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1. Introduction    
 
The notion of BCK-algebras was proposed by Iami and Iseki in 1966. In the same 
year, K. Is´eki [4] introduced the notion of a BCI-algebra which is a generalization of 
a BCK-algebra. Since then numerous mathematical papers have been written 
investigating the algebraic properties of the BCK/BCI-algebras and their relationship  
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with other universal structures including lattices and Boolean algebras. There is a 
great deal of literature has been produced on the theory of BCK/BCI-algebras, in 
particular, emphasis seems to have been put on the ideal theory of BCK/BCI-algebras 
see[ 3 ]. For the general development of BCK/BCI-algebras the ideal theory plays an 
important role. Y. Komori ([6]) introduced a notion of BCC-algebras, and W. A. 
Dudek [1] redefined the notion of BCC-algebras by using a dual form of the ordinary 
definition in the sense of Y. Komori. In([1], [2]), C. Prabpayak and U. Leerawat 
introduced the concept of KU-algebra . They gave the concept of homomorphism of 
KU-algebras and investigated some related properties.  In this paper the concepts of 
KUS-algebras, KUS-sub-algebras , KUS-ideals , homomorphism of KUS-algebras are 
introduced.  The relation between some abelian groups and KUS-algebras , the G-part 
of KUS-algebras are studied and  investigated some of its properties. 
 

2. The Structure of KUS-algebras 
 
In this section, we will introduce a new notion called KUS-algebras and study several 
properties of it. 

Definition 2.1([1],[2]).   A KU-algebra is a nonempty set X with a constant ( 0 )  
and a binary operation (∗ ) satisfying the following axioms: for any x , y , z ∈ X , 

(i)   (x∗y) ∗  [(y∗ z) ∗  (x∗ z)]= 0 , 
(ii)   0∗x = x ,  
(iii)   x∗0  = 0 ,  
(iv)   x∗y = 0 and y∗x = 0 imply x = y. 

Lemma  2.2([1],[2]). Every KU-algebra X satisfies the following conditions: 
 (v)   x∗  (y∗ z) = y∗  (x∗ z), for arbitrary x ,y ,z ∈ X. 
 (vi)  x∗x = 0, for arbitrary  x  ∈ X. 

Definition 2.3.  Let (X; ∗ ,0) be an algebra of  type (2,0) with a single binary 
operation (∗ ). Then (X; ∗ ,0)  is called KUS-algebra if it satisfies the following 
axioms : for any x , y , z ∈ X , 

(kus1) : (z∗y) ∗  (z∗x) = (y∗x) , 
(kus2) : 0∗x = x , 
(kus3) : x∗x = 0 , 
(kus4) : x∗  (y∗ z) = y∗  (x∗ z) . 

      In X we can define a binary relation (≤ ) by : x  ≤  y if and only if   y ∗  x = 0 . 
  A KU-algebra (X; ∗ ,0) is called KUS-algebra if it satisfies:  
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     (vii)   (z∗y) ∗  (z∗x) = (y∗x).   
      For brevity we shall call X a KUS-algebra unless otherwise specified  

Example 2.4. Let X = {0, a, b, c, d} in which (∗ ) is defined by the following table: 

 
 
 
 
 
 
 
 
 
 
 
   It is easy to show that (X; ∗ ,0)  is KUS-algebra .   

      Now, we give some properties and theorems of KUS-algebras. 
Proposition 2.5.  Let  X be a KUS-algebra. Then the following holds:  
 for any  x, y, z ∈X,    

a)    x ∗  y = 0 and y ∗  x = 0  imply   x = y, 
b) x ∗  (y ∗x) = y ∗  0 , 
c) (x ∗  y) = 0 implies that   x ∗0 = y ∗0 ,  
d) (x∗y) ∗0 = y∗x  , 
e) x∗0 = 0 implies that   x = 0, 
f) x = 0 ∗  (0 ∗  x) ,  
g) 0 ∗  (x ∗y) = (0 ∗x) ∗  (0 ∗y), 
h) x∗ z = y∗ z implies that   x∗0 = y∗0 .  

