
To appear in SIAM J. Numer. Anal. Revised version, January 1996ON KRYLOV SUBSPACE APPROXIMATIONS TO THEMATRIX EXPONENTIAL OPERATORMARLIS HOCHBRUCK� AND CHRISTIAN LUBICH�Abstract. Krylov subspace methods for approximating the action of matrix exponentials areanalyzed in this paper. We derive error bounds via a functional calculus of Arnoldi and Lanczosmethods that reduces the study of Krylov subspace approximations of functions of matrices to thatof linear systems of equations. As a side result, we obtain error bounds for Galerkin-type Krylovmethods for linear equations, namely the biconjugate gradient method and the full orthogonalizationmethod. For Krylov approximations to matrix exponentials, we show superlinear error decay fromrelatively small iteration numbers onwards, depending on the geometry of the numerical range, thespectrum or the pseudospectrum. The convergence to exp(�A)v is faster than that of correspondingKrylov methods for the solution of linear equations (I��A)x= v, which usually arise in the numericalsolution of sti� ordinary di�erential equations. We therefore propose a new class of time integrationmethods for large systems of nonlinear di�erential equations which use Krylov approximations to theexponential function of the Jacobian instead of solving linear or nonlinear systems of equations inevery time step.Key words. Krylov subspace methods, conjugate gradient type methods, Arnoldi method, Lanc-zos method, matrix exponential function, superlinear convergence, matrix-free time integration meth-ods.AMS(MOS) subject classi�cations. 65F10, 65L05, 65M15.1. Introduction. In this article we study Krylov subspace methods for the ap-proximation of exp(�A)v when A is a matrix of large dimension, v is a given vector,and � > 0 is a scaling factor which may be associated with the step size in a time inte-gration method. Such Krylov approximations were apparently �rst used in ChemicalPhysics [20, 22, 17] and were more recently studied by Gallopoulos and Saad [10, 24];see also their account of related previous work. They present Krylov schemes for ex-ponential propagation, discuss the implementation, report excellent numerical results,and give some theoretical error bounds. As they also mention, these bounds are how-ever too pessimistic to explain the numerically observed error reductions. Moreover,their error bounds do not make evident that | or when and why | Krylov methodsperform far better than standard explicit time stepping methods in sti� problems. Afurther open question concerns the relationship between the convergence properties ofKrylov subspace methods for exponential operators and those for the linear systemsof equations arising in implicit time integration methods. In the present paper weintend to clear up the error behavior.When we wrote this paper, we were unaware of the important previous work byDruskin and Knizhnerman [3, 4, 14, 15] who use a di�erent approach to the analysis.We will comment on the relationship of some of their results to ours in a note at theend of this paper.Our error analysis is based on a functional calculus of Arnoldi and Lanczos meth-ods which reduces the study of approximations of exp(�A)v to that of the correspond-ing iterative methods for linear systems of equations. Somewhat oversimpli�ed, itmay be said that the error of the mth iterate for exp(�A)v behaves like the minimum,� Mathematisches Institut, Universit�at T�ubingen, Auf der Morgenstelle 10, D{72076 T�ubingen,Germany. E-mail: marlis@na.uni-tuebingen.de, lubich@na.uni-tuebingen.de1



