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ABSTRACT. A study is made of Lamb's plane problem in micropolar viscoelastic half-
space with stretch. The viscoelasticity 18 characterized by the rate-dependent
theories of micro-viscoelasticity generalizing the classical Kelvin-Voigt theory. The
displacement components, force stress, couple stress and vector first moment are
obtained for a half-space subjected to an arbitrary normal load. Two particular cases
of a horizontal force and a torque which are time harmonic have been considered.

Several limiting cases are obtained as special cases of the present analysis.
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1. INTRODUCTION.

Lamb's problem [l1] has received considerable attention by several researchers in
different elastic media with various kinds of loading. 1In particular, Nowacki and
Nowacki [2] have studied the Lamb problem in micropolar elastic media. Chadha [3] has
investigated the Lamb problem in micropolar elastic media and discussed the
propagation of waves in a semi-infinite micropolar elastic solid due to loading at the
plane boundary of a semi-half space. Acharya and Sengupta [4] have recently studied
the same problem in a thermo-elastic medium under the influence of temperture. They

have examined the longitudinal and transverse thermo-elastic waves in a micropolar
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semi-infinite space bounded by a plane in which a normal loading is applied. In a
recent paper by Ray and Sengupta [5], a study is made of a two-dimensional waves in a
micropolar thermo-viscoelastic medium. More recently, Kumar and Chadha [6] and
Chadha, Kumar and Debnath [7] have made an investigation of the Lamb problem in a
microelastic half-space with stretch, and in a thermoelastic micropolar medium with

stretch.

Based upon the linear theory of micropolar viscoelastic waves due to Eringen [8-
9], a study is made of Lamb's plane problem in micropolar viscoelastic half-space with
the effect of stretch. The displacement components, force stress, couple stress, and
vector first moment are determined for a half-space subjected to an arbitrary normal
load. Two particular cases of a horizontal force and a torque which are time harmonic

are cited as examples of the general theory.

2. BASIC CONSTITUTIVE AND FIELD EQUATIONS.

Making reference to Eringen [8-10] and Nowacki [11], the constitutive and field
equations for micropolar viscoelastic solids with stretch in the absence of body
forces, body moments and stretch forces are

t =(A+x3—)u 8 +{(u—a)+(u-a)-a—}(u +u, )
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where t and A, are the components of force stress, couple stress and vector

31°751 |
first moment, p is the density, J is the rotational inertia, u is the displacement
vector, w is the microrotation vector and ¢ is the scalar microstretch,

and X, u, o, B, Y, €, a, B, n are material constants.
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3. BASIC EQUATIONS AND THE BOUNDARY CONDITIONS

We consider a semi-infinite homogeneous, isotropic, micropolar viscoelastic solid
with stretch. We take the rectangular Cartesian coordinates x, y, and z with the
origin at the plane boundary of the half-space, z » o and the z-axis 1is normal to the
medium. We assume that there is a uniform stretch in the x-direction and a given

loading function g(x,t) normal to the free surface z = o.

We consider the two-dimensional problem so that the displacement and
microrotation are independent of the y coordinate. Hence, we may write

u = (ul, o, u3) and w = (o, W,y 0). We introduce displacement potentials

$(x,z,t) and y(x,z,t) defined by u = ¢x + wz and uy = ¢z - wx. Consequently,
equations (2.4) - (2.6) can be written in terms of ¢ and ¢ as
2 23 2 32
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c at
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Eliminating ¢ or w, from (3.2) and (3.3), we obtain

2
2 23 2 32 2 23 2 3 32
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The boundary conditions of the problem are
t33 = - g(x,t), t31 =mg, = x3 =0 at z = 0 (3.6abcd)
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dw

3 2 99
my, = [y +e)+ (v, +¢)) 3¢} 32~ 8o Bx
B dw
ey 0, 0 2 (3.9)
Mo t3 W

In addition, we assume that ¢, ¥, Wy and ¢ tend to zero as z » o,

4. SOLUTION OF THE PROBLEM.

We apply the double Fourier transform f(k,z,s) of f(x,z,t) defined by (Myint-U
and Debnath, [13]) as

oo
fx,z,8) =%1— [ [ exp{i(kx + st)} f(x,z,t) dxdt (4.1)
-
and its inverse is given by
Ry x
fix,z,t) = o ff exp[-1(kx+st)] f(k,z,s)dkds
-0

Applications of this transforms to equations (3.1) - (3.4) gives

2
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4

The solutions of (4.2) - (4.4) with the boundary conditions at infinity are
;=Ae ,$=Be +Ce (4.9ab)

@, =B, e + C.e ,g=De (4.10ab)
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where it 1s assumed that Re(sj) >0 for § =1, 2, 3, 4 and

B, =a c, (4.11ab)

1 B, C. = a

2 1 3

1 2 20 2 20, 20 )
aj pfi_”i_ [(c2 - isc2 ) (s:l k°) +s71, 3 2,3 (4.12ab)

Applying the Fourier transforms (3.1) to the boundary conditions (3.6abed) -
(2.10) and combined with (4.9ab) ~ (4.10ab), we obtain

Al A2 A3 A4 "
(A, B, C, D) = {A—’ RS A_) g(k,s) (4.13abed)
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=4
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A% = A -i8X , y* = y ~isy , a*=a-is a ,y* = y -igy , e* = eg-ise¢
1 1 1 1 1

Application of the inverse Fourier transformation to (4.9ab) - (4.10ab) gives

1 © ® —slz—i(kx+st)
b=—r | [ Ae dkds, (4.19)
v = T [ [ (Be ., Ce 3 ) e_i(kX+3t)dkds, (4.20)
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| ~8y% “83%  _i(kx+st)
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Using (4.19) - (4.22), we obtain the formal solutions for the displacement components,

microrotations, force stress, couple stress and vector first moment in the form
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5. PARTICULAR SOLUTIONS OF INTEREST.