 
Proof: 

a) Since   x ∗y = 0 and   y ∗  x = 0  , then   x ≤ y   and   y ≤ x imply   x = y . 
b)  x ∗  (y∗x) = y ∗  (x∗x) = y∗0 . 
c) (0∗y ) ∗  (x ∗y) = x ∗0  , by (b), and  (0∗y ) ∗  (x ∗y) = (0 ∗y) ∗0 , since  

              (x * y) = 0. Then x ∗0 = y ∗0. 
d) (x∗y) ∗0 = (x∗y) ∗  (x∗x) = y∗x ,  by (kus1). 

    (e), (f) and (g) are clears by (kus2). 
h) x∗0 = x∗  (z∗ z) = z∗  (x∗ z) = z*(y*z) = y*(z*z) = y*0.  ⌂ 

Proposition 2.6.  Let X be a KUS-algebra . A relation (≤ ) on X defined by 

∗ 0 a b c d 

0 0 a b c d 
a d 0 a b c 
b c d 0 a b 
c b c d 0 a 

d a  b c d 0  



 

134                                                                                               Samy M. Mostafa et al 
 
 x ≤ y  if  y∗x = 0 . Then  (X,≤ ) is a partially ordered set. 
 
Proof:   Let X be a KUS-algebra and let x, y, z ∈ X, since x∗x = 0 , x ≤ x. Suppose 
that  x ≤ y and y ≤ x , then   x∗y = 0 = y∗x . By proposition (2.5(a)), x = y. Suppose 
that  x ≤ y and y ≤ z, then y∗x = 0 and   z*y = 0 . By (kus1) 
 0 = (y∗x) ∗  (y∗x) = (y∗x) ∗  [(z∗y) ∗  (z∗x)] = 0∗  [0∗  (z∗x)] = z∗x, hence  x≤ z. 
Thus (X,≤ ) is a partially ordered set. ⌂ 

Proposition 2.7.  Let  X be a KUS-algebra . Then the following holds:                         
for any  x, y, z ∈X,    

1. x∗  y ≤ z  imply   z ∗  y ≤ x , 
2. x ≤ y  implies that   z ∗x ≤ z ∗y  , 
3. y∗  [(y∗ z) ∗ z] = 0,  
4. (x ∗  z) ∗  (y ∗  z) ≤ (y ∗  x) , 
5. x ≤ y  and  y ≤ z imply   x ≤ z , 
6. x ≤ y implies that y ∗ z ≤ x ∗ z . 

 
Proof: 

1. It follows from (kus4) . 
2. By (kus1 ), we obtain [(z∗y) ∗  (z∗x)] = (y∗x), but  x ≤ y implies   y∗x = 0 , 

then we get   (z∗y) ∗  (z∗x) = 0.  i.e.,  z ∗  x ≤  z ∗  y . 
3. It is clear by (kus4) and (kus3) . 
4. By (kus3) , (kus4) and (kus1) ,  (y∗x) ∗  [(x∗ z) ∗  (y∗ z)] = (x∗ z) ∗  [(y∗x) ∗  

(y∗ z)] = (x∗ z) ∗  (x∗ z) = 0. Thus  (x∗ z) ∗  (y∗ z) ≤  (y∗x). 
5. If   x ≤ y, then by (2), z∗x  ≤  z∗y . By applying (kus2) and  (x ≤ y), z∗x = 0∗  

(z∗x) = (y∗x) ∗  (z∗x) ≤  z∗y = 0 [by (4) and (y ≤ z)] imply   z∗x ≤ 0, i.e., 
 0∗  (z∗x) = 0. By (kus2),  z∗x = 0 and so   x ≤ z .  

6. If   x ≤ y, then (x∗ z) ∗  (y∗ z) = (y∗x) = 0.  Hence   y∗ z  ≤ x∗ z . ⌂ 

Proposition 2.8.  Every KUS-algebra X satisfying   x∗  (x∗y) = x∗y for all x, y ∈ X 
is a trivial algebra . 
 
Proof:   putting x = y in the equation  x∗  (x∗y) = x∗y, we have x*0 = 0 .By (kus2) , 
x = 0. Hence X is a trivial algebra .⌂ 

3. KUS-ideals and Homomorphism of KUS-algebras 
 
In this section we will present some results on images and preimages of  
homomorphism on KUS-algebras. 
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Definition 3.1.   Let X be a KUS-algebra and let S be a nonempty set of X.  S is 
called a KUS-sub-algebra of X if   x∗y ∈ S  whenever  x, y ∈ S . 

