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Summary
Binary Support Vector Machines have proven to deliver high performance. In multi-class

classification, however, issues remain with respect to variable selection. One challenging

issue is classification and variable selection in presence of a large number of variables in the

magnitude of thousands, which greatly exceeds the size of training sample. This often occurs

in genomics classification. To meet the challenge, this article proposes a novel multi-class

support vector machine, which performs classification and variable selection simultaneously

through an L1-norm penalized sparse representation. The proposed methodology, together

with the developed regularization solution path, permits variable selection in such a situation.

For the proposed methodology, a statistical learning theory is developed to quantify the

generalization error to understand the basic structure of sparse learning, permitting the

number of variables greatly exceeding the sample size. The operating characteristics of the

methodology are examined via both simulated and benchmark data, and are compared against

some competitors in terms of accuracy of prediction. The numerical results suggest that the

proposed methodology is highly competitive.
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1. Introduction

Support vector machines (SVMs, c.f., Vapnik 1998), as classification tools, have proven

effective in achieving the state-of-the-art performance in a variety of applications. For

variable selection, Bradley and Mangasarian (1998) introduced a SVM with an L1-

norm penalty, which can perform variable selection and classification simultaneously.

In multi-class classification, challenges remain, particularly for high-dimension and

low sample size data. In this article, we develop a new L1-norm multi-class SVM

(L1MSVM) and investigate its feasibility in classification and variable selection.

In multi-class classification, a common treatment is the “one-versus-all” approach

(OVA), which performs a sequence of binary classifications to distinguish one class

from the remaining classes. Through OVA, Szedmak, Shawe-Taylor, Saunders and
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Hardoon (2004) generalized the result of Bradley and Mangasarian (1998). However,

this generalization has several potential difficulties. First, it trains binary decision

classifiers sequentially. When the number of classes is large, each binary classification

becomes highly unbalanced, with a small fraction of instances in one class. As a result,

the class with a smaller fraction of instances tends to be ignored in nonseparable cases,

degrading generalization performance. Second, OVA treats one variable to be relevant

for all classes if it is selected in one binary classification. Consequently, unremoved

redundant variables in one binary classification remain in the final classification model,

yielding worse generalization performance, c.f., the simulation result in Section 4.1.1.

Third, OVA may break down in absence of a dominating class, c.f., Lee, Lin and Wahba

(2004), especially so when the number of classes becomes large.

To overcome these difficulties, we propose L1MSVM to incorporate variable selec-

tion in the framework of classification by treating multiple classes jointly, as opposed

to OVA. L1MSVM circumvents the difficulties of OVA, and generalizes the concept of

margins. It is capable of performing variable selection and classification simultaneously,

while retaining the geometric interpretability of the margin of its L2-norm counterpart.

Moreover, because dimension reduction is built into classification, it bypasses the re-

quirement of an ad hoc step of dimension reduction to attack large problems beyond

the capability of conventional techniques. This occurs in cancer genomics classification,

where gene pre-screening is required, c.f., Dudoit, Fridlyand and Speed (2002).

To gain an insight into L1MSVM in variable selection and classification, we develop

a new statistical learning theory to quantify its generalization accuracy in the number

of variables p, the sample size n and its tuning parameter s. Our theory reveals two

important aspects of L1MSVM with regard to sparse learning. First, the L1-penalty

enables to control a model’s complexity effectively even when p greatly exceeds the

sample size n. This aspect may not be shared by its L2-norm counterpart. As a result,
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the generalization error rates of L1MSVM can be obtained as long as p grows at a

speed no faster than exp(n). This is in contrast to the theory of function estimation

and classification, where the effective dimension of an estimation problem needs to be

no greater than n. Second, the joint distribution of the input/output pair plays an

important role in classification. When the distribution possesses certain properties, a

surprisingly sharp rate can be realized. In fact, our illustrative example shows that the

convergence speed of the generalization error of L1MSVM can be arbitrarily fast, de-

pending on the distribution. This is in contrast to the existing theory in classification,

where only the n−1 rate is achieved by a large margin classifier in binary classifica-

tion (c.f., Shen, Tseng, Zhang and Wong 2003). In conclusion, L1MSVM effectively

battles the curse of dimensionality in classification, provided that a relative sparse

representation of a decision function can be realized through the L1-penalty.

This article is organized as follows. Section 2 briefly introduces the proposed

methodology. Section 3 develops our learning theory. Section 4 presents some nu-

merical results on both simulated and real data. Section 5 contains a discussion, and

Section 6 is devoted to technical proofs.

2. Methodology

In k-class classification, input X = (X(1), . . . , X(p)) ∈ R
p is a vector of p variables, and

output Y , coded as {1, 2, . . . , k}, indicates class labeling. A decision function vector

f = (f1, . . . , fk)
T is introduced, with fc representing class c; c = 1, . . . , k, together

with a classification rule Φf(x) = arg max
c
fc(x) that assigns a new input vector x to

class c with the highest value fc(x). To avoid redundancy in f , a zero-sum constraint

∑k
c=1 fc = 0 is enforced (c.f., Lee, Lin and Wahba 2004). Our goal is to seek f that

has small generalization error Err(f ) = E(I[Y 6= Φf(X)]), based on a training sample

{zi = (xi, yi)}n
i=1, sampled from an unknown probability distribution P .

2.1 Motivation
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For motivation, we begin our discussion with the binary L1-norm SVM (L1SVM) with

Y ∈ {−1,+1}. In this case, SVM uses an p-dimensional hyperplane f(x) = wTx+b as

a decision function with the corresponding decision rule Φ(x) = sign(f(x)). Bradley

et al. (1998) proposed L1SVM in the form of

min
w,b

V (yif(xi)) + λ‖w‖1, (1)

where V (z) = [1−z]+ is the hinge loss (c.f., Wahba 1999), and ‖w‖1 =
∑p

j=1 |wj| is the

L1-norm of w. In the linear separable case, (1) can be thought of as maximizing the

geometric margin 2
‖w‖1

, which is the L∞-distance between two hyperplanes wTx + b =

±1, defined as infx,x′{‖x − x′‖∞ : wT x + b = 1,wTx′ + b = −1} with ‖x‖∞ =

max1≤j≤p |xj | the L∞-norm.

To extend L1SVM to the multi-class case, we need to generalize the hinge loss as well

as the L1-penalty in the binary case. In the literature, there are several generalizations

of the hinge loss in the context of the L2-norm MSVM (L2MSVM). Vapnik (1998),

Weston and Watkins (1998), Bredensteiner and Bennett (1999), and Guermuer (2002)

proposed several versions of L2MSVM, which uses a generalized hinge loss

V (f , zi) =
∑

c 6=yi

[1 − (fyi
(xi) − fc(xi))]+; (2)

Liu and Shen (2005) suggested

V (f , zi) = [1 − min
c

(fyi
(xi) − fc(xi))]+; (3)

Lee, Lin and Wahba (2004) proposed

V (f , zi) =
∑

c 6=yi

[fc(xi) + 1]+. (4)

The generalized hinge loss in (2)-(4) are constructed based on different principles,

see Zhang (2004) for a detailed discussion. However these losses, as well as the 0-1

loss l(f , z) = I[y 6= arg minc fc(x)], can be expressed in a unified fashion. Define
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g(f (x), y) as (fy(x)− f1(x), . . . , fy(x)− fy−1(x), fy(x)− fy+1(x), . . . , fy(x)− fk(x)),

which compares class y against the remaining classes. Then V (f , z) can be written as

h(g(f (x), y)), with h(u) =
∑k−1

j=1 [1−uj]+ for (2); h(u) = [1−minj uj]+ for (3); h(u) =
∑k−1

j=1 [
Pk−1

c=1 uc

k
−uj+1]+ for (4); and l(f , z) = h(g(f (x), y)) with h(u) = I[minj uj < 0].

Figure 1 displays the 3D plots of these h functions in three-class classification.

Figure 1 about here.

As suggested in Figure 1, the generalized hinge losses (2)-(4) are upper envelops

of the 0-1 loss. However, their risk minimizers with respect to a class of candidate

functions may differ dramatically.

2.2 L1MSVM

In k-class linear classification, linear decision functions fc(x) = wT
c x + bc; c = 1, . . . , k

are used, with wc = (wc,1, . . . , wc,p)
T ∈ R

p and bc ∈ R
1, subject to zero-sum constraints

∑k
c=1 wc = ~0 and

∑k
c=1 bc = 0. In k-class nonlinear classification, decision functions

fc(x) =
∑q

j=1wc,jhj(x)+bc; c = 1, . . . , k involve flexible representations through a basis

{hj(x)}q
j=1. The representations reduce to the k-class linear case when H = (hj(xi))n×q

is treated as the design matrix instead of X = (xij)n×p. For the purpose of variable

selection, linear representations are used, particularly in the case of p greatly exceeding

n, because non-linear representations are overspecified. The reader refers to Lee, Kim,

Lee and Koo (2004) for a discussion of nonlinear component selection in MSVM. With

V (f , z) representing a generalized hinge loss in (2)-(4), we propose L1MSVM,

min
wc,bc;c=1,...,k

n−1

n
∑

i=1

V (f , zi), subject to

k
∑

c=1

‖wc‖1 ≤ s,

k
∑

c=1

wc = ~0,

k
∑

c=1

bc = 0, (5)

where f = (wT
1 x+b1, . . . ,w

T
c x+bc)

T is a vector of linear decision functions,
∑k

c=1 ‖wc‖1

=
∑k

c=1

∑p
j=1 |wc,j| is an L1-norm penalty, and s is a non-negative tuning parameter.

