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ON KRYLOV SUBSPACE APPROXIMATIONS TO THE
MATRIX EXPONENTIAL OPERATOR

MARLIS HOCHBRUCK* AND CHRISTIAN LUBICH*

Abstract. Krylov subspace methods for approximating the action of matrix exponentials are
analyzed in this paper. We derive error bounds via a functional calculus of Arnoldi and Lanczos
methods that reduces the study of Krylov subspace approximations of functions of matrices to that
of linear systems of equations. As a side result, we obtain error bounds for Galerkin-type Krylov
methods for linear equations, namely the biconjugate gradient method and the full orthogonalization
method. For Krylov approximations to matrix exponentials, we show superlinear error decay from
relatively small iteration numbers onwards, depending on the geometry of the numerical range, the
spectrum or the pseudospectrum. The convergence to exp(7A)v is faster than that of corresponding
Krylov methods for the solution of linear equations ({ —7A)z = v, which usually arise in the numerical
solution of stiff ordinary differential equations. We therefore propose a new class of time integration
methods for large systems of nonlinear differential equations which use Krylov approximations to the
exponential function of the Jacobian instead of solving linear or nonlinear systems of equations in
every time step.
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1. Introduction. In this article we study Krylov subspace methods for the ap-
proximation of exp(rA)v when A is a matrix of large dimension, v is a given vector,
and 7 > 0 is a scaling factor which may be associated with the step size in a time inte-
gration method. Such Krylov approximations were apparently first used in Chemical
Physics [20, 22, 17] and were more recently studied by Gallopoulos and Saad [10, 24];
see also their account of related previous work. They present Krylov schemes for ex-
ponential propagation, discuss the implementation, report excellent numerical results,
and give some theoretical error bounds. As they also mention, these bounds are how-
ever too pessimistic to explain the numerically observed error reductions. Moreover,
their error bounds do not make evident that — or when and why — Krylov methods
perform far better than standard explicit time stepping methods in stiff problems. A
further open question concerns the relationship between the convergence properties of
Krylov subspace methods for exponential operators and those for the linear systems
of equations arising in implicit time integration methods. In the present paper we
intend to clear up the error behavior.

When we wrote this paper, we were unaware of the important previous work by
Druskin and Knizhnerman [3, 4, 14, 15] who use a different approach to the analysis.
We will comment on the relationship of some of their results to ours in a note at the
end of this paper.

Our error analysis is based on a functional calculus of Arnoldi and Lanczos meth-
ods which reduces the study of approximations of exp(7A)v to that of the correspond-
ing iterative methods for linear systems of equations. Somewhat oversimplified, it
may be said that the error of the mth iterate for exp(7A)v behaves like the minimum,
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taken over all & > 0, of e* multiplied with the error of the mth iterate for the solution
of (ol — TA)x = v by the same Krylov subspace method. This minimum is usually
attained far from a = 1, especially for large iteration numbers. Unless a good precon-
ditioner for I — 7A is available, the iteration for exp(rA)v converges therefore faster
than that for (I — 7A)a = v. We do not know, however, of a way to “precondition”
the iteration for exp(TA)v .

Gallopoulos and Saad showed that the error of the mth iterate in the approxi-
mation of exp(7A)v has a bound proportional to ||TA||™/m!, which gives superlinear
convergence for m > ||[TAl|. In many cases, however, superlinear error decay begins
for much smaller iteration numbers. For example, we will show that for symmetric
negative definite matrices A this occurs already for m > /||TA||, whereas for skew-
Hermitian matrices with uniformly distributed eigenvalues substantial error reduction
begins in general only for m near ||7Al|. We will obtain rapid error decay for m < ||TA||
also for a class of sectorial, non-normal matrices. Convergence within the required tol-
erance for m < ||TA|| ensures that the methods become superior to standard explicit
time stepping methods for large systems. For m > ||7A||, our error bounds improve
upon those of [10] and [24] typically by a factor 2=™e~ll"4ll with a ¢ > 0. The anal-
ysis explains how the error depends on the geometry of critical sets in the complex
plane, namely the numerical range of A for Arnoldi-based approximations, and the
location of the spectra or pseudospectra of A and the Krylov-Galerkin matrix H,, for
both Lanczos- and Arnoldi-based approximations. In our framework, it is also easily
seen that clustering of eigenvalues has similar beneficial effects in the Krylov subspace
approximation of exp(7A)v as in the iterative solution of linear systems of equations.