taken over all � > 0, of e� multiplied with the error of the mth iterate for the solutionof (�I � �A)x = v by the same Krylov subspace method. This minimum is usuallyattained far from � = 1, especially for large iteration numbers. Unless a good precon-ditioner for I � �A is available, the iteration for exp(�A)v converges therefore fasterthan that for (I � �A)x = v. We do not know, however, of a way to \precondition"the iteration for exp(�A)v .Gallopoulos and Saad showed that the error of the mth iterate in the approxi-mation of exp(�A)v has a bound proportional to k�Akm=m!, which gives superlinearconvergence for m � k�Ak. In many cases, however, superlinear error decay beginsfor much smaller iteration numbers. For example, we will show that for symmetricnegative de�nite matrices A this occurs already for m � pk�Ak, whereas for skew-Hermitian matrices with uniformly distributed eigenvalues substantial error reductionbegins in general only form near k�Ak. We will obtain rapid error decay form� k�Akalso for a class of sectorial, non-normal matrices. Convergence within the required tol-erance for m < k�Ak ensures that the methods become superior to standard explicittime stepping methods for large systems. For m � k�Ak, our error bounds improveupon those of [10] and [24] typically by a factor 2�me�ck�Ak with a c > 0. The anal-ysis explains how the error depends on the geometry of critical sets in the complexplane, namely the numerical range of A for Arnoldi-based approximations, and thelocation of the spectra or pseudospectra of A and the Krylov-Galerkin matrix Hm forboth Lanczos- and Arnoldi-based approximations. In our framework, it is also easilyseen that clustering of eigenvalues has similar bene�cial e�ects in the Krylov subspaceapproximation of exp(�A)v as in the iterative solution of linear systems of equations.As mentioned above, exp(�A)v can often be computed faster than (I��A)�1v byKrylov subspace methods. This fact has implications in the time integration of verylarge systems of ordinary di�erential equations arising, e.g., in many-particle simula-tions and from spatial discretizations of time-dependent partial di�erential equations.It justi�es renewed interest in ODE methods that use the exponential or related func-tions of the Jacobian instead of solving linear or nonlinear systems of equations inevery time step. Methods of this type in the literature include the exponential Runge-Kutta methods of Lawson [18] and Friedli [8], the adaptive Runge-Kutta methods ofStrehmel and Weiner [27] in their non-approximated form, exponentially �tted meth-ods of [5], and the exponential multistep methods of [9].In the last section of this paper, we propose a promising new class of \exponen-tial" integration methods. With Krylov approximations, substantial savings can beexpected for large, moderately sti� systems of ordinary di�erential equations whichare routinely solved by explicit time-stepping methods despite stability restrictions ofthe step size, or when implicit methods require prohibitively expensive Jacobians andlinear algebra.The paper is organized as follows: In Section 2, we describe the general frameworkand derive a basic error bound for the Arnoldi method. In Section 3, this leads tospeci�c error bounds for the approximation of exp(�A)v for various classes of matricesA. Lanczos methods are studied in Section 4, which contains also error bounds forBiCG and FOM. In Section 5, we introduce a class of time-stepping methods for largesystems of ODEs which replace the solution of linear systems of equations by multipli-cation with '(�A), where '(z) = (ez � 1)=z, whose Krylov subspace approximationsconverge as fast as those for exp(�A)v.Throughout the paper, k � k is the Euclidean norm or its induced matrix norm.2



2. Arnoldi-based approximation of functions of matrices. In the sequel,let A be a complex square matrix of (large) dimension N , and v 2 CN a givenvector of unit length, kvk = 1. The Arnoldi process generates an orthonormal basisVm = [v1; : : : ; vm] of the Krylov spaceKm = span(v; Av; : : :; Am�1v) and a Hessenbergmatrix Hm of dimension m (which is the upper left part of its successor Hm+1) suchthat AVm = VmHm + hm+1;mvm+1eTm ;(2.1)where ei is the ith unit vector in Rm. By induction this clearly implies, as noted in[3, Theorem 2] and [24, Lemma 3.1],qm�1(A)v = Vm qm�1(Hm)e1 for all polynomials qm�1 of degree � m� 1 :(2.2)A standard use of the Arnoldi process is in the solution of linear equations [23], whereone approximates (�I �A)�1v � Vm(�I �Hm)�1e1(2.3)when � is not an eigenvalue of A, and hopefully not of Hm. The latter