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ABSTRACT. Let G denote the dyadic group, which has as its dual group the
Walsh(-Paley) functions. In this paper we formulate a condition for
functions in Ll(G) which implies that their Walsh-Fourier series converges
in L;(G)-norm. As a corollary we obtain a Dini-Lipschitz-type theorem for
Ly (G) convergence and we prove that the assumption on the Ll(G) modulus

of continuity in this theorem cannot be weakened. Similar results also
hold for functions on the circle group T and their (trigonometric) Fourier

series.

Let G be the direct product of countably many groups of order 2.
Thus G = {x; x = (xi)g with x4 €{0,1} for each 1 > 0}, and for

X,y € G the sum x + y is obtained by adding the i-th coordinates of
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x and y modulo 2 for each i > 0. The topology of G can be described
by means of the (non-archimedean) norm ||-|| on G, where ||x|| = 2"k
if xg = ... = X~ 0 and X = 1, and ||0|| = 0. Also, if we define
the subgroups G of G by Gy = G and for k > 1

2'k} = {xeG;x

| A

G’k={x€G;llx|‘ 0=...=xk_1=0},

then the G, form a basis for the neighborhoods of 0 in G. For k > O
we define the cosets I(n,k), 0 < n < 2k, of G as follows. If 0 <n <2

then n can be represented uniquely as

k-1 k-2
+ b12 + ...t bk—l’

with by €{0,1} for each i. Let e(n,k) = (bo,bl,...,bk_l,0,0,...)

n= b02

in G and let I(n,k) = e(n,k) + Gy. So, in particular, 1(0,k) = Gy -
Furthermore, in order to simplify the notation, we shall denote e(1l,k)
by e(k).

Next, let ¢ denote the dual group of G. Its elements are the
Walsh functions and Paley defined the following enumeration for them.

o
For each k > 0 and x = (xi)o € G define ¢, (x) by ¢k(x) = exp(ﬂixk).
If n > 0 is represented as
n = ay + a12 + ...+ a, 2

with a; €{0,1} for all i, then the n-th Walsh function Xp is

defined by a a

0 k
Xn(x) = ¢o (x).'°'. ¢k (x)'
Let dx denote normalized Haar measure on G. For f e Li(G) we define

its Walsh-Fourier series by

£(x) ~ ) %(k) Xk (%), where E(k) = JG f(t)xk(t)dt.
k=0
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For the partial sums of this series we have
n-1 ,
Sp(fsx) = kzo £(k) xp(x) = JGf(x-t)Dn(t)dt = £ % D, (x),

E;é xk(t) is called the Dirichlet kernel of order n.

where Dn(t) =
The following properties hold.
(D1) If n > O is expressed as n = Zk +n', with 0 < n' < 2k, then

D,(x) = Dzk(X) + ¢, (D, (x).

(D2) Por each k > 0 we have

2%, if xe 6,

D, &) =
2 0, if x € G\ G.

(D3) If £ € Ly(G) then 1mk%| |s2k(f)-f| |, = o.

(D4) for each n > 0 we have Dn(O) = n,

(D5) If k>0, 1<mc< 2k and 0 < n 5_2k, then for each
x ¢ I(m,k) = e(m,k) + Gk we have

b | = [p_(e(m,i0)]| < a2,

A proof of these properties and additional information on Walsh-Fourier
series can be found in [2]. Finally, if f is a function on G and if

y € G the function fy is defined by fy(x) = f(x-y).

Theorem 1. Let f be a function in Ll(G) for which n||f—f = o0(1)

e(n)lll
as n + », Then ||Sn(f)—f||1 =0(1) as n + =,

Proof. Let n > 0 be given and assume that n = 2k + n' with
0<n'< Zk. Then

s (5)-£]1; < ||sn(f)—s2k(f)||1 + Hszk(f)—fl ;-
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Thus, according to (D1) and (D3) we have
||Sn(f)H1 §_I|¢k Dn' * f||1 + 0o(l) = A+ 0o(l), as n +> =,
In order to find the appropriate estimate for A we continue as follows.

