
Phil. Trans. R. Soc. A (2009) 367, 4295–4312
doi:10.1098/rsta.2009.0161

On landmark selection and sampling in
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In recent years, the spectral analysis of appropriately defined kernel matrices has emerged
as a principled way to extract the low-dimensional structure often prevalent in high-
dimensional data. Here, we provide an introduction to spectral methods for linear
and nonlinear dimension reduction, emphasizing ways to overcome the computational
limitations currently faced by practitioners with massive datasets. In particular, a data
subsampling or landmark selection process is often employed to construct a kernel based
on partial information, followed by an approximate spectral analysis termed the Nyström
extension. We provide a quantitative framework to analyse this procedure, and use it to
demonstrate algorithmic performance bounds on a range of practical approaches designed
to optimize the landmark selection process. We compare the practical implications of
these bounds by way of real-world examples drawn from the field of computer vision,
whereby low-dimensional manifold structure is shown to emerge from high-dimensional
video data streams.
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1. Introduction

In recent years, dramatic increases in the available computational power
and data storage capabilities have spurred a renewed interest in dimension-
reduction methods. This trend is illustrated by the development over the
past decade of several new algorithms designed to treat nonlinear structure
in data, such as isomap (Tenenbaum et al. 2000), spectral clustering (Shi &
Malik 2000), Laplacian eigenmaps (Belkin & Niyogi 2003), Hessian eigenmaps
(Donoho & Grimes 2003) and diffusion maps (Coifman et al. 2005). Despite their
different origins, each of these algorithms requires computation of the principal
eigenvectors and eigenvalues of a positive semidefinite kernel matrix.

In fact, spectral methods and their brethren have long held a central
place in statistical data analysis. The spectral decomposition of a positive
semidefinite kernel matrix underlies a variety of classical approaches such as
principal components analysis (PCA), in which a low-dimensional subspace
that explains most of the variance in the data is sought, Fisher discriminant
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analysis, which aims to determine a separating hyperplane for data
classification, and multi-dimensional scaling, used to realize metric embeddings
of the data.

As a result of their reliance on the exact eigendecomposition of an appropriate
kernel matrix, the computational complexity of these methods scales in turn
as the cube of either the dataset dimensionality or cardinality (Belabbas &
Wolfe 2009). Accordingly, if we write O(n3) for the requisite complexity of
an exact eigendecomposition, large and/or high-dimensional datasets can pose
severe computational problems for both classical and modern methods alike.
One alternative is to construct a kernel based on partial information; that is,
to analyse directly a set of ‘landmark’ dimensions or examples that have been
selected from the dataset as a kind of summary statistic. Landmark selection
thus reduces the overall computational burden by enabling practitioners to apply
the aforementioned algorithms directly to a subset of their original data—one
consisting solely of the chosen landmarks—and subsequently to extrapolate their
results at a computational cost of O(n2).

While practitioners often select landmarks simply by sampling from their data
uniformly at random, we show in this article how one may improve upon this
approach in a data-adaptive manner, at only a slightly higher computational cost.
We begin with a review of linear and nonlinear dimension-reduction methods
in §2, and formally introduce the optimal landmark selection problem in §3.
We then provide an analysis framework for landmark selection in §4, which in
turn yields a clear set of trade-offs between computational complexity and quality
of approximation. Finally, we conclude in §5 with a case study demonstrating
applications to the field of computer vision.

2. Linear and nonlinear dimension reduction

(a) Linear case: principal components analysis

Dimension reduction has been an important part of the statistical landscape
since the inception of the field. Indeed, though PCA was introduced more
than a century ago, it still enjoys wide use among practitioners as a canonical
method of data analysis. In recent years, however, the lessening costs of both
computation and data storage have begun to alter the research landscape in the
area of dimension reduction: massive datasets have gone from being rare cases
to everyday burdens, with nonlinear relationships among entries becoming ever
more common.