condition isalways satis�ed when � is outside the numerical rangeF(A) = fx�Ax : x 2 CN ; kxk = 1g;since (2.1) implies Hm = V �mAVm and thereforeF(Hm) � F(A) :(2.4)We now turn to the approximation of functions of A. Let f be analytic in a neighbor-hood of F(A). Then f(A)v = 12�i Z� f(�) (�I � A)�1v d� ;(2.5)where � is a contour that surrounds F(A). In view of (2.3), we are led to replace thisby 12�i Z� f(�)Vm(�I �Hm)�1e1 d� = Vmf(Hm)e1 ;(2.6)so that we approximate f(A)v � Vmf(Hm)e1 :(2.7)Such an approximation was proposed previously [22, 33, 3, 10], with di�erent deriva-tions.In practice, we are then left with the task of computing the lower-dimensionalexpression f(Hm)e1, which for m� N is usually much easier to compute than f(A)v,e.g., by diagonalization of Hm. The above derivation of (2.7) also indicates how toobtain error bounds: Study the error in the Arnoldi approximation (2.3) of linearsystems and integrate their error bounds, multiplied with jf(�)j, for � varying alonga suitable contour �. This will actually be done in the present paper.3



Our error bounds are based on Lemma 1 below. To prepare its setting, let E be aconvex, closed bounded set in the complex plane. Let � be the conformal mappingthat carries the exterior of E onto the exterior of the unit circle fjwj > 1g, with�(z) = z=�+ O(1) as z ! 1 for a � > 0. We note that � is the logarithmic capacityof E. Finally, let � be the boundary curve of a piecewise smooth, bounded region Gthat contains E, and assume that f is analytic in G and continuous on the closure ofG.Lemma 1. Under the above assumptions, and if the numerical range of A is containedin E, we have for every polynomial qm�1 of degree at most m� 1kf(A)v � Vmf(Hm)e1k � M2� � Z� jf(�)� qm�1(�)j � j�(�)j�m � jd�j(2.8)with M = `(@E)=[d(@E) �d(�)], where `(@E) is the length of the boundary curve @E ofE, and where d(S) is the minimal distance between F(A) and a subset S of the complexplane. If E is a straight line segment or a disk, then (2:8) holds with M = 6=d(�).Remark. It will be useful to choose the integration contour dependent on m, in orderto balance the decay of ��m away from E against the growth of f outside E. Forentire functions f , such as the exponential function studied in detail below, this willultimately yield superlinear convergence. On the other hand, the liberty in choosingthe polynomial qm�1 will not materialize in the study of the exponential function.Proof. (a) We begin by studying the error of (2.3) and consider a �xed � 2 � forthe moment. Our argumentation in this part of the proof is inspired by [25]. Usinge1 = V �mv, we rewrite the error as(�I � A)�1v � Vm(�I �Hm)�1e1 = �mvwith �m = (�I � A)�1 � Vm(�I � Hm)�1V �m. By (2.1) and the orthogonality ofVm+1 = [Vm; vm+1], we have V �m(�I � A)Vm = �I �Hm and therefore�m(�I �A)Vm = 0:Hence we have for arbitrary ym 2 Cm(�I � A)�1v � Vm(�I �Hm)�1e1 = �m (v � (�I �A)Vmym) :(2.9)We note that v � (�I � A)Vmym = pm(A)v ;where pm is a polynomial of degree � m with pm(�) = 1. Conversely, for every suchpolynomial, pm(A)v is of the above form. To bound �m, we recall kVmk = 1 and usethe estimates k(�I �A)�1k � dist(�;F(A))�1 and k(�I �Hm)�1k � dist(�;F(A))�1which follow from [26, Thm.4.1] and (2.4). We thus obtaink(�I �A)�1v � Vm(�I �Hm)�1e1k � 2 d(�)�1 � kpm(A)k(2.10)for every polynomial pm of degree at most m with pm(�) = 1.(b) It remains to bound pm(A). Sincepm(A) = 12�i Z@E pm(z) (zI � A)�1 dz ;4



we have kpm(A)k � `(@E)2�d(@E) maxz2E jpm(z)j :For the special case when E is a line segment, we have A of the form A = �I + �Bwith a Hermitian B and complex coe�cients �; �, so that thenkpm(A)k � maxz2E jpm(z)j :When E is a disk jz � �j � �, then pm(z) will be chosen as a multiple of (z � �)m,and an inequality of Berger (see [1, p. 3]) then tells us thatkpm(A)k � 2maxz2E jpm(z)j :In all these cases we thus havekpm(A)k � 13d(�) �M �maxz2E jpm(z)j(2.11)with M as stated in Lemma 1.