As mentioned above, exp(r A)v can often be computed faster than (I —7A4)"1v by
Krylov subspace methods. This fact has implications in the time integration of very
large systems of ordinary differential equations arising, e.g., in many-particle simula-
tions and from spatial discretizations of time-dependent partial differential equations.
It justifies renewed interest in ODE methods that use the exponential or related func-
tions of the Jacobian instead of solving linear or nonlinear systems of equations in
every time step. Methods of this type in the literature include the exponential Runge-
Kutta methods of Lawson [18] and Friedli [8], the adaptive Runge-Kutta methods of
Strehmel and Weiner [27] in their non-approximated form, exponentially fitted meth-
ods of [5], and the exponential multistep methods of [9].

In the last section of this paper, we propose a promising new class of “exponen-
tial” integration methods. With Krylov approximations, substantial savings can be
expected for large, moderately stiff systems of ordinary differential equations which
are routinely solved by explicit time-stepping methods despite stability restrictions of
the step size, or when implicit methods require prohibitively expensive Jacobians and
linear algebra.

The paper is organized as follows: In Section 2, we describe the general framework
and derive a basic error bound for the Arnoldi method. In Section 3, this leads to
specific error bounds for the approximation of exp(7A)v for various classes of matrices
A. Lanczos methods are studied in Section 4, which contains also error bounds for
BiCG and FOM. In Section 5, we introduce a class of time-stepping methods for large
systems of ODEs which replace the solution of linear systems of equations by multipli-
cation with ¢(7A), where ¢(z) = (¢* — 1)/z, whose Krylov subspace approximations
converge as fast as those for exp(rA)v.

Throughout the paper, || -|| is the Euclidean norm or its induced matrix norm.
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2. Arnoldi-based approximation of functions of matrices. In the sequel,
let A be a complex square matrix of (large) dimension N, and v € CV a given
vector of unit length, |[v]| = 1. The Arnoldi process generates an orthonormal basis
Vi = [v1, - - -, U] of the Krylov space K, = span(v, Av, ..., A7 1v) and a Hessenberg
matrix H,, of dimension m (which is the upper left part of its successor H,,4+1) such
that

(21) Avm =VnH, + hm—l—l,mvm—l—lez; ’

where e; is the 7th unit vector in R™. By induction this clearly implies, as noted in
[3, Theorem 2] and [24, Lemma 3.1],

(2.2) Gm-1(A)v =V, ¢_1(Hy)er for all polynomials ¢,,—1 of degree <m —1.

A standard use of the Arnoldi process is in the solution of linear equations [23], where
one approximates

(2.3) (M —A) o V(M — Hy) e

when A is not an eigenvalue of A, and hopefully not of H,,. The latter condition is
always satisfied when A is outside the numerical range

F(A) = {z" Az : 2 € CN ||z]| = 1},
since (2.1) implies H,, = Vs AV,, and therefore
(2.4) F(H,) C F(A).

We now turn to the approximation of functions of A. Let f be analytic in a neighbor-

hood of F(A). Then

(2.5) F(Ayo = %/Ff(/\) (A= A) " wdA

where I' is a contour that surrounds F(A). In view of (2.3), we are led to replace this

by

1
(2.6) —,/ FO) Vi (M = Hy)™Yey dh = Vo f(Hp e
2w Jr
so that we approximate
(2.7) F(A)w Vi, f(Hper -

Such an approximation was proposed previously [22, 33, 3, 10], with different deriva-
tions.

In practice, we are then left with the task of computing the lower-dimensional
expression f(H,,)er, which for m < N is usually much easier to compute than f(A)v,
e.g., by diagonalization of H,,. The above derivation of (2.7) also indicates how to
obtain error bounds: Study the error in the Arnoldi approximation (2.3) of linear
systems and integrate their error bounds, multiplied with |f())[, for A varying along
a suitable contour I'. This will actually be done in the present paper.



Our error bounds are based on Lemma 1 below. To prepare its setting, let F be a
convex, closed bounded set in the complex plane. Let ¢ be the conformal mapping
that carries the exterior of F onto the exterior of the unit circle {|w| > 1}, with
&(z) =2/p+ O(1) as = — oo for a p > 0. We note that p is the logarithmic capacity
of . Finally, let I' be the boundary curve of a piecewise smooth, bounded region G
that contains F, and assume that f is analytic in GG and continuous on the closure of

G.