Faced with this new landscape, computational considerations have become
a necessary part of statisticians’ thinking, and new approaches and methods
are required to treat the unique problems posed by modern datasets. Let
us start by introducing some notation and explaining the principal (!) issues
by way of a simple illustrative example. Assume we are given a collection
of N data samples, denoted by the set X = {x1, . . . , xN }, with each sample
xi comprising n measurements. For example, the samples xi could contain
hourly measurements of the temperature, humidity level and wind speed at a
particular location over a period of a day; in this case, X would contain 24
three-dimensional vectors.
Phil. Trans. R. Soc. A (2009)
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The objective of PCA is to reduce the dimension of a given dataset by
exploiting linear correlations among its entries. Intuitively, it is not hard to
imagine that, say, as the temperature increases, wind speed might decrease—
and thus retaining only the humidity levels and a linear combination of the
temperature and wind speed would be, up to a small error, as informative as
knowing all three values exactly. By way of an example, consider gathering
centred measurements (i.e. with the mean subtracted) into a matrix X , with
one measurement per column; for the example above, X is of dimension 3 × 24.
The method of principal components then consists of analysing the positive
semidefinite kernel Q = XXT of outer products between all samples xi by way of
its eigendecomposition Q = UΛU T, where U : U TU = I is an orthogonal matrix
whose columns comprise the eigenvectors of Q, and Λ is a diagonal matrix
containing its real, non-negative eigenvalues. The eigenvectors associated with
the largest eigenvalues of Q yield a new set of variables according to Y =
U TX , which in turn provide the (linear) directions of greatest variability of the
data (figure 1).

(b) Nonlinear case: diffusion maps and Laplacian eigenmaps

In the above example, PCA will be successful if the relationship between wind
speed and temperature (for example) is linear. Nonlinear dimension reduction
refers to the case in which the relationships between variables are not linear,
whereupon the method of principal components will fail to explain adequately any
nonlinear co-variability present in the measurements. An example dataset of this
type is shown in figure 2(a), consisting of points sampled from a two-dimensional
disc stretched into a three-dimensional shape taking the form of a fishbowl.

In the same vein as PCA, however, most contemporary methods for nonlinear
dimension reduction are based on the analysis of an appropriately defined positive
semidefinite kernel. Here, we limit ourselves to describing two closely related
methods that serve to illustrate the case in point: diffusion maps (Coifman et al.
2005) and Laplacian eigenmaps (Belkin & Niyogi 2003).

(i) Diffusion maps

Given input data X having cardinality N and dimension n, along with
parameters σ > 0 and m a positive integer, the diffusion map algorithm
involves first forming a positive semi-definite kernel Q whose (i, j)th entry is
given by

Qij = e−‖xi−xj‖2/2σ 2
, (2.1)

with ‖xi − xj‖ the standard Euclidean norm on R
n . If we define a diagonal matrix

D whose entries are the corresponding row/column sums of Q as Dii = ∑
j Qij ,

the Markov transition matrix P = D−1Q is then computed. This transition matrix
describes the evolution of a discrete-time diffusion process on the points of X ,
where the transition probabilities are given by equation (2.1), with multiplication
of Q by D−1 serving to normalize them.

As is well known, the corresponding transition matrix after m time steps is
simply given by the m-fold product of P with itself; if we write Pm = UΛmU −1,
the principal eigenvectors and eigenvalues of this transition matrix are used
to embed the data according to Y = UΛm . However, note that, as P is a
Phil. Trans. R. Soc. A (2009)
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Figure 1. PCA, with measurements in (a) expressed in (b) in terms of the two-dimensional subspace
that best explains their variability. (a) An example set of centred measurements, with projections
onto each coordinate axis also shown. (b) PCA yields a plane indicating the directions of greatest
variability of the data.
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Figure 2. (a)‘Fishbowl’ data (sphere with top cap removed). Nonlinear dimension reduction, with
contrasting embeddings of the data of (a) shown. (b) The two-dimensional linear embedding via
PCA yields an overlap of points of different colour, indicating a failure to recover the nonlinear
structure of the data. (c and d) The embeddings obtained by diffusion maps and Laplacian
eigenmaps, respectively; each of these methods successfully recovers the nonlinear structure of
the original dataset, correctly ‘unfolding’ it in two dimensions.
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stochastic matrix, its principal eigenvector is [1 1 · · · 1]T, with the corresponding
eigenvalue equal to unity. This eigenvector–eigenvalue pair is hence ignored for
purposes of the embedding, as it does not depend on X .

