1 0 1

[111] N(N − 1)(N − 2)
2p3−3p2p1+p31

6
1
6 3 −3 3 2 −3 1

. . .

2 Representation via cut-and-join operators

The linear group characters (Schur functions) χR{p} are common eigenfunctions of the set

of commuting generalized cut-and-join operators [5, 6], and symmetric group characters

ϕR(∆) are their corresponding eigenvalues:

Ŵ∆χR = ϕR(∆)χR (2.1)

What we need in (1.11) are rather operators with slightly different eigenvalues:

Ô(u)χR =
DR(u)

dR
χR (2.2)

However, eq. (1.7) allows one to make them easily from Ŵ∆:

Ô(u) =
∑

∆

ul(∆)Ŵ∆P̂|∆| (2.3)
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where P̂|∆| is a projector, selecting the Young diagrams of the size |∆|,

P̂|∆| =

∮
dz

z
z−|∆|+L̂0 (2.4)

with

L̂0 =
∑

n

npn
∂

∂pn
(2.5)

so that

P̂|∆|χR = χR δ|R|,|∆| (2.6)

and Ŵ∆ are the general cut-and-join operators from [5, 6].

Thus

Z(1,n)(s, u1, . . . , un|p) =

(
k∏

i=1

Ô(ui)

)
esp1 ,

Z(2,n)(s, u1, . . . , un|p̄, p) =

(
n∏

i=1

Ô(ui)

)
exp

(
∑

m

sm

m
pmp̄m

) (2.7)

These are actually the W -representations [62–64] of the τ -functions (1.11), because Ô(u)

are, in fact, elements of the integrability-preserving GL(∞) group. However, this is not

quite so obvious: operator (2.3) does not have a form where this property is obvious. In fact,

one can make a triangular transformation in (2.3) and get rid of projector operators P̂|∆|:

Ô(u)=uL̂0

(
1+

Ŵ2

u
+
Ŵ3+Ŵ22

u2
+
Ŵ4+Ŵ32+Ŵ222

u3
+
Ŵ5+Ŵ42+Ŵ33+Ŵ322+Ŵ2222

u4
. . .

)
=

or

Ô(u) = uŴ1
∑

∆

′
ul(∆)−|∆| Ŵ∆ (2.8)

where sum goes over all diagrams containing no lines of unit length (we denote this restric-

tion by prime).

Since, say [5, 6], Ŵ22 = 1
2

(
Ŵ 2

2 − 3Ŵ3 − Ŵ11

)
, this expressions has chances to be

exponentiated. In this case, the exponent should contain even less types of operators,

to provide an element from GL(∞): it should actually be [7, 8] a linear combination of

Casimir operators. We shall now demonstrate this.

3 Representation via Casimir operators

We want to find an exponential representation of the operator Ô(u), and what we know

is that the eigenvalues of log Ô(u) are logarithms of (1.8). More precisely, we need the

1/N -expansion of

log

(
DR(N)

N |R| · dR

)
=

∑

(i,j)∈R

log

(
1 +

i− j

N

)
=

∞∑

m=1

(−)m+1

Nm ·m
σ̃R(m+ 1) (3.1)

– 6 –
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where

σ̃R(m+ 1) =
∑

(i,j)∈R

(i− j)m =
m∑

k=0

m!

k!(m− k)!

l(∆)∑

j=1

(
(−j)m−k

rj∑

i=1

ik

)
(3.2)

In fact, one can easily check that these quantities are linear combinations of the eigenvalues

σ(m) of the Casimir operators [65],

ĈmχR = σR(m)χR (3.3)

which are given by

σR(m) =
1

m

l(R)∑

j=1

(
(rj − j + 1/2)m − (−j + 1/2)m

)
(3.4)

In particular,

σR(1) =
∑

i

rj =
∑

(i,j)∈R

1 = σ̃R(1),

σR(2) =
1

2

l(R)∑

j=1

rj(rj − 2j + 1) =

l(R)∑

j=1

(
rj(rj + 1)

2
− jrj

)
=

∑

(i,j)∈R

(i− j) = σ̃R(2),

. . .

(3.5)

However, for higher m relations are a little more involved:

σ̃R(m) = σR(m)−
∑

k=1

(m− 1)!

(2k)!(m− 1− 2k)!

(
1− 21−2k

)
B2k · σR(m− 2k) (3.6)

The sum has finite number of items, k < m
2 , and B2k are the Bernoulli numbers,

∑

n

Bmt
m

m!
=

tet

et − 1
, or

∑

n

B2mt
2m

(2m)!
=

tet

et − 1
− 1−

t

2
(3.7)

B1 = 1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , B8 = − 1
30 , B10 = 5

66 , B12 = − 691
2730 , B14 =

7
6 , B16 = −3617

510 , . . .

What is important about the Casimir operators is that they contain single sums over

j, and this property guarantees integrability [7, 8]. It is of course preserved by linear

combinations, i.e.
ˆ̃
Cn with the eigenvalues σ̃(n) are as good from this point of view as Ĉn

with the eigenvalues σ(n).

Thus we obtained the desired exponential representation of the operators

Ô(u) = uL̂0 exp

{
∞∑

m=1

(−)m+1

um ·m
ˆ̃
Cm+1

}
(3.8)

Moreover, when there are many u variables, one can simply consider them as the Miwa-like

reparametrisation of a new type of variables,

ηm =
(−)m+1

m

n∑

i=1

u−mi , η0 =
n∑

i=1

log ui (3.9)
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and the function (2.7) becomes also a function of these additional time-variables η:

Z(1,n)(s, u1, . . . , un|p) =

(
n∏

i=1

Ô(ui)

)
esp1 = exp

(
∞∑

m=0

ηm
ˆ̃
Cm+1

)
· esp1 (3.10)

This function, as a function of the variables ηk, is very similar to the τ -function [7, 8]:

Z = exp

(
∞∑

m=0

η̄m Ĉm+1

)
· esp1 (3.11)

where the variables

η̄m =
n∑

i=1

u−mi , (3.12)

related to σR(m), are the linearly transformed variables ηm. In spite of this similarity, two

functions are not connected with each other by a relation, describing equivalent integrable

hierarchies [66–68]. In particular, change of the basis (3.6), which relates the operators Ĉk

with ˆ̃Ck, is not given by a change of the spectral parameter, see e.g. [69] for more details.