(c) To proceed in the proof, we use near-optimality properties of Faber polynomials.These have been employed previously in analyses of iterative methods by Eiermann[6] and Nevanlinna [21]. Let �m(z) denote the Faber polynomial of degree m as-sociated with the region E. This is de�ned as the polynomial part of �(z)m, i.e.,�(z)m = �m(z) + O(z�1) as z ! 1. We now choose the polynomial pm(z) with thenormalization pm(�) = 1 aspm(z) = [�m(z)� �m(�) + �(�)m]=�(�)m ;(2.12)cf. [21, p.76]. A theorem of K�ovari and Pommerenke [16, Thm.2] provides us with thebound j�m(z)� �(z)mj � 1 for z 2 CnE :(2.13)This implies maxz2E j�m(z)j = maxz2@E j�m(z)j � 2 andmaxz2E jpm(z)j � 3 j�(�)j�m :(2.14)(d) Combining inequalities (2.10),(2.11), and (2.14) gives usk(�I �A)�1v � Vm(�I �Hm)�1e1k �M � j�(�)j�m :(2.15)The proof is now completed by inserting this bound into the di�erence of formulas(2.5) and (2.6) and taking account of (2.2).Remark. Part (c) of the above proof, combined with Cauchy's integral formula, showsthat there exists a polynomial �m�1(z) of degree at most m� 1 such thatmaxz2E jf(z)��m�1(z)j � 32�� Z� jf(�)j � j�(�)j�m � jd�j ;(2.16)where � is the minimal distance between � and E. This holds for �m�1(z) =12�i R� f(�)(1�pm(z; �))=(��z) d�, with pm(z; �) of (2.12). Polynomial approximationbounds of this type are closely tied to Bernstein's theorem [19, Thm.III.3.19].5



3. Approximation of the matrix exponential operator. In this section wegive error bounds for the Arnoldi approximation of e�Av for various classes of matricesA. We may restrict our attention to cases where the numerical range of A is containedin the left half-plane, so that ke�Ak and, in view of (2.4), also ke�Hmk are bounded byunity. This assumption entails no loss of generality, since a shift from A to A + �Ichanges both e�Av and its approximation by a factor e��.The same bounds as in Theorems 2 to 6 below (even slightly more favorablebounds) are valid also for Krylov subspace approximations of '(�A)v, with '(z) =(ez � 1)=z.Theorem 2. Let A be a Hermitian negative semi-de�nite matrix with eigenvaluesin the interval [�4�; 0]. Then the error in the Arnoldi approximation of e�Av, i.e.,"m := ke�Av � Vme�Hme1k, is bounded in the following ways:"m � 10 e�m2=(5��) ; p4�� � m � 2��(3.1) "m � 10 (��)�1e��� �e��m �m ; m � 2�� :(3.2)Remark. It is instructive to compare the above error bounds with that of the conjugategradient method applied to the linear system (I � �A)x = v, which is given bykx� xmk � 2p1 + 4�� �1� 2p1 + 4�� + 1�m :This bound becomes small for m� p�� but only with a linear decay.Proof. We use Lemma 1 with E = [�4�; 0]. Then the conformal mapping is�(z) = 1 + z2� +s�1 + z2��2 � 1:We start by applying the linear transformation � = 1 + �=(2�), which maps E to theinterval [�1; 1]. As contour � we choose the parabola with right-most point 
 that ismapped to the parabola � given by the parametrization� = (1 + �)(1� 12�2) + ip2�+ �2 � ; �1 < � < +1 ;where � = 
=(2�). This parabola osculates to the ellipse E with foci �1 and majorsemi-axis 1 + �. Lemma 1 gives us the error bound"m � 1
 Z� je�� j � j�(�)j�m � jd�j = 1� Z� je2��(��1)j � j�(�)j�m � jd�j ;(3.3)where �(�) = �+p�2 � 1. The absolute value of �(�) is constant along every ellipsewith foci �1. Since the parabola � is located outside the ellipse E , we have along �j�(�)j � �(1 + �) =: r:Hence we obtain from (3.3)"m � ��1e2���r�m � 2 Z 10 e����2 �(1 + �)� +p2� + �2� d�= e2���r�m  1 + ���� +s(2 + �)���� ! :(3.4) 6
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Fig. 3.1. Errors and error bounds for the symmetric exampleMoreover, we have r � e�p2� with � > 0:96 for � � 1=2 (and � > 0:98 for � � 1=4).Minimizing e2����mp2� with respect to � yields� = m28(��)2 :Inserting this � in (3.4) results in the bound (with � = 2�� 1 > 0:92)"m � �12 ��m2 + 8p��m � e��m2=(4��) ;(3.5)which together with "m � 2 is a sharper version of (3.1). The condition � � 1=2 isequivalent to m � 2�� .To obtain the bound (3.2), we note that 1 + � = (r + r�1)=2 and insert in (3.4)r = m=(��), which is close to the minimum for m� �� . This yields for m � 2��"m � �5(��)�1 + 3p�(��)�1=2� e(��)2=me�2�� �e��m �m ;(3.6)which is a sharper version of (3.2).Finally we remark, in view of the proof of