Definition 3.2([5]).  Let I be a nonempty subset of X , I is called an ideal of X if,  for 
all x, y ∈ X 

(I1)   0 ∈  I, 
(I2)    x ∈  I and  y ∗x ∈  I imply y ∈ I. 

Definition 3.3([1],[2]).  A nonempty subset I of a KU-algebra X is called a KU-ideal 
of X if it satisfies the following conditions : for all x, y , z ∈ X 

(KU1)   0 ∈ I , 
(KU2)    x∗  (y∗ z)∈ I , y ∈ I implies (x∗ z) ∈ I . 

Definition 3.4.  A nonempty subset I of a KUS-algebra X is called a KUS-ideal of X 
if it satisfies: for x , y, z ∈ X, 

(Ikus1)   (0 ∈ I) , 
(Ikus2)   (z∗y)∈ I and (y∗x)∈ I  imply   (z∗x)∈ I . 

Example 3.5 .  Let X ={0 ,a, b, c} in which (∗ ) is defined by the following table: 

 
 
 
 
      
 
 
 
 
Then (X; ∗ ,0) is KUS-algebra . It is easy to show that I1 ={0,a}, I2 ={0,b},  
I3 ={0,c}, and I4={0, a, b, c} are KUS-ideals of X . 

Proposition 3.6.  Let X be a KUS-algebra and I be a nonempty subset of X containing 
0. Then I is a KUS-ideal of X if and only if : 
                           (z∗y) ∈I, (z∗x) ∉ I imply  (y∗x) ∉ I, for all x, y, z ∈ X.  
 
Proof:   Let I be an KUS-ideal of X and  (z∗y) ∈I, (z∗x)∉ I. Suppose that  (y∗x)∈I, 
since I is a KUS-ideal, then (z∗x)∈ I , a contradiction . 
 
 

∗ 0 a b c 
0 0 a b c 
a a 0 c b 
b b c 0 a 
c c b a 0 
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 Conversely, assume that (z∗y) ∈I, (z∗x)∉ I imply (y∗x) ∉ I, for all x, y, z ∈ X. If 
(z∗y) ∈I, (y∗x)∈ I . It is clear that (z∗x) ∈ I . then I is a KUS-ideal of X. ⌂ 

Corollary 3.7.  

Let  X be a KUS-algebra and  I be a nonempty subset of X containing 0. Then : 
(C1) I is a KUS-ideal of X if and only if  (z∗y) ∈I, (y∗x)∉ I  imply  (z∗x) ∉ I,  for 

all x, y, z ∈ X .   
(C2)  I is a KUS-ideal of X if and only if  (z∗y) ∈I, (z∗x)∈ I  imply  (y∗x) ∈ I, for 

all x, y, z ∈ X. 
(C3) I is a KUS-ideal of X if and only if  (z∗x) ∈I, (y∗x)∈ I imply  (z∗y) ∈ I,  for all 

x, y, z ∈ X .   

Proposition 3.8.   Every  KUS-ideal of KUS-algebra X is a KUS-sub-algebra. 
 
Proof:   For all x, y, z ∈ X, let  I be a KUS-ideal of a KUS-algebra X such that x, y 
∈I, then (0∗x) = x ∈I,(0∗y) = y∈I. Hence, by corollary (3.7(C2)) , x∗y∈ I . 
Therefore I is a KUS-sub-algebra.⌂  

Proposition 3. 9.   Every  KUS-ideal of X is an ideal of  X. 
 
Proof: For all x, y, z∈X, let I is KUS-ideal of X. By corollary(3.7(C3)) (z∗x) ∈ I and 
(y∗x) ∈I imply  (z∗y) ∈I. If  z = 0 ,then (0∗x) = x ∈I and  (y∗x) ∈I  imply that 
  (0∗y) = y ∈I . and hence I is an ideal of X. ⌂  
   In general, the converse  of proposition (3.9) is not  true . For example: 
 
Example 3.10.  Let X ={0,1, 2, 3} be a KUS-algebra with the following Cayley table: 
 
 
 
 
 
     
 
 
  Then (X;  ∗ ,0) is KUS-algebra . It is easy to show that I ={0, 3} is an ideal of X 
which is not a KUS-ideal of X , since 3 ∗2 = 3 ∈ I , 2 ∗1 = 3 ∈I and 3∗1 = 2 ∉I. 
 