L1MSVM defined in (5) can be regarded as structural risk minimization, c.f., Vapnik

(1998). Let F(p, s) = {f = (f1, . . . , fk)
T : fc(x) =

∑p
j=1wc,jx

(j) + bc;
∑

c,j |wc,j| ≤
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s; c = 1, . . . , k,
∑

c fc = 0}, consisting of all the decision function vector f ’s satisfying

the constraints in (5). Then, (5) is equivalent to

f̂ = arg min
f∈F(p,s)

n−1
n
∑

i=1

V (f , zi). (6)

The optimization in (5) is solvable through a linear program for each loss in (2)-(4).

In the sequel, we shall only implement (4). Write n−1
∑n

i=1 V (f , zi) as l1(W , b), where

W is a k × p matrix with Wcj = wc,j; c = 1, . . . , k, j = 1, . . . , p, and b = (b1, . . . , bk)
T .

For any given value of s ≤ t∗ = inf{∑k
c=1 ‖w∗

c‖1 : l1(W
∗, b∗) = inf(W ,b) l1(W , b)}, the

optimization in (5) with loss (4) is equivalent to

min
w+

c,j ,w−

c,j ,b+c ,b−c ,ξi,c

∑

i,c : c 6=yi

ξi,c (7)

subject to
∑

1≤j≤p(w
+
c,j − w−

c,j)xij + (b+c − b−c ) + 1 ≤ ξi,c;
∑

1≤c≤k,1≤j≤p

(w+
c,j + w−

c,j) ≤ s;
∑

1≤c≤k(w
+
c,j−w−

c,j) = 0;
∑

1≤c≤k(b
+
c −b−c ) = 0; w+

c,j, w
−
c,j, b

+
c , b

−
c , ξi,c ≥ 0; c = 1, . . . , k; j =

1, . . . , p; (i, c) ∈ {(i, c) : c 6= yi}. The solution of (7), denoted as (Ŵ +, Ŵ−, b̂+, b̂−),

yields that of (5), (Ŵ , b̂) = (Ŵ +, b̂+) − (Ŵ−, b̂−), and the corresponding decision

function vector f̂(x) = (ŵ1
T x + b̂1, . . . , ŵk

T x + b̂k). For s > t∗, the solution may not

be unique. To overcome this difficulty, define (Ŵ (s), b̂(s)) = (Ŵ (t∗), b̂(t∗)) to yield a

unique solution for all s > t∗, because s = t∗ yields the global minimal of l1(W , b).

To derive an unconstrained version of (5), let l2(W , b, λ) = n−1
∑n

i=1 V (f , zi) +

λ(
∑k

c=1 ‖wc‖1 − s) with (W , b) ∈ S = {(W , b) :
∑

c wc = ~0;
∑

c bc = 0}, and let

λ ≥ 0 be a Lagrangian multiplier. It then follows from the strong duality theory (c.f.,

Cristianini and Shaw-Taylor 2000) that (5) is equivalent to

min
W ,b

n
∑

i=1

V (f , zi) + λ
k
∑

c=1

‖wc‖1, s.t.
∑

c

wc = ~0;
∑

c

bc = 0, (8)

for a choice of λ = arg minλ≥0(inf(W ,b)∈S l2(W , b, λ)), which is now cast into the frame-

work of regularization with a regularization parameter λ and a penalty
∑k

c=1 ‖wc‖1.

In (8), ‖wc‖1 can be interpreted as the reciprocal of the geometric margin mc =
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inf{‖x − x′‖∞ : fc(x) = 0, fc(x
′) + 1 = 0}, which is the L∞-distance between two

hyperplanes fc = 0 and fc + 1 = 0. Here mc measures separation of class c from the

rest classes. Figure 2 displays mc in three-class classification.

Figure 2 about here.

In our formulation, we use
∑k

c=1 ‖wc‖1 instead of max
1≤c≤k

‖wc‖1, because
∑k

c=1 ‖wc‖1

plays a similar role as max
1≤c≤k

‖wc‖1 and is easier to work with.

The variable selection aspect of L1MSVM is useful for classification with p greatly

exceeding n. Here the L1-penalty shrinks the estimated coefficients and coerces some

small coefficients to be exactly zero. Therefore, for sufficiently small s, many estimated

coefficients ŵc,j become exactly zero, which enables L1MSVM to perform variable selec-

tion within the framework of classification. The following lemma says that the number

of variables selected by L1MSVM never exceeds (n− 1)(k − 1). This is in contrast to

OVA, in which the maximum number of variables allowed is nk.

Lemma 1 The number of variables with non-zero coefficients in the solution matrix

Ŵ is no more than (n− 1)(k − 1).

2.3 Tuning and computational issues

The key to the performance of L1MSVM is the choice of tuning parameter s, which

controls the trade-off between training and generalization and determines the number

of variables used in classification. To obtain a classifier with high generalization accu-

racy, adaptive selection of s is often performed by minimizing a model selection routine

such as cross-validation with respect to s to yield the best performance. In this pro-

cess, L1MSVM in (5) or (8) solves a linear program of dimension 2(p+ 1)k + n(k − 1)

repeatedly for each fixed s, which is computationally intensive in addition to a memory

concern when p exceeds thousands.

Motivated by Zhu et. al (2004) and Hastie et. al (2004), an algorithm was developed

in Wang and Shen (2006), constructing the entire piecewise linear path of ŵc,j by

sequentially identifying the joints on it, and therefore computing (5) for all possible
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values of s simultaneously. We briefly describe the algorithm.

Step 1: Initialize (Ŵ (s), b̂(s)) at s = 0.

Step 2: At the l-th joint sl, compute the right derivative D(s) of (Ŵ (s), b̂(s)).

Step 3: Given the current right derivative D(s), compute the next joint sl+1.

Step 4: Iterate Steps 2 and 3 until the algorithm terminates.

This algorithm permits rapid computation of adaptive selection of s, and alleviates

the memory requirement. This is because L1MSVM selects no more than (n−1)(k−1)

variables, and hence that at most (n− 1)(k − 1) variables are required to be stored in

computing, which makes computation of high-dimensional problems feasible.

3 Statistical learning theory

This section derives a novel learning theory for L1MSVM defined in (6) in its general-

ization error in high-dimensional linear classification, where p is allowed to grow with

n at a speed no faster than exp(n). In the literature, Tarigan and van der Geer (2004)

derived rates of convergence for the binary L1-penalty SVM when p < n.

3.1 Framework

First we introduce some notations. Write X(p) = (X(1), . . . , X(p))T as a truncated

infinite-dimensional random vector X = (X(1), X(2), . . .)T . For simplicity, assume that

X(j) ∈ [0, 1], and define X = [0, 1]∞, Y = {1, . . . , k}, although our theory is applicable

when X(j) ∈ [−B,B] for B < ∞. Let f (p) = arg inff∈F(p)EV (f ,Z), where F(p) =

∪0≤s<∞F(p, s) is the full p-dimensional model, and f (p) may not belong to F(p).

For any f ∈ F(p), its performance is measured in three risks: The first is the excess

hinge risk eV (f ,f (p)) = EV (f ,Z)−EV (f (p),Z) ≥ 0 representing the performance of f

under the hinge loss V ; the second is the generalization error |e(f ,f (p))| = |El(f ,Z)−

El(f (p),Z)| under the the 0-1 loss when V is the surrogate loss for the 0-1 loss in

classification; the third is |e(f ,f (∞))| with f (∞) = arg inff∈F(∞)EV (f ,Z) representing

the optimal decision function vector f (∞) over the infinite-dimensional space under the
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0-1 loss, which can be thought of as the limit of f (p) when p→ ∞. Here, the expectation

is taken with respect to P , the distribution of Z = (X, Y ) on (X × Y ,Bo(X ) × 2Y),

where Bo(X ) is the σ-algebra generated by the open balls defined by the uniform metric

d(x1,x2) = sup1≤j<∞ |x(j)
1 − x

(j)
2 | over X .

We now develop a theory to quantify the magnitude of eV (f̂ ,f (p)) and |e(f̂ ,f (p))|

as a function of n, k, p and s, which in turn yields |e(f̂ ,f (∞))|. Our theory uses

two components: (1) a rate of convergence of the excess hinge risk eV (f̂ ,f (p)); (2) a

conversion formula that establishes a relation between |e(f̂ ,f (p))| and eV (f̂ ,f (p)).

3.2 Preliminary result: Convergence rate of eV (f̂ ,f (p))

Theorem 1 yields a rate of eV (f̂ ,f (p)), when p = pn and s = sn grow with n, as n→ ∞.

Theorem 1 Assume that τn = (n−1 log pn)1/2 → 0 as n → ∞. Then, eV (f̂ ,f (pn)) =

O (max(snτn log(τ−1
n ), dn)) , a.s. under P , where dn = inf

f∈F(pn,sn)
eV (f ,f (pn)).

In Theorem 1, dn is the approximation error of F(pn, sn) to ∪0≤s<∞F(pn, s), which

tends to 0 as sn → ∞. The optimal value of the tuning parameter sn with respect to

the optimal rate of eV (f̂ ,f (pn)) is roughly determined by snτn log(τ−1
n ) ∼ dn, yielding

the best trade-off between approximation and estimation.

When an additional assumption of L1-norm sparseness is made in Assumption A,

the rate in Theorem 1 can be greatly simplified.

Assumption A: There exists a finite s∗ such that f (p) ∈ F(p, s∗) for all p.