2°-1
A= J ) J 9, (£)D_, () £ (x-t)dt |dx.
G p=0 ‘I(p,k) "

Clearly, Dn,(t) is constant on each set I(p,k) < G. Also
I(p,k) = I(2p,k+1)\J I(2p+1,k+1l) and if t ¢ I(2p,k+1l) then ¢ (1) =1,

whereas if t € I(2p+l,k+l) then ¢k(t) = -1. Therefore

>
]

k1
[ 11 v

J £(x-t)dt - J f(x-t)dt||dx
G p=0 I(2p,k+l)

1(2p+l,k+1)

iA

IDn,(e(O,k))[ J J | f(x-t)-f (x-t-e(1,k+1))|dt dx
€ "G

%1
+ ] IDn.(e(p,k))l J J | £ (x-t-e(2p,k+1))
p=l Clbl £ (x-t-e(2p+1,k+1)) |dt dx

=B + C.

According to (D4) we have

B <n' J Jlf(x-t)—f(x—t+e(k+l))|dx dt
i1 °C
=n' J|| f—fe(k+1)||1 dt = 0(1) as n + =,

Cra1

Finally, if we use (D5) and apply Fubini's Theorem we obtain
k
2°-1
c<J ploktl J |[f-fe(k+l)|]l dt
p=l €1
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kg
gL kL =G

ol et |1

C, log Zkllf—f =o0(l) as n > =,

1

| A

e(k+l)||l
according to the assumption of the Theorem. Thus ||Sn(f)—f||1= o(l) as
n-> o,

Before stating a corollary to Theorem 1 we first introduce some

additional terminology.

Definition 1. For f ¢ Ll(G) and § > 0 the integral modulus of continuity

is defined by
w (858) = sup{||£ €[5 [ly]] < 6.

- 2-(n+l)

Since |]e(n)|| for each n > 0 we see immediately that the

following holds.

Corollary 1. If f e L (G) and if w (88) = of|log 6]7) as 6 > 0,

then llsn(f)—flll =0(l) as n > > .,

Remark 1. Corollary 1 can be considered as the L1 analogue of the Dini-
Lipschitz test for uniform convergence of Walsh-Fourier series, see
[2, Theorem XIII].

We first show that Corollary 1 is weaker than Theorem 1 by giving an

example of a function f € Ll(G) such that (1) ml(é;f) + o(|log Gl_l)

as § > 0 and (ii) n||f-f =0(l) as n > .

e(n)||1

For each k > 0 and x = (xi); in G define the function fk
_1
by £, (x) =1 - x; then f e L,G) and g 1] =5+ Next let

£ = ] @ e .
k=0
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Clearly, the sum defining f(x) converges for each x ¢ G and applying
the Monotone Convergence Theorem to its partial sums we see that

fe Ll(G). Fix r > 0. Then for all k > 0 and x € G we have

fk(x), if k + r,
£, (x=e(r)) =
l—fk(x), if k = r.

Thus,
£(x-e(r)) = J (k1) >
k=0

/ /

sz(x) + ()3 2(1—2fr(x)).

Hence,

/

£ - fxme(r) = (e+) 2028 _(0-1),

and since Zfr(x) -1-= ¢r(x), we obtain

-3/2 -1
£ oy 11y = @210 {1, = o™,

Next, let d(r) = m_ e(k). Then for each k > 0 and x € G we have
k=r -

fk(x), if k < r,
£ (x-d(r)) =
1-f (), if k > r.
Thus

£ - £x-d@) = ] e 228, 01

k=r

= 1 @D .
k=r

From a well-known inequality for Rademacher functions, see [4, Chapter V,

Theorem (8.4) ], we obtain

—3)1/22. A r-l

HE-£,, 11 28 C § (D)
d(r)''1 1 ket 2

~(r+
for some positive constants Ay and Ay Therefore, since |[|d(r)]| = 2 (x 1),
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- - -1
we see that ml(Z Tif) $ o(r l), that is, ml(d;f) 4 o(|log 8|7

as § » 0.
We shall now show that Corollary 1 is the best possible in the

following sense.

Theorem 2. There exists a function f in Ll(G) with the following two
properties: (i) ml(ﬁ;f) = 0(|1log 6[_1) and (ii) {Sn(f)} does not

converge in Ll(G).

