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Abstract

Lagrange multiplier (LM) or score tests have seen renewed interest for the purpose

of diagnosing misspecification in item response theory (IRT) models. LM tests can also
be used to test whether parameters differ from a fixed value. We argue that the utility

of LM tests depends on both the method used to compute the test and the degree of

misspecification in the initially fitted model. We demonstrate both of these points in
the context of a multidimensional IRT framework. Through an extensive Monte Carlo

simulation study, we examine the performance of LM tests under varying degrees of

model misspecification, model size, and different information matrix approximations.
A generalized LM test designed specifically for use under misspecification, which has

apparently not been previously studied in an IRT framework, performed the best in

our simulations. Finally, we reemphasize caution in using LM tests for model specifica-
tion searches.

Keywords

multidimensional item response theory, score test, Lagrange multiplier test, modifica-

tion indices

Introduction

In any initial attempt at fitting a model to data, it is likely that some misspecification

will occur. In the context of item response theory (IRT), overall tests of model fit
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and targeted fit statistics may help diagnose the source of misfit (Maydeu-Olivares,

2013). For example, in the context of multidimensional IRT (MIRT), the researcher

must specify a factor structure and pattern of loadings. If the overall model fit is

poor, the researcher may wonder whether the fit may be improved by modifying the

pattern of loadings. One way to address this question is through use of the score test

(Rao, 1948), also called the Lagrange multiplier test (LM; Aitchison & Silvey,

1958). In short, LM tests allow a researcher to approximate the change in the log-

likelihood if a constrained parameter were to be freely estimated, without actually

refitting the model. Alternatively, LM tests may be used to form confidence intervals

or perform hypothesis testing for to-be-freed parameters.

In an IRT context, LM tests have been introduced and studied for detecting differ-

ential item functioning (Fox & Glas, 2005; Glas, 1998), violations of the functional

form of the response functions (Glas, 1999; Glas & Falcón, 2003; Ranger & Kuhn,

2012), and person fit (Glas & Dagohoy, 2007). LM tests have also been studied as a

method to detect local dependence (Fox & Glas, 2005; Glas, 1999; Glas & Falcón,

2003; Kim, De Ayala, Ferdous, & Nering, 2011; Liu & Maydeu-Olivares, 2012; Liu

& Thissen, 2012, 2014; Obserski, van Kollenburg, & Vermunt, 2013; van der Linden

& Glas, 2010). Finally, LM tests have been studied in a general Bayesian framework

(Glas, 1999; Fox & Glas, 2005).

This article makes several contributions, the first of which concerns study of the

method used to compute LM tests. With full-information estimation (e.g., Bock &

Aitkin, 1981; Schilling & Bock, 2005), computational time can sometimes restrict

the number of alternative MIRT models that can be computed. As stated above, an

appealing feature of LM tests is that they do not require refitting the model to calcu-

late the statistic. However, LM tests do require an approximation of the information

matrix: The asymptotic covariance matrix of the score vector, including the to-be-

freed parameter(s). This matrix is commonly used to obtain standard errors for model

parameters in unrestricted models, and various methods may be used to approximate

it. These methods, though, may differ in terms of accuracy and computational diffi-

culty (e.g., Paek & Cai, 2014; Tian, Cai, Thissen, & Xin, 2013), as well as appropri-

ateness under misspecification. For example, an estimate could be based on expected

or observed versions of the cross-product of gradients or negative Hessian (Liu &

Thissen, 2014; Yuan, Cheng, & Patton, 2014).1 Among these approaches, the

observed cross-product approach is typically the fastest to compute, but may be the

least accurate for producing standard errors (e.g., Paek & Cai, 2014). Expected ver-

sions require the expectation to be taken over all possible response patterns and are

thus computationally intractable with a long test.

Comparisons among the matrices involved in LM test computation are rare.

Several studies of LM tests have used only the observed cross-product approach

(Glas & Falcón, 2003; Liu & Thissen, 2012), while Glas (1998) and Obserski et al.

(2013) used only the observed Hessian approach. In a limited set of simulations, Liu

and Maydeu-Olivares (2012) found that LM tests based on expected information

yield more accurate results than those based on the observed Cross-product. Glas
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(1999) used both the observed cross-product and observed Hessian approaches and

found little difference in the performance of the corresponding LM tests. But, recent

studies focusing on the information matrix have found that the observed cross-

product is generally less accurate than the observed Hessian (Yuan et al., 2014). The

computational approach could be important as under some conditions LM tests have

been found to have inflated Type I error rates (Glas & Falcón, 2003; Liu & Maydeu-

Olivares, 2012; Liu & Thissen, 2012, 2014; Ranger & Kuhn, 2012), and some stud-

ies show conflicting results as to whether LM tests perform well with a long test and

few respondents (e.g., Glas & Falcón, 2003; Kim et al., 2011; Liu & Thissen, 2012,

2014; Ranger & Kuhn, 2012).

Another possibility is to compute a generalized LM test (Boos, 1992; Engle,

1984; White, 1982). The distinctive feature of the generalized LM test is that it is

derived assuming there is some misspecification in the model (Boos, 1992). Since it

is analogous to use of the sandwich covariance matrix used to obtain parameter stan-

dard errors (Yuan et al., 2014), we later use the term sandwich to refer to the general-

ized LM test. On the other hand, standard forms of the LM test assume the model is

exactly correct and may lead to incorrect inference when this assumption is violated.