* 0 1 2 3 
0 0 1 2 3 
1 3 0 1 2 
2 2 3 0 1 
3 1 2 3 0 
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Proposition 3.11.   Every  KUS-ideal of KUS-algebra X is a KU-ideal of X. 
Proof:   For all x, y, z ∈ X, let  I is KUS-ideal of a KUS-algebra X.  If x* (y* z)∈ I , 
y ∈ I, then y = 0∗y = (z∗ z) ∗y,  by (kus3). 
                     = [y∗  (z∗ z)] ∗0 , by proposition(2.5(d)). 
                     = [z∗  (y∗ z)] ∗0,  by (kus4). 
                      = (y∗ z) ∗ z ∈ I , by proposition(2.5(d)).  
  Then x∗  (y∗ z)∈ I  and  (y∗ z) ∗ z ∈ I  implies  (x∗ z)∈ I .  
  Hence I is a KU-ideal of X. ⌂  

   In general, the converse  of proposition (3.11) is not  true .  

For example:  Let X ={0,1, 2, 3} be a KUS-algebra with the following Cayley table 

 
 
                               
 
 
     
 
      Then (X; ∗ ,0) is KUS-algebra . It is easy to show that I ={0, 3} is a KU-ideal of X 
,which is not a KUS-ideal of X , since 3 ∗2 = 3 ∈ I , 2 ∗1 = 3 ∈I and 3∗1 = 2 ∉I. 

Proposition 3.13.  Let { iI  | i∈Λ} be a family of KUS-ideals on KUS-algebra X. Then!

ii
I

Λ∈
∩   is a KUS-ideal of X. 

Proof:   Since { iI | i∈Λ} be a family of KUS-ideals of  X , then  0 ∈ iI  , for all i ∈Λ, 
then ii

I0
Λ∈
∩∈ . For any x, y, z ∈ X , suppose iIy*z ∈  and iIx*y ∈ , for all i ∈Λ, but 

iI  is a KUS-ideal of X for all i ∈Λ. Then iIx*z ∈ , for all i ∈Λ, therefore, 

ii
Ix*z

Λ∈
∩∈ . Hence ii

I
Λ∈
∩  is KUS-ideal of KUS-algebra X .⌂ 

Definition 3.14 ([2]).  Let (X ; ∗ ,0) and (Y; ∗ `,0`) be KUS-algebras , the mapping 
f : (X; ∗ ,0) → (Y; ∗ `,0`) is called  a homomorphism if it satisfies:  

 f  (x∗y) = f  (x) ∗ ` f (y) for all x , y ∈ X.  

Theorem 3.15. Let f : (X;  ∗ ,0) → (Y;  ∗ `,0`) be into homomorphism of a KUS-
algebras, then : 
A)  f  (0) = 0'. 

∗ 0 1 2 3
0 0 1 2 3
1 3 0 1 2
2 2 3 0 1
3 1 2 3 0
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B)  f  is injective if and only if  Ker f  = {0}. 
C)  x ≤  y implies f  (x) ≤ f  (y) . 
 
Proof:   Clear. 

Theorem 3.16. Let f : (X;  ∗ ,0) → (Y;  ∗ `,0`) be an into homomorphism of a KUS-
algebras, then : 
(F1)  If S is a KUS-sub-algebra of X, then f  (S) is a KUS-sub-algebra of Y . 
(F2)  If I is a KUS-ideal of X, then f  (I) is a KUS-ideal in Y . 

(F3)  If B is a KUS-sub-algebra of Y, then 1−f (B) is a KUS-sub-algebra of X . 

(F4)  If J is a KUS- ideal in Y, then 1−f  (J) is a KUS-ideal in X . 
(F5)  Ker f  is KUS-ideal of X. 
(F6)  Im( f  ) is a KUS-sub-algebra of Y. 
 
Proof:   Clear . 

4. The G-part of KUS-algebras 
 
In this section we give some basic definitions , preliminaries and  lemmas of G-part in 
KUS-algebras. 
 