Explicit relation between (3.8) and (2.8) is an interesting exercise, concerning commu-

tative algebra of cut-and-join operators and their relation to the Casimir operators. It can

be easily checked in the lowest orders of the u−1-expansion with the help of multiplication

table from [5, 6].

4 Z(2,n) as a τ -function of Toda lattice

Eq. (3.8) immediately implies that Z(2,n) is a Toda lattice τ -function (thus, Z(1,n) is a KP τ -

function). Indeed, according to [7, 8] the exponential of linear combinations of the Casimir

operators belongs to GL(∞) which preserves the KP/Toda integrability. In case of Z(2,n)

the product of the GL(∞) operators (3.8) acts on the trivial τ -function exp
(∑

m
smpmp̄m

m

)
.

Still, there are many other ways to demonstrate that Z(2,n) is a τ -function of the Toda

lattice hierarchy. The most important is the free-fermion approach of [70] and closely

related determinant formulas, see [45–51, 71]. From the point of view of Hurwitz theory,

the basic well-known fact is that the character expansion

∑

R

gR χR(p) (4.1)

is a KP τ -function iff coefficients gR satisfy the Plücker relations, of which the generic

solution is

gR = det
ij

(
F (ri − i, j)

)
(4.2)

with arbitrary function F of two variables.

Likewise, according to [72]

τn(p, p̄|f) =
∑

R,R′

fR,R′(n)χR(p)χR′(p̄) (4.3)

– 8 –
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is a Toda lattice τ -function, iff

fR,R′(n) = det
ij≤n

(
F (ri − i, r′j − j)

)
(4.4)

Parameter n here plays a role of the Toda zero-time p0.

A particular class of solutions of this type is provided by a much simpler diagonal

coefficients fR,R′(n) [1, 12, 13]

fR,R′(u) = δR,R′

∏

i,j∈R

f(u+ i− j) (4.5)

where f(x) is an arbitrary function of a single variable. This class of τ -functions of the

Toda lattice hierarchy explicitly given by the free-fermion average

τn(p, p̄|f) =
〈
n
∣∣∣eH(p)e

∑
Tm:ψ∗

mψm:eH̄(p̄)
∣∣∣n
〉

(4.6)

where the normal ordering is defined w.r.t. the zero vacuum: : ψ∗
mψm := ψ∗

mψm− <

0|ψ∗
mψm|0 > and the coefficients Tk are introduced via f(k) = eTk−1−Tk with T−1 = 0.

More explanations of the notation see in [12, 13, 70, 71]. This τ -function was named

hypergeometric in [12, 13]. In particular, from (3.6) is follows that the operators Ô(u) yield

the coefficients precisely of the this form, thus the functions Z(2,n) belong to this class.

In fact, one can even restrict the sum in (4.3) to the diagrams with no more than n

lines, where n is the zero-time:

τ̃n(p, p̄|f) =
∑

R: l(R)≤n

fR(n)χR(p)χR(p̄) (4.7)

it is still a Toda lattice τ -function [7, 8].

The generic Hurwitz τ -function

h(p(1), . . . , p(k)|β) = exp

(
∑

∆

β∆Ŵ∆

)
∑

R

d2−kR χR{p
(1)} . . . χR{p

(k)} (4.8)

does not satisfy criteria (4.2) and (4.4) as a function of any time or time pairs, see [7, 8] for

a detailed consideration (it is not even clear if it fits into the wide class of the non-Abelian

τ -functions of [73–76]). Notable exceptions are the cases when k = 1, 2 and when β∆
are adjusted to provide any linear combination of the standard Casimir operators (3.4),

which are nicknamed as complete cycles in [77, 78]. The functions (1.11) use additional

freedom (4.5) to enlarge k, but keeping p(3), . . . , p(k) very special: constant. This corre-

sponds to choosing f(x) =
∏k
i=1(x + ui) in (4.5) while the s-dependence is introduced by

the rescaling pk → skpk.

Of course, this Z(2,n)(u1, . . . , un | p, p̄) is a very special kind of a lattice τ -function. In

particular, it possesses a simple integral representation in the form of eigenvalue matrix

model (as foreseen already in [12, 13]). We construct such representations in the generic

case in the next section, and then consider particular more explicit examples.
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5 Matrix model representations

Making use of orthogonality condition [79, eq. (3.1)],3

∫ ∫

N×N
χR[X]χQ[Y ] eiTrXY dXdY =

DR(N)

dR
δR,Q (5.6)

one can easily rewrite (1.11) in the form of multi-matrix models. Indeed, from (5.6) it

follows that

Z(2,1)(N |p, p̄) =
∑

R

DR(N)

dR
χR{p}χR{p̄}

=

∫ ∫

N×N

(
∑

R

χR[X]χR{p}

)
∑

Q

χQ[Y ]χQ{p̄}


 eiTrXY dXdY =

=

∫ ∫

N×N
e
∑

n
1
n
pnTrXn+

∑
n

1
n
p̄nTrY n

eiTrXY dXdY (5.7)

what is just the conventional 2-matrix model, as was already noted in [12, 13].

3The simplest way to prove (5.6) is to make use of formula from Fourier theory

∫

dxdyf(x)g(y)e−xy = f

(

∂

∂x

)

g(x)

∣

∣

∣

∣

x=0

(5.1)

where the x-integral goes over the real axis, and the y-integral runs over the imaginary one. Now after

performing the integration over angular variables and using the Itzykson-Zuber formula, one obtains the

multiple eigenvalue integral
∫

dXdY χR(X)χQ(Y )e−trXY ∼

∫

∏

i

det
ij

x
N+Rj−j

i det
ij

y
N+Qj−j

i e
−

∑
i xiyi (5.2)

where we used the Weyl formula for the characters of linear groups

χR =
detij x

N+Rj−j

i

∆(x)
(5.3)

and ∆(x) is the Van-der-Monde determinant. Using now formula (5.1) and
∫

det
ij

fi(xj) det
ij

gi(yj)
∏

i

K(xi, yi) = det
ij

∫

fi(x)gj(y)K(x, y) (5.4)

one immediately obtains (5.6).

