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ON KRULL DIMENSION OF ORE EXTENSIONS

E. RTVELIASHVILI

ABSTRACT. The Krull dimension of rings of skew polynomials is stu-
died. Earlier the problem of Krull dimension was investigated only for
some particular cases, namely, for Weyl algebras [2], a ring of differ-
ential operators [7,8], as well as for rings of Laurent skew polynomials
[9-10].

Let R be a ring with unity and let R[x] be a ring of left polynomials
(i.e., polynomials with coefficients from the left to the powers of =) over R.
Suppose that a is an endomorphism of R and § is an a-differentiation of R,
ie., d0(a+b) =3d(a)+d(b) and 6(ab) = §(a)b+a(a)d(d) for any a,b € R. Let
R[x; a; 8] denote the ring of left skew polynomials over R [1] (the additive
group of this ring coincides with the one of R[z] and the multiplication in
it is defined by means of operators in R[z] and the following commutation
formula:

z-a=ala)x+da), a€R). (1)

If 6 is the zero mapping of R, we use the notation R[zr;«] for R[x;a;d].
Denote by K.dim(A) the Krull dimension of a ring A in the sense of
Gabriel and Rentschler (i.e., the deviation of the set of left ideals of A) [2].

Theorem 1. Let R be a ring with unity, let  be its automorphism, and
let § be a nilpotent (67 = 0) a-differentiation of R. Suppose that 6~*(1g) #
g fori=1,2,...,d—1. Then

K. dim(R[z; o; d]) = K. dim(R[z; o) = K. dim(R]x]).

Theorem 1 is a trivial consequence of the following propositions:

1991 Mathematics Subject Classification. 16S36.
Key words and phrases. Skew polynomial ring, a-differentiation.

263
1072-947X/96/0500-0263$09.50/0 © 1996 Plenum Publishing Corporation



264 E. RTVELIASHVILI

Proposition 1. Let R be a ring with unity, let o be its automorphism,
and let § be a nilpotent (04 = 0) a-differentiation of R. If $ (1r) # @ for
i=1,2,...,d—1, then

K.dim(R[z; o) < K. dim(R[z; a; d]).

Proposition 2. Let o be an injective endomorphism of a ring R with
unity satisfying
afa) < Ra(m) = a<m

for any left ideals a and m of R, where
Ra(m) = {Z)\pa(mp); my €m; Ay € R}.
p=1
Then
K.dim(R[z]) < K. dim(R[z; a]).
Proposition 3. Let « be an automorphism of a ring R with unity. Then
K.dim(R[z; a; d]) < K. dim(R]x]).

The proofs of these propositions as well as of the other ones given in this
paper are based on

Lemma 1 [2]. Let E and F be partially ordered sets. If there exists a
strictly isotonic mapping ® : E — F, then dev E < dev F.
To prove Proposition 1, we shall also need

Lemma 2. Let a be an automorphism of a ring R with unity, and let §
be an a-differentiation of R. Then the condition

ficr + faca + -+ frnen = c, (2)
where f1, fa,..., fn € R[x;058] and c1,¢a,. .., cn,c € R, implies
c=bicy +baca + -+ b,e,
with by, bs,..., b, € R.

Proof.  Suppose that k is the maximum of degrees of polynomials
fi, f2, .-, fn. We can write these polynomials as

k k—1
fi=awz” + a1 12 + -+ -+ ao,

f2

-1
agpr® + a2,k71$k + -+ ago,

fo = ankt® + an 12"+ an,
ap €R, i=1,2,...,n, p=0,1,... k.
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Here some of the a;,’s may be equal to zero.
Calculate the left side of (2) (using a® and a’ instead of a(a) and 5(a)).