Proof. 1In [2, p. 386] it was shown that if

n

v
n=2 + 2 + ...+ 2 with nl > n2 b nv,

then

V= -n v n
fIo [|,=v-] 2 PC } 2%).
n 'l p=1 r=p+1

22(s-1) o 2

Thus, if n = 225 + .+ 2%+ 2% for some s > O then

s _ p-1
lo_[1; = (s+1) = [ 272PC] 2%%)
p=1 r=0

1. s
2 2

s
>(st+l) -}
Also, it follows immediately from (D2) that for each k > 0 we have

= _ v n-1 k -
||D2k|]l = 1. Next, for each n > 0, let Wy = z k=0 2k 27, with a,

if k is odd and a

X 1 if k is even. Furthermore, for each n > O,

let

Pn(x) = D2n+l(x) and Qn(X) = D2n+u (x).

0
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Then 'Ipnlll =1 and if n is even then ||Qn||1 > n/4, and the (Walsh)

polynomial Qn is "part" of the polynomial Pn. In order to simplify
the notation we shall from here on write k' for 2k and k" for (k')’'.

Consider the function

f = [ 27X (a1 GO ()

Clearly, the series defining f(x) converges for all x + 0 and f € Ll(G).

For k > 1 we have

T kg =1

Ul 1S ey DS quryn O = 1127 % gy 1]y 22 Rk 2
(k+1)

Thus, the sequence {Sn(f)} does not converge in Ll(G). Next, take any §

with 0 < § < 1 and let £ be the natural number for which 2_(E+l)< § §_Z_£.

Then ||y|| < § implies y € G Choose the natural number s so that for

.
all k < s the polynomial X(k+l)"(X)Pk'(X) is of degree < &', whereas

the polynomial X(S+2)"(x)PS,(x) is of degree > 2'. The last condition

implies that 2(s+2)" > &', hence, that (s+2)' > 2-1, so that 278%= 0(1—1).
Also y € G, implies that xn(x+y) = xn(x) for all x in G and all n such

L
that 0 < n < 27, Consequently, we have

||fy-f| ll = Jlf(x-y)—f(x) |dx
G
¥ o,k
< kgl 2 Jlx(k‘l"l)" (X_Y)D(k+l)"(x_y)-X(k+l)" (X)D(k+l)|l(x) IdX
G

Lo _k
+ 2 [ - —
b I X ety nBoIP gy Gy [

r

T L,k
+k=£+12 JGIX(k+l)"(x)D(k+l)l|(X) |dx
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=0+2 J 27%-00@% =00,
k=s+1

Therefore, if ||y|| < & then ||fy-f||l = 0(|1log 2_(2+l)|_1)=0(|10g 51'1)’

that is, wl(ﬁ;f) = 0(|1log 6|_1). This completes the proof of Theorem 2.

Remark 2. As was observed in the abstract, except for some minor
modifications the theorems presented thus far also hold for functions
defined on the circle group T and their (trigonometric) Fourier series.

In this context we have

Theorem 1'. If f € Ll(T) and if log n||f—f = 0(1l) as n + =, then

n/nlll
I|Sn(f)—f||l = 0(1l) as n » =,

Theorem 1' can be proved by modifying the proof of a test for uniform
convergence of Fourier series due to Salem, see [1l, Chapter 4, §5]. Also,
in order to see more clearly the similarity between Theorem 1 and Theorem 1'

we mention that the condition n||f-f = 0(l) as n » ® in Theorem 1

e(n)lll

is equivalent to log(||e(n)||)—l||f-f = 0(l) as n > =,

e(n)||1
Theorem 2'. There exists an f € Ll(T) such that (i) wl(é;f) = 0(]1log 6|_1)
as § + 0 and (ii) {Sn(f)} does not converge in Ll(T).

In order to prove Theorem 2' we use a result of F. Riesz, who showed
that for each n > 1 there exists a trigonometric polynomial Pn of degree

2n such that HPn = 1, and a polynomial Qn of degree n, which is

I,

"part'" of P and such that ]|Qn|l > C log n, see [1, Chapter VIII, §22]

1
or [3].
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