Assumption A generally describes an L1-norm “sparse scenario”, which is satisfied

when the number of relevant predictors is finite. For example, suppose f (p) has a form

of f
(p)
c (x) =

∑J
j=1w

∗
c,jx

(j); c = 1, . . . , k, for all p = J, . . . ,∞, then Assumption A is

met with a choice of s∗ =
∑k

c=1

∑J
j=1 |w∗

c,j|.

Corollary 1 Under Assumption A, let sn = s∗ for all n. Then

eV (f̂ ,f (pn)) = O
(

τn log(τ−1
n )
)

= O
(

(n−1 log pn)1/2 log(n(log pn)−1)
)

. a.s. under P,
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In contrast to the classical asymptotic results, where p is usually required to be no

greater than n, Corollary 1 yields an error rate tending to zero as long as pn grows no

faster than exp(n), and yields an error rate of the order n−1/2(logn)3/2 when pn grows

no faster than nr0 , which is of nearly the same order as in the case of pn ≤ n. This

explains the phenomenon that L1MSVM is less sensitive to an increase of dimension

than L2MSVM as described in Section 4.1.2.

3.3 Main result I: Convergence rate of |e(f̂ ,f (p))|

To obtain the convergence rate of |e(f̂ ,f (p))|, we establish a relationship between

eV (f̂ ,f (p)) and |e(f̂ ,f (p))|. Two situations are considered: (1) f (p) ∈ F(p) for all p,

or (2) f (p∗) /∈ F(p∗) for some p∗. In the first case the relationship greatly depends on

the marginal distribution of X(p), whereas in the second case it is independent.

Assumptions B1 and B2 below are made respectively for the cases (1) and (2).

Define an L2 metric over F(p) as d(f ,f ′) = (
∑k

c=1E(fc(X) − f ′
c(X))2)1/2.

Assumption B1: There exist constants 1 ≤ r < +∞, 0 < α ≤ ∞, and c1(p) and

c2(p) that may depend on p, such that for all small ǫ > 0, f (p) ∈ F(p) and all p,

inf
{d(f ,f(p))≥ǫ,f∈F(p)}

eV (f ,f (p)) ≥ c1(p)ǫ
r, (9)

sup
{d(f ,f(p))≤ǫ,f∈F(p)}

|e(f ,f (p))| ≤ c2(p)ǫ
α. (10)

Assumption B2: There exists an p∗ such that f (p∗) /∈ F(p∗). Assume that for all p,

the distribution P (X(p), Y ) is regular in the sense that the marginal distribution of

X(p) has a finite density q(x) ≤ U for some finite U > 0, with respect to the Lebesgue

measure λ on [0, 1]p, and P (Bc) > 0; c = 1, . . . , k, where Bc = {x ∈ [0, 1]p : c =

arg max1≤j≤k ηj(x)} with ηj(x) = P (Y = j|X = x).

Assumption B1 describes the nonseparable case, whereas Assumption B2 concerns

the separable case, as to be shown in Lemma 5 in Section 6. In Assumption B1,

because f (p) ∈ F(p), local smoothness of functionals E[V (·,Z)] and E[l(·,Z)] can
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be characterized as in (9) and (10) within a neighborhood of f (p). For example, both

E[V (f ,Z)] and E[l(f ,Z)] can be parameterized as functions of (W , b), RV (W , b) and

R(W , b), which are generally piecewise differentiable. This yields r = 2 in (9), when

RV (W , b) is twice differentiable at (W ∗, b∗) = arg min(W ,b)RV (W , b) with a positive

definite Hessian matrix. In (10), a Lipschitz condition is given with the exponent α

determined by R(W , b) depending on the distribution P .

Lemma 2 Under Assumption B1, there exists a constant c(p) > 0 that may depend

on p such that for all f ∈ F(p),

|e(f ,f (p))| ≤ c(p)eV (f ,f (p))
α
r . (11)

Under Assumption B2, for all f ∈ F(p) and p ≥ p∗,

|e(f ,f (p))| ≤ eV (f ,f (p)). (12)

In Lemma 2, (11) is formulated for a general case, where c(p), determined by c1(p)

and c2(p) in Assumption B1, may depend on p. When c(p) depends on p, it may affect

the convergence rate in Corollary 2. In Section 3.5, an example is given with c(p)

independent of p, r = 2, and α that can be arbitrarily large. In (12), the conversion

exponent is 1, which coincides with the result on the binary hinge loss in Bartlett,

Jordan and McAuliffe (2006). This is not surprising because in the linearly separable

case, f (p) becomes the Bayes rule with respect to all measurable decision function

vectors, which reduces to the case of Fisher-consistency (c.f. Lin, 2002, 2004).

Corollary 2 Assume that τn = (n−1 log pn)1/2 → 0 as n → ∞. If Assumption B1

is met, then |e(f̂ ,f (pn))| = O
(

c(pn)(max(snτn log(τ−1
n ), dn))

α
r

)

, a.s. under P. If As-

sumption B2 is met, then |e(f̂ ,f (pn))| = O (max(snτn log(τ−1
n ), dn)) , a.s. under P .

Corollary 3 Under Assumptions A, only case (1) occurs. If assumption B1 is met,

let sn = s∗ for all n. Then |e(f̂ ,f (pn))| = O
(

c(pn)((n−1 log pn)1/2 log(n(log pn)−1))
α
r

)

,

a.s. under P .
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Corollary 3 yields an error rate depending on (n−1 log pn)1/2, c(pn) and the conver-

sion exponent α/r. Under a suitable condition of the distribution, α can be arbitrarily

large, yielding an error rate that is much faster than n−1, as shown in Section 3.5.

3.4 Main result II: Convergence rate of |e(f̂ ,f (∞))|

Finally, the rate of convergence of |e(f̂ ,f (∞))| can be obtained using the results in

Corollaries 3 and 4, and the approximation error of F(pn) to f (∞) rn = |e(f (pn).

Corollary 4 If τn = (n−1 log pn)1/2 → 0 as n → ∞ and Assumption B1 are met,

then |e(f̂ ,f (∞))| = O
(

max(c(pn)(max(snτn log(τ−1
n ), dn))

α
r , rn)

)

, a.s. under P. If the

assumptions of Corollary 1 and Assumption B2 are met, then rn = 0 for p ≥ p∗,

|e(f̂ ,f (∞))| = O (max(snτn log(τ−1
n ), dn)) , a.s. under P. If Assumptions A and B1 are

met, let sn = s∗ for all n. Then |e(f̂ ,f (∞))| = O
(

max(c(pn)(τn log(τ−1
n ))

α
r , rn)

)

a.s.

under P .

3.5 An illustrative example

This section applies our general theory to one specific binary classification example

for illustration. This example is chosen to demonstrate that the rate of convergence of

L1MSVM can be arbitrarily fast because of the distribution of Z = (X, Y ). This is

contrary to a general belief that the n−1 rate is typically expected by a large margin

classifier.

Predictors X(j); j = 1, . . . ,∞, are i.i.d. according to probability density q(x) =

2β(β + 1)|x − 1/2|β for x ∈ [0, 1] and β ≥ 0, with β corresponding to the uniform

distribution. For each X = (X(1), · · ·), Y is assigned to 1 if X(1) > 1/2 and -1

otherwise. Then, Y is randomly flipped with a constant probability 0 ≤ θ < 1/2. Note

that P (Y = 1|X = x) is (1 − θ) for x(1) > 1/2, and is θ otherwise. Consequently,

classification depends only on X(1), and is linearly nonseparable when 0 < θ < 1/2,

and is linearly separable when θ = 0. Now consider two cases below.

Case 1: (Nonseparable, 0 < θ < 1/2). In this case, we verify Assumption B1.

12



Note that P (X(1), Y |X(2), . . . , X(p)) = P (X(1), Y ), because (X(1), Y ) is indepen-

dent of X(j); j = 2, . . . , p. Then, for any f ∈ F(p), E(V (f ,Z)|X(2), . . . , X(p)) =

EV (f , (X(1), Y )) ≥ EV (f (1), (X(1), Y )) and EV (f ,Z) ≥ EV (f (1), (X(1), Y )), imply-

ing f (p) = f (1). An application of the same conditioning argument yields that there

exist constants cj > 0; j = 1, 2 such that eV (f ,f (1)) ≥ c1d(f ,f
(1))r and e(f ,f (1)) ≤

c2d(f ,f
(1))α for f ∈ F(p) with sufficiently small d(f ,f (1)), if and only if eV (f ,f (1)) ≥

c1d(f ,f
(1))r and e(f ,f (1)) ≤ c2d(f ,f

(1))α for f ∈ F(1) with sufficiently small d(f ,f (1)).

Thus, without loss of generality, we restrict our discussion to f ∈ F(1) = {f :

f (x) = (ax(1) + b,−ax(1) − b)T}. Write EV (f ,Z) as RV (a, b). It can be verified

that RV (a, b) is piecewisely differentiable and convex. For 0 ≤ −(1 + b)a−1 ≤ 1/2 and

1/2 ≤ (1 − b)a−1 ≤ 1,

RV (a, b) = λ

(

θ

2β+2
(a(β + 1) + 2β + 4) +

1 − θ

2aβ+1
((1 +

a

2
+ b)β+2 + (1 − a

2
− b)β+2)

)

,

with the minimizer (a∗, b∗) = (2(1−θ
θ

)1/(β+2),−(1−θ
θ

)1/(β+2)) and positive definite Hessian

matrix

H1 = λ1

(

(a∗)−(β+3) + 1
4
(a∗)−(β+1)

1
2
(a∗)−(β+1)

1
2
(a∗)−(β+1)

(a∗)−(β+1)

)

at (a∗, b∗). This implies that (a∗, b∗) is the global minimizer of RV (a, b) by convex-

ity, and hence that f (1) = (a∗x(1) + b∗,−a∗x(1) − b∗)T . For any (a∗ + e1, b
∗ + e2)

in the neighborhood of (a∗, b∗), eV (f ,f (1)) = RV (a∗ + e1, b
∗ + e2) − RV (a∗, b∗) ≥

λ2(e1, e2)H1(e1, e2)
T . Note that d(f ,f (1))2 = 2E(f1(X)−f (1)

1 (X))2 = (e1, e2)H2(e1, e2)
T

with

H2 =

(

β+2
β+3

1

1

2

)

.

