ON $\Lambda(p)$ SETS WITH MINIMAL CONSTANT IN DISCRETE NONCOMMUTATIVE GROUPS

MAREK BOŻEJKo ${ }^{1}$

Abstract

We compute the minimal constants for infinite $\Lambda(2 n)$ sets in discrete noncommutative groups and as a consequence we obtain an alternate proof of Leinert's theorem on $\Lambda(\infty)$ sets.

1. Introduction. Let G be a discrete group. Let $l^{2}(G)$ denote the space of square summable complex functions on G with the norm $\|f\|_{l^{2}}=\left(\Sigma_{x}|f(x)|^{2}\right)^{1 / 2}$. A convolver of l^{2} is a function g on G such that for each $f \in l^{2}$ the convolution

$$
(g * f)(x)=\sum_{y \in G} g\left(x y^{-1}\right) f(y)
$$

is defined and belongs to $l^{2}(G)$.
In accordance with the terminology of Eymard [3], we shall denote the space of "convolvers" by $V N(G)$. The norm of an element of $V N(G)$ will be the norm of the corresponding convolution operator (which is necessarily continuous) on $l^{2}(G)$. It is clear that $V N(G) \subseteq l^{2}(G)$. In this paper we study subsets $E \subseteq G$ with the property that every function $g \in l^{2}(G)$ supported on E is a convolver. The existence of infinite sets E satisfying this property was first established by M. Leinert [7]. He proved that if a set E satisfies a certain condition, which we shall call Leinert's condition, then every square summable function f supported on E is a convolver, and

$$
\|f\|_{V N(G)} \leq \sqrt{5}\|f\|_{l^{2}(G)}
$$

The purpose of this paper is to give an alternate proof of Leinert's theorem which improves the constant $\sqrt{5}$. We prove that if E satisfies Leinert's condition, and f is supported on E, then

$$
\|f\|_{V N(G)} \leq 2\|f\|_{l^{2}(G)} .
$$

We also show that the constant 2 is the best possible if E is an infinite set. To prove our result we use estimates involving L^{p}-convolution norm in

Received by the editors January 23, 1974 and, in revised form, June 11, 1974. AMS (MOS) subject classifications (1970). Primary 42A55, 46A80.
Key words and phrases. Convolver, $\boldsymbol{\Lambda}(p)$ set.
${ }^{1}$ This work was done during the author's stay in Genoa, Italy.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-term§oppyright © 1975, American Mathematical Socicty
the sense which was considered in [10] and [1].
We remark that sets satisfying Leinert's condition are always subsets of a free group with at least two generators. On the other hand every set with no relation among its members satisfies this condition. (See [7], [8].) These sets have been used in [5] to construct multipliers of $A(G)$ which are not elements of $B(G)$.

The author wishes to thank A. Figà-Talamanca for several helpful remarks and advice in the preparation of this paper.
2. For a finitely supported function f defined on G we set

$$
\|f\|_{2 s}^{2 s}=\left(f * f^{*}\right)^{s}(1)=\operatorname{tr}\left(f * f^{*}\right)^{s}
$$

for $s=1,2, \ldots$, where $\left(f * f^{*}\right)^{s}$ denotes the convolution power. It is not difficult to see that $\|f\|_{2 s}$ is a norm. From a theorem of I. Kaplansky ([6, Theorem 1.8.1],[2]) we also have $\lim _{s \rightarrow \infty}\|f\|_{2 s}=\|f\|_{V N(G)}$.

Definition 1. Let E be a subset of G and n a positive integer. We say that E is of type $L_{2 n}$ if for every finite sequence $\left\{x_{i}: x_{i} \in E, i=1, \ldots, 2 k\right.$, $k \leq n\}$ the following relation holds:

$$
x_{i_{1}} x_{i_{2}}^{-1} \cdots x_{i_{2 k-1}} x_{i_{2 k}}^{-1} \neq 1
$$

if $x_{i_{j}} \neq x_{i_{j+1}}$ for $j=1,2, \ldots, 2 k-1$.
Definition 2. A set E is said to satisfy Leinert's condition if E is of type $L_{2 n}$ for every natural n.