fier+ faco + -+ fren = Zaikcgkxk +
i=1

k—2 k—1

k—1 k—1
+ (aik(c‘f(x e e ) fa e )xk_1+~-~+

[M]=

1

.
Il

+

d_k—d d—1 k—d—1 d—1_k—d d—2 2 k—d—1
(aik(Cfo‘ 4§ ada g ST 51 ad%

v

1

_|_..._|_C;?‘

K2

k*déd §d—1ak7d ak—dgdfl

)+ aik—1(c; +-+q )+ T+

n
d k k—1
+aiact )xd+~~+g (e +aip—1c)  + -+ aioc;).
i=1

Taking into consideration (2), we have

n
g a;pcy =0,
i=1
n
k—1 k—2 k—1 1

E (alk(cfa + cf“;a +c + a; k16§ ) =0,
=1
n

k-1 k—2 k—1
S (a7 e T T
=1

61672 51672

+a;p-1(c; ¢+ +cf )+t anc) =0,

n
(Sk 6k72

d (aie] +aik1¢]  +--+aioc) =c.
i=1

-1 )k

Using these equalities and calculating (>, aikc?k)(a , we obtain

-1

n -1 k n —1 k—1
_ 1\ 0(a™79) _ o _ (a™79)
1 k—1 15 k—1 klé
0= (Y a5 ) = (D P ane ) -
1=1

=1

—1

—1 k k—1 k—2 k—1
a” "o J da a
- (Z (af et —a(f™  +--Hcf )—aik-16d )

o)kt
)(

—1s -1 k—2 -1 k-2 -1 k—2 k-2
a” a6« a0« ) a0 o a 4
( E (aik s +ag, °c —ag, (Ci +- - )_
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Sak—2§ k=252 a=ls k—2g (ato)k2
« (67 (&4
—aik(cl- +”'+Ci ) 1k 1C — Q4 k—1C; )) =

n
a~18)2 k—2 —1 k—2 k—3 2,k—2
= (3 (el e T a0 g (e

=1
k—3 k—3 52 k—3
00T 2T g 1(50“ e
16)k 2 n 1 o1
a”ls k2 ak—2 (a” _ _ (a™79)
—afy ey A aip-acy ) == E :( @i, o =
i=1
(afl(;)k 2 5 k_1 6)672 (aflé)k72
a;, GO A+ (D) e Y = o+
—1
a—l§)k—3 _ k—3 _ a” o
o (D ] (D) ) =

k—1

+( 1)k 1 ;11 662' + (_1)k—1(aikc?k + ai’kflcf 4+ .4 a“cg))7

and therefore
n —1 k - _

€= Z ((_1)k(agg 0" - ‘153;15 +o (=D ey 16) + aiO) c. 0O
i=1

Proof of Proposition 1. Taking into account that the Krull dimension of the
ring A is equal to dev(Id A), where Id A is the set of left ideals of A, by
Lemma 1 it suffices to construct a strictly isotonic mapping F' from the set
of left ideals of R[z;a] into the set of left ideals of R[x; ;4]
First of all, let us show by induction on k that for any a,b € R we can
write 6% (a - b) as
6k (ab) = ard®(b) + ap_16871(b) 4 - - - 4+ a16(b) + aob, (3)
where ag,a1,...,ar € R are the coefficients found from the representation

zFa = akxk + ak,lmk_l +---4+ap.
Indeed, if k£ = 1, then
0(ab) = a(a)d(b) + d(a)b and za = a(a)z + i(a).
Suppose the validity of (3) for some natural k. Then
SF*1(ab) = 6(6% (ab)) = 8(ard® (b) + ap_16""1(b) + - - - + agb) =
= a4 10" (D) + ar6F(b) + - - + agd,

where a) ., = alay), a5 = d(ag), and a;, = d(an) + a(an—1) for n =
1,2,... k.
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On the other hand,

k+1 k

a=z(zka) = 2(apa® + ap_ 12"+ Fag) =
= a(ar)2" " + (8(ax) + a(ap—1))a" + -+ + (8(ar) + a(ao))x + d(ag) =

/ k+1 !’k /
:ak+1x+ +apx” + -+ ag.

T

The induction is thus completed.
Now calculate z%a. Suppose that

d d d—1
% = aqx” + ag—1x +---+agp, ag,ai,...,aq € R.