Hence there exists a constant c1 > 0 such that eV (f ,f (1)) ≥ c1d(f ,f
(1))2. Conse-

quently r = 2 in (9). For (10), there exist some constants λj > 0, such that e(f ,f (1)) =

λ3(2θ−1)| 2e2+e1

2(a∗+e1)
|β+1 ≤ λ4|2e2+e1|β+1, while d(f ,f (1)) = (2E(f1(X)−f (1)

1 (X))2)1/2 ≥
√

2E|f1(X) − f
(1)
1 (X)| =

√
2E|e1X(1) + e2| =

√
2|2e2 + e1|E| e1

2e2+e1
(X(1) − 1/2) +

13



1/2| ≥ λ5|2e2 + e1|. Therefore there exists a constant c2 > 0 such that e(f ,f (1)) ≤

c2d(f ,f
(1))(β+1). As a result, Assumption B1 is fulfilled with r = 2 in (9) and

α = β + 1 in (10), for ci; i = 1, 2, independent of p. It follows from Lemma

2 that |e(f ,f (p))| ≤ ceV (f ,f (p))(β+1)/2, and from Corollary 3 that |e(f̂ ,f (pn))| =

O
(

((n−1 log pn)1/2 log(n/ log pn))(β+1)/2
)

a.s. under P , for f̂ in (6) with pn satisfy-

ing n−1 log(pn) → 0. Note that the sign of f (pn) = f (1) coincides with f̄ = (sign(x(1) −

1/2),−sign(x(1) − 1/2))T the Bayes rule over all functions. Therefore El(f (pn),Z) =

El(f̄ ,Z) and the Bayesian regret e(f̂ , f̄) = O
(

((n−1 log pn)1/2 log(n/ log pn))(β+1)/2
)

converges to 0 arbitrarily fast as β → ∞.

Case 2: (Separable, θ = 0). In this case, we verify Assumption B2. Take g(C) =

C(x(1)−2−1,−x(1) +2−1)T ∈ F(1) with C → ∞. Easily, EV (g(C),Z) = O(C−(β+1)) →

0, and thus EV (f (1),Z) = inff∈F(1)EV (f ,Z) = 0. Therefore, f (1) /∈ F(1) and

Assumption B2 is met with p∗ = 1. It follows from Lemma 2 that |e(f ,f (p))| ≤

eV (f ,f (p)) for all p ≥ 1. By Corollary 2, |e(f̂ ,f (pn))| = O (max(snτn log(τ−1
n ), dn)),

where the optimal rate is achieved when sn is chosen to satisfy snτn log(τ−1
n ) ≈ dn. Note

that for given sn, dn = inff∈F(pn,sn)EV (f ,Z) ≤ EV (g(sn),Z) = O(s
−(β+1)
n ). The best

trade-off is achieved by sn = O((τn log(τ−1
n ))−1/(β+2)). Consequently, the convergence

rate of |e(f̂ ,f (pn))| is O
(

((n−1 log pn)1/2 log(n/ log pn))(β+1)/(β+2)
)

, for f̂ in (6) with pn

satisfying n−1 log(pn) → 0. In this case, El(f̄ ,Z) = El(f (p),Z) = 0. This yields a rate

of convergence of e(f̂ , f̄ ) = El(f̂ ,Z) = O
(

((n−1 log pn)1/2 log(n/ log pn))(β+1)/(β+2)
)

a.s. under P , which is in contrast to the nonseparable case.

In conclusion, this example reveals an important aspect of classification as discussed

in Section 1. In the nonseparable case, the distribution of Z plays an important role,

as characterized by β in Assumption B1. When β is arbitrarily large, it results in an

arbitrarily fast rate of convergence of e(f̂ ,f (p)). In the separable case, however, the

distribution is less important, which affects only the approximation error of F(p, s). In
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this case, the conversion exponent is exactly 1, which seems to coincide with the result

of Bartlett, Jordan and McAuliffe (2006). In general, when the candidate function class

F is not sufficiently large, the risk minimizer is usually not the (global) Bayes rule.

As a result, the marginal distribution of X matters, which is contrary to the general

belief that only the conditional distribution of Y given X is relevant to classification.

4 Numerical studies

4.1 Simulation

This section examines the performance of L1MSVM with respect to its generaliza-

tion accuracy and variable selection in both simulated and benchmark examples. We

compare it against OVA and L2MSVM in Lee, Lin and Wahba (2004).

4.1.1 L1MSVM versus OVA:

We compare L1MSVM with OVA in two situations characterized by the level of

difficulty of classification, as measured by two parameters: the number of classes k

and the degree of overlapping among classes d. Consider k-class classification with

k = 4, 8. First, sample (ui,1, . . . , ui,100) from N(0, I100×100); i = 1, . . . , 20k. Second,

randomly assign instances to k classes with twenty instances in each class. Third,

perform linear transformation: xi,j = ui,j + aj; j = 1, 2 and xi,j = ui,j; j = 3, . . . , 100,

with (a1, a2) = (d cos(2(c− 1)π/k), d sin(2(c− 1)π/k)) for classes c; c = 1, . . . , k, where

three values d = 1, 2, 3 are examined. Evidently, only the first two components of x

are relevant to classification, whereas the rest 98 components are redundant.

For both L1MSVM and OVA, the tuning parameter λ is optimized over a discrete

set of values with respect to the test error on an independent test sample of size 20, 000,

which well approximates the generalization error. For OVA, the tuning parameter λ

in (1) is selected from 63 values λ = i10j; i = 1, . . . , 9, j = −3, . . . , 3. For L1MSVM,

it is tuned through the solution path of Wang and Shen (2006) with s chosen from

s = (i − 1)t∗/63; i = 1, . . . , 63, where t∗, as defined in Section 2.2, is the termination
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point of the solution path. After tuning, the optimal test errors of L1MSVM and

OVA are averaged over 100 simulation replications, as well as the number of selected

variables. The results are summarized in Table 1.

Table 1 about here.

With regard to prediction, L1MSVM performs better than OVA in every single

case, except in case of d = 3 and k = 4 where the improvement is not large in view

of their standard errors. This may be explained by presence/absence of a dominating

class. When d is small and k is large, the classes overlap largely, resulting in a large

fraction of instances without a dominating class. In this case, OVA suffers from this

difficulty. With respect to variable selection, L1MSVM outperforms OVA in that it

removes more redundant variables, and surprisingly, it selects a nearly correct subset

of variables even in this difficult situation with largely overlapping classes. In contrast,

OVA selects more redundant variables, which seems to agree with the aforementioned

discussion regarding OVA in Section 1.

4.1.2 L1-norm versus L2-norm:

We compare the performances of L1MSVM and L2MSVM with respect to dimension

p. Consider a three-class classification. First, twenty instances are generated for each

class as a training sample. For class 1, each instance x = (x1, . . . , xp) is sampled

as follows: (x1, . . . , xp) are independent normals with xj ∼ N(
√

2, 1); j = 1, 2, and

xj ∼ N(0, 1); j = 3, . . . , p, where p = 10, 20, 40, 80, 160 are examined. For classes 2 and

3, instances are generated in the same manner except that the first two components of x

are centered at (−
√

2,−
√

2) and (
√

2,−
√

2). Evidently, only the first two components

of x are relevant to classification, whereas the rest p− 2 components are redundant.

To evaluate predictive performance, a test sample of size 30,000 is generated, with

10,000 in each class. For L1MSVM, the tuning parameter s is optimized over a discrete

set over [0, t∗] as described in Section 4.1.1. For L2MSVM, the tuning parameter λ
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is selected in the same fashion as OVA. The optimal test error is averaged over 100

simulation replications, and is given in Table 2 and displayed in Figure 3.

Table 2 and Figure 3 about here.

As indicated by Table 2 and Figure 3, L1MSVM outperforms L2MSVM in every sin-

gle case. As the number of redundant variables increases, the performance of L1MSVM

appears to be stable, whereas L2MSVM deteriorates faster. This is because L1MSVM

is able to remove redundant features, which is in contrast to L2MSVM involving all

the variables. This is consistent with our statistical learning theory.

4.2 Application to gene expression microarray data

One important application of L1MSVM is cancer genomics classification. Consider

a study of gene expressions in acute leukemia described in Golub et al. (1999). This

study examined n = 72 samples from three types of acute leukemias with 38 samples

in B-cell ALL (acute lymphoblastic leukemia), 9 samples in T-cell ALL and 25 samples

in AML (acute myelogenous leukemia), involving p = 6, 817 genes typed through the

Affymetrix technology. After pre-processing consisting of thresholding, filtering, and

standardization, 3571 genes are left, c.f., Dudoit et. al. (2002). Detailed descriptions

can be found at http://www.genome.wi.mit.edu/MPR. The goal of this study is to

predict the types of tumors from their genomics information, and to select the best

subset of genes that are most responsible for leukemias. We apply L1MSVM, and

compare its predictive performance with OVA and L2MSVM.