Given that, in practice, models are routinely misspecified (MacCallum, 2003), the

generalized LM test is arguably a preferable statistic for applied work. However, to

the best of our knowledge, its performance has not yet been evaluated in an IRT con-

text. Thus, this research investigates the performance of the generalized LM test via

a simulation study, along with both the observed cross-product and observed Hessian

approaches.

The second contribution of the current research concerns the utility of LM tests

under varying degrees of misspecification. In any practical research setting, the ini-

tially fitted model will most likely be misspecified. The naive researcher may hope

that LM tests can definitively distinguish between parameters that are fixed to their

true values in the population data-generating model (assuming such a parametric

model exists), and parameters that are fixed to incorrect values. In a structural equa-

tion modeling context, there are several prominent examples of LM tests being used

in model specification searches that typically do not lead to the correctly specified

model (Chou & Bentler, 1990; Kaplan, 1988; MacCallum, 1986). While this property

of LM tests is inherent in the underlying statistical theory, some research gives the

impression that LM tests rejecting parameters fixed to the data-generating values

should always count as Type I errors, even under model misspecification (Green,

Thompson, & Babyak, 1998). In reality, if the initial model is misspecified, freeing a

parameter that is fixed to its data-generating value can often improve model fit and a

properly formulated LM test will tend to detect this improvement. Even if one knows

the data-generating model, determining whether the null hypothesis is true under an

LM test is nontrivial when the baseline and alternative models are misspecified.

When the null is true under misspecification, we refer to rejection of the null as a

Type I error. When the null is not true under misspecification but the parameter is

correctly fixed to its data-generating value, we refer to rejection of the null as a false
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positive. This point will be further clarified when we provide a concrete example and

discuss technical details of LM tests under misspecification. Under misspecification,

however, the generalized LM test is theoretically the proper test.

Determining the performance of different LM computational approaches for practi-

cal research settings thus requires their study under varying levels of misspecification.

Some previous research suggests that LM tests have false positives close to their nom-

inal value or only slightly inflated (Kim et al., 2011; Liu & Maydeu-Olivares, 2012;

Liu & Thissen, 2014), yet in some of these studies the overall magnitude of misspeci-

fication is arguably small (Liu & Maydeu-Olivares, 2012; Liu & Thissen, 2014).

Other studies did not vary the degree of misspecification (Ranger & Kuhn, 2012) or

have studied LM tests with few items (e.g., 10 or less; Glas, 1998, 1999). The current

investigation is in line with Glas and Falcón (2003), in which the number of items

exhibiting local dependence and the degree of local dependence was widely varied.

Yet, in most conditions Glas and Falcón (2003) found that LM tests still tend to detect

true misspecifications at a greater rate than generating false positives, but did not

investigate different computational approaches for LM tests. To our knowledge, in

none of these investigations was the misspecified model under the null hypothesis

extensively discussed nor were generalized LM tests investigated. For example, Glas

(1998) notes that misspecified models may lead to bias in parameter estimates, inflat-

ing LM test rejection rates for parameters correctly fixed to their data-generating val-

ues, but does not provide an illustrative example nor discuss generalized LM tests.

A final contribution of the current research concerns the use of a MIRT model for

the simulation study. Some previous studies on local dependence have used specia-

lized MIRT models (e.g., bifactor, testlet) for the less restrictive model (e.g., Liu &

Maydeu-Olivares, 2012; Liu & Thissen, 2012, 2014) in the LM test. However, in

these cases, a unidimensional model was used for the more restrictive, or baseline,

model. In contrast, the current study uses a two-factor MIRT model for the baseline

model. Consequently, the LM test can be used to test for omitted cross-loadings,

which has not previously been explored in an IRT framework.

In summary, the main goal of this article is to present an extensive Monte Carlo

simulation study that examines the performance of LM tests for omitted cross-

loadings in MIRT models: (1) using different methods of score test computation,

including the generalized LM test designed specifically for use under model misspe-

cification and (2) under various degrees of model misspecification. In what follows,

we first present a motivating example followed by general theory regarding LM

tests. Next, we detail the Monte Carlo simulation study. Finally, concluding remarks

and limitations are discussed.

Example and Theoretical Background

A Multidimensional Item Response Theory Model

Suppose we have i = 1, . . . ,N independent subjects who complete j= 1, . . . , n items,

with Yij representing a discrete random variable for subject i’s response to the jth item
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and yij its realization. For simplicity, we consider just dichotomous items and model

item responses with the multidimensional two-parameter logistic model,

P(Yij = 1jaj, cj,ui) =
1

1 + exp (� (cj + a
0
jui))

, ð1Þ

where cj is the item intercept, aj is a D31 vector of item slopes, and u is a vector of

the D latent traits. Under the current application, we consider u;N (m,S), with m= 0

and the diagonals of S fixed to 1 for identification of the latent scale. The marginal

probability of a response pattern, yi, is

p(yijh) =

ð

f (yijc, a,u)f(ujm,S)du, ð2Þ

where f (yijc, a, u) is the conditional probability of response pattern yi, f is the den-

sity function of the multivariate normal distribution, c and a collect all intercepts and

item slopes, respectively, and h in turn collects all model parameters. Once item

responses are observed, they are treated as fixed and the marginal log-likelihood is

defined as the sum of log-likelihood contributions for each respondent:

l(hjY) =
X

N

i= 1

l(hjyi) =
X

N

i= 1

logp(yijh): ð3Þ

As a concrete example, consider a correlated two-factor model with simple struc-

ture in which each item loads on only a single factor (Figure 1). This model is also

known as a between-item multidimensional model. Similar models have been used to

investigate the performance of LM tests (or modification indices) in structural equa-

tion modeling (Green et al., 1998). In our simulation study, such a model is specified

as the baseline model and is fit to all replicated data sets. If the baseline model is the

same as the true data-generating model, any significant LM tests constitute Type I

errors.