Although P = D−1Q is not symmetric, its eigenvectors can equivalently be
obtained via the spectral analysis of the positive semidefinite kernel Q̃ =
D1/2PD−1/2 = D−1/2QD−1/2: if (λ, u) satisfy Pu = λu, then, if ũ = D1/2u, we obtain

D1/2Pu = λD1/2u �⇒ D1/2PD−1/2 D1/2u = λ D1/2u �⇒ Q̃ũ = λũ.

Hence, from this analysis, we see that P and Q̃ share identical eigenvalues, as
well as eigenvectors related by a diagonal transformation.

(ii) Laplacian eigenmaps

Rather than necessarily computing a dense kernel Q as in the case of diffusion
maps, the Laplacian eigenmaps algorithm commences with the computation of a
k-neighbourhood for each datum point xi ; i.e. the k nearest data points to each xi
are found. A weighted graph whose vertices are the data points {x1, x2, . . . , xN } is
then computed, with an edge present between vertices xi and xj if and only if xi
is among the k closest points to xj , or vice versa. The weight of each kernel entry
is given by Qij = e−‖xi−xj‖2/2σ 2

if an edge is present in the corresponding graph,
and Qij = 0 otherwise, and thus we immediately arrive at a sparsified version of
the diffusion maps kernel.

The embedding Y is chosen to minimize the weighted sum of pairwise distances

∑
ij

‖yi − yj‖2Qij , (2.2)

subject to the normalization constraints ‖D1/2yi‖ = 1, where, as in the case of
diffusion maps, D is a diagonal matrix with entries Dii = ∑

j Qij .
Now consider the so-called combinatorial Laplacian of the graph, defined as

the positive semidefinite kernel L = D − Q. A simple calculation shows that the
constrained minimization of equation (2.2) may be reformulated as

argmin
Y TDY=I

tr(Y TLY ),

whose solution in turn will consist of the eigenvectors of D−1L with smallest
eigenvalues—from which we exclude, as in the case of diffusion maps, the solution
proportional to [1 1 · · · 1]T. By the same argument as employed in §2b(i) above,
this analysis is easily related to that of the normalized Laplacian D−1/2LD−1/2.

(c) Computational considerations

Recall our earlier assumption of a collection of N data samples, denoted
by the set X = {x1, . . . , xN }, with each sample xi comprising n measurements.
An important point of the above analyses is that, in each case, the size of
the kernel is dictated by either the number of data samples (diffusion maps,
Phil. Trans. R. Soc. A (2009)
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Laplacian eigenmaps) or their dimension (PCA). Indeed, classical and modern
spectral methods rely on either of the following:

(i) Outer characteristics of the point cloud. Methods such as PCA or Fisher
discriminant analysis require the analysis of a kernel of dimension n, the
extrinsic dimension of the data.

(ii) Inner characteristics of the point cloud. Multi-dimensional scaling and
recent extensions that perform nonlinear embeddings of data points require
the spectral analysis of a kernel of dimension N , the cardinality of the
point cloud.

In both sets of scenarios, the analysis of large kernels quickly induces
a computational burden that is impossible to overcome with exact spectral
methods, thereby motivating the introduction of landmark selection and
sampling methods.

3. Landmark selection and the Nyström method

Since their introduction, and furthermore as datasets continue to increase
in size and dimension, so-called landmark methods have seen wide use by
practitioners across various fields. These methods exploit the high level of
redundancy often present in high-dimensional datasets by seeking a small
(in relative terms) number of important examples or coordinates that summarize
the most relevant information in the data; this amounts in effect to an adaptive
compression scheme. Separate from this subset, the selection problem is the
actual solution of the corresponding spectral analysis task—and this in turn
is accomplished via the so-called Nyström extension (Williams & Seeger 2001;
Platt 2005).