In this study, we examine predictive performance through cross-validation, that is,

we randomly select two thirds of the 72 samples by stratified random sampling for

training, while leaving the remaining one third for testing. This process is repeated

100 times, and in each data partition, the tuning parameter is selected by five-fold

cross-validation on the training sample from a set of pre-specified values as described

in Section 4.1. Then, the test error and the corresponding number of selected genes
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for each method are averaged over 100 data partitions, and are reported in Table 3, as

well as the standard errors.

Table 3 about here.

As suggested by Table 3, L1MSVM outperforms OVA in terms of predictive per-

formance. Moreover, L1MSVM performs slightly better than L2MSVM, while yielding

a much simpler model involving about 20 genes. This appears appealing as a sub-

set of most informative genes provides a guideline for biologists to perform additional

confirmatory experiments.

5. Summary

This article proposes a novel L1MSVM that performs variable selection and classi-

fication simultaneously. In particular, the proposed method, together with the solution

path, permits a treatment of data with high dimension, low sample size that can be

difficult for conventional methods. L1MSVM is shown to perform well as long as p

does not grow too fast and a sparse representation of the underlying decision function

is obtainable. Compared to the L2-penalty, the L1-penalty achieves the desired objec-

tive of variable selection, especially in presence of many irrelevant variables. Compared

to OVA, L1MSVM uses a single generalized loss function, which addresses the prob-

lems of OVA in feature selection and classification. Moreover, the method is readily

applicable to other multi-class losses, such as the generalized hinge losses in (2)-(3),

the multi-class deviance loss (c.f., Zhu and Hastie 2005), and multi-class exponential

loss (c.f., Zhu, Rosset, Zou and Hastie 2005), although a detailed analysis is performed

only for a specific generalized hinge loss (4) in this article. Further theoretical investi-

gation is necessary to compare the performances of various losses over different classes

of candidate functions.

Our investigation in L1MSVM also provides an insight into regression analysis,

particularly LASSO (Tibshirani 1996) with regard to feature selection involving high
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dimension, low sample size data. It is possible that a similar result can be established

for LASSO with the technique developed in this article.

6. Appendix: technical proofs.

The proof of Theorem 1 and Corollary 1 uses a large deviation empirical process

inequality in Theorem 2, which bounds the tail probability of eV (f̂ ,f (p)) for given n

and F(p, s) based on Lemmas 3 and 4. Lemmas 5-7 are used to establish a conversion

formula between eV (f̂ ,f (p)) and e(f̂ ,f (p)) in Lemma 2, which leads to Corollaries 2-4.

Theorem 2 Given p, k, n, and 0 < θ < 1, assume there exists an M > 0 such that

(log2

8ε0

√
6

θM
+ 1)(

128 log(e+ e(2k(p + 1))ε2
0)

nθ
)1/2 ≤ θM/8, (13)

where ε0 is given by

2ε−2
0 log(e+ e(2k(p+ 1))ε2

0) = θnM2/2. (14)

Then for f̂ defined in (6) and d = inf
f∈F(p,s)

eV (f ,f (p))

P (eV (f̂ ,f (p)) ≥ 8k(3s+ 2k)M + d) ≤ 6[1 − 1

16nM2
]−1 exp(−2(1 − θ)nM2). (15)

Before proving Theorem 2, we introduce some notations. First, note that for f̂

defined in (6), b̂c ≥ −maxi: yi 6=c(ŵ
T
c xi + 1), because (Ŵ , b̂) minimizes

∑n
i=1 V (f , zi).

Hence, b̂c ≥ −(‖ŵc‖1 + 1) for c = 1, . . . , k, implying ‖b̂‖1 = −2
∑

c bcI[bc ≤ 0] ≤

2(s + k). Therefore, f̂ ∈ F(p, s) ∩ {f : ‖b‖1 ≤ 2(s + k)}, and it suffices to consider

F b(p, s) = F(p, s) ∩ {f : ‖b‖1 ≤ 2(s + k)}. Next, define f0 = arg minF(p,s)EV (f ,Z),

hf(·) = (2k(3s + 2k))−1(V (f , ·) − V (f0, ·)), and H = {hf : f ∈ F b(p, s)}. Here

the scaling factor (2k(3s + 2k))−1 is chosen to normalize hf such that the L2(Q)-

diameter of H is no larger than 1 for any distribution Q. Second, define the indexed

empirical processes as h 7→ vn(h) = Pnh − Ph, where h ∈ H, Ph =
∫

hdP and
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Pnh = n−1
∑n

i=1 h(Zi) with Z1, . . . ,Zn i.i.d. random elements from distribution P .

Proof of Theorem 2: First, we establish a connection between eV (f̂ ,f (p)) and

the empirical processes Pn(h) − P (h). Because f0 = arg minF(p,s)EV (f ,Z), d =

inff∈F(p,s) eV (f ,f (p)) = eV (f0,f
(p)) and eV (f̂ ,f (p)) > 8k(3s + 2k)M + d implies

eV (f̂ ,f0)(2k(3s + 2k))−1 > 4M . Note that f̂ is a minimizer of n−1
∑n

i=1 V (f , zi)

over F(p, s), and f̂ , f0 ∈ F b(p, s).

P (eV (f̂n,f
(p)) > 8k(3s+ 2k)M + d) ≤ P (eV (f̂n,f0)(2k(3s+ 2k))−1 > 4M)

≤ P ∗

(

sup
{f∈Fb(p,s):eV (f ,f0)(2k(3s+2k))−1>4M}

n−1
n
∑

i=1

(V (f0, zi) − V (f , zi)) > 0

)

≤ P ∗

(

sup
{f∈Fb(p,s):eV (f ,f0)(2k(3s+2k))−1>4M}

−n−1(
n
∑

i=1

hf(Zi) + Ehf(Z))

> (2k(3s+ 2k))−1E(V (f , zi) − V (f0, zi))

)

≤ P ∗(sup
h∈H

|Pnh− Ph| > 4M).

The result then follows from lemma 4. �

We are now ready to prove our main result.

Proof of Theorem 1: Take M = Kτn log(τ−1
n ) with K < ∞ a constant to be deter-

mined later on. It remains to verify (13) holds for the choice of M and ε0 determined

by (14). Note that log(τ−1
n ) → ∞ and ε0 satisfies θnM2/2 = (2ε−2

0 ) log(e + e(2k(pn +

1))ε2
0). One can verify that ε0 → 0. Note that (13) is equivalently to (log2

8ε0

√
6

θM
+

1)2 ≤ θ3nM2

213 log(e+e(2k(pn+1))ε2
0)
, in which the order of the left hand side is no greater

than O(log2(τ−1
n )), whereas that of the right hand side is no less than O(log2(τ−1

n )).

Therefore, (13) holds for sufficiently large n. Note that nM2 ≥ K log(pn) log(τ−1
n ) =

(K/2) log(pn) log(n/ log(pn)) ≥ (K/2) log(n) for sufficiently large n. Take K ≥ 2/(1 −

θ). Then, the result follows from the Borel-Cantelli theorem and Theorem 1. �

Proof of Corollary 1: As pn → ∞, dn = 0 for sufficiently large n. The result follows

from Theorem 1. �
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Proofs of Corollaries 2-4: The results follow from Theorem 1 and Corollary 1 and

the corresponding conversion formula in Lemma 2. �

Next we prove other technical lemmas.

Proof of Lemma 1: Let wc,0 = bc, and define A(s) = {(c, j) : ŵc,j(s) 6= 0; c =

1, . . . , k; j = 0, 1, . . . , p}, J (s) = {j : ŵc,j(s) 6= 0 for some c}, E(s) = {(i, c) :

∑p
j=0 ŵc,j(s)xij + 1 = 0, c 6= yi}. By Theorem 2 in Wang and Shen (2006), |A(s)| ≤

|E(s)|+ |J (s)|+2 with |S| denoting the cardinality of S. Note that the number of non-

zero columns of Ŵ is |J |− 1 and |A|− k ≥ 2(|J | − 1). Then |J |− 1 ≤ |E(s)|− k+3.

In addition, |E(s)| ≤ n(k − 1) − 1 for s < t∗. Hence, |J | − 1 ≤ (n − 1)(k − 1). This

completes the proof. �

Proof of Lemma 2: By Assumption B1, (9) implies eV (f ,f (p)) ≥ c1(p)d(f ,f
(p))r,

and (10) implies |e(f ,f (p))| ≤ c2(p)d(f ,f
(p))α, when d(f ,f (p)) is small. Therefore,

there exists a sufficiently small ǫ, such that |e(f ,f(p))|
eV (f ,f(p))α/r ≤ c2(p)

c1(p)α/r for f ∈ {f :

d(f ,f (p)) ≤ ǫ}. For f /∈ {f : d(f ,f (p)) ≤ ǫ}, note that eV (f ,f (p)) ≥ c1(p)ǫ
r, and

|e(f ,f (p))| is bounded by 1. Then, we have |e(f ,f(p))|
eV (f ,f(p))α/r <

1
c1(p)α/rǫα , and (11) follows

with the choice of c(p) = max{ c2(p)

c1(p)α/r ,
1

c1(p)α/rǫα}.