This formula can be also described in the pure combinatorics terms using the Feynman diagrams. The role

of propagator here is played by 〈Xij Ykl〉 = δilδjk . Therefore, the formula reduces to trivial combinatorics:

connecting the free ends of multi-linear combinations of trace operators. For example,

〈TrX TrY 〉 = δ
ij
δ
kl
δilδjk = N,

〈

TrX2 TrY 2〉 = 2N2
,

〈

TrX2
(

TrY
)2
〉

= 2N,

〈

(

TrX
)2 (

TrY
)2
〉

= 2N2
,

. . .

(5.5)③

❲

✒

✠

❖

② TrX6
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Here we used the relation

∑

Q

χQ[Y ]χQ{p̄} = e
∑

n
1
n
p̄nTrY n

(5.8)

which we also need below in the form

∑

S

χS [Y1]χS [X2] = e
∑

n
1
n
TrY n

1 TrXn
2 = Det

(
I ⊗ I − Y1 ⊗X2

)−1
(5.9)

Similarly to (5.7),

Z(2,2)(N1, N2|p, p̄) =
∑

R

DR(N1)DR(N2)

d2R
χR{p}χR{p̄} =

=
∑

S

∫ ∫

N1×N1

(
∑

R

χR{p}χR[X1]

)
χS [Y1] e

iTrX1Y1 dX1dY1

×

∫ ∫

N2×N2

χS [X2]


∑

Q

χQ[Y2]χQ{p}


 eiTrX2Y2 dX2dY2 =

=

∫ ∫

N1×N1

e
∑

n
1
n
pnTrXn

1 eiTrX1Y1 dX1dY1

×

∫ ∫

N2×N2

e
∑

n
1
n
p̄nTrY n

2 eiTrX2Y2 dX2dY2
1

Det
(
IN1 ⊗ IN2 − Y1 ⊗X2

) =

=

∫

N1×N1

∫

N2×N2

dKN1(Y1|p)
1

Det
(
IN1 ⊗ IN2 − Y1 ⊗X2

) dKN2(X2|p̄) (5.10)

where generalized Kontsevich measure is defined as [80–82]

dKN (Y |p) = dY

∫

N×N
e
∑

n
1
n
pnTrXn

eiTrXY dX (5.11)

Further,

Z(2,3)(N1, N2, N3|p, p̄) = (5.12)

=

∫

dKN1
(Y1|p)

1

Det
(

IN1
⊗ IN2

− Y1 ⊗X2

) e
iTrX2Y2 dX2dY2

1

Det
(

IN2
⊗ IN3

− Y2 ⊗X3

) dKN3
(X3|p̄)

and for generic k we have:

Z(2,n)

(
N1, . . . , Nn

∣∣p, p̄
)
=

∫
dKN1(Y1|p)

∏n−1
i=2 eiTrXiYi dXidYi

∏n−1
i=1 Det

(
INi

⊗ INi+1 − Yi ⊗Xi+1

) dKNn(Xn|p̄)

(5.13)

One can observe amusing parallels with the conformal matrix models [83–85], which already

have a number of other interesting applications [86–95].

One can make the Miwa transformation of time variables pm = TrΛ−m in order to

transform these matrix integrals to an equivalent form depending on the external matrix

Λ. Sometimes it turns out very convenient as we shall see below.
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6 Miwa transformation to Kontsevich matrix models

Now we make the Miwa transformation of one set of the time variables in Z(2,k) in order

to obtain matrix integrals of the Kontsevich type. This kind of integrals are sometimes

more convenient. In particular, the Virasoro constraints for Z(1,2) are evident in this

representation.

For the sake of simplicity, we consider only Z(2,1) case, a generic case is treated in

full analogy. Thus, we make the Miwa transformation of times p̄m = TrΛ−m in the

formula (5.7), so that

exp

(
∑

n

p̄m
m

TrY m

)
=

(
detΛ

)N

det(Λ⊗ I − I ⊗ Y )
(6.1)

Then, the integral becomes

Z(2,1)(N |p, p̄) =

∫
dXdY eiTrXY e

∑
m

pm
m

TrXm

e
∑

m
p̄m
m

TrYm

=

∫
dXdY eiTrXY e

∑
m

pm
m

TrXm

(
detΛ

)N

det(Λ⊗ I − I ⊗ Y )

(6.2)

The integral over matrix Y can be easily calculated (to this end, one has first to per-

form integration over the angular variables and then make Fourier transform w.r.t. to the

eigenvalues of Y ), the result reads

Z(2,1)(N |p, p̄) =
(
− detΛ

)N
∫

X+

dXN×Ne
−TrXΛ+

∑
m

pm
m

TrXm

(6.3)

where integral runs over N × N positive-definite matrices, that is matrices with positive

eigenvalues. This follows from the standard Fourier transform:

∫
eixy

y − i0
dy = 2πiθ(x) (6.4)

Integral (6.3) is not yet quite of Kontsevich type: it essentially depends on the matrix

size N and one can not reach an arbitrary point in the space of time variables. In order

to lift this restriction, one can add the logarithmic term which makes the parameter u and

the number of integrations independent variables:

Z(2,1)(u|p, p̄) =
(
− detΛ

)u
∫

X+

dXN×Ne
−TrXΛ+(u−N)Tr logX+

∑
m

pm
m

TrXm

(6.5)

One can easily check for concrete N that expansion of this integral into pk-series coincides

with Z(2,1)(u|p, p̄) from (1.11). Note also that this integral, if considered as a function of
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time variables p̄m = TrΛ−m, does not depend4 on N , which is the necessary property of

Kontsevich integrals [80–82].

Integral (6.5) was obtained in [3] within a different approach. From this formula one

immediately obtains a one-matrix model describing Z(1,2)(u, v|p) at integer points v = N .

This can be done in different ways.

One possibility is to put pm = v, then we obtain the double-logarithm model of [3]:

(
− detΛ

)u
∫

X+

dXN×Ne
−TrXΛ+(u−N)Tr logX−v log(1−X) (6.6)

This kind of models were thoroughly investigated in [96], still in a moment we will see

that (6.6) is equivalent to an even better studied theory.