We have
6%(ab) = agd?(b) + ag_16%71(b) + --- + agh, b€ R,
where ag = §%(a). Since §¢ = 0, we obtain
aqg_1097H(b) + - + agd(b) + a15(b) = 0. 4)

Since b is an arbitrary element of R and 6=!(1g) # &, we can assume
in (4) that b € §~!(R). Taking into account that 6(0) = 0 and §(1r) =
0(1g - 1r) = 6(1r) + 6(1g) = 0, we have a; = 0. Further, assuming that
b€ §2(1R), we obtain as = 0, and so on. Finally, we have

ag=a;=--=aqg-1=0.

Therefore r%a = agzr?. Using the commutation formula (1), we easily obtain

that ag = a?(a), and hence

z%a = a¥(a)z?.

Moreover, if p = md + ¢, we can write
2Pa = xa™(a)z™, p,q,m € NU{0}. (5)

Now we begin the construction of the mapping F.

Let I be an arbitrary left ideal of R[x;«]. Let n be the minimum of
degrees of nonzero polynomials from /. For any k > n denote by a; the set
of highest-degree coefficients of kth polynomials from I. Thus we obtain
the sequence of left ideals of R:

Any Ant1y -
satisfying
a(anH) - Optitl for 1€ NU {0} (6)

(This means that this sequence is a-nondecreasing.)
Consider all monomials of the form

Oé(nJri)(dil)(an+i)$(n+i)d7 Ap+i € Aptiy 1€ NuU {0}, (7)



268 E. RTVELIASHVILI

and let J be the left ideal of R[z;a;0d] generated by them. Define the
mapping F' by
and show that it is strictly isotonic.

Let us first study the structure of J. Taking into account (5) and the set
of generators of J, we easily check that any polynomial from J with degree
divisible by d is a monomial. Let

qg= ar(dfl)(ar)xdr, a, € a,

be any of them, and suppose that

9= For fr€ Rlz;054),

A=1

where gy is of the form (7).

Take any A € {1,2,...,m} and let the degree of g\ be d- k. By (5) we
can assume: if k > r, then fy = 0; if £ = r, then the degree of f) is less
than d; if £ < 7, then f) contains only terms of the degree from the interval
[dr — dk;d(r 4+ 1) — dk) of natural numbers.

Suppose that

g = ak(d_l)(ak)xdk, k<r ayp€ag.
We can assume that
Hh= clmd(r"’l)_l_dk + e+ cd;vdT_dk; c1,C2,...,cq € R.
Then using (5), we obtain
Frogn = (@28 4 ex®2 4 oo eg)ad R (@AY (g )

But

adrfdk (ak(dfl)(ak)) _ ardfk(ak) — ar(dfl)(arfk(ak)).
By (6), " *(ay) € a,. Therefore any product fy - g such that the degree
of g is less than the degree of g can be replaced by the product f - ¢4,
where the degree of f{ is less than d, the degree of g} is equal to the degree
of g, and g} € J. Hence by Lemma 2 the coefficient of g can be rewritten
as

Zbkar(dfl)(am), by € R.
A=1
Since a, is an ideal, we conclude that
a=a"""Ya) with a€a,. (8)

Now we can show that the mapping F' constructed above is strictly iso-
tonic.
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Let I be any left ideal of R[z;a] such that I C I, and let F(I;) = J;.
We have to show that J C J;. By the construction of F' it is clear that
J C Ji.

Since 11 D I, there exists a polynomial

h=bpz® + by + -+ by, by, br_1,...,b € R,

in I; such that it is not an element of I. More than that we can assume that
by, cannot be obtained as a left linear combination of the highest coefficients
of polynomials of kth degree from I. Indeed, if it is not the case, we can
take the appropriate difference h — Y 1 Cu f, which will be an element of
I\I whose degree will be less than that of h, and so on.