If the baseline model exhibits poor fit, the researcher may explore revising the

model. Though the model may be incorrect in numerous ways, we focus on testing

for an omitted cross-loading. For example, suppose that the true data-generating

model is represented in Figure 2, in which a single cross-loading is present for Item

1. Example item parameters for such a model appear on the top-left of Table 1. In

this study, we focus on LM tests for a single cross-loading. In other words, the LM

test tells us whether to expect a significant improvement in model fit under a less

restrictive model in which a single cross-loading is freed. Continuing with the exam-

ple, a significant LM test for the omitted cross-loading would (correctly) indicate

how the researcher should revise the model.

The situation becomes more complex when both the baseline and the less restric-

tive models are misspecified. For example, in Figure 3, we consider the case where

the baseline model is misspecified and the researcher tests for a cross-loading from
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u2 to Item 3 instead of to Item 1. Under the true model (i.e., Figure 2), the cross-

loading from u2 to Item 3 is zero. However, under the less restricted model (i.e., the

model in Figure 3), this same cross-loading may be nonzero even when fit at the

population level. Whether the less restrictive model is misspecified therefore has

implications for the truth of the null hypothesis for an LM test. We will return to this

topic after presenting LM tests for correctly specified models.

Lagrange Multiplier Tests for Correctly Specified Models

LM tests were proposed as Rao’s score test (Rao, 1948) and are asymptotically

equivalent to likelihood ratio tests and Wald tests (e.g., Engle, 1984). An equivalent

development of the score test was presented in econometrics derived under

Figure 2. Two-factor model with cross-loading.

Figure 1. Two-factor model with simple structure.
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constrained estimation using the so-called Lagrange multiplier (Aitchison & Silvey,

1958), hence the name LM tests. In the structural equation modeling literature, LM

tests are sometimes called modification indices (e.g., Kaplan, 1988; Sörbom, 1989).

In what follows, we present LM tests in their multivariate form, allowing tests of

multiple parameters simultaneously.

Let h= (h0
1,h

0
2)

0 be an r31 vector of model parameters, where the dimensions of

h1 and h2 are r1 and r2, respectively. Let h0 = (h
0
10,h

0
20)

0 be the corresponding vector

of true parameter values. Suppose we are interested in the following hypothesis test:

H0 : h20 = d vs: H1 : h20 6¼ d, ð4Þ

where d is a vector of fixed constants. While there is more than one way to test this

hypothesis, LM tests are useful in the context of constrained estimation, whereby the

researcher first obtains the maximum likelihood estimates from a restricted model,

~h= (~h0
1, ~h

0
2)

0 = (~h0
1, d

0)0. Thus, the parameter estimates corresponding to h20 are fixed

to d. This differs from the case whereby the researcher first obtains the unrestricted

maximum likelihood estimates, ĥ = (ĥ1, ĥ2)
0. If this unrestricted model is correctly

specified, ĥ converges to h0. If H0 is also true, then ~h also converges to h0. To con-

nect this framework to the current research, let a be the omitted cross-loading that is

Table 1. Hypothetical True Item Parameters and Population Values Under Misspecification.

Item

True model, h Model 2, h* Model 3, h*

c a1 a2 c a1 a2 c a1 a2

1 0.00 1.00 0.70 0.00 1.59 0.00 1.59
2 21.00 1.20 0.00 20.98 1.33 20.44 20.91 0.89
3 1.00 1.20 0.00 0.91 0.89 0.98 1.33 20.44

4 0.00 0.00 1.00 0.00 1.00 0.00 1.00
5 21.00 0.00 1.20 21.00 1.20 21.00 1.20
6 1.00 0.00 1.20 1.00 1.20 1.00 1.20

Item

Model 4, h* Model 5, h* Model 6, h*

c a1 a2 c a1 a2 c a1 a2

1 0.00 1.96 0.00 1.96 0.00 1.96
2 20.90 0.86 20.90 0.86 20.90 0.86
3 0.90 0.86 0.90 0.86 0.90 0.86
4 0.00 0.00 1.00 0.00 1.00 0.00 1.00
5 21.00 1.20 21.00 0.00 1.20 21.00 1.20
6 1.00 1.20 1.00 1.20 1.00 0.00 1.20

Note. Omitted entries are fixed to 0 for the misspecified models. The incorrectly specified cross-loadings

appear in bold and italics for misspecified models. c are item intercepts, a1 are slopes on the first factor,

u1, a2 are slopes on the second factor, u2. Factor correlations are omitted from the table, but were .30

under the true model, and .60 under Models 2 and 3, and .54 for Models 4 through 6.
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the focus of the LM test, with population value a0. Then, h20 =a0, r2 = 1, and d= 0.