Another possibility just to put Λ = 1. Then the result is

Z(1,2)(u, v|p)
∣∣∣
v=N

=

∫

X+

dXN×Ne
−TrX+(u−N)Tr logX+

∑
n

pn
n
TrXn

(6.7)

Since this integral goes over only the positive X+, it is equivalent to the model of complex

matrices where X is an obviously positive-definite matrix product HH† [97–99]:

ZC =

∫
dHdH†eTrV (HH†) ∼

∫ ∏

i

dh2i∆
2(h2i )e

∑
i V (h2i ) (6.8)

where V (X) is arbitrary potential of the matrix model, h2i are eigenvalues of HH† and

∆(h) is the Van-der-Monde determinant. Thus, Z(1,2)(u, v|p) from [2–4], and, hence, the

double-logarithm model (6.6) is nothing but the well-known complex matrix model. Among

other things, this immediately implies the Virasoro constraints for Z(1,2)(u, v|p).

In a similar way one can make the Miwa transformation of one set of times and perform

integration like (6.4) in order to obtain from (5.12) a two-matrix model representation of

Z1,3:

Z1,3(u, v, w|p)
∣∣∣
u=N

∼

∫

X+

dXN×N

∫

Y+

dYN×N exp

(
− TrY −1 − iTrXY +

∑

m

pm
m

TrXm+

+ (v −N)Tr logX + (v − w −N)Tr log Y

)
(6.9)

4This integral is independent of N in the following sense. Calculate the coefficient in front of, say, p1p2
at different values of N :

N = 1 :
u(u+ 1)(u+ 2)

2λ3

N = 2 :
u(u+ 1)(u+ 2)

2

(

1

λ1
+

1

λ2

)(

1

λ2
1

+
1

λ2
2

)

N = 3 : u
2

(

1

λ3
1

+
1

λ3
2

+
1

λ3
3

)

+
u(u2 + 2)

2

(

1

λ1
+

1

λ2
+

1

λ3

)(

1

λ2
1

+
1

λ2
2

+
1

λ2
3

)

+
u2

2

(

1

λ1
+

1

λ2
+

1

λ3

)3

. . .

All these expressions look different and depending on N , but in fact are all equal to the independent on N

polynomial

u
2
p̄3 +

u(u2 + 2)

2
p̄1p̄2 +

u2

2
p̄
3
1 .
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where we assume that N ≤ v ≤ w (hence the asymmetry of the integral w.r.t. interchanging

v and w), otherwise the integrals diverge. From experience in [100, 101] and [102] it comes

with no surprise that this Z(1,3) satisfies W̃
(3) constraints. In these constraints the values

of u, v and w are arbitrary, and the symmetry is restored (see (7.7)).

7 Virasoro/W̃ constraints

The simplest way to obtain Virasoro/W constraints for Z(k,n) is to construct the loop

equations (Ward identities) of the corresponding matrix models, which are associated with

arbitrary changes of integration variables in the matrix integral. The Ward identities for

the two-matrix model describing Z(2,n) are quite involved and are expressed in terms of

the W̃∞-algebra of refs. [100, 101]. However, when one set of times is eliminated things

simplify a lot. In particular, when only l first p̄i, i ≤ l, are non-vanishing, the constraints

imposed on p-dependence involve only W̃ (i)-operators with i ≤ l [100, 101]. As we now see,

the same seems true for Z(1,n) models, where all p̄ are non-vanishing, but the same. This

result can imply additional kinds of matrix-model representations for Z(1,n).

To begin with, Z(1,1)(u|p) = exp
(∑∞

m=1
usmpn
m

)
satisfies

(
ĴC
m −

m+ 1

s

∂

∂pm+1

)
Z(1,1)(u | p) = 0, m ≥ 0 (7.1)

with

ĴC
m = m

∂

∂pm
(7.2)

The next model Z(1,2) is equivalent to the complex one-matrix model (6.7), for which

the Ward identities are just the Virasoro constraints, derived in [99]:

(
L̂C
m −

m+ 1

s

∂

∂pm+1

)
Z(1,2)(u, v | p) = 0, m ≥ 0 (7.3)

where

L̂C
m =

∞∑

k=1

(m+ k)pk
∂

∂pm+k
+
n−1∑

a=1

a(n− a)
∂2

∂pa∂pm−a
+ (u+ v)m

∂

∂pm
+ uvδm,0 (7.4)

One can easily check that these constraints are indeed satisfied by (1.11) at k = 1, n = 2.

Note that integration domain x > 0 is preserved by the transformation δx = xm+1 only for

m ≥ 0, thus there is no L̂C
−1 constraint — this seems not to match the claim of [3]. Let

us stress that in case of (7.3) the second term in the brackets can be interpreted as the

shift of the p1-variable, but this is no longer so for more general W̃ -constraints, see (7.1)

and [100–102]. Note also that we do not include ∂/∂p0 terms in the sum, and give the

corresponding contributions explicitly. Usually they would be proportional to the matrix

size N , but in Virasoro constraints this size does not need to be integer. Moreover, the

would be N2 is substituted by uv, while 2N by (u+ v).
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Likewise, the Z(1,3) function (6.9) satisfies the W̃ (3) constraint:
(
M̂C
m −

m+ 1

s

∂

∂pm+1

)
Z(1,3)(u, v, w | p) = 0, m ≥ 0 (7.5)

where

M̂C
0 =

∞∑

a,b=1

(
(a+ b)papb

∂

∂pa+b
+ abpa+b

∂2

∂pa∂pb

)
+ (u+ v + w)

∞∑

a=1

apa
∂

∂pa
+ uvw (7.6)

and, more generally,

M̂C
m =

∞∑

k,l=1

(k + l +m)pkpl
∂

∂pk+l+m
+

∞∑

k=1

( k+m−1∑

a=1

+

m∑

a=1

)
a(k +m− a)pk

∂2

∂pa∂pk+m−a
+

+
∑

a+b+c=m

abc
∂3

∂pa∂pb∂pc
+ uvwδm,0 +

m2(m+ 1)

2

∂

∂pm
+ (uv + vw + wu)m

∂

∂pm
+

+ (u+ v + w)

(
∞∑

k=1

(k +m)pk
∂

∂k+m
+

∑

a+b=m

∂2

∂pa∂pb

)
(7.7)

Clearly, this time N3 −→ uvw, 3N2 −→ (uv+ vw+wu) and 3N −→ (u+ v+w). We keep

the same label C for these operators, to emphasize similarity with (7.4). In fact they belong

to the class of the W̃ -operators [45–51, 100–102], appearing in description of Kontsevich

and multi-matrix models and mnemonically are powers of the current ĴC defined by (9.22),

subjected to peculiar normal ordering, when all the ĴC
− operators on the right are simply

thrown away, see [100, 101] for a detailed description.