Definition 4.1.   Let (X; ∗ ,0) be a KUS-algebra. For any nonempty subset S of X, 
we define  G(S) := {x ∈ S | x∗0 = x}.  
  In particular, if  S = X then we say that G(X) is the G-part of  KUS-algebra X. 
For  any KUS-algebra X, the set   B(X) := {x ∈ X | x∗0 = 0}is called a p-radical of X. 
A KUS-algebra X is said to be p-semi-simple if B(X) ={0} . 
     The following property is obvious:    G(X)∩ B(X) = {0} . 

Proposition 4.2.   If (X; ∗ ,0) is a KUS-algebra and x, y∈X, then  
   y∈G(X) ⇔ x∗  (y∗x) = y.  
 
Proof: By (kus4) and (kus3)   x∗  (y∗x) = y∗  (x∗x) = y∗0 = y ⇔  y ∈ G(X).⌂ 

Corollary 4.3.  If (X; ∗ ,0) is a KUS-algebra and x, y∈X, then y∈B(X)  
⇔ x∗  (y∗x) = 0.  
 
Proof: By (kus4) and (kus3)  x∗  (y∗x) = y∗  (x∗x) = y∗0 = 0 ⇔  y ∈ B(X).⌂ 
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Proposition 4.4.  If  (X;  ∗ ,0) is a KUS-algebra and   b∗  a = c∗  a, then b∗0 = c∗0, 
where a, b, c ∈ X. 
 
Proof:  By (kus4) and (kus3), a∗  (b∗ a) = b∗  (a∗ a) = b∗0 and a∗  (c∗ a) = c∗  (a∗ a) 
= c∗0. Since b∗ a = c∗ a, then  b∗0 = c∗0.⌂ 

Corollary 4.5.  Let X be a KUS-algebra. Then the right cancellation law holds in 
G(X). 
 
Proof:  Let a ,b ,c ∈ G(X) with b∗ a = c∗ a. By proposition (4.4), b∗0 = c∗0. Since  
b, c ∈ G(X), we obtain b = c.⌂ 

Proposition 4.6.   Let (X; ∗ ,0) be a KUS-algebra. Then 
 x ∈G(X)   if and only if   x∗0 ∈ G(X). 
 
Proof:  If   x ∈ G(X), then  x∗0 = x  and (x∗0)  ∗0 = x∗0. Hence  x*0 ∈ G(X).  
Conversely, if  x∗0 ∈ G(x), then (x∗0)  ∗0 = x∗0. By applying corollary (4.5), we 
obtain  x∗0 = x. Therefore x ∈ G(X).⌂ 

Corollary 4.7.  Let X be a KUS-algebra. Then the left cancellation law holds in G(X). 
 
Proof:    Let a, b ,c ∈ G(X) with  a∗  b = a∗  c. Then a* y = a*(y*0) = y*(a*0)  = y*a, 
for any y ∈ G(X). By proposition (4.6),  b = a∗  (b∗ a)=a∗  (a∗b) = a∗  (a∗ c)  
= a∗  (c∗ a) = c, we obtain b = c.⌂ 

Proposition 4.8.   Let (X;*,0) be a KUS-algebra, for all x, y , z ∈ G(X), then   
L1)   y∗x = z  imply     x∗ z = y , 
L2)   x∗  (0∗y) = y∗  (0∗x) .   

 
Proof:     

L1)  Since y∗x = z ,then  
                  x∗ z = (y∗x) ∗  (y∗ z), by (kus1). 
                          = z∗  (y∗ z), since (y∗x = z). 
                          = y∗  (z∗ z), by (kus4). 
                          = y∗0 = y, since y ∈ G(X).  
L2)  Since ((y∗  (0∗x)) ∗x) ∗0 = x∗  (y∗  (0∗x)), by proposition(2.5(d)). 

                                                         = y∗  (x∗  (0∗x)), by (kus4). 
                                                   = y∗  (0∗0), by proposition(2.5(b)). 
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                                                         = y∗0 = y , since y ∈ G(X),  
we have ((y∗  (0∗x))  ∗x)  ∗0 = y  . It follows from that  (y∗  (0∗x))  ∗x = 0∗y and 
hence  y∗  (0∗x) = x∗  (0∗y)   by (L1) . ⌂  

The following theorem state the relation between KUS-algebra and abelian group 

Theorem 4.9.  Let (X; ⋅,-1,e)  be an abelian group. If   x∗y = x-1⋅y   is defined and  
0 = e, then (X; ∗ ,0) is a  KUS-algebra .  
 