Lemma 1. Under the above assumptions, and if the numerical range of A is contained
in E, we have for every polynomial q,,_1 of degree at most m — 1

08 I = VS el < 3 [ 10 = gt (V] [60) ™ N
T Jr

with M = L(OF)/[d(0F)-d(I')], where {(OF) is the length of the boundary curve OF of
E, and where d(S) is the minimal distance between F(A) and a subset S of the complex
plane. If E is a straight line segment or a disk, then (2.8) holds with M = 6/d(I').

Remark. 1t will be useful to choose the integration contour dependent on m, in order
to balance the decay of ¢~ away from FE against the growth of f outside F. For
entire functions f, such as the exponential function studied in detail below, this will
ultimately yield superlinear convergence. On the other hand, the liberty in choosing
the polynomial ¢,,_; will not materialize in the study of the exponential function.

Proof. (a) We begin by studying the error of (2.3) and consider a fixed A € I' for
the moment. Our argumentation in this part of the proof is inspired by [25]. Using
e; = Vv, we rewrite the error as

(M — Ao =V, (M — Hy) ey = Ao
with A, = (M — A)™' = V,,(AM — H,,)"'V:. By (2.1) and the orthogonality of
Vint1 = [V, Um41], we have V(A — A)V,, = AI — H,,, and therefore
Ay (M= AV, =0.
Hence we have for arbitrary y,, € C™
(2.9) (M= A" o -V, (M- Hy) rer = Ay (v— (M — AViym) -
We note that
v = (M = A)Voym = prn(A)v

where p,,, is a polynomial of degree < m with p,,(A) = 1. Conversely, for every such
polynomial, p,,(A)v is of the above form. To bound A, we recall ||V,,|| = 1 and use
the estimates |[(A] — A)7Y| < dist(X, F(A4))~! and [[(AT — Hy,) 7| < dist(A, F(A)) L
which follow from [26, Thm.4.1] and (2.4). We thus obtain

(2.10) I = A)™ 0 = V(A = Hy) ™ er]| < 2d(0) 7 - lpia ()]

for every polynomial p,, of degree at most m with p,,(A) = 1.
(b) It remains to bound p,,(A). Since

pnlA) = o [ () (1= A) s

27
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we have

I () < o max 2]

< - 7
H - 27rd(8E z€E

For the special case when F is a line segment, we have A of the form A = ol + B
with a Hermitian B and complex coefficients «, 3, so that then

< .
lpm (A < max [P (2)]

When FE is a disk |z — p| < p, then p,,(z) will be chosen as a multiple of (z — u)™,
and an inequality of Berger (see [1, p. 3]) then tells us that

(A < 2m - .
I (A)]] < ZE%XU’ (2)]
In all these cases we thus have

(2.11) P (A < 5(T) - M - ma [y (2)

with M as stated in Lemma 1.

(c) To proceed in the proof, we use near-optimality properties of Faber polynomials.
These have been employed previously in analyses of iterative methods by Eiermann
[6] and Nevanlinna [21]. Let ¢,,(z) denote the Faber polynomial of degree m as-
sociated with the region F. This is defined as the polynomial part of ¢(z)™, i.e.,
H(2)™ = dpm(2) + O(z71) as z — co. We now choose the polynomial p,,(z) with the
normalization p,,(A) =1 as

(2.12) Pm(2) = [0m(2) = om(A) + S(N)"]/S(N)™

cf. [21, p.76]. A theorem of Kévari and Pommerenke [16, Thm.2] provides us with the
bound

(2.13) |om(2) — @(2)™] <1  for z€ C\F .
This implies max.cp |¢m(2)| = max,ecor |¢m(z)| < 2 and
. < B
(2.14) max [pn (2)] < 3|¢(})]
(d) Combining inequalities (2.10),(2.11), and (2.14) gives us
(2.15) M — A" o — Vo (M = Hy) 7 leg]| < M- o(N)]7™ .