We can now state our main results:
Theorem. (i) If E is of type $L_{2 n}$ in a discrete group G, then E is $\Lambda(2 n)$, i.e., $\|f\|_{2 n} \leq C_{2 n}\|f\|_{2}$ for every function f with support in E, where $C_{2 n}^{2 n}=(n+1)^{-1}\binom{2 n}{n}$.
(ii) If E is an infinite set of type $L_{2 n}$, then

$$
\sup \left\{\|f\|_{2 n}: \operatorname{supp} f \subseteq E,\|f\|_{2}=1\right\}=C_{2 n}
$$

and $C_{2 n}$ is the minimal constant for all infinite $\Lambda(2 n)$ sets.
Corollary. If $E \subseteq G$ is a set which satisfies Leinert's condition, then $\|f\|_{V N(G)} \leq 2\|f\|_{2}$ and 2 is the minimal constant for all infinite $\Lambda(\infty)$ sets.

Proof of (i). Let f be a function of the form

$$
f=\sum_{i=1}^{N} a_{i} \delta_{x_{i}}, \quad x_{i} \in E, \quad\|f\|_{2}=1
$$

$$
\begin{array}{r}
p_{n}(A)=\operatorname{tr} \sum_{\mathrm{i} \in A ; \mathrm{i}=\left(i_{1}, i_{2}, \ldots, i_{2 n}\right)} \alpha_{i_{1}} \bar{\alpha}_{i_{2}} \cdot \ldots \cdot \alpha_{i_{2 n-1}} \bar{\alpha}_{i_{2 n}} \delta_{x_{i_{1}} x_{i_{2}}^{-1}} \\
\ldots \cdot \delta_{x_{i_{2 n-1}}} \delta_{x_{i_{2 n}}}^{-1}
\end{array}
$$

Because the set E is of type $L_{2 n}$ we note that p_{n} is a positive measure on subsets of $\Phi^{2 n}=\Phi x \cdot \ldots . \Phi$. It follows by induction from the following facts:

$$
\begin{equation*}
p_{n}(\{\mathrm{i}\})=0 \tag{1}
\end{equation*}
$$

if tor $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{2 n}\right) \in \Phi^{2 n}, i_{k} \neq i_{k+1}$ for $k=1,2, \ldots, 2 n-1$, and

$$
\begin{equation*}
p_{n}(\{i\})=\left|\alpha_{i_{k_{0}}}\right|^{2} p_{n-1}\left(\left\{i^{\prime}\right\}\right) \tag{2}
\end{equation*}
$$

if for some $1 \leq k_{0}<2 n, i_{k_{0}}=i_{k_{0}+1}$ and $\mathbf{i}^{\prime}=\left(i_{1}, \ldots, i_{k_{0}-1}, i_{k_{0}+2}, \ldots, i_{2 n-1}\right.$, $i_{2 n}$). Let

$$
\begin{gathered}
S^{n}=\|f\|_{2 n}^{2 n}=p_{n}\left(\Phi^{2 n}\right) \\
A_{k}=\left\{\mathrm{i}: \mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{2 n}\right), i_{k}=i_{k+1}\right\}
\end{gathered}
$$

and

$$
S_{k}^{n}=p_{n}\left(A_{1}^{c} \cap A_{2}^{c} \cap \cdots \cap A_{k-1}^{c}\right)
$$

where $A_{m}^{c}=\Phi^{2 n} \backslash A_{m}$. Since $p_{n}\left(A_{k}\right)=S^{n-1}$ for every natural $k<2 n$, so we obtain

$$
\begin{equation*}
S^{n}=S^{n-1}+S_{2}^{n} \tag{3}
\end{equation*}
$$

Since $p_{n}\left(A_{1}^{c}\right)=p_{n}\left(A_{1}^{c} \cap A_{2}\right)+p_{n}\left(A_{1}^{c} \cap A_{2}^{c}\right)$, but $p_{n}\left(A_{1}^{c} \cap A_{2}\right) \leq p_{n}\left(A_{2}\right)=S^{n-1}$, therefore

$$
\begin{equation*}
S_{2}^{n} \leq S^{n-1}+S_{3}^{n} . \tag{4}
\end{equation*}
$$