While the Nyström reconstruction admits the unique property of providing,
conditioned upon a set of selected landmarks, the minimal kernel completion
with respect to the partial ordering of positive semidefiniteness, the literature
is currently open on the question of optimal landmark selection. Choosing the
most appropriate set of landmarks for a specific dataset is a fundamental task
if spectral methods are to successfully ‘scale up’ to the order of the large
datasets already seen in contemporary applications, and expected to grow in
the future. Improvements will in turn translate directly to either a more efficient
compression of the input (i.e. fewer landmarks will be needed) or a more accurate
approximation for a given compression size. While choosing landmarks in a data-
adaptive way can clearly offer improvement over approaches such as selecting
them uniformly at random (Drineas & Mahoney 2005; Belabbas & Wolfe 2009),
this latter approach remains by far the most popular with practitioners (Smola &
Schölkopf 2000; Fowlkes et al. 2001, 2004; Talwalkar et al. 2008).

While it is clear that data-dependent landmark selection methods offer the
potential of at least some improvement over non-adaptive methods such as
uniform sampling (Liu et al. 2006), bounds on performance as a function of
computation have not been rigorously addressed in the literature to date. One
important reason for this has been the lack of a unifying framework to understand
the problems of landmark selection and sampling and to provide approximation
Phil. Trans. R. Soc. A (2009)
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bounds and quantitative performance guarantees. In this section, we describe
an analysis framework for landmark selection that places previous approaches in
context, and show how it leads to quantitative performance bounds on Nyström
kernel approximation.

(a) Spectral methods and kernel approximation

As noted earlier, spectral methods rely on low-rank approximations of
appropriately defined positive semidefinite kernels. To this end, let Q be a
real, symmetric kernel matrix of dimension n; we write Q � 0 to denote that
Q is positive semidefinite. Any such kernel Q � 0 can in turn be expressed
in spectral coordinates as Q = UΛU T, where U is an orthogonal matrix and
Λ = diag(λ1, . . . , λn) contains the real, non-negative eigenvalues of Q, assumed
sorted in a non-increasing order.

To measure the error in approximating a kernel Q � 0, we require the following
notion of unitary invariance (see Horn & Johnson 1990).

Definition 3.1 (Unitary invariance). A matrix norm ‖ · ‖ is termed unitarily
invariant if, for all matrices U , V : U TU = I , V TV = I , we have ‖UMV T‖ = ‖M‖
for every (real) matrix M .

A unitarily invariant norm therefore depends only on the singular values of
its argument, and, for any such norm, the optimal rank-k approximation to
Q � 0 is given by Qk := UΛkU T, where Λk = diag(λ1, λ2, . . . , λk , 0, . . . , 0). When
a given kernel Q is expressed in spectral coordinates, evaluating the quality of
any low-rank approximation Q̃ is a trivial task, requiring only an ordering of
the eigenvalues. As described in §1, however, the cost of obtaining these spectral
coordinates exactly is O(n3), which is often too costly to be computed in practice.

To this end, methods that rely on either the extrinsic dimension of a
point cloud or the intrinsic dimension of a set of training examples via its
cardinality impose a large computational burden. To illustrate, let x1, x2, . . . , xN ∈
R

n constitute the data of interest. ‘Outer’ methods of the former category employ
a rank-k approximation of the matrix Q := ∑N

i=1 xixT
i , which is of dimension n.

Alternatively, ‘inner’ methods introduce an additional positive-definite function
q(xi , xj), such as 〈xi , xj〉 or exp(−‖xi − xj‖2/2σ 2), and obtain a k-dimensional
embedding of the data via the N -dimensional affinity matrix Qij := q(xi , xj).