Theorem 3 below, that the bounds (3.1)and (3.2) are also obtained when � is chosen as a composition of the part of the aboveparabola contained in the right half-plane and two rays on the imaginary axis.To give an illustration of our error bounds we consider the diagonal matrix A withequidistantly spaced eigenvalues in the interval [�40; 0] and a random unit vector v ofdimension 1001. Fig. 3.1 shows the errors of the approximation to exp(A)v and thoseof the cg approximation to (I�A)�1v, which gives nearly a straight line. Moreover, thedashed line shows the error bounds (3.5) and (3.6), while the dotted line correspondsto 2k12Akm=m!, which is the error bound of [24, Corollary 4.6] for symmetric, negativesemi-de�nite matrices A. 7



It is well known that Krylov subspace methods for the solution of linear systems ofequations bene�t from a clustering of the eigenvalues. The same is true also for theKrylov subspace approximation of e�Av. This is actually not surprising in view of theCauchy integral representations (2.5), (2.6). As an example of such a result, we statethe following theorem. This might be generalized in various directions for di�erenttypes of clusterings and di�erent types of matrices, but we will not pursue this further.Theorem 3. Let A be a Hermitian negative semi-de�nite matrix with eigenvaluescontained in f�1g [ [�4�; 0] with �1 < �4�. Then the (m + 1)st error "m+1 in theArnoldi approximation of e�Av is bounded by the right-hand sides of (3:1) and (3:2).Proof. The result is proved by using the polynomialpm(z) = z � �1�� �1 [�m�1(z)� �m�1(�) + �(�)m�1]=�(�)m�1instead of (2.12). The absolute value of the �rst factor is bounded by unity for z 2[�4�; 0] and Re� � 0. Hence we obtain the same error bounds as in Theorem 2 withm replaced by m� 1.For skew-Hermitian matrices A (with uniformly distributed eigenvalues) we cannotshow superlinear error decay for m < �� . The reason is, basically, that here theconformal mapping � maps the vertical line Re� = �� onto a contour with j�(�)j �1 + �, whereas in the symmetric negative de�nite case we have j�(�)j � 1 +p�. Thisbehavior a�ects equally the convergence of Krylov subspace methods for the solutionof linear systems (I � �A)x = v. For skew-Hermitian A, there is, in general, nosubstantial error reduction for m < �� , and convergence is linear with a rate like(1 + 1=��)�1 for m� �� .Theorem 4. Let A be a skew-Hermitian matrix with eigenvalues in an interval onthe imaginary axis of length 4�. Then the error in the Arnoldi approximation of e�Avis bounded by "m � 12 e�(��)2=m�e��m �m ; m � 2��:Proof. We use Lemma 1 with E = i[�� 2�; �+ 2�]. Then the conformal mapping is�(z) = i0@z � i�2� +s�z � i�2� �2 + 11A :After applying the linear transformation � = i(�� i�)=(2�), we choose the integrationcontour as an ellipse with foci �1 and minor semiaxis b = 
=(2�), 
 > 0. The majorsemiaxis is then a = p1 + b2 and the length of the contour is bounded by 2�a. Inaddition, we have d(�) = 2�(a� 1). The absolute value r = j�(�)j = j�+p�2 + 1j isconstant along the ellipse. With Lemma 1, we get for the error"m � 12�2�d(�)2�p1 + b2e
�r�m � 61� 1=p1 + b2e2��br�m;8
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Fig. 3.2. Errors and error bounds for the skew-Hermitian examplewith b = (r � r�1)=2. Inserting r = m=(��) gives the stated error bound. A sharperbound for �� > 12 , which is obtained by integrating over the parabola that osculatesto the above ellipse at the right-most point, reads"m � 13 �4(��)�1 + 11(��)�1=2� e�(��)2=m �e��m �m ; m � 2��:(3.7)For a numerical illustration we choose the diagonal matrix A with 1001 equidistanteigenvalues in [�20i; 20i], and a random vector v of unit length. Fig. 3.2 shows theerrors of the approximation to exp(A)v and those of the BiCG approximation to(I � A)�1v, which again form nearly a straight line. The dashed line shows the errorbound (3.7), the dotted line corresponds to 2kAkm=m!, which is the bound given in[10, Corollary 2.2].Theorem 5. Let A be a matrix with numerical range contained in the disk jz+�j � �.Then the error in the Arnoldi approximation of e�Av is bounded by"m � 12 e��� �e��m �m ; m � 2�� :Proof. We use Lemma 1 with E = fjz+�j � �g and � a circle with radius r� centeredat ��. Lemma 1 gives the bound"m � 6 rr � 1e(r�1)��r�m:Setting r = m=(��) gives the stated result.The following is a worst-case example which shows nearly no error reduction for m ��� . 9