That is, the null hypothesis is H0 : a0 = 0, and the alternative hypothesis is

H1 : a0 6¼ 0.

Before presenting the LM test, we define some additional quantities. Denote

_l(hjyi) =
∂l(hjyi)

∂h
and €l(hjyi) =

∂
2l(hjyi)

∂h∂h0
: ð5Þ

as the gradient and Hessian, respectively, of the log-likelihood for a single observa-

tion. Then, the Fisher information, or (negative) expected Hessian, for one observa-

tion is

A(h) = � E €l(hjyi)
� �

: ð6Þ

Under correct model specification, A is equivalent to the expected cross-product

matrix:

B(h) =E _l(hjyi)_l(hjyi)
0

� �

: ð7Þ

The LM test is defined as

LM =
1

N
s(~h)0A(~h)�1s(~h), ð8Þ

where s(~h) =
PN

i = 1
_l(~hjyi) is the score vector for the entire sample, and A(~h) is the

Fisher information evaluated at the constrained maximum likelihood estimates.

Under H0 and a correctly specified model, LM is asymptotically distributed as a cen-

tral chi-square with r2 degrees of freedom. Since the first r1 elements in s(~h) are zero

Figure 3. Two-factor model with incorrectly specified cross-loading.
Note. The dashed line indicates a true cross-loading that is omitted from the model. The bold line

indicates a cross-loading that is modeled, but not present in the data-generating model.
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due to maximum likelihood estimation, Equation (8) is often presented in reduced

form (e.g., Glas, 1999):

LM =
1

N
s2(~h)

0A(~h)(22)s2(~h), ð9Þ

where s2(~h) is the subset of s(~h) corresponding to ~h2, and A(~h)(22) is the partitioned

inverse corresponding to h2 (e.g., Schott, 2005). Temporarily suppressing the nota-

tion indicating dependence on h, for the partition

A =
A11 A12

A21 A22

� �

, ð10Þ

the partitioned inverse needed for Equation (9) is

A(22) = A11 � A21A
�1
11 A12

� ��1
: ð11Þ

In practice, the Fisher information in Equations 8 and 9 cannot be calculated as

the true parameters, h, are unknown. Even if substituting ~h for h, the expectation for

A(~h) requires computation over all possible response patterns, the number of which

is exponential in n. Thus, this computation is in general not feasible for long tests.

Instead, a different consistent estimate of A(h) is used.

A popular approach is to use sample-based counterparts to A and B, evaluated at

the constrained maximum likelihood estimates ~h. These consistent estimates are the

observed Hessian:

Â= �
1

N

X

N

i= 1

€l(~hjyi), ð12Þ

and observed cross-product:

B̂=
1

N

X

N

i= 1

_l(~hjyi)_l(~hjyi)
0: ð13Þ

Both of these approximations are studied in our simulations and are computed

after parameter estimation. The derivatives involved in these matrices are well known

(e.g., see Liu & Thissen, 2012; Yuan et al., 2014). In practice, B̂ is faster to compute

than Â and is more frequently used to study LM tests in the IRT modeling context.

Lagrange Multiplier Tests for Misspecified Models

When the unrestricted model is correctly specified, the unconstrained maximum like-

lihood estimates converge to the true population values: ĥ �!
P

h0. However, if the

model is misspecified, and certain regularity conditions are satisfied (e.g., White,

1982). ĥ converges to a different stationary point, say h� = (h�0
1 ,h

�0
2 )

0. In general,
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h� 6¼ h0, though depending on the form and degree of misspecification, some ele-

ments of h� may equal their counterparts in h0. In particular, we may wonder

whether h�
2 =h20 or even h20 = d. However, under misspecification, it is only possi-

ble to test hypotheses such as:

H0 : h
�
2 = d vs: H1 : h

�
2 6¼ d: ð14Þ

If this null hypothesis is true, the restricted estimates, ~h, will also converge to h�. In

general, we cannot carry out inference for h20 under misspecification.

Under misspecification, it is well known that, in general, A(h) 6¼ B(h), and nei-

ther Â
�1
=N nor B̂

�1
=N provides a consistent estimate of the covariance matrix of

the maximum likelihood estimates (White, 1982). Instead, a consistent estimate can

be obtained from the so-called sandwich covariance matrix, Ĉ=N = Â
�1
B̂Â

�1
=N .

Similarly, under misspecification, LM as defined in Equation (8) will not be asymp-

totically distributed as a chi-square with r2 degrees of freedom. But, an adjustment

can be made to the weight matrix of LM to form a generalized version of the test

(e.g., Boos, 1992; Engle, 1984; White, 1982):

LMs =
1

N
s2(~h)

0 Â
(22)

� 	�1

Ĉ
�1

22 Â
(22)

� 	�1

s2(~h), ð15Þ

where Â
(22)

is defined in Equation (11) and Ĉ22 is the block of Ĉ corresponding to

h�
2. This sandwich-based LM test has the desired asymptotic distribution, that is, chi-

square with r2 degrees of freedom when H0 is true. However, this generalized ver-

sion of LM has apparently never been studied in an IRT context.