Similarly, one can treat the models Z(1,n) with higher n > 3. They satisfy similar

W̃ (n)-constraints. In principle, they can be derived either from multi-matrix models or

from any of the W -representations, described in the present paper.

For illustrative purposes we provide just one more example:
(
N̂C
m −

m+ 1

s

∂

∂pm+1

)
Z(1,4)(u, v, w, x | p) = 0, m ≥ 0 (7.8)

and the simplest of operators W̃ (4) is

N̂C
0 =

∞∑

a,b,c=1

(
(a+ b+ c)papbpc

∂

∂pa+b+c
+ abcpa+b+c

∂2

∂pa∂pb∂pc

)
+

+
3

2

∑

a+b=c+d

cdpapb
∂2

∂pc∂pd
+

1

2

∞∑

a,b=1

abpapb
∂2

∂pa∂pb
+

+
(
u+ v + w + x

) ∞∑

a,b=1

(
(a+ b)papb

∂

∂pa+b
+ abpa+b

∂2

∂pa∂pb

)

+
(
uv + uw + ux+ vw + vx+ wx

) ∞∑

k=1

kpk
∂

∂pk
+

+

∞∑

k=1

k2(k + 1)

2
pk

∂

∂pk
+ uvwx (7.9)
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8 Naive W -representations

In addition toW -representation (3.8) in terms of the Casimir operators, which immediately

implies integrability, one can rewrite the generating functions (2.7) as an exponential in

a more straightforward way, which also provides nice expressions manifestly belonging to

integrability-preserving GL(∞) group [70, 103, 104].

8.1 The case of Z(1,1)

From (2.7) and from the fact that the operator Ô(u) in (2.8) preserves unity, Ô(u) · 1 = 1,

it follows that

Z(1,1)(s, u) = Ô(u) ◦ esp1 · 1 = exp
(
Ô(u) ◦ sp1 ◦ Ô(u)−1

)
· 1 (8.1)

(the last equality holds for any function, not obligatory exponential, but Z(1,1)(s, u) is ex-

pressed via exponential). Note that to use these kind of formulas one needs to rewrite (2.1)

and (2.7) as some operator relations using composition ◦ instead of action of operators,

i.e. esp1 in (8.1) is treated not as a function, but as an operator (of multiplication by esp1).

For example, for Ŵ[1] = L̂0 =
∑

n npn
∂
∂pn

and χ[1] = p1 one has

Ŵ[1] ◦ χ[1] = χ[1] + χ[1] ◦ Ŵ[1] (8.2)

and (2.1) is reproduced if we apply this identity to unity, which is annihilated by Ŵ∆:

Ŵ[1] ◦ χ[1] · 1 = χ[1] · 1 + χ[1] ◦ Ŵ[1] · 1 = χ[1] · 1 = p1 (8.3)

For the sake of brevity, we omit the sign of composition ◦ throughout this section, since it

is implied at any operator expressions here.

We can now use (2.8) to calculate the operator Ô(u)sp1Ô(u)−1,which stands in the

exponent in (8.1). For this we need the explicit formulas for Ŵ∆ from [5, 6]. For ∆ = δ1 ≥

δ2 ≥ . . . ≥ δl(∆) ≥ 0 = {. . . , 2, . . . , 2︸ ︷︷ ︸
m2

, 1, . . . , 1︸ ︷︷ ︸
m1

}

Ŵ∆ =
∏

k

1

mk!kmk
: D̂mk

k : (8.4)

where D̂ are defined in terms of the Miwa matrix X from pk = TrXk:

D̂k = Tr

(
X

∂

∂Xtr

)k
= Tr (X∂X)

k (8.5)

and the double dots denote normal ordering: all the X-derivatives stand to the right of all

X’s, e.g.

: Tr (X∂X)
2 : = : Xij

∂

∂Xkj
Xkl

∂

∂Xil
: = XijXkl

∂2

∂XkjXil
(8.6)

(this example illustrates also the meaning of the transposition superscript Xtr). It is

because of the normal ordering that Ŵ∆ annihilates unity.
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Now we can act with Ŵ∆ on p1. The commutator

[: D̂k : , p1] = k : TrX2∂X(X∂X)
k−2 : (8.7)

This implies that

Ŵ2 p1 =
1

2
: D̂2 : p1 = p1Ŵ2 +TrX2∂X

Ŵ3 p1 =
1

3
: D̂3 : p1 = p1Ŵ3+ : TrX2∂XX∂X :

Ŵ22 p1 =
1

8
:
(
D̂2

)2
: p1 = p1Ŵ22 +

1

2
: D̂2TrX

2∂X :

. . .

(8.8)

Now, add the two last lines:

[(
Ŵ3 + Ŵ22

)
, p1

]
=

1

2

(
: D̂2TrX

2∂X : +2 : TrX2∂XX∂X :
)

=
1

2
TrX2∂X : D̂2 :=

(
TrX2∂X

)
Ŵ2

(8.9)

where the underlined operator is just the same as in the first line of (8.8).

Coming back to (8.1), we see that

Ô(u)p1 =

(
1 +

Ŵ2

u
+
Ŵ3 + Ŵ22

u2
+ . . .

)
uL̂0p1 =

(
u+ Ŵ2 +

Ŵ3 + Ŵ22

u
+ . . .

)
p1u

L̂0 =

=

{
p1

(
u+ Ŵ2 +

Ŵ3 + Ŵ22

u
+ . . .

)
+TrX2∂X +TrX2∂X

Ŵ2

u
+ . . .