Proof:   We only show that conditions (kus1) and (kus4) of KUS-algebra are satisfied. 
For the case of (kus1) , since X is an abelian group, we have 
(z∗y) ∗  (z∗x) =  (z-1⋅y) -1⋅(z-1⋅x) =  (y-1⋅z) ⋅(z-1⋅x) =  y-1⋅(z ⋅z-1)⋅x = y-1⋅x = ( y∗x ) 
For the case of (kus4) , we also have 
x∗  (y∗ z) = x-1⋅(y-1⋅z) = (x-1⋅y-1)⋅z = (y-1⋅x-1)⋅z = y-1⋅(x-1⋅z) = y∗  (x∗ z).  ⌂  

Theorem 4.10. Let (X; ∗ ,0) be a KUS-algebra. If x⋅y = x*y is defined , x-1 = x and 
 e = 0, then the structure ( X ; ⋅ , -1 , e) is an abelian group.   
 
Proof:    We only show that the structure ( X ; ⋅ , -1 , e) satisfies the conditions of 
associative and commutative with respect to the operation (⋅). 
For associative , we have  

x⋅(y⋅z) = x∗  (y∗ z)  
           = (0∗x) ∗  ( y∗  (0∗ z)),  by (kus2). 
           = (0∗x) ∗  (z∗  (0∗y)), by proposition (4.8(L2)).  
           = z ∗  ((0∗x) ∗  (0∗y)), by (kus4). 
           = z ∗  (x∗y), by (kus2). 
           = ((x∗y) ∗ z) ∗0, by proposition(2.5(d)). 
           = (x∗y) ∗ z  
           = (x⋅y)⋅z  . 

For commutative, we also have 
     x⋅y = x∗y  
           = x∗  (0∗y)  
           = y∗  (0∗x), by proposition (4.8(L2)).  
           = y∗x = y⋅x . ⌂ 

Definition 4.11. Let (X; ∗ ,0) be a KUS-algebra satisfying  
(x∗y) ∗  (z∗u) = (x∗ z) ∗  (y∗u), for any x, y, z and u ∈X is called a medial of KUS-
algebra. 
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Proposition 4.12. Let (X;  ∗ ,0) be a medial of KUS-algebra. Then G(X) is a KUS-
sub-algebra of X .  
 
Proof:    Let x, y ∈ G(X), then x∗0 = x and y∗0 = y . Hence  

(x∗y) ∗0 = (x∗y) ∗  (0∗0)  
                 =  (x∗0) ∗  (y∗0) 
                 = x∗y .⌂ 

Corollary 4.13.  Let (X; ∗ ,0) be a medial of KUS-algebra. Then B(X) is a KUS-sub-
algebra of X .  
 
Proof: Let x, y ∈ B(X), then x∗0 = 0 and y∗0 = 0 . Hence 
 (x∗y) ∗0 = (x∗y) ∗  (0∗0) =  (x∗0) ∗  (y∗0) = 0∗0 = 0 .⌂ 

Theorem 4.14.  In a KUS-algebra (X; ∗ ,0), X is medial of KUS-algebra if and only if 
it satisfies : for any x, y, z ∈ G(X),  

M1)  (x∗y) = (y∗x) ,  
M2)  (x∗y) ∗ z = (x∗ z) ∗y . 

 
Proof:   Suppose (X; ∗ ,0) is medial of KUS-algebra and x, y, z ∈G(X). Then :    

M1)  y∗x = 0∗  (y∗x) = (x∗x) ∗  (y∗x) = (x∗y) ∗  (x∗x) = (x∗y) ∗0 = (x∗y) . 
M2)  (x∗y) ∗ z = (x∗y) ∗  (z∗0) = (x∗ z) ∗  (y∗0) = (x∗ z) ∗y . 