To connect this theory to the current research, again consider the true model in

Figure 2 with item parameters in Table 1. The single true cross-loading is from u2 to

Item 1. Suppose the researcher fits the simple structure model in Figure 1 and then

uses an LM test for the cross-loading from u2 to item 3 as in Figure 3. Since the

model in Figure 3 is misspecified, â �!
P

a
�. While a0 = 0, the value of a� is not

obvious.

Given the small size of this model, and the true parameters h0, we can find h�

(and a
�) in the following way.2 Using h0, the true response pattern probabilities for

all 26 = 64 unique response patterns can be calculated by Equation (2). Then, the mis-

specified model (Figure 3) can be fit directly to these true probabilities by maximum

likelihood, yielding h�. By this method, we find that a� = � 0:44 (see Model 3 in

Table 1). Given this particular misspecification, a0 = 0, while a
� 6¼ 0. Thus, for the

correctly specified model, the null hypothesis H0 : a0 = 0 is true, while for the mis-

specified model, H0 : a
� = 0 is false. In this case, rejection of H0 under the misspeci-

fied model is the correct decision and should not constitute a Type I error. However,

since this decision is not consistent with the true data-generating model, we may refer

to such rejections as false positives.

For a different misspecification, it is possible that the null hypothesis is true for

both the correct and misspecified models. For example, consider the model with a
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single cross-loading from u1 to item 4. The corresponding population parameters for

this model are in Table 1, under the ‘‘Model 4’’ label. For this misspecification,

a0 =a
� = 0, and the LM null hypothesis for the misspecified model is true. This pat-

tern holds when there is a single unmodeled cross-loading: If the misspecified cross-

loading involves the same latent dimension as the unmodeled cross-loading, a� 6¼ 0;

otherwise a� = 0. Since this is a small model, we report all other single cross-loading

specifications in Models 2 through 6 in Table 1.

This example illustrates the challenge of using LM tests in general, and in particu-

lar to study cross-loadings under misspecification. Even when a0 = 0, a
� may or may

not equal zero, and the effect of misspecification on hypothesis testing can be diffi-

cult to evaluate (see, e.g., Yuan, Marshall, & Bentler, 2003). While not considered

here, it is also possible that for a particular model, a0 6¼ 0, but some misspecification

will result in a
� = 0. While the current research focuses on LM tests, the impact of

misspecification applies equally to other tests. For example, this phenomenon has

been explored in the context of likelihood-ratio tests, in both IRT (Maydeu-Olivares

& Cai, 2006) and covariance structure modeling (Yuan & Bentler, 2004) frameworks.

And the possible bias of LM tests under misspecification has been known for some

time (e.g., Byron, 1972).

Monte Carlo Study

Method

One purpose of the simulation study was to compare the performance of the observed

cross-product, observed Hessian, and sandwich approaches to computing LM tests

under a MIRT model with possibly omitted cross-loadings. We also sought to exam-

ine LM test performance in terms of Type I error under both correct and misspecified

models such as those in the previous section, and whether these tests have utility

under progressively misspecified models in distinguishing between parameters fixed

to their population data-generating values and parameters that are not.

To this end, we employed a 3 (LM method: cross-product, Hessian, sandwich) 3

3 (sample size: N = 200, 500, 1,000) 3 3 (number of items, n = 10, 20, 50) overall

design. These conditions were fully crossed with 10 different conditions representing

varying levels of misspecification (or lack thereof). The data-generating model and

that initially fit to the data were always a correlated two-factor model (with .3 correla-

tion) with an equal number of main items per factor such as that presented earlier in

this article. Thus, under the null condition, no cross-loadings were present. The

remaining conditions had cross-loadings in a 3 (number of cross-loadings: 1 item,

20% of items, 40% of items) 3 3 (size of cross-loading slope: .5, .75, 1) design. In

the one cross-loading condition, the single cross-loading was from the second factor

to the first item—analogous to the true model in Table 1. In the 20% and 40% of item

conditions, the cross-loadings were equally split between the two latent factors and

all cross-loadings had the same value for any given cell of the design. Other item

parameters were randomly generated across replications. Specifically, for item slopes,
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a;log-normal(0, :252), c;N (0, :52) for items on Factor 1 and c;N (0, 12) for items

on Factor 2.

One hundred data sets were generated using R (R Core Team, 2015) under each

of these conditions. Given that each possible cross-loading was tested for every data

set, 100 replications were deemed sufficient. To each data set, we fit the correlated

two-factor model with flexMIRT� (Cai, 2012) using rectangular quadrature with 101

equally spaced points between 26 and 6 for each latent dimension. The score vector

and matrices Â and B̂ were computed using custom R code to compute analytical

derivatives after reading in flexMIRT� output.3 The integrals involved in computing

Â and B̂ were evaluated using rectangular quadrature with 49 equally spaced points

between 26 and 6 for each latent dimension. Univariate LM tests were then com-

puted separately for all possible cross-loadings for each replication.

Under the null condition (i.e., a0 = 0 for all cross-loadings), the three LM methods

are asymptotically equivalent, and Type I error rates can be compared. Since there is

no misspecification, we would expect similar performance across the methods, except

possibly with smaller sample sizes and longer tests where high Type I error rates are

sometimes observed.