The proof is now completed by inserting this bound into the difference of formulas
(2.5) and (2.6) and taking account of (2.2). O

Remark. Part (c) of the above proof, combined with Cauchy’s integral formula, shows
that there exists a polynomial II,,_1(z) of degree at most m — 1 such that

3
(2.16) max | (2) = Mo (2)] < 55 [ 17OV 1) - JaA]
where ¢ is the minimal distance between I' and FE. This holds for Il,,_1(z) =
= Jr F(N)(L=pm(z,A)/(A=z) dX, with p,, (2, A) of (2.12). Polynomial approximation

bounds of this type are closely tied to Bernstein’s theorem [19, Thm.II1.3.19].
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3. Approximation of the matrix exponential operator. In this section we
give error bounds for the Arnoldi approximation of e™4v for various classes of matrices
A. We may restrict our attention to cases where the numerical range of A is contained
in the left half-plane, so that ||e”*|| and, in view of (2.4), also ||e”#™|| are bounded by
unity. This assumption entails no loss of generality, since a shift from A to A 4+ ol
changes both 7w and its approximation by a factor 7.

The same bounds as in Theorems 2 to 6 below (even slightly more favorable
bounds) are valid also for Krylov subspace approximations of ¢(1A)v, with ¢(z) =

(e =1)/=.

Theorem 2. Let A be a Hermitian negative semi-definite matriz with eigenvalues
in the interval [—4p,0]. Then the error in the Arnoldi approzimation of ¢™v, i.e.,

Em = |le74v — V,e™Hmey ||, is bounded in the following ways:

(3.1) em < 10 e=m’/(5or) , Viadpr <m < 2p1

(3.2) em < 10 (pr)"le™" (ﬂ) , m > 2pT .
m

Remark. 1t is instructive to compare the above error bounds with that of the conjugate
gradient method applied to the linear system (I — 7A)z = v, which is given by

2 m
— | <2144 1l — .
b=l <2V pT( 1+4pr+1)
This bound becomes small for m > ,/p7 but only with a linear decay.

Proof. We use Lemma 1 with £ = [—4p,0]. Then the conformal mapping is
$(z) =14+ (1+ 2)2 1
z) = 2 2 .

We start by applying the linear transformation y =1+ A/(2p), which maps E to the
interval [—1,1]. As contour I' we choose the parabola with right-most point v that is
mapped to the parabola Il given by the parametrization

p=(1+e) —%02)+i\/26—|—6207 —00 < 0 < +oo

where € = ~v/(2p). This parabola osculates to the ellipse £ with foci +1 and major
semi-axis 1 4 €. Lemma 1 gives us the error bound

1 1
33) 2w < 1NN N = < [ 1T @) 7
v JT € JII

where ®(p) = p+ /p? — 1. The absolute value of ®(u) is constant along every ellipse
with foci £1. Since the parabola II is located outside the ellipse £, we have along 11
()] > B(1+) = .

Hence we obtain from (3.3)

e S 6—162076r—m‘2/ 6—076’2 ((1_|_6)0_|_ /2€_|_62) do
0

(3.4) —  2eTEp—m (1‘|‘€_|_ (2—|-€)7T) ‘

pTE pTE




N
100 | \

10° | \

107 |

107 | \

107 F \

-10 L L A

10

Fia. 3.1. Frrors and error bounds for the symmetric example

Moreover, we have r > V2 with a > 0.96 for € < 1/2 (and a > 0.98 for € < 1/4).
Minimizing e2rme=mV2e with respect to ¢ yields

= 507

Inserting this € in (3.4) results in the bound (with g =2a —1 > 0.92)
(3.5) e < (12’0_7_2 + 8_V’0T) o= Bm?/(4p7) 7
m m

which together with ¢, < 2 is a sharper version of (3.1). The condition ¢ < 1/2 is
equivalent to m < 2p7.

To obtain the bound (3.2), we note that 14+ ¢ = (r 4+ r~1)/2 and insert in (3.4)
r =m/(p7), which is close to the minimum for m > p7. This yields for m > 2p7

(3.6) Em < (5(,07')_1 + 3\/;(,07_)—1/2) elP7)*/m g =207 (ﬂ) ,
m
which is a sharper version of (3.2).
Finally we remark, in view of the proof of Theorem 3 below, that the bounds (3.1)
and (3.2) are also obtained when I' is chosen as a composition of the part of the above
parabola contained in the right half-plane and two rays on the imaginary axis. O

To give an illustration of our error bounds we consider the diagonal matrix A with
equidistantly spaced eigenvalues in the interval [—40, 0] and a random unit vector v of
dimension 1001. Fig. 3.1 shows the errors of the approximation to exp(A)v and those
of the cg approximation to (I —A)~1v, which gives nearly a straight line. Moreover, the
dashed line shows the error bounds (3.5) and (3.6), while the dotted line corresponds
to 2|| %AHm/m!7 which is the error bound of [24, Corollary 4.6] for symmetric, negative
semi-definite matrices A.