Obviously, a*(@=1) (b, )z € J;. Let us show that this monomial does
not belong to J. Suppose the contrary. Then by (8),

bkxk el

which contradicts the choice of h. [

Before proving Proposition 2 note that for the first time an endomorphism
of the type considered in this proposition has been studied by Lesieur [3].
He proved that the condition

a(a) C Ra(m)=aCm
is equivalent to
a(a) :Z)\ja(bj) éa:ZMjbj, a,)\j,uj,bj € R. (9)
j=1 j=1
It was also shown by him that elements of the left ideal

(Ra(--- (Ra(a))---))

n times

Ra
~~

of R generally have the form
d
Z,uia”(ai), w €R; a;€a. O
i=1

Proof of Proposition 2. By Lemma, 1 it suffices to construct a strictly isotonic
mapping F' from the set of left ideals of R[z] into the set of left ideals of
Rlx; a.

Let I be any left ideal of R[z]. Let n be the minimum of the degrees of
nonzero polynomials from I. Consider the nondecreasing sequence

ap Capyr © o0y HENU{O}, (10)



270 E. RTVELIASHVILI

of left ideals of R, where a,4; (i = 0,1,2,...) is the set (in fact, the left
ideal) of highest coefficients of all polynomials of degree n 4 from I. With

the help of this sequence we can construct the a-nondecreasing sequence of
left ideals of R:

@y, < Ra(a)i1) < Ra(Ra(d) 2) < (11)
where a;, ; = Ro (Ra(-- (Ro(angs)) ), 1=10,1,2,....

n times
Consider all monomials of the form

an+ix" ) apti € Ra(Ra(- -+ (Ra(al,,;))-++)), i=0,1,..., (12)

i times
and let J be the left ideal of R[x; ] generated by them.
Define the mapping F' by

F(I)=J.

Let I; D I be any left ideal, and let J; = F(I;). It follows from the
construction of F that J C Jj.
As in proving Proposition 1, choose a polynomial

g=aqz®+ - +ag, ap, - ,aq € R, dcNUJ{0},

from I; which does not belong to I. Here we can also assume that the highest
term of g cannot be obtained as a left linear combination of highest terms of
the polynomials from g having the same degree. Obviously, a(aq)z? € J;.
Show that this monomial is not in .J.

Suppose the contrary. Then the monomial a(ag)z? can be represented
as the sum of the products of monomials of the form

ca—pr® P - aya?, c4_p € R, ap € Ra(Ra(---(Ra(ay))---)), (13)

p times

where p < d and a, = Zle ;0P (b;), b; € ap.
If we carry out the multiplication in (13), we obtain

k
cd_p:cd*papxp = Z )\iad(bi)xd,
i=1
where \; = cq—pa?"P(u;), \; € R. Moreover, by (11) we can assume that
b; € aq (Z: 1,2,...,]€).
Thus we have

n

ad(ad) = Z Aijad(bij)y Aij € R; by € aq.

j=11:i=1
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This equality can be rewritten as
q
a’(ag) = Zwad(bz), v € R, by €aq, q<nk.
1=1
Using here equality (9) d times, we get

q
ag =Y Bibi, B €R, b €aa.

=1

But this contradicts the choice of g.
Thus we have proved that F' is strictly isotonic. [

Proof of Proposition 3. Let I be any left ideal of R[x; «;d]. Consider all the
monomials of the form

ain(an)xﬂ% ap € apn, (14)

where a,, is the left ideal of all polynomials of degree n from I.

Let J be the left ideal of R[z]| generated by monomials (14). Define the
mapping F from the set of left ideals of R[z;«; 4] into the set of left ideals
of R[z] by

F(I)=J

Since « is the automorphism of R and a~"(a,) € a~ ™+ (a,,1), Vn € N,
it can be proved quite analogously to the proofs of Propositions 1 and 2 that
F' is strictly isotonic. [J

Remark 1. As an example let us show that the equality given in Propo-
sition 3 can be strict.

Let R = K]y, where K is a field of characteristic zero. Let o be the
identical automorphism of R, and let § be the partial differentiation by the
variable y. Then ¢ is the a-differentiation of R, and thus we obtain the
ring of skew polynomials R[x; ;0] which can be considered as the Weyl
algebra over K. Its Krull dimension is equal to 1 [2]. On the other hand,
R[z] = K[y][z] = K[y; x]. Therefore, the Krull dimension of R[z] is 2.