If the true model contains one cross-loading, there are three possible scenarios for

the LM test. First, if a cross-loading where a0 = 0 and a
� = 0 is tested, then we can

compare Type I error rates. For this scenario, the alternative model is misspecified,

and we would expect the sandwich method to demonstrate the best performance.

Second, if the cross-loading where a0 6¼ 0 is tested, then we can study power. Third,

if a cross-loading where a0 = 0 and a
� 6¼ 0 is tested, false positive rates can be com-

pared (which technically also constitute power since H0 is false).

Finally, if the true model contains multiple cross-loadings, then greater misspeci-

fication results and for any tested cross-loading in our study, a� 6¼ 0 (i.e., the null

hypothesis is never true). Under these conditions, there are still two possible scenar-

ios. If a cross-loading is tested where a0 6¼ 0, power can be studied. And if a cross-

loading is tested where a0 = 0, false positive rates can be studied. With multiple

cross-loadings, we have no theoretical expectations regarding which LM approach

may be most powerful. In addition, we are interested in the relative magnitudes of

the false positive and power rates.

Results

Model convergence was assessed by recording replications that reached a maximum

iteration limit of 5,000 and replications with any slope greater than 22.35 (arguably

Heywood cases or improper solutions).4 In total, only 35 out of 9,000 fitted models

did not converge. Most convergence problems were concentrated in the 10-item and

N = 200 cells with 1 cross-loading (6 with slope size = .75; 7 with slope size = 1.0) or

20% cross-loadings (3 with slope size = .5; 5 with slope size = .75; 8 with slope size

= 1.0). However, no cell had fewer than 92/100 valid replications, and all other cells

not explicitly mentioned had 99/100 or more valid replications. Null hypothesis
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rejection rates for score tests are reported as a proportion considering only valid repli-

cations and using the total number of valid tests.

The Hessian approach—and only this approach—sometimes resulted in a negative

test statistic. Follow-up analyses on select data sets revealed that the profile log-

likelihood near zero for restricted cross-loadings was irregular and that Â for these

score tests was not positive definite. The corresponding element of Â
�1

(or Â
(22)

)

was thus negative, resulting in a negative score test. How one should treat such test

statistics is open to debate. A similar phenomenon has been found to occur with

scaled test statistics for model comparisons in structural equation modeling (Chuang,

Savalei, & Falk, 2015; Satorra & Bentler, 2001, 2010). In this literature, the model

(restricted, unrestricted, or both) is sometimes considered misspecified and not

interpreted—especially if overall tests of fit also reject the model. As we will show

later, negative test statistics for the Hessian approach can occur under minimal or no

misspecification. Alternatively, such test statistics are sometimes rounded to the

nearest valid value, which is zero in this case. In this article, we adopt this latter

approach and counted such cases as valid non-rejections of H0, but also explicitly

report when such cases occurred.

As described above, H0 : a0 = 0 was true only under the conditions with 0 or 1

cross-loading. More specifically, the null was true for all cross-loadings under the no

cross-loading conditions, and n=2 cross-loadings under the one cross-loading condi-

tion. Figure 4 depicts the corresponding Type I error rates, with cells with higher

Type I error rates shaded in progressively darker shades of red and cells with lower

Type I error rates in darker shades of blue. The horizontal panels of this Figure corre-

spond to each type of LM test method—with the number of items varying across

each row of each panel. Similarly, vertical panels correspond to the data-generating

condition and columns within each vertical panel indicate different sample sizes.

Comparing the three approaches, the cross-product approach tended to have

inflated Type I error rates (as high as .195), and these rates tended to increase with

more items and at smaller sample sizes. Even at the largest sample size (N = 1, 000),

these rates tended to exceed .06 and sometimes .07 with n = 50 items. The Hessian

approach had much better calibrated Type I error rates, with most rejection rates near

the nominal rate. However, some overrejection was observed for the Hessian

approach (as high as .088) with fewer items and at smaller sample sizes (e.g.,

N = 200 and n= 10). Thus, the Type I error rates for the Hessian tended to drop as

the number of items increased. In contrast, the sandwich approach tended to underre-

ject (as low as .006) with fewer items and smaller sample sizes, but otherwise was

close to the nominal rate in most conditions and never exceeded .056. Averaging

across all data-generating conditions with each cell contributing an equal amount to

rejection rates, the LM test methods had rejection rates of .08 (cross-product), .06

(Hessian), and .04 (sandwich).

Figure 4 also allows us to evaluate the relative performance of the sandwich

approach under misspecification, when it is the only theoretically correct approach.

For the sandwich approach, the pattern of results for the zero cross-loadings
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condition (with correct model specification) is similar to the patterns of results for all

the one cross-loading conditions (with model misspecification). Thus, the sandwich

approach performs as expected and is not adversely affected by the model misspeci-

fication. Somewhat surprisingly, the patterns of results for the cross-product and

Hessian approaches are also similar when comparing the zero cross-loading to one

cross-loading conditions. For the cross-product approach, the same general pattern of

liberal Type I error rates continues under misspecification. For the Hessian approach,

the Type I error rates with n= 10 items appear to increase slightly under misspecifi-

cation, which is consistent with the theory that the calibration of the Hessian-based

LM test may be adversely affected under misspecification.