}
uL̂0 =

= up1Ô(u) +
(
TrX2∂X

)
Ô(u) = (up1 + L̂−1)Ô(u) (8.10)

where

L̂0 = Ŵ[1] = TrX∂X =
∑

m

mpm
∂

∂pm
,

L̂−1 = TrX2∂X =
∑

m

mpm+1
∂

∂pm

(8.11)

Thus we obtain from (8.1) a W -representation

Z(1,1)(s, u|p) = es(L̂−1+up1) · 1 (8.12)

alternative to (3.8).

8.2 Direct check of (8.12)

In fact, Z(1,1)(s, u|p) is known explicitly, see (1.14). The relation

es(L̂−1+up1) · 1 = exp

(
u
∑

m

smpm
m

)
= Z(1,1)(s, u|p) =

∑

R

s|R|DR(u)χR{p} (8.13)
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implied by (8.12), follows from the Campbell-Hausdorff formula, if it is written in the form

exp

(
[B,A]

2
−

[A, [A,B]]

3
+

[[A,B], B]

6
+ . . .

)
· eA · eB = eA+B (8.14)

We choose A = sup1 and B = sL̂−1, since in this case eB · 1 = 1. Then only the first and

the third terms at the very left exponential contributes giving us2p2/2 and us3p3/3. More

generally, only the terms of the form

∑

m

admB (A)

m(m+ 1)
(8.15)

contribute. Since clearly admB (A) = mpm+1, while all other commutators (like
∑

m
admA (B)
m+1 )

are vanishing,

es(L̂−1+up1) · 1 = eA+B · 1 = exp

(
∑

m=1

admB (A)

m(m+ 1)

)
eA

= exp

(
∑

m=1

sm+1upm+1

m+ 1

)
· esup1 = exp

(
u
∑

m=1

smpm
m

) (8.16)

which is exactly (8.13).

8.3 The case of Z(1,2)

This time instead of (8.1) one needs

Z(1,2)(s, u, v) = Ô(v)Ô(u) esp1 · 1 = exp
(
Ô(v)Ô(u)sp1Ô(u)−1Ô(v)−1

)
· 1 (8.17)

and thus an appropriate modification of (8.10):

Ô(v)Ô(u)p1 = Ô(v)
(
up1Ô(u) +

(
TrX2∂X

)
Ô(u)

)
=

= uvp1Ô(v)Ô(u)+u
(
TrX2∂X

)
Ô(v)Ô(u)+Ô(v)

(
TrX2∂X

)
Ô(u)=

= uvp1Ô(v)Ô(u) + (u+ v)
(
TrX2∂X

)
Ô(v)Ô(u)

−

[
TrX2∂X ,

(
v + Ŵ2 +

Ŵ3 + Ŵ22

v
+ . . .

)]
Ô(u) =

= uvp1Ô(v)Ô(u) + (u+ v)
(
TrX2∂X

)
Ô(v)Ô(u)

+
(
: TrX2∂XX∂X :

)
Ô(v)Ô(u) =

=
(
uvp1 + (u+ v)L̂−1 + M̂−1

)
Ô(v)Ô(u)

(8.18)

with

L̂−1 = TrX2∂X =
∑

m

mpm+1
∂

∂pm
,

M̂−1 = : TrX2∂XX∂X : =
∑

a,b

(a+ b− 1)papb
∂

∂pa+b−1
+ abpa+b+1

∂2

∂pa∂b

(8.19)
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Combining this with (8.17) we immediately reproduce the result of [2]:

Z(1,2)(s, u, v) = exp
{
s
(
uvp1 + (u+ v)L̂−1 + M̂−1

)}
· 1 (8.20)

8.4 Operators Ô(u1, . . . , un)

Now generalizing (8.17), one can define the operator Ô(u1, . . . , un)

Z(1,n)(s, u1, . . . , un) = exp

(
k∏

i=1

Ô(ui)sp1

n∏

I=1

Ô(ui)
−1

)
· 1 = Ô(u1, . . . , un) · 1 (8.21)

The sequence of underlined operators is evidently

adk
Ŵ2
p1 = : TrX2∂X(X∂X)

k−1 : (8.22)

in particular,
L̂−1 = [Ŵ2 , p1] = TrX2∂X ,

M̂−1 = [Ŵ2 , TrX
2∂X ] = : TrX2∂XX∂X :

N̂−1 = [Ŵ2 , : TrX
2∂XX∂X :] = : TrX2∂X(X∂X)

2 :

. . .

(8.23)

Therefore the naive W -representations of the functions Zk look as follows:

Z(1,k)(~u) = Ôk(~u) · 1 (8.24)

where
Ô1 = esp1 ,

Ô2(u) = es(L̂−1+up1),

Ô3(u, v)
[2]
= es(M̂−1+(u+v)L̂−1+uvp1),

Ô4(u, v, w) = es(N̂−1+(u+v+w)M̂−1+(uv+vw+wu)L̂−1+uvwp1),

. . .

(8.25)

and

L̂−1 =
∑

m

mpm+1
∂

∂pm
,

M̂−1 =
∑

a,b

(a+ b− 1)papb
∂

∂pa+b−1
+ abpa+b+1

∂2

∂pa∂b
,

N̂−1 =
∞∑

a,b,c=1

(
(a+ b+ c− 1) papbpc

∂

∂pa+b+c−1
+ abc pa+b+c+1

∂3

∂pa∂pb∂pc

)
+

+
3

2

∞∑

a,b=1

a+b∑

c=1

ab pcpa+b+1−c
∂2

∂pa∂pb
+

1

2

∞∑

a=1

a2(a+ 1) pa+1
∂

∂pa
,

. . .

(8.26)

Formula (8.20) for Z(1,2) appeared in [2].

Note that this representation of the operators Ôk(~u) also makes manifest that they

are elements of GL(∞) [70, 103, 104] which gives yet another proof of integrability: this

property guarantees that Z(1,n)(~u) is a τ -function of the KP hierarchy.
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8.5 Hierarchy in n

Operators (8.25) form a clear hierarchy in n, and one can easily move in n in both directions.

Let us look at the simpler one: the decrease of n.