Conversely , assume that the conditions (M1)  and (M2)  hold .Then : 
(x∗y) ∗  (z∗u) = (z∗u) ∗  (x∗y)  by (M1)   
                         = (z∗  (x∗y)) ∗u  by (M2)   
                         = ((x∗y) ∗ z) ∗u  by (M1)   
                         = ((x∗ z) ∗y) ∗u  by (M2)   
                         = ((x∗ z) ∗u) ∗y  by (M2)   
                          = (u∗  (x∗ z)) ∗y  by (M1)   
                          = (u∗y) ∗  (x∗ z)  by (M2)   
                          = (y∗u) ∗  (x∗ z)  by (M1)   

                           = (x∗ z) ∗  (y∗u)  by (M1)   . 
      Therefore X is a medial of KUS-algebra . ⌂ 

Proposition 4.15.  Let (X;  ∗ ,0) be a medial of KUS-algebra. Then G(X) is an KUS-
ideal of X. 
 
Proof:   Since 0∗0 = 0 by (kus3), hence 0 ∈G(X) . Next , let x, y, z ∈G(X) be such 
that (z∗y) ∈G(X) and (y∗x) ∈G(X), then (z∗y) ∗0 = (z∗y) and (y∗x) ∗0= y∗x . 
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    (z∗x) ∗0 =  (z∗x) ∗  [(y∗x) ∗  [(z∗y) ∗  (z∗x)]], by (kus1)and (kus3).  

              = (y∗x) ∗  [(z∗x) ∗  [(z∗y) ∗  (z∗x)]], by (kus4) .   
              = (y∗x) ∗  (z∗y), by proposition(4.2).   
              = z∗  [(y∗x) ∗y], by (kus4) .   
              = z∗  [(y∗y) ∗x], by theorem (4.14(M2)).   
              = z∗  (0∗x) = z∗x .  

    This means that G(X) is a KUS-ideal of X. This completes the proof .⌂ 

Corollary 4.16.  Let (X; ∗ ,0) be a medial of KUS-algebra. Then B(X) is a KUS-ideal 
of X. 
 
Proof:   Since 0∗  (0∗0) = 0, by corollary(4.3), 0 ∈ B(X). Let x, y, z ∈ B(X) be such 
that (z∗y) ∈ B(X) and (y∗x) ∈ B(X), then (z∗y) ∗0= 0 and (y∗x) ∗0= 0 .   
  (z∗x) ∗0 =  (z∗x) ∗  [(y∗x) ∗  [(z∗y) ∗  (z∗x)]], by (kus1)and (kus3).  
                  =  (z∗x) ∗  [0∗  [0∗  (z∗x)]]  
                  =  (z∗x) ∗  (z∗x),  by (kus2).  
                  = 0  , by (kus3) .   
Therefore B(X) is a KUS-ideal of X. ⌂ 

Proposition 4.17.  If S is a KUS-sub-algebra of a KUS-algebra (X; ∗ ,0), then  
G(X)∩S = G(S). 
 

Proof:  It is obvious that  G(X)∩S ⊆ G(S). If x ∈ G(S), then x∗0 = x and  x ∈ S ⊆ X. 

Then  x ∈ G(X) and so  x ∈ G(X)∩S, which proves the proposition. ⌂ 

     If X is an associative KUS-algebra , then for any x ∈ B(X),  
0 = (x∗x)  ∗x = x∗  (x∗x) = 0∗x = x .Thus B(X) is a zero ideal i.e., B(X) ={0}. 
Hence any associative KUS-algebra X is p-semi-simple. 

Theorem 4.18 .  The G-part (G(X); ∗ ) of an associative medial of KUS-algebra X is 
a group in which every element is an involution . 
 
Proof:   
 Let X be an associative KUS-algebra and   x, y ∈ G(X). Then (x∗y) ∗0 = x∗y. 
Hence  x∗y ∈ G(X) by proposition(4.12), i.e., G(X) is closed under (∗ ). For any 
x∈G(X),  we have  x∗0 = x. By (kus2), 0∗x = x holds in a KUS-algebra X. Therefore 
0∗x = x∗0 = x in the G-part G(X) of an associative KUS-algebra X. This means that 
(G(X);  ∗ ) is a monoid. Moreover, x∗x = 0 shows that x has an inverse and x is an 
involution . Hence (G(X); ∗ )  is a group which every element is an involution. ⌂ 
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Proposition 4.19.  An associative KUS-algebra X satisfying x∗0= x for any x ∈ X is 
commutative, i.e., x∗y = y∗x for any x, y ∈ X. 
 