Remark 2. Let R be any division ring and let o be its automorphism.
Then the definition of the Krull dimension and Proposition 3 imply that

K.dim(R[x; o;0]) = 1.

Taking into consideration the already known results concerning the Krull
dimension of polynomial rings, from Theorem 1 we obtain
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Corollary 1. Let R be a left Noetherian ring with the Krull dimension
n. Let a be an automorphism of R and let § be a nilpotent (6% = 0) a-
differentiation of R. Moreover, let 6~ *(1) # @, i=1,2,...,d — 1. Then

K.dim(R[z; ;d]) = K. dim(R[x; ) =n + 1.

Let R be a ring and let o and ¢ satisfy the conditions of Theorem 1.
Denote by R[[z; o; A]] the ring of left skew formal power series over R[s] for
which

za=a"z +a"2®+ -+ a‘sd”xd_l, a € R,

where 6y = a, 61 =0, ..., 04-1 = 64 Lo
Proposition 4. K.dim(R[z; o;0]) < K. dim(R[[z; o; A]]).

Proof. In order to construct a strictly isotonic mapping from the set of left
ideals of R[x;a;d] into the set of left ideals of R[[z;«;Al], it suffices to
associate with any left ideal I of R[z;«;d] the left ideal J of R[[x;a; Al
generated by the monomials of the form
a® (aq) - a™; aq € R,

where agz is the highest-degree term of the dth degree polynomial from I.
The fact that this mapping is strictly isotonic, can be proved as above. []

Consider now the ring R[x1,...,ZTn;01,...,0n;01,...,0,] of left skew
polynomials in n variables over R [6], where

;0

8,8
) a !

e PR P Y- 7] i s .
a®it = g% i =a%% 1,7 =1,2,...,n;

%% = a%%, i #j; (15)
Ty =z, xia=o(a)r; +0;(a), a€ R.
It is easy to show that if the endomorphisms «; (i = 1,2,...,n) of R

and the corresponding «;-differentiations §; (¢ = 1,2,...,n) of R satis-
fy (15), then R[x1,...,&n;00,...,Qn;01,...,0,] can be represented as the

ring of left skew polynomials in one variable A,,_1[x,;@,;d,] over Ay =
Rlxy,...,Zp_1;01,...,Qn_1;01,...,0n_1], where the mappings @, and J,
are defined as follows: if

Vp —
f= g ayxt -z, € Apy, ay €R,
v

then
an(f) = Z O‘n(au)aﬁ1 ce x:;l,711

and

0n(f) = Z S ()t - aln !



ON KRULL DIMENSION OF ORE EXTENSIONS 273

(the fact that 6, is an @, -differentiation of A,,_; can be checked by direct
calculation). If «, is an automorphism of R, then @, is an automorphism
of A,,_1. This enables us to generalize Proposition 3. []

Proposition 5. Let a; (i =1,2,...,n) be automorphisms of R. Then
K.dim(R[x1,...,Tn;01, ..., Qn;01,...,0,]) < K.dim(R[xq,...,x,]).

 Taking into account that if 4,, is a nilpotent av,-differentiation of R, then
0y, 1s a nilpotent @, -differentiation of A,,_1m from Theorem 1 we obtain

Theorem 2. Let o; (i =1,2,...,n) be automorphisms of R, and let d;
(i = 1,2,...,n) be nilpotent (5% = 0) a;-differentiations of R such that
67k (1) # @ fork;=1,2,...,di — 1. Then

K.dim(R[x1, ..., Tn;00,. .. 0Qpn;01,...,0,]) =
K.dim(R[z1,...,2n;00,...,05)) = K.dim(R[z1, . .., 2,)]).

If, in addition, R is a left Noetherian ring with finite Krull dimension, then
K.dim(R[z1,...,Zn;01,. .., Qn;01,...,0,]) = K.dim R + n.
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