To prove (12), let the Bayes rule f̄ be f̄j(x) = kI(j = argmaxc ηc(x)) − 1; j =

1, . . . , k. By Lemma 5, EV (f (p),Z) = El(f (p),Z) = 0. Note that f̄ minimizes both

EV (f ,Z) and El(f ,Z) over all measurable decision functions, which implies that

El(f (p),Z) = El(f̄ ,Z) = 0, and EV (f (p),Z) = EV (f̄ ,Z) = 0. Then, (12) follows

from Lemma 7. This completes the proof. �.

Lemma 3 controls the complexity of H in terms of the L2(Q)-metric entropy for

any class of functions B, which is defined as follows. Given any ε > 0, a set {gi}m
1 is

called an ε-net of B, if for any f ∈ B, there exists a gk such that ‖gk−f‖Q,2 ≤ ε, where

‖·‖Q,2 is the L2(Q)-norm defined as ‖f‖Q,2 = (
∫

f 2dQ)1/2. The L2(Q)-covering number

N(ε,B, L2(Q)) is defined as the minimal size of all ε-nets. The L2(Q)-metric entropy
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H(ε,B, L2(Q)) is the logarithm of the covering number. Further define the uniform

covering number and uniform metric entropy as N2(ε,B) = supQN(ε,B, L2(Q)) and

H2(ε,B) = supQH(ε,B, L2(Q)), respectively. The following lemma gives an upper

bound of H2(ε,H).

Lemma 3 For any ε > 0, H2(ε,H) ≤ 2
ε2 log(e+ e(2k(p + 1))ε2).

Proof: For simplicity, expand predictor vector x and coefficient vector wc to ẋ =

(1,xT )T and ẇc = (bc,w
T
c )T . Now consider F = {f :

∑k
c=1 ‖ẇc‖1 ≤ 3s + 2k} ⊃

F b(p, s), and G = {V (f , ·) : f ∈ F}. Evidently, an entropy bound of H can be

obtained by that of G. We proceed to bound G. To construct an ε-net on G, first

examine the relation between G and F . For g(z) = V (f , z) and g′(z) = V (f ′, z) ∈ G,

‖g − g′‖2
Q,2 = E(

∑

c 6=Y

[fc(X) + 1]+ −
∑

c 6=Y

[f ′
c(X) + 1]+)2 ≤ E(

k
∑

c=1

|fc(X) − f ′
c(X)|)2

≤ k
∑

c

‖fc − f ′
c‖2

Q,2 ≤ k2‖f̃ − f̃ ′‖2
Q̃,2
. (16)

In (16), f̃(x̃) =
∑k

c=1 fc(xc) =
∑k

c=1 ẇT
c ẋc, for each x̃ = (ẋ1, ẋ2, . . . , ẋk) with ẋc ∈

R
p+1, f̃ ′(x̃) =

∑k
c=1 f

′
c(xc) is defined in the same manner, and Q̃ is defined as the

distribution of X̃ = (δ1Ẋ1, . . . , δkẊk), where Ẋc = (1,XT
c )T with Xc i.i.d. random

vectors with distribution Q, and (δ1, . . . , δk) has a joint distribution P ((δ1, . . . , δk)
T =

1c) = k−1 with 1c a vector consisting of 1 at the c-th entry and 0 at the remaining k−1

entries. As a result, the equality ‖g−g′‖Q,2 ≤ k‖f̃−f̃ ′‖Q̃,2 establishes a relation between

G and function class F̃ = {f̃ : f̃(x̃) =
∑k

c=1

∑p
j=0 ẇc,jẋ

(j)
c ;
∑

c,j |ẇc,j| ≤ 3s+ 2k}.

To bound F̃ , let f̃c,j(x̃) = (3s+2k) ẋ
(j)
c . Then D = {±f̃c,j} consists a basis for F̃ and

each f̃ =
∑k

c=1

∑p
j=0 ẇc,jẋ

(j)
c =

∑k
c=1

∑p
j=0

|ẇc,j |
3s+2k

(sign(ẇc,j)f̃c,j(x̃)) is a convex combi-

nation of ±f̃c,j; c = 1, . . . , k, j = 0, . . . , p. Thus, F̃ = convD, the convex hull of D.

By Lemma 2.6.11 of Van der Vaart and Wellner (2000), N(εdiamD, convD, L2(Q̃)) ≤

(e+ e(2k(p+ 1))ε2)2/ε2
, where diamD = maxu,v∈D ‖u− v‖Q̃,2 ≤ 2(3s+ 2k).

From (16), a 2(3s + 2k)ε-net in F̃ induces a 2k(3s + 2k)ε-net in G, implying

22



N(2k(3s+ 2k)ε,G, L2(Q)) ≤ (e+ e(2k(p+ 1))ε2)2/ε2
. Because H2(ε,H) ≤ H2(2k(3s+

2k)ε,G), the result then follows. �

In Lemma 3, we derive an upper bound of the random entropy instead of the

bracketing entropy to quantify the complexity of H. Based on Lemma 3, we establish

a probability tail bound of supH |Pnh− Ph| as in Lemma 4. In the literature, similar

bounds are obtained under the condition of H2(ε,H) ≤ Aε−W with W < 2. To our

knowledge, no result is available for random entropy with W = 2. Therefore, we need

to derive a bound.

Lemma 4 Assume that n, p, k, M and ε0 satisfy (13) and (14). Then

P ∗(sup
H

|Pnh− Ph| > 4M) ≤ 6[1 − 1

16nM2
]−1 exp(−2(1 − θ)nM2),

where P ∗ denotes the outer probability.

Proof: The proof uses conditioning and chaining.

Fist, we bound the probability of interest by a corresponding tail probability of

sampling n observations without replacement from the empirical measure of a sample

of size N = mn, with m = 2. Let Z1, . . . ,ZN be an i.i.d. sample from P , and let

(R1, . . . , RN ) be uniformly distributed on the set of permutations of (1, . . . , N). Define

n′ = N−n, P̃n,N = n−1
∑n

i=1 δZRi
, and PN = N−1

∑N
i=1 δZi

, with δZi
the Dirac measure

at observation Zi. Then, we have the following inequality, which can be treated as an

alternative to the classical symmetrization inequality (c.f., Van der Vaart and Wellner

2000, Lemma 2.14.18 with a = 2−1 and m = 2),

P ∗(sup
H

|Pnh− Ph| > 4M) ≤ [1 − 1

16nM2
]−1P ∗(sup

H
|P̃n,Nh− PNh| > M). (17)

Conditioning on Z1, . . . ,ZN , we consider P ∗(supH |P̃n,Nh−PNh| > M), and denote

by P|N the conditional distribution given Z1, . . . ,ZN . Let ε0 > ε1 > . . . > εT >

0, which is to be chosen later on. Denote by Hq the minimal εq-net for H with
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respect to the L2(PN) norm. For each h, let πqh = arg ming∈Hq ‖g− h‖PN ,2. Evidently,

‖πqh− h‖PN ,2 ≤ εq, and |Hq| = N(εq,H, L2(PN)). Hence

P ∗
|N(sup

H
|P̃n,Nh− PNh| > M) ≤ P ∗

|N(sup
H

|(P̃n,N − PN)(π0h)| > (1 − θ

4
)M)

+P ∗
|N(sup

H
|(P̃n,N − PN)(π0h− πTh)| >

θM

8
)

+P ∗
|N(sup

H
|(P̃n,N − PN)(πTh− h)| > θM

8
)

≤ |H0| sup
H
P ∗
|N(|(P̃n,N − PN)(π0h)| > (1 − θ

4
)M)

+

T
∑

q=1

|Hq||Hq−1| sup
H
P ∗
|N(|(P̃n,N − PN)(πqh− πq−1h)| > ηq)

+ sup
H
P ∗
|N(|(P̃n,N − PN)(πTh− h)| > θM

8
) : = P1 + P2 + P3,

where ηq; q = 1, . . . , T , are to be chosen such that

T
∑

q=1

ηj ≤ θM/8. (18)

Now we bound P1, P2 and P3 separately.

For P3, take εT ≤ θM

8
√

2(m+1)
. Note that P̃n,Nf ≤ mPNf for any non-negative f , and

PN(πTh− h)2 ≤ ε2
T by the definition of πT . Then we have |(P̃n,N − PN)(πTh− h)|2 ≤

2(P̃n,N + PN )(πTh− h)2 ≤ 2(m+ 1)ε2
T ≤ (θM/8)2. So P3 = 0.

For P1, note that 0 ≤ π0h(Zi) ≤ 1 for all h ∈ H and i = 1, . . . , N . By Hoeffding’s

inequality (c.f., Hoeffding 1963, Theorem 2, Theorem 4), P ∗
|N(|(P̃n,N − PN)(π0h)| >

(1− θ
4
)M) ≤ 2 exp(−2n(1− θ/4)2M2. Then, take ε0 as defined in (14). By Lemma 3,

H(ε0,H, L2(PN)) ≤ 2ε−2
0 log(e+ e(2k(p+ 1))ε2

0) = θ(2nM2)/4. (19)

Therefore, P1 ≤ 2 exp(H(ε0,H, L2(PN ))) exp(−2n(1−θ/4)2M2) ≤ 2 exp(−(1−θ)2nM2).