Example. Let A be the bidiagonal matrix of dimension N that has �1 on the diagonaland +1 on the subdiagonal. The numerical range of A is then contained in the diskjz + 1j � 1. For v = e1, we havee�Av = e�� (1; �; �2=2!; : : : ; �N=N !)T :The Arnoldi process gives Vm = (Im; 0)T and Hm as the m-dimensional version of A,so that Vme�Hme1 = e�� (1; �; �2=2!; : : : ; �m=m!; 0; 0; : : : ; 0)T :The error vector thus contains the entries e���k=k! for k > m. The largest of these isclose to (2��)�1=2 by Stirling's formula, if m < � < N .Similar to Theorem 2, the onset of superlinear convergence begins already form� ��when F(A) is contained in a wedge-shaped set. In particular, consider the conformalmapping  (w) = �1� 1w�2�� w ; jwj � 1for 0 < � < 1, which maps the exterior of the unit disk onto the exterior of thebounded sectorial set in the left half-planeS� = Cnfz =  (w) : jwj > 1g :S� has a corner at 0 with opening angle �� and is symmetric with respect to the realaxis.Theorem 6. For some � > 0 and 0 < � < 1, let the numerical range of A be containedin � � S�. Then the error in the Arnoldi approximation of e�Av is bounded by"m � C ���m�
 e�c[m=(��)�]� ; (��)� � m � 2��(3.8) "m � Cme�(r� (r))�� �e��m �m ; r = m�� � 2(3.9)with � = 12�� , � = 2��1�� , 
 � 21�� . The constants C and c > 0 depend only on �.Proof. In the course of this proof, C denotes a generic constant which takes ondi�erent values on di�erent occurrences. After the transformation � = �=�, we useLemma 1 with ��1E = Cnf (w) : jwj > 1 + �g and ��1� = f� =  (w) : jwj = rg forr = 1 + (2�)� and suitable � > 0, � > 0. For � � 1, we choose � such that r=(1 + �) =exp(��) and note that then ��1d(@E) � � � C�1�� and also ��1d(�) � C�1��. Theright-most point of the integration contour ��1� is  (r) < 2�. Hence we have fromLemma 1 "m � C � ��2�e2���e�m�� :For m� (��)�, the right-hand side is minimized near� = ��m2��� 11�� :10



Inserting this � gives (3.8) with c = 2� �1�� �� �1�� � � 11��� > 0 :For any r � 2 and � > 0, Lemma 1 gives"m � C� e (r)�� � r1 + ���m ;which becomes (3.9) upon choosing r = (m+ 1)=(��) and � = 1=m.4. Lanczos-based approximation of functions of matrices. The Arnoldimethod unfortunately requires long recurrences for the construction of the Krylovbasis. The Lanczos method overcomes this di�culty by computing an auxiliary basisWm = [w1; : : : ; wm] which spans the Krylov subspace with respect to A� and w1. TheLanczos vectors vj and wj are constructed such that they satisfy a biorthogonalitycondition, or block biorthogonality in case of the look-ahead version [7, 28], i.e., Dm :=W �mVm is block diagonal. The look-ahead process ensures that Dm is well conditionedwhen the index m terminates a block, which will be assumed of m in the sequel.The Lanczos vectors can be constructed by short (mostly three-term) recurrences.This results again in a matrix representation (2.1), but now with a block tridiagonalmatrix Hm = D�1m W �mAVm. However, unlike the Arnoldi case, neither Vm nor Wmare orthogonal matrices. It is usual to scale the Lanczos vectors to have unit norm,in which case the norms of Vm and Wm are bounded by pm. Since Hm is now anoblique projection of A, the numerical range of Hm is in general not contained inF(A). Variants of Lemma 1, which apply in this situation, are given in the followingtwo lemmas. For the exponential function, Lemmas 7 and 8 lead to essentially thesame error bounds as given for the Arnoldi method in Theorems 5 and 6, except fordi�erent constants. In Theorems 2, 3, and 4, Arnoldi and Lanczos approximationscoincide.The �rst lemma works with the �-pseudospectrum of A [32], de�ned by��(A) = f� 2 C : k(�I � A)�1k � ��1g ; � > 0:Otherwise, the setting is again the one described before Lemma 1.Lemma 7. If ��(A) � E and �
(A)[�
(Hm) � G, then the error of the Lanczos ap-proximation of f(A)v is bounded by (2:8) withM = 12(1+kVmk�kD�1m W �mk)`(@E)=(�
).Proof. The proof modi�es the proof of Lemma 1. For the Lanczos process we haveD�1m W �mAVm = Hm and D�1m W �mVm = I , and thereforeh(�I �A)�1 � Vm(�I �Hm)�1D�1m W �mi (�I �A)Vm = 0 :Noting e1 = D�1m W �mv, we thus obtain(�I �A)�1v � Vm(�I �Hm)�1e1= �(�I �A)�1 � Vm(�I �Hm)�1D�1m W �m� pm(A)v(4.1)for every polynomial pm of degree � m with pm(�) = 1. By assumption we have thatthe norms of both (�I �A)�1 and (�I�Hm)�1 are bounded by 
�1 for � 2 �. Usingfurther kpm(A)k � `(@E)=(2��) �maxz2E jpm(z)j leads tok(�I � A)�1v � Vm(�I �Hm)�1e1k� `(@E)2�
 (1 + kVmk � kD�1m W �mk) � j�(�)j�m;(4.2) 11



which in turn yields the estimate stated in the lemma.For a diagonalizable matrix A we let�e(A) = kXk � kX�1k;where X is the matrix that contains the eigenvectors of A in its columns.The following lemma involves only the spectrum �(A) of A and uses once morethe setting of Lemma 1.Lemma 8. Let A be diagonalizable and assume that �(A) � E, �(Hm) � G, andk(�I � Hm)�1k � 
�1 < 1 for � 2 �. Then the Lanczos approximation of f(A)vsatis�es (2:8) with M = 3�e(A)���1+ kVmk � kD�1m W �mk 
�1�, where � is the minimaldistance between �(A) and �.Proof. The result follows from (4.1) along the lines of parts (c) and (d) of the proofof Lemma 1.Remarks. (a) It is known that in generic situations, extreme eigenvalues of A are wellapproximated by those of Hm for su�ciently large m [34]. For a contour � that isbounded away from �(A), one can thus expect that usually k(�I�Hm)�1k is uniformlybounded along �.(b) Lemmas 7 and 8 apply also to the Arnoldi method, where Dm = I , Wm = Vm,and kVmk = 1.(c) The convexity assumption about E can be removed at the price of a largerfactorM . For E a continuum containing more than one point, one can use instead ofinequality (2.13) the estimate in the lemma on pp. 107f. in Volume III of [19].The proofs of Lemmas 1, 7, and 8 provide error bounds for iterative methods for thesolution of linear systems of equations whose iterates are de�ned by a Galerkin condi-tion (2.3). This gives new error bounds for the biconjugate gradient method, where theKrylov basis is constructed via the Lanczos process, and for the full orthogonalizationmethod, which is based on the Arnoldi process. The proofs can be extended to givesimilar error bounds also for the (quasi-) minimization methods QMR and GMRES,see [13].5. A class of integration methods for large systems of ODEs. In thenumerical integration of very large sti� systems of ordinary di�erential equations y0 =f(y), Krylov subspace methods have been used successfully for the solution of thelinear systems of equations arising in fully or linearly implicit integration schemes [11,2, 25]. These linear systems are of the form (I � 
hA)x = v, where A is the Jacobianof f evaluated near the current integration point, h is the step size, and 
 is a methodparameter. The attraction with Krylov subspace methods lies in the fact that theyrequire only the computation of matrix-vector products Aw. When it is convenient,these can be approximated as directional derivatives Aw := (f(y + �w)� f(y))=�, sothat the Jacobian A need never be formed explicitly. Our theoretical results as wellas computational experiments indicate that Krylov subspace approximations of e
hAvor '(
hA)v, with '(z) = (ez � 1)=z ;12



converge faster than the corresponding iterations for (I � 
hA)�1v, at least unlessa good preconditioner is at hand. This suggests the use of the following class ofintegration schemes, in which the linear systems arising in a linearly implicit methodof Rosenbrock-Wanner type are replaced by multiplication with '(
hA). Startingfrom y0 � y(t0), the scheme computes an approximation y1 of y(t0 + h) viaki = '(
hA)0@f(ui) + hA i�1Xj=1 
ijkj1A ; i = 1; : : : ; s(5.1) ui = y0 + h i�1Xj=1�ijkj(5.2) y1 = y0 + h sXi=1 �iki :(5.3)Here A = f 0(y0), and 
; 
ij; �ij; �i are the coe�cients that determine the method. Theinternal stages u1; : : : ; us are computed one after the other, with one multiplicationby '(
