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ON A(p) SETS WITH MINIMAL CONSTANT

IN DISCRETE NONCOMMUTATIVE GROUPS

MAREK BOZEJKO1

ABSTRACT.   We compute the minimal constants for infinite   A(2zz) sets

in discrete noncommutative groups and as a consequence we obtain an al-

ternate proof of Leinert's theorem on A(°°) sets.

1.  Introduction.  Let  G be a discrete group.  Let   I (G)  denote the space

of square summable complex functions on  G with the norm ||/|| 2 = (S„|/(x)|  )   .

A convolver of I    is a function g  on  G  such that for each j £ I    the convo-

lution

(g */)(*) = £ gUy~')/(y)
yiG

is defined and belongs to  l ÍG).

In accordance with the terminology of Eymard [3l, we shall denote the

space of "convolvers" by VNÍG).   The norm of an element of  VNÍG)  will be

the norm of the corresponding convolution operator (which is necessarily con-

tinuous) on  / (G).  It is clear that  VNÍG) C l2iG).  In this paper we study sub-

sets  E CG with the property that every function  g £ I (G)  supported on E  is

a convolver.  The existence of infinite sets   E  satisfying this property was

first established by M. Leinert [7].  He proved that if a set  E satisfies a cer-

tain condition, which we shall call Leinert's condition, then every square

summable function  /   supported on  E  is a convolver, and

<>ß117 MVN(G) -^ V >  "/il,2(G)-

The purpose of this paper is to give an alternate proof of Leinert's theo-

rem which improves the constant v 5- .We prove that if E satisfies Leinert's

condition, and /   is supported on  E,  then

ll/IU(C)< 211/11 ,2(G)-

We also show that the constant 2 is the best possible if E is an infinite

set.  To prove our result we use estimates involving L"-convolution norm in
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the sense which was considered in [l0] and [l].

We remark that sets satisfying Leinert's condition are always subsets

of a free group with at least two generators.  On the other hand every set with

no relation among its members satisfies this condition. (See [7], [8].) These

sets have been used in [5J to construct multipliers of  AÍG)  which are not ele-

ments of BiG).

The author wishes to thank A. Figà-Talamanca for several helpful re-

marks and advice in the preparation of this paper.

2.  For a finitely supported function /  defined on  G we set

ii/ii^ = (/*/V(D = tr(/*rv

for s = 1, 2, ... , where (/ */ )s denotes the convolution power.  It is not

difficult to see that  ||/||2o iS a norm. From a theorem of I. Kaplansky ([6, Theo-

rem 1.8.1],[2]) we also have  lims-J|/|| 2s = ||/||VN(G).

Definition 1. Let E be a subset of G and 72 a positive integer. We say

that E is of type L2 if for every finite sequence [xr. x¿£ E, i = 1, ... , 2k,

k < n] the following relation holds:

X .   X        • • ■ X . x 4   1
A   '2 l2k-\   l2k

if   xi.V xi- + l   for  /= 1, 2, ...  , 2ze- 1.

Definition 2. A set E is said to satisfy Leinert's condition if E is of

type  L2    fot every natural 72.

We can now state our main results:

Theorem, (i) // E  is of type  L       in a discrete group  G,   then E  is

Ai2n),   i.e.,   11/11      <C     11/11     for every function f  with support in E,  where

C22l=in + l)-\2\
¿n n

(ii)  // E  is an infinite set of type   L.   ,   then<■    '     1 1 ¡    j c 277'

sup!«/||2n:supp/ÇE, ||/||2=li=C2n

and C,     is the minimal constant for all infinite A(2n)  sets.
2n ■ ' '

Corollary.   If E CG  is a set which satisfies Leinert's condition, then

11/11 VNfO- 2II/H2  and 2 is the minimal constant for all infinite A(°°) sets.