It is well known that Krylov subspace methods for the solution of linear systems of
equations benefit from a clustering of the eigenvalues. The same is true also for the
Krylov subspace approximation of e”v. This is actually not surprising in view of the
Cauchy integral representations (2.5), (2.6). As an example of such a result, we state
the following theorem. This might be generalized in various directions for different
types of clusterings and different types of matrices, but we will not pursue this further.

Theorem 3. Let A be a Hermitian negative semi-definite matriz with eigenvalues
contained in {A} U [—4p,0] with Ay < —4p. Then the (m + 1)st error 41 in the
Arnoldi approzimation of € v is bounded by the right-hand sides of (3.1) and (3.2).

Proof. The result is proved by using the polynomial

Z—Al
pml2) = 35,

[Dm—1(2) = Pm1 (N) + 6 (N1 /d(A)™

instead of (2.12). The absolute value of the first factor is bounded by unity for z €
[—4p,0] and ReX > 0. Hence we obtain the same error bounds as in Theorem 2 with
m replaced by m — 1. O

For skew-Hermitian matrices A (with uniformly distributed eigenvalues) we cannot
show superlinear error decay for m < pr. The reason is, basically, that here the
conformal mapping ¢ maps the vertical line ReA = €p onto a contour with |p(A)]| >
1+ ¢, whereas in the symmetric negative definite case we have |¢(A)| > 1+ /e. This
behavior affects equally the convergence of Krylov subspace methods for the solution
of linear systems (I — 7A)z = v. For skew-Hermitian A, there is, in general, no
substantial error reduction for m < p7, and convergence is linear with a rate like
(1+1/pr)~t for m > pr.

Theorem 4. Let A be a skew-Hermitian matriz with eigenvalues in an interval on
the imaginary axis of length 4p. Then the error in the Arnoldi approzimation of e™4v
is bounded by

Em < 12 e~ (em)*/m (ﬂ) ,  m > 2pT.
m

Proof. We use Lemma 1 with F = i[a — 2p, & + 2p]. Then the conformal mapping is

$(z) = i (Z ;pm + ﬂz ;pm)z + 1) .

After applying the linear transformation p = ¢(A —ia)/(2p), we choose the integration
contour as an ellipse with foci +1 and minor semiaxis b = v/(2p), v > 0. The major
semiaxis is then « = v/1 + 0% and the length of the contour is bounded by 27a. In
addition, we have d(I') = 2p(a — 1). The absolute value r = |p(A)| = |p+ V2 + 1] is

constant along the ellipse. With Lemma 1, we get for the error

Em < 27V 14+ 027 ™™ < —62/)7'I)T‘—m7
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Fia. 3.2. Frrors and error bounds for the skew-Hermitian example

with b = (r — r=1)/2. Inserting r = m/(p7) gives the stated error bound. A sharper
bound for p7 > %, which is obtained by integrating over the parabola that osculates
to the above ellipse at the right-most point, reads

(3.7) en< i (4(,07')_1 + 11(,07')_1/2) e (e7)*/m (ﬂ) ,  m > 2pT. O

m

For a numerical illustration we choose the diagonal matrix A with 1001 equidistant
eigenvalues in [—204,207], and a random vector v of unit length. Fig. 3.2 shows the
errors of the approximation to exp(A)v and those of the BiCG approximation to
(I — A)~lv, which again form nearly a straight line. The dashed line shows the error

bound (3.7), the dotted line corresponds to 2||A||™/m!, which is the bound given in
[10, Corollary 2.2].

Theorem 5. Let A be a matriz with numerical range contained in the disk |z+p| < p.
Then the error in the Arnoldi approzimation of e”*v is bounded by

epT

e < 126777 (L

) ,  m > 2pT .
m

Proof. We use Lemma 1 with F' = {|z+p| < p} and [" a circle with radius rp centered
at —p. Lemma 1 gives the bound

Setting r = m/(pT) gives the stated result. O

The following is a worst-case example which shows nearly no error reduction for m <
pr.