(b) The Nyström method and landmark selection

The Nyström method has found many applications in modern machine learning
and data analysis applications as a means of obtaining an approximate spectral
analysis of the kernel of interest Q. In brief, the method solves a matrix
completion problem in a way that preserves positive semidefiniteness as follows.

Definition 3.2 (Nyström extension). Fix a subset J ⊂ {1, 2, . . . n} of cardinality
k < n, and let QJ denote the corresponding principal submatrix of an n-
dimensional kernel Q � 0. Take J = {1, 2, . . . , k} without loss of generality and
partition Q as follows:

Q =
[
QJ Y

Y T Z

]
. (3.1)
Phil. Trans. R. Soc. A (2009)
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The Nyström extension then approximates Q by

Q̃ =
[

QJ Y

Y T Y TQ−1
J Y

]
� 0. (3.2)

Here QJ ∈ R
k×k and Z ∈ R

(n−k)×(n−k) are always positive semidefinite, being
principal submatrices of Q � 0, and Y is a rectangular submatrix of dimension
k × (n − k).

If we decompose QJ as QJ = UJ ΛJ U T
J , this corresponds to approximating the

eigenvectors and eigenvalues of Q by

Λ̃ = ΛJ and Ũ =
[

UJ

Y TUJ Λ−1
J

]
.

We have that rank(Q̃) ≤ k, and (noting that typically k � n) the complexity of
reconstruction is of order O(n2k). Approximate eigenvectors Ũ can be obtained
in O(nk2), and can be orthogonalized by an additional projection.

The Nyström method thus serves as a means of completing a partial kernel,
conditioned upon a selected subset J of rows and columns of Q. The landmark
selection problem becomes that of choosing the subset J of fixed cardinality k such
that ‖Q − Q̃‖ is minimized for some unitarily invariant norm, with a lower bound
given by ‖Q − Qk‖, where Qk is the optimal rank-k approximation obtained by
setting the n − k smallest eigenvalues of Q to zero.

According to the difference between equations (3.1) and (3.2), the
approximation error ‖Q − Q̃‖ can in general be expressed in terms of the Schur
complement of QJ in Q, defined as Z − Y TQ−1

J Y according to the conformal
partition of Q in equation (3.1), and correspondingly for an appropriate
permutation of rows and columns in the general case.

With reference to definition 3.2, we thus have the optimal landmark selection
problem as follows.

Problem 3.3 (Optimal landmark selection). Choose J , with cardinality |J | = k,
such that ‖Q − Q̃‖ = ‖Z − Y TQ−1

J Y ‖ is minimized.

It remains an open question as to whether or not, for any unitarily invariant
norm, this subset selection problem can be solved in fewer than O(n3) operations,
the threshold above which the exact spectral decomposition becomes the best
option. In fact, there is no known exact algorithm other than O(nk) brute-force
enumeration in the general case.

4. Analysis framework for landmark selection

Attempts to solve the landmark selection problem can be divided into two
categories: deterministic methods, which typically minimize some objective
function in an iterative or stepwise greedy fashion (Smola & Schölkopf 2000;
Ouimet & Bengio 2005; Liu et al. 2006; Zhang & Kwok 2009), for which
the resultant quality of kernel approximation cannot typically be guaranteed,
Phil. Trans. R. Soc. A (2009)
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and randomized algorithms, which instead proceed by sampling (Williams &
Seeger 2001; Fowlkes et al. 2004; Drineas & Mahoney 2005; Belabbas & Wolfe
2009). As we show in this section, those sampling-based methods for which
relative error bounds currently exist can all be subsumed within a generalized
stochastic framework, which we term annealed determinant sampling.

(a) Nyström error characterization

It is instructive first to consider problem 3.3 in more detail, in order that we
may better characterize properties of the Nyström approximation error. To this
end, we adopt the trace norm ‖ · ‖tr as our unitarily invariant norm of interest.