We first consider a time harmonic concentrated normal load in the form

glx,t) = P 8(x) et (5.1)

where P is a constant and &8(x) is the Dirac delta function and w is the frequency.

The double Fourier transform of g(x,t) is

g(k,s) = P §(s-w)

Consequently the solutions assume the form

u = - %_7 [F(z,k,8)]__ expli(ix + ut)]dk (5.2)
uy = - %_? [F,(z,k,8)]__ exp[-1(kx + ut)]dk (5.3)
w, = %_Z [F,(z,k,8)]__ expl-1i(kx + wt)ldk (5.4)
tyy - % _? [F,(z,k,8)]__ exp[-i(kx + wt)]dk (5.5)
ty = % —}., [Fo(2,k,8))_ expl-i(kx + ut)]dk (5.6)
my, - % _? [Fg(z,k,8)1,_ expl-1(ix + wt)ldk (5.7)
Ay = - %_? [F,(2,k,8)]__ expl-i(kx + ut)]dk (5.8)

Neglecting the viscous effects, we obtain the corresponding results for the micropolar

elastic half space with stretch

u == P_i [Gl(z,k,s)]s‘wexp[—i(kx + wt)]dk, (5.9)
uy = - %’; _? [6,(z,k,8)],_ exp[-1(ikx + wt)]dk (5.10)
w, = o= _Z [6,(2,k,8)]__ expl-1(kx + ut)]dk, (5.11)
tyy = % _? [6,(2,k,8)]_ exp[-1(kx + ut)]dk, (5.12)
ty, % _T [65(z,k,8)]__ exp[~i(kx + ut)]dk, (5.13)
my, = - o= _T [G(z,k,8)]__ exp[-1(ix + ut)]dk, (5.14)

Ay = - %; I [G7(z,k,sﬂs=wexp[—i(kx + wt)]dk (5.15)
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where
-$ ¥4 -8 2z -8 Z
1 11 21 31
Gl(z,k,s) = _A: [11<All e + 821A21e + s3lA3le 1, (5.16)
-S z -8 z -8 z
1 11 21 31
Gz(z,k;s) = -‘g [sllAue -ik(AZIe + A3le ), (5.17)
-8 2 -8 2z
1 21 31
G3(z,k,s) = A_o (aZIAZIe + a31A3le ), (5.18)
1 2 2 511 5212
Ga(z,k,s) = A—o [{{(x + Zu)su - ak“} Aue —Ziuk(s“Aue
-8 z
+8y0y e 3, (5.19)
-8 z -8 2
1 11 2 2 21
GS(z,k,s) = —A: [ZiuksuA“e + {(u+c;)32l + (p-a)k —Zaan}AZIe
-8 z
+{(u+u)s§1+(u—a)k2—2a831}A31e 3y, (5.20)
1 -8212 —6312 -8,2
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7V Ao ° 21721 31731 0 4 41 ’
2
2 2 s
s;, =k -5, (5.23)
¢
Y P
2 +ed -t - - 2 vy -2 a -2, (5.24)
<,y cq c3 2c2
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s (s"-v,)
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€2 €3
1 2 s2 2
L TRyl B I 2 (5.26)
IJl c
2
By = (rgyt, = 1ty )(q) my =aymy ) + 5y t,-r,t,) )4y @) =gy oy ),
(5.27abed)
By = myy eyt )~y (Fy b T, g)
Byp = myp(rg tmrat gy ) By (r,ty 7Th ty)s
By ™y 0% 91 31 31800
, 2 2
(\+ 2u)sjl Ak, j=1
(5.28ab)

qji =
—Ziuksjl s j=2,3
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21uksj1 , j=1
%i= 2 2 - 3 (5.29ab)
(u+a)sJl + (p=a)k —2aaj1, j=2,
i1 = (v + e)ajl 410 j=2,3 (5.30)
ty) = i8ka ) j=2,3. (5.31)

If we neglect both the viscous and stretch effects, we obtain the corresponding
displacements, microrotation and stresses for the micorpolar elastic half space. For

the sake of brevity, we avoid writing down these results.

We next consider the effects of the harmonic torque with its axis parallel to the

z-axis in the form
-ilwt
g(x,t) = M[8(x-a) - S(x+a)le (5.32)

where M is the magnitude of the torque. The double Fourier transform of (5.32) gives
g(k,s) = 2iM sin ka §(s-w) (5.33)

Using this expression in the equations (4.23) - (4.29), we obtain

©

u == Q [ (k] sinCa)e™ Ta, (5.34)
uy - Q _T [F,(z,k,8)] _ sin(ka) e “*ak, (5.35)
w, = Q _? [Fy(z,k,8)]__ sin(kade ¥ak, (5.36)
tyy = Q _? [F,(2,k,8)]__ sin(ka)e " *¥ak, (5.37)
ty = Q _? [Fg(z,k,8)]__ sin(ka)e " ¥ax, (5.38)
By = - Q ! [Fe(z,k,8)] _ sin(kae ™ ¥ax, (5.39)
A= -3 _T (F,(2,k,8)]__ sin(ka)e " “*a, (5.40)
where Q= 1% e lut, (5.41)

These results are in excellent agreement with those for the cases without viscous
and/or stretch effects which have been discussed by several authors including McCarthy
and Eringen [9], Kumar and Chadha [6] Nowacki and Nowaki {2], and Acharya and Sengupta
{4].
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