FEzxample. Let A be the bidiagonal matrix of dimension N that has —1 on the diagonal
and +1 on the subdiagonal. The numerical range of A is then contained in the disk
|z+ 1| < 1. For v = ey, we have

e = e (1,7, T?/2 .. .,TN/N!)T .

The Arnoldi process gives V,, = (I,,,0)” and H,, as the m-dimensional version of A,
so that

VmeTHmel = 6_7(17 T, 7'2/2!7 ceey Tm/m!7 0,0,.. ‘70)T )

The error vector thus contains the entries e=77%/k! for k > m. The largest of these is
close to (2r7)~'/2 by Stirling’s formula, if m < 7 < N. O

Similar to Theorem 2, the onset of superlinear convergence begins already for m < pr
when F(A) is contained in a wedge-shaped set. In particular, consider the conformal

mapping

blw) = (1—%)2_6107 ol > 1

for 0 < 6 < 1, which maps the exterior of the unit disk onto the exterior of the
bounded sectorial set in the left half-plane

Sp = C\{z = ¢(w):|w| > 1} .

Sy has a corner at 0 with opening angle #7 and is symmetric with respect to the real
axis.

Theorem 6. For some p > 0 and 0 < 8 < 1, let the numerical range of A be contained
in p-Sg. Then the error in the Arnoldi approzimation of € v is bounded by

,
(3.8) em < C<ﬂ)eﬂwmﬂw7 (pT)* <m < 2p1
m
(3.9) em < CVne‘“‘¢“””T<Eﬁz) L =202
m pPT

[}

-0

with o = 2£_9f 6= , v < ﬁ. The constants C' and ¢ > 0 depend only on 6.

—_
sy

Proof. In the course of this proof, (' denotes a generic constant which takes on
different values on different occurrences. After the transformation p = A\/p, we use
Lemma 1 with p=!F = C\{¢(w) : |w| > 1+ ¢} and p~IT' = {u = ¢ (w) : |w| = r} for
r =1+ (2¢)* and suitable § > 0, ¢ > 0. For ¢ < 1, we choose ¢ such that r/(1+ ) =
exp(€”) and note that then p~1d(dF) > § > C~te* and also p~1d(T') > C~1e*. The
right-most point of the integration contour p~!I" is ¢ (r) < 2¢. Hence we have from
Lemma 1

Em S C. 6—2a€25p76—me°‘
For m > (pr)®, the right-hand side is minimized near
1
am\ T-a
e=|-— .
<2p7)
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1

Inserting this € gives (3.8) with ¢ = 2" Ta (a% — am) >0.
For any r > 2 and 4 > 0, Lemma 1 gives
C ro "
s
e 1+3)
which becomes (3.9) upon choosing r = (m+1)/(p7) and 6 = 1/m. O

4. Lanczos-based approximation of functions of matrices. The Arnoldi
method unfortunately requires long recurrences for the construction of the Krylov
basis. The Lanczos method overcomes this difficulty by computing an auxiliary basis
W, = [wy, ..., wy,] which spans the Krylov subspace with respect to A* and wy. The
Lanczos vectors v; and w; are constructed such that they satisfy a biorthogonality
condition, or block biorthogonality in case of the look-ahead version [7, 28], i.e., D,, :=
Wy Vi, is block diagonal. The look-ahead process ensures that D, is well conditioned
when the index m terminates a block, which will be assumed of m in the sequel.
The Lanczos vectors can be constructed by short (mostly three-term) recurrences.
This results again in a matrix representation (2.1), but now with a block tridiagonal
matrix H,, = D;LIW;%AVm. However, unlike the Arnoldi case, neither V,, nor W,,
are orthogonal matrices. It is usual to scale the Lanczos vectors to have unit norm,
in which case the norms of V,, and W,, are bounded by /m. Since H,, is now an
oblique projection of A, the numerical range of H,, is in general not contained in
F(A). Variants of Lemma 1, which apply in this situation, are given in the following
two lemmas. For the exponential function, Lemmas 7 and 8 lead to essentially the
same error bounds as given for the Arnoldi method in Theorems 5 and 6, except for
different constants. In Theorems 2, 3, and 4, Arnoldi and Lanczos approximations
coincide.