Since DR(v) = dRv
|R|
(
1 +O(v−1)

)
, one has

lim
v−→∞

Z(1,n+1)

(s
v
, ~u, v

)
= Z(1,n)(s, ~u) (8.27)

For example, for n = 0,

lim
v−→∞

exp

(
∑

m

(s/v)m · v

m
pm

)
= esp1 (8.28)

Thus

Ôn(~u) = lim
v−→∞

Ôn+1(v, ~u)
1/v (8.29)

In particular, taking Ô2 from [2], we immediately get:

. . . −→ exp
{
s
(
M̂−1 + (u+ v)L̂−1 + uvp1

)}
−→ exp

{
s(L̂−1 + up1)

}
−→ esp1 (8.30)

It now looks rather obvious that the previous term on the left is

exp
{
s
(
N̂−1 + (u+ v + w)M̂−1 + (uv + vw + wu)L̂−1 + uvwp1

)}
(8.31)

and so on.

9 Description in terms of the w∞-algebra

TheW -representation (3.8) can be further transformed and simplified. Since it is expressed

through the Casimir operators (3.4), which belong to theW∞ algebra, and no central exten-

sions are relevant for our considerations, one can make use of its alternative representation

in terms of ordinary differential operators [105]. This is a very powerful technique, see [69]

for the recent review, and this also turns to be the case in application to our problem.

9.1 Combined Casimir operators
ˆ̃
C as distinguished Ŵ

(m)
0

In this approach operators from w∞ are represented by polynomial of z and D = z∂z. In

most considerations D can be considered just as an integer number. In particular, the

standard Casimir operators (3.4) are mapped [69, 105] into

Ĉ(n) −→

(
D − 1

2

)n
−
(
−1

2

)n

n
(9.1)

Substituting this into the sums in (3.6), we obtain that combined Casimir operators, given

by this seemingly complicated formula, are in fact mapped into something clearly distin-

guished:

ˆ̃
C(n+ 1) −→

D−1∑

i=1

in (9.2)
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and then, from (3.8)

Ô(u) = uĈ1 exp

{
∞∑

n=1

(−)n+1

un · n
ˆ̃
C(n+ 1)

}
−→ uD exp

(
D−1∑

i=0

log

(
1 +

i

u

))
=

Γ(u+D)

Γ(u)

(9.3)

i.e. as an element of the w∞ algebra, operator Ô(u) is just an ordinary Γ-function! In fact,

Bernoulli numbers naturally arise in the coefficients of the large-u asymptotics of log Γ(u).

Moreover, the sums at the r.h.s. (9.2) are also associated with the very special oper-

ators, what provides a spectacular interpretation of
ˆ̃
C(n). Namely, monomials zDn are

images of

p1 −→ z · 1,

L̂−1 =
∑

n

npn+1
∂

∂pn
−→ z ·D,

M̂−1 =
∑

a,b

(
(a+ b− 1)papb

∂

∂pa+b−1
+ abpa+b+1

∂2

∂pa∂pb

)
−→ z ·D2,

. . .

(9.4)

and the sums in (9.2) are the zeroth harmonics of the same operators:

L̂0 =
∑

n

npn+1
∂

∂pn
−→ D =

D−1
∑

i=1

1,

M̂0 =
∑

a,b

(

(a+ b)papb
∂

∂pa+b

+ abpa+b

∂2

∂pa∂pb

)

−→ D(D − 1) = 2

D−1
∑

i=1

i,

N̂0 =
∞
∑

a,b,c=1

(

(a+b+c) papbpc
∂

∂pa+b+c

+abc pa+b+c
∂3

∂pa∂pb∂pc

)

+

+
3

2

∞
∑

a,b=1

a+b−1
∑

c=1

ab pcpa+b−c
∂2

∂pa∂pb
+

1

2

∞
∑

a=1

a(a2−1) pa
∂

∂pa
−→

1

2
D(D−1)(2D−1)=3

D−1
∑

i=1

i
2

. . .

(9.5)

Let us introduce a unified notation Ŵ
(m)
n for all these W -operators:

pk = Ŵ
(1)
k , L̂k = Ŵ

(2)
k , M̂k = Ŵ

(3)
k , N̂k = Ŵ

(4)
k , . . . (9.6)

Comparing (9.2) with (9.5) we see that

ˆ̃
C(n) =

1

n
Ŵ

(n+1)
0 (9.7)

In terms of these operators one can rewrite (3.8) and (9.3) as

Ô(u) = exp

(
log u L̂0+

1

2u
M̂0−

1

6u2
N̂0+ . . .

)
= exp

(
∞∑

m=2

(−)mŴ
(m+1)
0

(m− 1)mum−1

)
uŴ

(2)
0 (9.8)

so that

Z(1,n)(s, ~u) =
n∏

i=1

Ô(ui) · e
sp1 = exp

(
∞∑

m=2

ηmŴ
(m+1)
0

)
· exp

(
sp1

n∏

i=1

ui

)
(9.9)

– 21 –



J
H
E
P
1
1
(
2
0
1
4
)
0
8
0

with

ηm =
(−)m

(m− 1)m

n∑

i=1

1

um−1
i

(9.10)

9.2 Relation between the two W -representations

At the same time, from (8.25) the same function is given by

Z1,n(s, ~u) = exp



su1 . . . un







p1 +

n
∑

i=1

1

ui

L̂−1 +

n
∑

i<j

1

uiuj

M̂−1 +

n
∑

i<j<k

1

uiujuk

N̂−1 + . . .









 · 1 =

= exp

(

s
(

n
∏

i=1

ui

)(

∞
∑

m=0

ξmŴ
(m+1)
−1

)

)

· 1

(9.11)

with

ξm =
∑

i1≤i2≤...≤im

1

ui1ui2 . . . uim
(9.12)

In this form there are two differences between (9.9) and (9.11): the grading of Ŵ -operators

(0 and −1 respectively) and the time variables η and ξ, given respectively by power sum

and elementary symmetric polynomials of variables u−1
i .

These twoW -representations are of course related by the Campbell-Hausdorff formula,

this time in the form

eB̂eÂ = eÂ+[B̂,Â]+ 1
2!
[B̂[B̂,Â]]+... eB̂ (9.13)

when exponent in the boxed operator is just

Ĉ =
∞∑

m=0

1

m!
adm

B̂
Â (9.14)

where we need to substitute Â = p1 and B̂ =
∑

m ηmŴ
(m)
0 . Since (9.14) is linear in Â, the

common factor s
∏
ui can be omitted and restored at the very end. Then, if applied to

unity, the l.h.s. of (9.13) gives (9.9), and the r.h.s. will provide (9.11), because eB̂ · 1 = 1.