hA) and a function evaluation at each stage. The simplest method of this typeis the well-known exponentially �tted Euler methody1 = y0 + h'(hA)f(y0) ;(5.4)which is of order 2 and exact for linear di�erential equations y0 = Ay+b with constantA and b. It appears well suited as a basis for Richardson extrapolation. Here is anotherexample of such a method:Theorem 9. The two-stage methods with coe�cients 
 = 1=2, �21 = � (a free param-eter), 
21 = 34�2��, �1 = 1�1=(3�2), �2 = 1=(3�2) are of order 3. For arbitrary stepsizes, they provide the exact solution for every linear system of di�erential equationsy0 = Ay + b with constant matrix A and constant inhomogeneity b.Proof. Taylor expansion in h of the exact and the numerical solutions shows thatthe order conditions up to order 3, which correspond to the elementary di�erentialsf; f 0f; f 00(f; f); f 0f 0f , are given by Xi �i = 1(5.5) Xi;j �i(�ij + 
ij) = 12 (1� 
)(5.6) Xi �i(Xj �ij)2 = 13(5.7) Xi;j;k �i(�ij + 
ij)(�jk + 
jk) = 13 (12 � 
)(1� 
) :(5.8)Here all sums extend from 1 to s, and we have set �ij = 
ij = 0 for i � j. Cf. with theorder conditions for Rosenbrock methods in [12], p.116, which di�er from the presentorder conditions only in the right-hand side polynomials in 
.For 
 = 1=2, the right-hand side of the last order condition vanishes, and hencethis condition is automatically satis�ed for every two-stage method with 
 = 1=2.With �21 = � as a free parameter, the remaining three equations yield the stated13



method coe�cients. Direct calculation shows that the method applied to y0 = Ay+ b,y(t0) = y0 gives y1 = ehAy0 + h'(hA)b = y(t0 + h) ;which is the claimed property.Remarks. (a) With � = 3=4, the method satis�es the order condition �2�321 = 1=4,which corresponds to the fourth-order elementary di�erential f 000(f; f; f). The orderconditions corresponding to f 0f 0f 0f and f 0f 00(f; f) are satis�ed independently of �,so that the order condition corresponding to f 00(f; f 0f) is then the only fourth-ordercondition that remains violated.(b) For non-autonomous problems y0 = f(t; y), it is useful to rewrite the equationin autonomous form by adding the trivial equation t0 = 1 and taking the JacobianeA = � 0 0ft fy � :In particular, the method is then exact for every linear equation of the form y0 =Ay + b+ tc, since this is rewritten as� ty�0 = � 0 0c A�� ty �+ � 1b� ;which is again a linear system with constant inhomogeneity.An e�cient implementation and higher-order methods are currently under investiga-tion.Note added in the revised version. After �nishing this paper we learned thatDruskin and Knizhnerman [3, 4] previously obtained an estimate similar to (3.5) forthe symmetric case, using a di�erent proof. They give the asymptotic estimate"m � �p2� + O�ma �� � pam � exp "�m22a + O m4a3 !# ; m � a ;with a = 2�� , which they prove using the Chebyshev series expansion of the exponen-tial function. In an extension of this technique to the non-Hermitian case, Knizhner-man [14] derived error bounds in terms of Faber series for the Arnoldi method (2.7).He showed "m � const 1Xk=m jfkjk�;(5.9)where fk are the Faber series coe�cients of f and the exponent � depends on thenumerical range of A. As one referee emphasizes, the Faber series approach could beput to similar use as our Lemma 1. In fact, Leonid Knizhnerman showed to us in apersonal communication how it would become possible to derive a result of the typeof our Theorem 6 using (5.9). Our approach via Lemma 1 makes it more obvious tosee how the geometry of the numerical range comes into play. An example similar tothat after Theorem 5 is given in [15, x3]. We thank Anne Greenbaum and two refereesfor pointing out these references and Leonid Knizhnerman for providing a commentedversion of the Russian paper [14]. Error bounds via Chebyshev and Faber series, forthe related problem of approximating matrix functions by methods that generalizesemi-iterative methods for linear systems, were given by Tal-Ezer [29, 30, 31].14
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