For P2, if ǫ0 ≤ θM

8
√

2(m+1)
, let εT = ε0. Then P2 = 0 and the proof is trivial. Other-

wise, we consider the case ǫ0 >
θM

8
√

2(m+1)
> ǫT in P2. Note that PN(πqh − πq−1h)

2 ≤

2(PN(πqh− h)2 + PN(h− πq−1h)
2) ≤ 2ε2

q + 2ε2
q−1 ≤ 4ε2

q−1. Then by Massart’s inequal-
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ity (c.f., Van der Vaart and Wellner 2000, Lemma 2.14.19), P ∗
|N(|(P̃n,N − PN)(πqh −

πq−1h)| > ηq) ≤ 2 exp(−nη2
q/(mσ

2
N )) with σ2

N = PN (πqh − πq−1h)
2 ≤ 4ε2

q−1, and it

follows that

P2 ≤
N
∑

q=1

|Hq|2 sup
H
P ∗
|N(|(P̃n,N − PN)(πqh− πq−1h)| > ηq)

≤ 2

T
∑

q=1

exp(2H(εq,H, L2(PN)) −
nη2

q

4mε2
q−1

)

≤ 2
T
∑

q=1

exp(2
2

ε2
q

log(e+ e(2k(p+ 1))ε2
0) −

nη2
q

4mε2
q−1

).

Take εq = 2−qε0; q = 0, . . . , T , where T = ⌈log2
8ε0

√
2(m+1)

θM
⌉ (such that εT ≤ θM

8
√

2(m+1)
≤

εT−1). Then take ηq = (
16mε2

q−1 log(e+e(2k(p+1))ε2
0)

ε2
qnθ

)1/2 = (
64m log(e+e(2k(p+1))ε2

0)

nθ
)1/2. By (13),

M satisfies

T
∑

q=1

ηj = Tη1 ≤ (log2

8ε0

√

2(m+ 1)

θM
+ 1)(

64m log(e+ e(2k(p+ 1))ε2
0)

nθ
)1/2 ≤ θM/8.

Then, we have

P2 ≤ 2

T
∑

q=1

exp((4 − 4/θ)
1

ε2
q

log(e+ e(2k(p+ 1))ε2
0))

≤ 2

T
∑

q=1

exp((4 − 4/θ)
4q

ε2
0

log(e+ e(2k(p+ 1))ε2
0))

≤ 2
∞
∑

q=1

exp((2 − 2/θ)4qθ(2nM2)/4) ≤ 4 exp(−(1 − θ)(2nM2)).

Therefore, P ∗
|N(supH |P̃n,Nh−PNh| > M) ≤ 6 exp(−(1− θ)(2nM2)). Take expectation

with respect to Z1, . . . ,ZN on both sides and use (17), we have

P ∗(sup
H

|Pnh− Ph| > 4M) ≤ 6[1 − 1

16nM2
]−1 exp(−2(1 − θ)nM2).

This completes the proof. �

Lemma 5 For any given p, assume that P (X(p), Y ) is regular in the sense that the

marginal distribution of X(p) has a finite density q(x) ≤ U with respect to the Lebesgue
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measure λ on [0, 1]p, and P (Bc) > 0; c = 1, . . . , k, where Bc = {x ∈ [0, 1]p : c =

arg max1≤j≤k ηj(x)} with ηj(x) = P (Y = j|X = x). If there exists a p∗ such that

f (p∗) /∈ F(p∗), then inff∈F(p)EV (f ,Z) = inff∈F(p)El(f ,Z) = 0 for all p ≥ p∗.

Proof of Lemma 5: First prove the case of p = p∗.

For any f ∈ F(p), define ‖f‖1 =
∑k

c=1(
∑p

j=1 |wc,j|+ |bc|) and ‖fc‖1 =
∑p

j=1 |wc,j|+

|bc|; c = 1, . . . , k. Because f (p) /∈ F(p), by the definition of f (p) and F(p), there

exists a sequence {g(n)}∞n=1 ∈ F(p), such that ‖g(n)‖1 → ∞ and EV (g(n),Z) →

EV (f (p),Z) < ∞ as n → ∞. We will prove that limn→∞ P (∪k
c=1Mc(g

(n))) = 0,

where Mc(g
(n)) = {z = (x, y) : y 6= c and g

(n)
c (x) ≥ 0} can be thought of as the

misclassification set for g
(n)
c , c = 1, . . . , k.

We prove by contradiction. Suppose limn→∞ P (∪k
c=1Mc(g

(n))) = 0 does not hold.

Then there exist constants ǫ0 > 0, c∗ and a subsequence {g(nl)}∞l=1 such that P (Mc∗(g
(nl))) >

ǫ0 for all l. Without loss of generality, assume c∗ = 1 and P (M1(g
(n))) > ǫ0 for all n.

By the definition of V (f , z) in (4) and the definition of M1(g
(n)),

EV (g(n),Z) = E(
∑

c 6=Y

[1 + g(n)
c (X)]+)

= E(
k
∑

c=1

[1 + g(n)
c (X)]+I[Y 6= c]) ≥ E([1 + g

(n)
1 (X)]+I[Y 6= 1])

≥ E([1 + g
(n)
1 (X)]+I[Z ∈M1(g

(n))]) ≥ (1 + t)E(I[g
(n)
1 (X) ≥ t]I[Z ∈M1(g

(n))])

= (1 + t)(P (M1(g
(n))) − P ({g(n)

1 (x) < t} ∩M1(g
(n))))

≥ (1 + t)(ǫ0 − P (0 ≤ g
(n)
1 (x) < t)), (20)

for any t > 0. We discuss two cases: ‖g(n)
1 ‖1 → ∞ and ‖g(n)

1 ‖1 9 ∞.

Suppose ‖g(n)
1 ‖1 → ∞. By Lemma 6, λ(x ∈ [0, 1]p : 0 ≤ g

(n)
1 (x) < t) ≤ λ(x ∈

[0, 1]p : |g(n)
1 (x)| < t) ≤ At/(‖g(n)

1 ‖1 − t) → 0, which implies P (0 ≤ g
(n)
1 (x) < t) → 0 in

(20). Hence EV (f (p),Z) = limn→∞EV (g(n),Z) ≥ (t+ 1)ǫ0, which contradicts to the

fact that EV (f (p),Z) <∞, because t can be arbitrarily large.
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Suppose ‖g(n)
1 ‖1 9 ∞. Without loss of generality, assume there exists an 0 < D <

∞, such that ‖g(n)
1 ‖1 ≤ D for all n. Note that

EV (g(n),Z) = E(

k
∑

c=1

(1 − ηc(X))[1 + g(n)
c (X)]+) ≥ E(

∑

c 6=1

(1 − ηc(X))[1 + g(n)
c (X)]+)

≥ E(
∑

c 6=1

1/2[1 + g(n)
c (X)]+I[X ∈ B1]) ≥ 2−1E(max

c 6=1
[1 + g(n)

c (X)]+I[X ∈ B1])

≥ 2−1(t+ 1)E(I[max
c 6=1

g(n)
c (X) ≥ t]I[X ∈ B1])

≥ 2−1(t+ 1)(P (B1) − P (max
c 6=1

g(n)
c (X) < t)), (21)

where the second inequality holds because 1 − ηc(x) ≥ 1/2 for all c 6= 1 and x ∈ B1

by the definition of B1. Now we prove P (maxc 6=1 g
(n)
c (X) < t) → 0 in (21). Take

t > D. Because |g(n)
1 (x)| ≤ ‖g(n)

1 ‖1 ≤ D < t for all x ∈ [0, 1]p, {maxc 6=1 g
(n)
c (x) ≤

t} ⊂ {maxc g
(n)
c (x) ≤ t}. Note that through the zero-sum constraint

∑k
c=1 g

(n)
c (x) = 0,

∑k
c=1 |g

(n)
c (x)| = 2

∑k
c=1[g

(n)
c (x)]+ ≤ 2kmaxc g

(n)
c (x). By Lemma 6,

λ(x ∈ [0, 1]p : max
c 6=1

g(n)
c (x) ≤ t) ≤ λ(x ∈ [0, 1]p : max

c
g(n)

c (x) ≤ t)

≤ λ(x ∈ [0, 1]p :

k
∑

c=1

|g(n)
c (x)| ≤ 2kt) ≤ min

c
λ(x ∈ [0, 1]p : |g(n)

c (x)| ≤ 2kt)

≤ A
2kt

maxc ‖g(n)
c ‖1 − 2kt

≤ A
2k2t

‖g(n)‖1 − 2k2t
→ 0,

where the last inequality holds because maxc ‖g(n)
c ‖1 ≥ ‖g(n)‖1/k. Hence in (21),

P (maxc 6=1 g
(n)
c (X) < t) → 0, which implies EV (f (p),Z) = limn→∞EV (g(n),Z) ≥

2−1(t + 1)P (B1) → ∞ as t → ∞, which contradicts the fact that EV (f (p),Z) < ∞.

Combining the two cases, limn→∞ P (∪k
c=1Mc(g

(n))) = 0 is proved.

Now prove that inff∈F(p)El(f ,Z) = 0 and inff∈F(p)EV (f ,Z) = 0. To prove

inff∈F(p)El(f ,Z) = 0, note that maxc g
(n)
c (x) ≥ 0. Then {z : y 6= arg maxc g

(n)
c (x)} ⊂

∪k
c=1Mc(g

(n)), and inff∈F(p)El(f ,Z) ≤ El(g(n),Z) = P (Y 6= arg maxc g
(n)
c (X)) ≤

P (∪k
c=1Mc(g

(n))) → 0. Therefore, inff∈F(p)El(f ,Z) = 0. For inff∈F(p)EV (f ,Z), note

that the sequence {g(n)/‖g(n)‖1}∞n=1 is contained in a bounded closed set {f : ‖f‖1 ≤ 1}
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with respect to the norm ‖f‖1. Consequently, there exists a limit point denoted by f ∗.