Now because $p_{n}\left(A_{1}^{c} \cap A_{2}^{c}\right)=p_{n}\left(A_{1}^{c} \cap A_{2}^{c} \cap A_{3}\right)+S_{4}^{n}$ and $p_{n}\left(A_{1}^{c} \cap A_{3}\right)=$ $p_{n-1}\left(A_{1}^{C}\right)$, we obtain

$$
\begin{equation*}
S_{3}^{n} \leq S_{4}^{n}+S_{2}^{n-1} \tag{5}
\end{equation*}
$$

By that same argument we have

$$
\begin{equation*}
S_{k+1}^{n} \leq S_{k+2}^{n}+S_{k}^{n-1} \tag{6}
\end{equation*}
$$

But the set E is of type $L_{2 n}$ so from (6) we obtain

$$
\begin{equation*}
S_{2 n}^{n}=S_{k}^{n}=0 \quad \text { for } n<k \leq 2 n \tag{7}
\end{equation*}
$$

Licemparyingige (6) and (7) we haye
(8)

$$
S_{n}^{n} \leq S_{2}^{2} \leq 1
$$

From (6) we obtain

$$
\begin{equation*}
S_{n-1}^{n} \leq S_{n}^{n}+S_{n-2}^{n-1} \tag{9}
\end{equation*}
$$

Since $S^{1}=1, S^{2}=2$ and $S_{2}^{3} \leq 3$, therefore from (9) we have

$$
\begin{equation*}
S_{n-1}^{n} \leq\binom{ n}{1} \text { for } n>2 \tag{10}
\end{equation*}
$$

By this same way, from (6) we obtain

$$
\begin{equation*}
S_{n-2}^{n} \leq S_{n-1}^{n}+S_{n-3}^{n-1} \tag{11}
\end{equation*}
$$

and from (4) and (10) and also $S_{2}^{4} \leq 9$ we have

$$
\begin{equation*}
S_{n-2}^{n} \leq\binom{ n+1}{2}-\binom{n+1}{0} \text { for } n>3 \tag{12}
\end{equation*}
$$

And now by the induction argument we obtain

$$
\begin{equation*}
S_{n-k}^{n} \leq\binom{ n+k-1}{k}-\binom{n+k-1}{k-2} \quad \text { for } k \geq 2 \tag{13}
\end{equation*}
$$

Since the following equality is true:

$$
\begin{equation*}
\frac{1}{n}\binom{2 n-2}{n-1}+\binom{2 n-3}{n-2}-\binom{2 n-3}{n-4}=\frac{1}{n+1}\binom{2 n}{n} \tag{14}
\end{equation*}
$$

we obtain from (13) and (3), by induction,

$$
\begin{equation*}
S^{n} \leq \frac{1}{n+1}\binom{2 n}{n} \tag{15}
\end{equation*}
$$

Proof of (ii). Let E be an infinite set of type $L_{2 n} ; E=\left\{x_{1}, x_{2}, \ldots,\right\}$ and $f_{N}=N^{-1 / 2} \sum_{i=1}^{N} \delta_{x_{i}}$. We prove by induction that

$$
\begin{equation*}
S^{n}\left(f_{N}\right)=\left\|f_{N}\right\|_{2 n}^{2 n}=C_{2 n}^{2 n}+R_{n}(N), \tag{16}
\end{equation*}
$$

where $\lim _{N \rightarrow \infty} R_{n}(N)=0$. That fact follows from the formula

$$
\begin{align*}
S^{n}=p_{n}\left(\bigcup_{k=1}^{n} A_{k}\right)= & \sum_{k=1}^{n} p_{n}\left(A_{k}\right)-\sum_{i_{1}<i_{2}} p_{n}\left(A_{i_{1}} \cap A_{i_{2}}\right) \tag{17}\\
& +\cdots+(-1)^{n-1} p_{n}\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right) .
\end{align*}
$$