To calculate Ĉ we need a commutation relation

[
Ŵ

(m+1)
0 , Ŵ

(n+1)
−1

]
= mŴm+n

−1 (9.15)

which provides Ĉ in the following form:

Ĉ=Ŵ
(1
−1︸︷︷︸
p1

+
∞∑

m=2

mηmŴ
(m)
−1 +

1

2!

∞∑

m,n=2

mnηmηnŴ
(m+n)
−1 +

1

2!

∞∑

l,m,n=2

lmn ηlηmηnŴ
(l+m+n)
−1 + . . .

(9.16)
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We want this to be equal to
∑∞

k=0 ξkŴ
(k+1)
−1 Clearly, each ξk is a finite multi-linear

combination of ηm, for example,

ξ0 = 1,

ξ1 = 2η2 =
∑

i

1

ui
,

ξ2 = 3η3 + 2η22 = −
1

2

∑

i

1

u2i
+

1

2

(
∑

i

1

ui

)2

=
∑

i<j

1

uiuj
,

ξ3 = 4η4 + 6η2η3 +
4

3
η22 =

∑

i<j<k

1

uiujuk
,

. . .

(9.17)

Thus (9.9) and (9.11) — and thus (3.8) and (8.25) — are indeed related by the simplest

of all Campbell-Hausdorff formulas (9.13).

9.3 More details from the w∞ dictionary

Higher harmonics of the simplest operators Ŵ (m) are mapped into the following polyno-

mials of z and D = z∂z:

Ĵk = resz(z
kĴ(z)) −→ jk = z−k, k 6= 1,

L̂k =
1

2
resz

(
z1+k : Ĵ(z)2 :

)
−→ lk = z−k

(
z∂z −

k + 1

2

)
,

M̂k =
1

3
resz

(
z2+k : Ĵ(z)3 :

)
−→ mk = z−k

(
z2∂2z − kz∂z +

(1 + k)(2 + k)

6

)
,

N̂0 −→
1

2
(2z∂z−1)(z∂z−1)z∂z, N̂−1 −→ z(z∂z)

3

(9.18)

(polynomials at the r.h.s. are defined up to constant terms, which do not affect commutators

— expressions in (9.5) make use of this freedom). In general, for peculiar operators, which

are made from the current

Ĵ(x) =
∑

m

Ĵm
xm+1

=
∞∑

m=1

(
pmx

m−1 +
m

xm+1

∂

∂pm

)
(9.19)

and its derivatives — and at the same time belong to theW∞ algebra — the mapping rule is:

resz

(
z−k :

(Ĵ(z) + ∂z)
m+1

m+ 1
: 1

)
−→

(
z2∂z

)m
zk (9.20)
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It is easy to check that above examples fit into this scheme, with

L̂(x) =
∑

m

L̂m
xm+2

= : Ĵ(x)2 :

M̂(x) =
∑

m

M̂m

xm+3
= : Ĵ(x)3 :

N̂(x) =
∑

m

N̂m

xm+4
= : Ĵ(x)4 −

(
∂xĴ(x)

)2
:

. . .

(9.21)

Note, that this formalism is applicable only to operators from W∞ algebra, i.e. those

made from the current (9.19) and its derivatives in a very special way — as linear com-

binations of those at the l.h.s. of (9.20). Already the forth power of the current, : Ĵ4 :,

does not belong to this algebra — this is the reason for the (∂Ĵ)2 subtraction in N̂ ∈W∞.

Another typical example are Virasoro operators L̂C
n in (7.4). They are actually made from

the square of another current,

ĴC(x) =
∞∑

m=1

(
1

2
pmx

m−1 +
m

xm+1

∂

∂pm

)
(9.22)

with additional factor 1/2 in the poshtive harmonics. Because of this the w∞ technique,

described in this section, can not be used to prove and even check the Virasoro con-

straints (7.4): it does not adequately describe commutation relations between L̂C
n /∈ W∞

and L̂0, M̂0, N̂0, . . . ∈ W∞. However, there are two amusing exceptions: the zero harmon-

ics L̂C
0 and M̂C

0 do belong to W∞, this is no longer true neither for N̂C
0 , nor for higher

harmonics of L̂C and M̂C.

10 Conclusion

This paper gives a brief summary of existing knowledge about the simple family (1.11)

with k = 1, 2. This family consists of Hurwitz τ -functions which are integrable in the

simplest KP/Toda sense. A number of facts are already present in the literature, not only

we presented them in a systematic way revealing all the relations between these facts, but

we naturally made a number of new claims:

• In addition to the naive W -representation in section 8 we described two others:

in terms of the generalized cut-and-join operators, (2.8) and of the Casimir oper-

ators, (3.8), providing a direct relation to the Hurwitz theory a la [5, 6] and to

the KP/Toda integrability respectively. One more version, (9.8), provides a bridge

between naive and Casimir W -representations.

• We put together the two-matrix and Kontsevich like models from [3, 12, 13] and

pointed out an intriguing relation of higher Z(2,n) to the conformal like matrix models.
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• We provided a description of the most studied Z(1,2) model in terms of complex

matrix model which directly provides the Virasoro constraints, (7.4). Similarly, the

Z(1,3) model is described by the asymmetric two-matrix model with 1/Y potential

and satisfies the W̃ (3)-constraints, etc.

• We interpreted (-1)-modes of W -operators which enter the naive W -representation

of [2] and its generalizations as multiple commutators of the basic pair: the cut-and-

join operator Ŵ[2] =
1
2 : Tr (X∂X)

2 : and L̂−1 = : Tr (X2∂X) :

• We explained in section 9 how the mapping to the differential operators can be

used to drastically simplify derivation of these and many other similar results (note,

however, that this approach is directly applicable only to the KP/Toda, but not to

general Hurwitz τ -functions, and is thus restricted to models (1.11)).

There are still a lot of formulas to derive, especially for Z(2,n) models with n > 1.
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