The first lemma works with the e-pseudospectrum of A [32], defined by

A(A)={AeC: |- >ty € > 0.
Otherwise, the setting is again the one described before Lemma 1.

Lemma 7. If A (A) C E and A(A)UA,(H,,) C G, then the error of the Lanczos ap-
prozimation of f(A)v is bounded by (2.8) with M = S(1+||Viu|[-| DZIWDEOE) [ (e7).

Proof. The proof modifies the proof of Lemma 1. For the Lanczos process we have

D YW AV, = H,, and D;'W7:V,, = I, and therefore
(M= A) 7 = Vi (AT = Hy) T DM Wi | (M = AV, =0,

Noting e; = D;'!W> v, we thus obtain

A —A) o=V, (M - Hy,) ey

(4.1) = [(AT = A)™" = Vs (A = Hyp) 7' DR W] p (Ao

for every polynomial p,, of degree < m with p,,(A) = 1. By assumption we have that
the norms of both (A — A)~! and (A — H,,)~! are bounded by v~! for A € T". Using
further ||p,, (A)|| < L(OLF)/(27¢) - max.cf |pm(2)| leads to

|AT — A)~to — Vi, (M — Hyp,) 7 le ||

f(@E) —1 * —-m
< ey LA IVRl- D Wall) - 16O,

(4.2)
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which in turn yields the estimate stated in the lemma. O

For a diagonalizable matrix A we let
re(A) = X IX

where X is the matrix that contains the eigenvectors of A in its columns.
The following lemma involves only the spectrum A(A) of A and uses once more
the setting of Lemma 1.

Lemma 8. Let A be diagonalizable and assume that A(A) C E, A(H,,) C G, and
(M — Hp)7Y| < 471 < 0o for A € . Then the Lanczos approzimation of f(A)v

satisfies (2.8) with M = 3k.(A) (5_1 WVl - 1D 7_1), where § is the minimal
distance between A(A) and I'.

Proof. The result follows from (4.1) along the lines of parts (c¢) and (d) of the proof
of Lemma 1. O

Remarks. (a) It is known that in generic situations, extreme eigenvalues of A are well
approximated by those of H,, for sufficiently large m [34]. For a contour I' that is
bounded away from A(A), one can thus expect that usually ||(A — H,,) ! is uniformly
bounded along I'.

(b) Lemmas 7 and 8 apply also to the Arnoldi method, where D, = I, W,,, = V,,,
and ||V, || = 1.

(c) The convexity assumption about F' can be removed at the price of a larger
factor M. For F a continuum containing more than one point, one can use instead of
inequality (2.13) the estimate in the lemma on pp. 107f. in Volume 111 of [19].

The proofs of Lemmas 1, 7, and 8 provide error bounds for iterative methods for the
solution of linear systems of equations whose iterates are defined by a Galerkin condi-
tion (2.3). This gives new error bounds for the biconjugate gradient method, where the
Krylov basis is constructed via the Lanczos process, and for the full orthogonalization
method, which is based on the Arnoldi process. The proofs can be extended to give
similar error bounds also for the (quasi-) minimization methods QMR and GMRES,
see [13].

5. A class of integration methods for large systems of ODEs. In the
numerical integration of very large stiff systems of ordinary differential equations y’ =
f(y), Krylov subspace methods have been used successfully for the solution of the
linear systems of equations arising in fully or linearly implicit integration schemes [11,
2, 25]. These linear systems are of the form (I — yhA)z = v, where A is the Jacobian
of f evaluated near the current integration point, h is the step size, and v is a method
parameter. The attraction with Krylov subspace methods lies in the fact that they
require only the computation of matrix-vector products Aw. When it is convenient,
these can be approximated as directional derivatives Aw = (f(y 4 ew) — f(y)) /¢, so
that the Jacobian A need never be formed explicitly. Our theoretical results as well
as computational experiments indicate that Krylov subspace approximations of e”*4v
or ¢(yhA)v, with

plz)=(e"=1)/z,
12



converge faster than the corresponding iterations for (I — yhA)~lv, at least unless
a good preconditioner is at hand. This suggests the use of the following class of
integration schemes, in which the linear systems arising in a linearly implicit method
of Rosenbrock-Wanner type are replaced by multiplication with ¢(yhA). Starting
from yo = y(to), the scheme computes an approximation y; of y(to + h) via

i—1
(5.1) ki = @(yhA) (f(ui)JrhAZ%jkj) , i=1,...,s

7=1
i—1
(5.2) u; = Yo+ hZ Oéi]‘k]‘
7=1
(5.3) yi = yo+hd Biki.
=1

Here A = f'(yo), and v, vi;, cii;, B; are the coefficients that determine the method. The
internal stages uy,...,us are computed one after the other, with one multiplication
by ¢(vhA) and a function evaluation at each stage. The simplest method of this type
is the well-known exponentially fitted Euler method