Proof of (i).   Let / be a function of the form

f-í aA'    *ieE>   II/"2 = L
i'=l           l

For a subset A C $2", $ = {1, 2.N] we defineLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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p U) = tr zZ a; ai   • ••• • ai ai    8 -1
" ieA-i = (i     i i     )        1      2 !2tz-1    *2n  x. xA

te/l,l-U1,!2,...,!2n) Zj    z2

-1

Z2t7-1      *2tz

Because the set E is of type  L      we note that p    is a positive measure on

subsets of O      = í>x .....$.  It follows by induction from the following

facts:

(i) PnÚ) = o

ir tor  i = (z',, i-, . .. , z'    ) e$  ",   z, =/ z,    ,  for  ze= 1, 2, ... , 2?2- 1,  and

(2) P„(iiO = |a..  \2PnJW])
ko

if for some  1 < kQ < 2n, ikQ = z'fe() + 1  and i'= iiy,..., iko_v ik()+2,..., ¿2n4,

t, ).  Let
¿7Z

^=   11/11^  =P„($2"),

Afe = |i: i = (z'p z'2, ... , i2n), ik=ik + l\

and

where  Ac = $2*\A   .   Since  p (A.) = 5"-1  for every natural  & < 2tî,  so we
777 m r 77 ft '

obtain

(3) J^S'-' + s;.77 — 1    ±    Ç7Z

Since pBUp = pfiU^nA2) + pnU^nAp, but p i,A\ n A2) < pn(A2) = S""1,

therefore

(4) S!? < S""1 + S».

Now because  p (A'f C\ ACA = p iAc. C\ Ac. ID A A + S" and p iAc. n A ) =
"tz       1 2r7zl 2 3 4 r ZZ       i D

p     .(A'f), we obtain1 7Z—1 1

(5) a3-   4+   2

By that same argument we have

(6) ^i^^r1-

But the set E is of type  L,    so from (6) we obtain

(7) S^ = S£ = 0    for zz < ze < 2«.

Applying (6) and (7) we have
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(8) 5"<52<1.' 7Z —      2 —

From (6) we obtain

(9) 77-1   —       77 7Z-2

Since  S   = 1, 5   =2  and S2 < 3, therefore from (9) we have

(10) K-l^i")      f°r   n>2'

By this same way, from (6) we obtain

(11) S"       -,<S"     l   +   S"       *K1 iJ n- 2 —    7Z-1 72-3

and from (4) and (10) and also S   < 9 we have

(12) K-2<("V)'-Vïl)     te->3..

And now by the induction argument we obtain

r«       .. /« + k - 1\        /?2 + ze - 1 \      ,       ,
(») S«-^V       *      )   -{   k-2    )     for^2-

Since the following equality is true:

1   (2n-2\       (2n-3\       /2w - 3\ 1    (2n\

(14) ^(72-i)+(t2-2)-(z2-4)%— (j

we obtain from (13) and (3), by induction,

(15) S»<-±-(2n)
-72+   1  W

Proof of (ii).  Let  E be an infinite set of type   L2   ; E = [xy, x2,

and fN = N~   '    2. = 1 Sx.. We prove by induction that

^ ^fN) = \\fN\\22nn=C22nn+¡in^

where limw_00 R (A/) = 0. That fact follows from the formula

(17) \*-l      /      * = 1 h<¿2

+ ... + (_l)"-1pr!(A1nA2n ...nA).

Note also that if  z    + 1 4 i   ,.,  for  w = 1, 2, ... , rt - 1,  then
m m + 1 '

d8) *   / Â     4     \ _ çn-k

\m = l       mlLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and

(19) Pn(hAi)^° (F—«>.
\t7Z = 1       ml

if for some  m < n, i    + 1 = z    ...  In order to prove (19), it suffices to noteZZZ 7Z7 +1 r '

that

(2°) Pn(AinA2)-0       (N-~),

but

(21) pn(Ain A2) = zV-1||/N||2^:22-0      (*-«).

We shall prove the induction step in (16) if we show that

(22) k= £(-i)W;-*
fe«Z

equals zero, where  D   = C2*r and Bm denote the number of subsequences of

the sequence  (1,2, ... , n) of the form (ky, k2, ... ,k   ) where for every

l<s<772-l,&   + I 4 k     y.  It is easy to see that

(23) *:={n+lm-m)-

Applying the following formulas (see [4])

(24, £(_,,.(;) .(-!).(« ¡').

we obtain

^¿'-"'rrtOC-O^ç^OC2-.)

The Corollary follows at once from the following inequality (see [11]):

-,2rc-l

<

(*;)< ,>.-..
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