Note also that if $i_{m}+1 \neq i_{m+1}$ for $m=1,2, \ldots, k-1$, then
and

$$
\begin{equation*}
p_{n}\left(\bigcap_{m=1}^{n} A_{i_{m}}\right) \rightarrow 0 \quad(N \rightarrow \infty) \tag{19}
\end{equation*}
$$

if for some $m<n, i_{m}+1=i_{m+1}$. In order to prove (19), it suffices to note that

$$
\begin{equation*}
p_{n}\left(A_{1} \cap A_{2}\right) \rightarrow 0 \quad(N \rightarrow \infty) \tag{20}
\end{equation*}
$$

but

$$
\begin{equation*}
p_{n}\left(A_{1} \cap A_{2}\right)=N^{-1}\left\|f_{N}\right\|_{2 n-2}^{2 n-2} \rightarrow 0 \quad(N \rightarrow \infty) \tag{21}
\end{equation*}
$$

We shall prove the induction step in (16) if we show that

$$
\begin{equation*}
K=\sum_{k \in Z}(-1)^{k} D^{k} B_{n}^{n-k} \tag{22}
\end{equation*}
$$

equals zero, where $D^{k}=C_{2 k}^{2 k}$ and B_{n}^{m} denote the number of subsequences of the sequence $(1,2, \ldots, n)$ of the form $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ where for every $1 \leq s<m-1, k_{s}+1 \neq k_{s+1}$. It is easy to see that

$$
\begin{equation*}
B_{n}^{m}=\binom{n+1-m}{m} \tag{23}
\end{equation*}
$$

Applying the following formulas (see [4])

$$
\begin{align*}
& \sum_{v=0}^{n}(-1)^{v}\binom{a}{v}=(-1)^{n}\binom{a-1}{n} \tag{24}\\
& \sum_{k \in Z}(-1)^{k}\binom{n}{k}\binom{2 k+1}{v}=0 \tag{25}
\end{align*}
$$

we obtain

$$
\begin{aligned}
K & =\sum_{k \in Z}(-1)^{k} \frac{1}{k+1}\binom{2 k}{k}\binom{k+1}{n-k}=\frac{1}{n} \sum_{k}(-1)^{k}\binom{n}{k}\binom{2 k}{n-1} \\
& =\frac{1}{n} \sum_{k} \sum_{v}(-1)^{n+k+v-1}\binom{n}{k}\binom{2 k+1}{v}=0
\end{aligned}
$$

The Corollary follows at once from the following inequality (see [11]):

$$
\frac{2^{2 n-1}}{n} \leq\binom{ 2 n}{n} \leq 2^{2 n-1}
$$

REFERENCES

1. M. Bożejko, The existence of $\mathbf{\Lambda}(p)$ sets in discrète noncommutative groups, Boll. Un. Mat. Ital. 8(1973), 579-582.
2. J. Dixmier, Les C^{*}-algèbres et leurs représentations, Cahiers Scientifiques,

3. P. Eymard, L'algè bre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37 \#4208.
4. W. K. Feller, An introduction to probability theory and its applications. Vol I, 2nd ed., Wiley, New York, 1957. MR 12, 424; 19, 466.
5. A. Figà-Talamanca and M. A. Picardello, Multiplicateurs de $A(G)$ qui ne sont pas dans $B(G), \mathrm{C} . \mathrm{R}$. Acad. Sci. Paris 277 (1973), 117-119.
6. I. Kaplansky, Normed alge bras, Duke Math. J. 16 (1949), 399-418. MR 11, 115.
7. M. Leinert, Multiplicatoren diskreter Gruppen, Doctoral Dissertation, University of Heidelberg, 1972.
8. -, Multiplikatoren gewisser diskreter Gruppen, Studia Math. (to appear).
9. -, Convoluteurs de groupes discrets, C. R. Acad. Sci. Paris 271 (1970), 630-631.
10. M. A. Picardello, Lacunary sets in discrete noncommutative groups, Boll. Un. Mat. Ital. 8 (1973).
11. W. Sierpiński, Theory of numbers. Part 2, Monografie Mat., Tom 38, PWN, Warsaw, 1959. MR 22 \#2572.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, WROCLAW, POLAND
INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY, WROCŁAW, POLAND