Figures 5, 6, and 7 depict power for the 1 cross-loading, 20% cross-loadings, and

40% cross-loadings conditions, respectively, with darker shades of red indicating

higher power. The layout of these Figures is nearly identical to that of Figure 4,

except the vertical panels distinguish between cases where a0 = 0 (i.e., false posi-

tives) and where a0 6¼ 0. In these Figures, due to misspecification, the null hypoth-

esis H0 : a
� = 0 is never true. On the other hand, the tested cross-loading may or may

not actually be zero in the data-generating model. The results for these conditions

(i.e., a0 = 0 and a0 6¼ 0) are presented side-by-side so that it is easier to discern

whether LM tests have greater power to detect cross-loadings where a0 6¼ 0. Under

misspecification, LM tests will be more useful in revising a model when rejection

rates are relatively high when a0 6¼ 0 compared to rejection rates when a0 = 0.

Power to detect cross-loadings was usually highest when only one cross-loading

was present, when the size of the cross-loading was larger, and with more items and/

or greater sample sizes (Figure 5). Typically, power under the 1 cross-loading condi-

tions was high when a0 6¼ 0, averaging .90 (cross-product), .76 (Hessian), and .78

(sandwich) across other data-generating conditions (sample size, number of items,

size of omitted cross-loadings). Power (or false positives) under 1 cross-loading con-

ditions was much lower when a0 = 0, averaging .16 (cross-product), .12 (Hessian),

and .11 (sandwich) across other data-generating conditions. That is, under such mild

misspecification, LM tests appear to be able to detect true cross-loadings at a rela-

tively high rate and do not tend to reject the null hypothesis for slopes that are actu-

ally zero under the true data-generating model.

One exception to the above pattern was the tendency for false positives to increase

under larger sample sizes and fewer items. Although this pattern was common to all

LM test approaches, the false positive rate for the Hessian approach was sometimes

higher than power to detect true cross-loadings (e.g., n = 10 and a single cross-loading

of 1.0). Given the minimal misspecification of one cross-loading, this latter result is

somewhat surprising. However, the Hessian results can be partly explained by an

increase in the tendency for negative score tests under similar conditions. As shown

in Figures 8 and 9, the Hessian approach had up to a .98 proportion of tests that were

negative, especially for a0 6¼ 0 slopes under large sample sizes and when there was a

substantial amount of misspecification (cross-loadings � :75). Under relatively less

misspecification (e.g., a� = 0 or cross-loadings of .5), these negative tests were less
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frequent, but tended to occur at n= 10 and under smaller sample sizes. Since we have

counted negative tests as valid non-rejections of H0, such results explain the lack of

power for the Hessian approach at n = 10. This pattern also suggests a tendency for

the sandwich approach to better differentiate among zero and nonzero slopes than the

Hessian approach.

The results for the 20% (Figure 6) and 40% (Figure 7) conditions were similar to

the 1 cross-loading conditions (Figure 5) in that power increased with more items

and greater sample sizes. The Hessian approach sometimes displayed the same unex-

pected pattern of results at n= 10, and the sandwich approach tended to have rela-

tively low power with small sample sizes. Across the approaches, the rejection rates

for true zero slopes (false positives) tended to increase with the proportion of omitted

cross-loadings. At the same time, power to detect true cross-loadings decreased under

greater misspecification. For the 40% proportion of cross-loadings conditions, power

was very similar for both types of parameters, and there were more cases where false

positive rates exceeded power for true cross-loadings even under the same data gen-

eration conditions. In the 40% cross-loadings with 1.0 slopes conditions, for example,

rejection was greater for true zero slopes than for true cross-loadings in 23/27 cells

across all LM test methods. On average under the 20% cross-loading conditions,

rejection rates were .29 (cross-product), .22 (Hessian), and .21 (sandwich) for true

zero slopes (false positives), and .83 (cross-product), .62 (Hessian), and .64 (sand-

wich) for true cross-loadings. For 40% cross-loading conditions, these numbers were

.44 (cross-product), .36 (Hessian), and .31 (sandwich) for true zero slopes, and .47

(cross-product), .40 (Hessian), and .30 (sandwich) for true cross-loadings.

Figures 5, 6, and 7 make clear that as the degree of misspecification increases, the

power of the LM test depends less on the value of a0 under the true data–generating

model. In Figure 5, there is a clear difference in the results depending on whether

a0 = 0 or a0 6¼ 0. In sharp contrast, in Figure 7, the pattern of results are very similar

for the a0 = 0 and a0 6¼ 0 conditions. Thus, as misspecification increases, the LM test

loses the ability to distinguish between a0 = 0 and a0 6¼ 0.

Discussion

Our Monte Carlo simulation study examined the performance of the observed cross-

product, Hessian, and sandwich (generalized LM test) approaches to computing LM

tests under a variety of levels of model misspecification. Overall, our results indicate

a number of differences among LM test approaches that are reconcilable with previ-

ously published simulation results. For instance, the tendency of the cross-product

approach to have high Type I error rates, especially under longer tests and fewer

respondents, is consistent with other research using this approach (Liu & Maydeu-

Olivares, 2012; Liu & Thissen, 2012, 2014). In contrast, Type I error rates were in

general lower for the Hessian approach and dropped to nominal levels under the

same conditions—a pattern of findings consistent with Kim et al. (2011). On the

other hand, the sandwich approach never had inflated Type I errors, even under
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misspecification. This suggests that the Hessian and sandwich approaches are prefer-

able to the cross-product in terms of Type I error control, and use of these

approaches may yield more acceptable Type I error rates for LM tests previously

introduced in the IRT literature (e.g., Liu & Maydeu-Olivares, 2012; Liu & Thissen,

2012, 2014).