Proof:   For any x, y ∈X, y∗x = y∗  (x∗0) = x∗  (y∗0) = x ∗y , proving the 
proposition .⌂ 

Corollary 4.20.  The G-part (G(X); ∗ ) of an associative medial of KUS-algebra X is 
an abelian  group in which every element is an involution . 
 
Proof: It follows immediately from proposition (4.19) and Theorem (4.18) . ⌂ 

Theorem 4.21.  Let (X;  ∗ ,0) be a KUS-algebra. If G(X) = X, then X is p-semi-
simple. 
 
Proof:   Assume that G(X) = X. Since , {0} = G(X) ∩ B(X) = X ∩ B(X) = B(X). 
Hence X is p-semi-simple. ⌂ 

Theorem 4.22. If (X; ∗ ,0) is a KUS-algebra of order 3, then |G(X)| ≠ 3, that is,  

G(X) ≠ X. 
 
Proof:    For the sake of convenience, let X = {0,a,b} be a KUS-algebra. Assume that 
|G(X)| = 3, that is, G(X) = X. Then 0∗0 = 0, a∗0 = a, and  b∗0 = b. From (kus3)and 
(kus2), then  x∗x = 0 and 0∗x = x, it follows that a∗ a = 0, b∗b = 0, 0∗ a = a, and  
0 ∗b = b. Now let a∗b = 0. Then 0, a, and b are candidates of the computation. 
If    b∗ a = 0, then b∗ a = 0 = a*b and so  a∗  (b∗ a) = b∗  (a∗ a). Hence  a∗0 = b∗0. 
By the cancellation law in G(X), a = b, a contradiction. 
If   b∗ a = a, then  a = b∗ a = b∗  (a∗0) = a∗  (b∗0) = a∗b = 0, a contradiction.  
      For the case  b∗ a = b, we have  b = b∗ a = b∗  (a∗0) = a∗  (b∗0) = a∗b = 0, 
which is also a contradiction. 
      Next, if a∗b = a, then b∗  [(b∗ a) ∗ a] = b∗  (a∗ a) = b∗0 = b ≠ 0. This leads to the 
conclusion that Proposition (2.7(3)) does not hold, a contradiction. 
      Finally, let a∗b = b. 
      If  b∗ a = 0, then b = a∗b = a∗  (b∗0) = b∗  (a∗0) = b∗ a = 0, a contradiction. 
      If  b∗ a = a, b = b∗0 = b∗  (a∗ a) = a∗  (b∗ a) = a∗ a = 0, a contradiction.  
      For the case  b∗ a = b, we have  a = a∗0 = a∗  (b∗b) = b∗  (a∗b) = b∗b = 0, 
which is again a contradiction. This completes the proof. ⌂ 
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Proposition 4.23. If (X;  ∗ ,0) is a KUS-algebra of order 2, then in every case the G-
part G(X) of X is an KUS-ideal of X. 
 
Proof:  Let |X| = 2. Then either G(X) = {0} or G(X) = X. In either case, G(X) is an 
ideal of X. ⌂ 

Theorem 4.24. Let (X; ∗ ,0) be a KUS-algebra of order 3. Then G(X) is an KUS-ideal 
of X if and only if |G(X)| = 1. 
 
Proof:   Let X := {0,a,b} be a KUS-algebra. If |G(X)| = 1, then G(X) = {0} is the 
trivial ideal of X. 
      Conversely, assume that G(X) is an ideal of X. By Theorem (4.22), we know that 
either |G(X)| = 1 or |G(X)| = 2. Suppose that |G(X)| = 2. Then either G(X) = {0,a}or 
G(X) = {0,b}. If G(X) = {0,a}, then  b∗ a ∉ G(X) because G(X) is an ideal of X. 
      Hence  a ∗b = b. Then a = a∗0 = a∗  (b ∗b) = b∗  (a ∗b) = b ∗b = 0, which is a 
contradiction. Similarly, G(X) = {0,b} leads to a contradiction. Therefore |G(X)| ≠ 2 
and so |G(X)| = 1. ⌂ 
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