Let u(n) = nf ∗. Because P (Z ∈ ∪k
c=1Mc(f

∗)) = 0, equivalently P (Z /∈ ∪k
c=1Mc(f

∗)) =

1, and for all c, z /∈ ∪k
c=1Mc(f

∗) and y 6= c implies f ∗
c (x) < 0,

EV (u(n),Z) =

k
∑

c=1

E([1 + nf ∗
c (X)]+I[Y 6= c])

=
k
∑

c=1

E((1 + nf ∗
c (X))I[1 + nf ∗

c (X) ≥ 0]I[Y 6= c])

=

k
∑

c=1

E((1 + nf ∗
c (X))I[1 + nf ∗

c (X) ≥ 0]I[Y 6= c]I[Z /∈ ∪k
c=1Mc(f

∗)])

≤
k
∑

c=1

E(I[0 ≤ 1 + nf ∗
c (X) < 1]I[Y 6= c]I[Z /∈ ∪k

c=1Mc(f
∗)]).

Note that for all c, P (0 ≤ 1 + nf ∗
c (X) < 1) ≤ P (|1 + nf ∗

c (X)| < 1) → 0 by Lemma 6.

We have inff∈F(p)EV (f ,Z) ≤ limn→∞EV (u(n),Z) = 0.

It remains to prove the case p > p∗. Note that F(p) ⊂ F(p∗) for p > p∗, implying

g(n),u(n) ∈ F(p). Therefore, the arguments still hold. This completes the proof. �.

Lemma 6 Let f(x) = θT x + b with θ ∈ R
p, b ∈ R, and x ∈ [0, 1]p, and define

‖f‖1 = ‖θ‖1 + |b|. Then, there exists a constant A > 0 such that λ(x ∈ [0, 1]p :

|f(x)| ≤ t) ≤ At/(‖f‖1 − t) for all f and t > 0 with ‖f‖1 − t > 0.

Proof of Lemma 6: For any |b| > ‖θ‖1 + t, |f(x)| = |θT x + b| ≥ |b| − ‖θ‖1 > t,

which implies λ(x ∈ [0, 1]p : |f(x)| ≤ t) = 0, and thus the result holds. For any

|b| ≤ ‖θ‖1 + t, ‖θ‖1 ≥ (‖f‖1 − t)/2, when ‖f‖1 − t > 0. Note that ‖θ‖2 ≥ p−1/2‖θ‖1 =

p−1/2(‖f‖1 − t)/2. Then, λ(x ∈ [0, 1]p : |f(x)| ≤ t) is

λ(x ∈ [0, 1]p : |(θT x + b)|/‖θ‖2 ≤ t/‖θ‖2)

≤ λ
(

x ∈ [0, 1]p : |(θT x + b)| ≤ 2‖θ‖2t

p−1/2(‖f‖1−t)

)

. (22)

Without loss of generality, assume θ satisfies θT θ = 1. Then, for all r > 0, λ(x : −r ≤

θT x + b ≤ r) =
∫

x∈[0,1]p
I[−r ≤ θT x + b ≤ r]λ(dx). Now construct an orthogonal

matrix U with θ as the first column. The integration becomes
∫

z∈{QT x:x∈[0,1]p} I[−r ≤
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z1+b ≤ r]λ(dz) using the substitution z = QTx. Here, {QT x : x ∈ [0, 1]p} is contained

by [−M,M ]p for sufficiently large M . Then,
∫

z∈{QT x:x∈[0,1]p} I[−r ≤ z1 +b ≤ r]λ(dz) ≤
∫

z∈[−M,M ]p
I[−r ≤ z1 + b ≤ r]λ(dz) ≤ (2M)p−12r, and by (22) λ(x ∈ [0, 1]p : |f(x)| ≤

t) ≤ 4(2M)p−1p1/2t/(‖f‖1 − t). The result holds with A = 4(2M)p−1p1/2. �

Lemma 7 Define the Bayes rule f̄ = (f̄1, . . . , f̄k) as f̄j(x) = kI(j = argmaxc ηc(x))−

1; j = 1, . . . , k. Then, for all measurable f , e(f , f̄) ≤ eV (f , f̄).

Proof: The main treatment is to apply the conditioning argument to X to show that

E(l(f ,Z) − l(f̄ ,Z)|X = x) ≤ E(V (f ,Z) − V (f̄ ,Z)|X = x) for all x.

For any x, write ηc = P (Y = c|X = x), fc = fc(x), f̄c = f̄c(x), c∗ = arg max
c
fc

and c̄ = arg max
c
ηc, for simplicity. Note that f̄c = kI(c = c̄)−1. Then we express both

E(l(f ,Z)−l(f̄ ,Z)|X = x) and E(V (f ,Z)−V (f̄ ,Z)|X = x) in ηc, fc, f̄c, c
∗ and c̄ as

follows. E(l(f ,Z)− l(f̄ ,Z)|X = x) =
∑k

c=1 ηcI(c 6= c∗)−∑k
c=1 ηcI(c 6= c̄) = ηc̄ − ηc∗ ;

E(V (f ,Z) − V (f̄ ,Z)|X = x) =
k
∑

c=1

ηc

∑

j 6=c

[fj + 1]+ −
k
∑

c=1

ηc

∑

j 6=c

[f̄j + 1]+

=
k
∑

c=1

(1 − ηc)[fc + 1]+ − (1 − ηc̄)k. (23)

In (23), let [fc + 1]+ be tc; c = 1, . . . , k, and let t be
∑k

c=1 tk. Then it follows from

(1 − ηc) ≥ (1 − ηc̄) that

k
∑

c=1

(1 − ηc)[fc + 1]+ = (1 − ηc∗)tc∗ +
∑

c 6=c∗

(1 − ηc)tc ≥ (1 − ηc∗)tc∗ + (1 − ηc̄)(t− tc∗).(24)

In (24), t =
∑k

c=1[fc + 1]+ ≥ k[ 1
k

∑k
c=1(fc + 1)]+ = k by convexity of [x]+. Note that

ηc∗ ≤ ηc̄ and tc∗ ≥ tc for all c, implying tc∗ ≥ t
k
≥ 1. Thus (1 − ηc∗)tc∗ + (1 − ηc̄)(t −

tc∗) = (ηc̄ − ηc∗)tc∗ + (1 − ηc̄)t ≥ (ηc̄ − ηc∗) + (1 − ηc̄)k. Therefore, by (23) and (24),

E(V (f ,Z)− V (f̄ ,Z)|X = x) ≥ ηc̄ − ηc∗ = E(l(f ,Z)− l(f̄ ,Z)|X = x). The desired

result then follows by taking the expectation with respect to X. �
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Table 1: Bayes errors, Averaged test errors in percentage and their standard errors
(in parenthesis) as well as averaged number of variables selected and their standard
errors (in parenthesis), over 100 simulation replications for L1MSVM and OVA, with
d = 1, 2, 3 and k = 1, 2.

L1MSVM OVA
classes distance Bayes Test error Variables Test error Variables

d = 1 36.42% 42.20(0.09)% 2.20(0.05) 56.87(0.25)% 67.17(1.93)
k = 4 d = 2 14.47% 15.18(0.04)% 2.06(0.02) 16.21(0.09)% 5.72(0.38)

d = 3 3.33% 3.35(0.02)% 2.02(0.01) 3.50(0.02)% 2.51(0.13)

d = 1 64.85% 70.47(0.10)% 3.51(0.16) 79.76(0.07)% 98.18(0.29)
k = 8 d = 2 43.82% 46.86(0.12)% 3.02(0.12) 66.72(0.11)% 95.43(0.25)

d = 3 25.06% 27.95(0.13)% 2.75(0.17) 55.84(0.12)% 93.37(0.21)

Table 2: Bayes errors, Averaged test errors in percentage and their standard errors
(in parenthesis) over 100 simulation replications for L1MSVM and L2MSVM, with
different values of p.

Bayes L1MSVM L2MSVM
p = 10 10.81% 13.61(0.12)% 15.44(0.17)%
p = 20 10.81% 14.06(0.14)% 17.81(0.22)%
p = 40 10.81% 14.94(0.14)% 20.01(0.22)%
p = 80 10.81% 15.68(0.15)% 21.81(0.14)%
p = 160 10.81% 16.58(0.17)% 27.54(0.17)%
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Table 3: Leukemia data: averaged test errors in percentage and their standard errors (in
parenthesis) as well as averaged number of variables selected and their standard errors
(in parenthesis), over 50 simulation replications for L1MSVM, OVA and L2MSVM.

Test error # Variables
L1MSVM 3.76(.51)% 20.92(.71)

OVA 6.24(.45)% 26.73(.80)
L2MSVM 4.20(.33)% 3571(.00)
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Figure 1: Perspective plots of h functions defined for 0-1 loss and generalized hinge
losses (2)-(4) in three-class classification. Upper left: 0-1 loss; Upper right: hinge loss
defined in (2); Bottom left: hinge loss defined in (3); Bottom right: hinge loss defined
in (4).
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Figure 2: Illustration of the concept of margins in three-class separable classification:
fc separates class c from the rest classes; c = 1, 2, 3. The zero-sum constraint implies
fc = 0; c = 1, 2, 3 have a common intersection. With this constraint in place, the margin
min

c
mc is maximized to obtain the decision functions fi, which yields the separating

boundary (dashed lines) fi − fj = 0; i, j = 1, 2, 3; i 6= j.
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Figure 3: Averaged test errors of L1MSVM and L2MSVM as a function of log(p) with
p = 10, 20, 40, 80, and 160. Solid circle and circle represent L1MSVM and L2MSVM,
respectively.
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