Any recommendation for the Hessian must be qualified by the observation that it

may fail to yield an easily interpretable test statistic when there are few administered

items and much misspecification. While we have counted negative tests as nonrejec-

tions of H0, these tended to occur when in fact H0 was false. It therefore may be pru-

dent in future research to consider such cases actually as possible rejections of H0, or

better yet, to use an alternative such as the sandwich approach.

Turning to power and the ability to differentiate between zero and nonzero data

generating slopes under misspecification, a discernible pattern of results across meth-

ods was less obvious. The cross-product approach had the highest power, but this

was to be expected given the inflated Type I error rates. In addition, we observed

poor performance for the Hessian approach for larger samples and fewer items. Thus,

given Type I error control and more dependable performance under misspecification,

we recommend the sandwich approach and encourage its further study and adoption

in IRT software.

The degree of misspecification in the initially fitted and alternative models made

the most impactful difference on the ability of LM tests to differentiate among zero

and nonzero true slopes. Whereas Glas and Falcón (2003) typically found that LM

tests provided some utility under their studied conditions, we have arguably shown

that LM tests have questionable utility when the alternative model is highly misspeci-

fied. This finding is consistent with results presented in Yuan and Bentler (2004) and

Maydeu-Olivares and Cai (2006) on the behavior of the likelihood ratio test under

misspecification. Given the asymptotic equivalence between the LM and likelihood

ratio tests, this finding is expected. Recent investigations of LM tests in the context

of IRT ought to be interpreted with this in mind—the performance of newly devel-

oped LM tests is expected to change under misspecification, and it is important to

identify various possible forms of misspecification. Thus, one possible future research

direction is to study whether a similar pattern of results holds for certain tests of local

dependence, functional form of the response function, and so on.

A number of limitations of the present study lead us to suggest other future

directions. In the covariance structure modeling literature, Green and colleagues

(Green & Thompson, 2010; Green, Thompson, & Poirier, 1999) have attempted a

number of methods to control Type I error and any of these approaches could be

tried in the IRT context. We would only expect these approaches to have utility in

the present context to the extent that rejection rates for true zero slopes (false posi-

tives) are reduced at a faster rate than that for true cross-loadings. Although Liu

and Maydeu-Olivares (2012) found that the expected Hessian also maintained bet-

ter Type I error control, a feasible computational approach for longer tests still

remains to be seen.
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In the current article, we also consider only the case where the misspecification

(omitted cross-loading) is of the same type of parameter as that being examined with

the LM test. Other unexplored possibilities could include whether LM tests for cross-

loadings tend to have inflated Type I error when the functional form assumption is

violated, or any other combination of misspecifications. Such a case is likely to be

realized in practice. It is also desirable to study the performance of LM tests when

some aspect of the data-generating model is nonparametric and/or data follows an

unknown distribution.

LM tests are sometimes criticized within the context of model specification

searches. If used in such a search, the researcher may focus first on freeing para-

meter(s) corresponding to the largest LM test. While examining the utility of such a

strategy may entail a different set of simulations than we present or different analy-

ses on our simulation results, this strategy may not always work well in practice

(MacCallum, 1986). Researchers ought to be cognizant that LM tests are not neces-

sarily designed to find the correctly specified model and may not do so unless there

is minimal misspecification. Rather, one needs to be aware that the null hypothesis

being tested under misspecification may not be true, even if the parameter of interest

is fixed to its true data-generating value. Instead, a final future direction may be to

consider other alternatives for specification searches that may be more fruitful than

univariate LM tests (Marcoulides, Drezner, & Schumacker, 1998; Marcoulides &

Leite, 2014). In sum, significant LM tests may be safely used as an indication that a

model is misspecified, but are not guaranteed to identify the source of the

misspecification.
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Notes

1. In the broader IRT literature, the observed Hessian is sometimes referred to as just the

‘‘observed (Fisher) information matrix,’’ the observed cross-product as the ‘‘empirical

cross-product,’’ and expected Hessian as the ‘‘Fisher information matrix.’’

2. The procedure described here is completely analogous to fitting a covariance structure (or

structural equation) model to the population covariance matrix.

3. While flexMIRT� can compute B̂ using ‘‘SE = Xpd’’ as an option, this matrix will not

contain elements corresponding to the to-be-freed parameter(s). Similarly, while

flexMIRT� can approximate Â by the supplemented EM algorithm (‘‘SE = SEM’’; Cai,

2008), again, this matrix will not include the to-be-freed parameter(s). Thus, R code was
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written to compute the analytical versions of B̂ and Â for the purposes of this research.

The accuracy of the programming was checked against flexMIRT� when possible and

against numerical derivatives otherwise.

4. This value roughly corresponds to a standardized normal ogive slope of .999 (e.g., see

Forero & Maydeu-Olivares, 2009).
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