(5.4) y1 = yo + he(hA) f(yo) ,

which is of order 2 and exact for linear differential equations y’ = Ay-+b with constant
A and b. It appears well suited as a basis for Richardson extrapolation. Here is another
example of such a method:

Theorem 9. The two-stage methods with coefficients vy = 1/2, aa1 = « (a free param-
eter), y21 = %042 —a, B =1-1/(3a?), B2 = 1/(3a?) are of order 3. For arbitrary step
sizes, they provide the exact solution for every linear system of differential equations
y' = Ay + b with constant matriz A and constant inhomogeneity b.

Proof. Taylor expansion in h of the exact and the numerical solutions shows that
the order conditions up to order 3, which correspond to the elementary differentials

LU D) FT f are given by
(5.5) Zﬁ =1

(5.6) Zﬁi(aij +7i) = 3(1=7)

(5.7) DA )t = 3

(5.8) > Bileis + v e +7ik) = 5G-71)(1-7).
1,7,k

Here all sums extend from 1 to s, and we have set a;; = v;; = 0 for ¢ < j. Cf. with the
order conditions for Rosenbrock methods in [12], p.116, which differ from the present
order conditions only in the right-hand side polynomials in ~.

For v = 1/2, the right-hand side of the last order condition vanishes, and hence
this condition is automatically satisfied for every two-stage method with v = 1/2.
With a; = o as a free parameter, the remaining three equations yield the stated

13



method coeflicients. Direct calculation shows that the method applied to v’ = Ay + b,
y(to) = yo gives

yi = €"yo + hp(hA)b = y(to + h)
which is the claimed property. O

Remarks. (a) With o = 3/4, the method satisfies the order condition fSya3; = 1/4,
which corresponds to the fourth-order elementary differential f”(f, f, f). The order
conditions corresponding to f'f'f'f and f'f"(f, f) are satisfied independently of «,
so that the order condition corresponding to f”(f, f'f) is then the only fourth-order
condition that remains violated.

(b) For non-autonomous problems y’ = f(¢,y), it is useful to rewrite the equation
in autonomous form by adding the trivial equation ' = 1 and taking the Jacobian

=0 )

In particular, the method is then exact for every linear equation of the form y' =
Ay + b+ tc, since this is rewritten as

t' (0 0N [t 1
= + ,
Y c A Y b
which is again a linear system with constant inhomogeneity.

An efficient implementation and higher-order methods are currently under investiga-
tion.

Note added in the revised version. After finishing this paper we learned that
Druskin and Knizhnerman [3, 4] previously obtained an estimate similar to (3.5) for
the symmetric case, using a different proof. They give the asymptotic estimate

€m§[m+0(%)]-%§-exp[—z—;+0(?—:)] ) m<a,

with @ = 2p7, which they prove using the Chebyshev series expansion of the exponen-
tial function. In an extension of this technique to the non-Hermitian case, Knizhner-
man [14] derived error bounds in terms of Faber series for the Arnoldi method (2.7).
He showed

o0
(5.9) Em < const Z | ek,

k=m
where f, are the Faber series coeflicients of f and the exponent « depends on the
numerical range of A. As one referee emphasizes, the Faber series approach could be
put to similar use as our Lemma 1. In fact, Leonid Knizhnerman showed to us in a
personal communication how it would become possible to derive a result of the type
of our Theorem 6 using (5.9). Our approach via Lemma 1 makes it more obvious to
see how the geometry of the numerical range comes into play. An example similar to
that after Theorem 5 is given in [15, §3]. We thank Anne Greenbaum and two referees
for pointing out these references and Leonid Knizhnerman for providing a commented
version of the Russian paper [14]. Error bounds via Chebyshev and Faber series, for
the related problem of approximating matrix functions by methods that generalize
semi-iterative methods for linear systems, were given by Tal-Ezer [29, 30, 31].
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