Definition 4.1 (Trace norm). Fix an arbitrary matrix M ∈ R
m×n and let σi(M )

denote its ith singular value. Then the trace norm of M is defined as

‖M‖tr = tr
(√

MTM
)

=
min(m,n)∑

i=1

σi(M )

≡ tr(Q) for Q � 0. (4.1)

As any positive semidefinite kernel Q � 0 admits the Gram decomposition
Q = XTX , this implies the following relationship in the Frobenius norm ‖ · ‖F ,
to be revisited shortly:

for all Q � 0, ‖Q‖tr = ‖XTX‖tr = tr(XTX ) = ‖X‖2
F . (4.2)

The key property of this norm for our purposes follows from the linear–algebraic
notion of symmetric gauge functions (see Horn & Johnson 1990).

Lemma 4.2 (Dominance of trace norm). Among all unitarily invariant norms
‖ · ‖, we have that ‖ · ‖tr ≥ ‖ · ‖.

Adopting this norm for problem 3.3, therefore, allows us to provide minimax
arguments, and its unitary invariance implies the natural property that results
depends only on the spectrum of the kernel Q � 0 under consideration, just as in
the case of the optimal rank-k approximant Qk .

To this end, note that any Schur complement is itself positive semidefinite.
Recalling from definition 3.2 that the error incurred by the Nyström
approximation is the norm of the corresponding Schur complement, and applying
the definition of the trace norm as per equation (4.1), we obtain the following
characterization of problem 3.3 under trace norm.

Proposition 4.3 (Nyström error in trace norm). Fix a subset J ⊂ {1, 2, . . . , n}
of cardinality k < n, and denote by J̄ its complement in {1, 2, . . . , n}. Then, the
error in the trace norm induced by the Nyström approximation of an n-dimensional
kernel Q � 0 according to definition 3.2, conditioned on the choice of subset J ,
may be expressed as follows:

‖Q − Q̃‖tr = tr(QJ̄×J̄ ) − tr(QT
J×J̄ Q−1

J×J QJ×J̄ ), (4.3)

where J × J̄ denotes rows indexed by J and columns by J̄ .
Phil. Trans. R. Soc. A (2009)
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Proof. For any selected subset J , we have that the Nyström error term is
given by

‖Q − Q̃‖ = ‖QJ̄×J̄ − QT
J×J̄ Q−1

J×J QJ×J̄ ‖
according to the notation of proposition 4.3. Now, the Schur complement
of a positive semidefinite matrix is always itself positive semidefinite (see
Horn & Johnson 1990), and so the specialization of the trace norm for positive
semidefinite matrices, as per equation (4.1), applies. We therefore conclude that

‖QJ̄×J̄ − QT
J×J̄ Q−1

J×J QJ×J̄ ‖tr = tr(QJ̄×J̄ − QT
J×J̄ Q−1

J×J QJ×J̄ )

= tr(QJ̄×J̄ ) − tr(QT
J×J̄ Q−1

J×J QJ×J̄ ). (4.4)

�

While each term in the expression of proposition 4.3 depends on the selected
subset J , if all elements of the diagonal of Q are equal, then the term tr(QJ̄×J̄ )
is constant. This has motivated approaches to problem 3.3 based on minimizing
exclusively the latter term (Smola & Schölkopf 2000; Zhang & Kwok 2009).

We conclude with an illuminating proposition that follows from the Gram
decomposition of equation (4.2).

Proposition 4.4 (Trace norm as regression residual). Let Q � 0 have the Gram
decomposition Q = XTX, and let X be partitioned as [XJ XJ̄ ] in accordance with
proposition 4.3. Then the Nyström error in the trace norm of equation (4.3 ) is the
error sum-of-squares obtained by projecting columns of XJ̄ on to the closed linear
span of columns of XJ .

Proof. If Q is positive semidefinite, it admits the Gram decomposition Q =
XTX . If we partition X (without loss of generality) into selected and unselected
columns [XJ XJ̄ ] according to a chosen subset J , it follows that

Q = XTX =
[

XT
J XJ XT

J XJ̄

(XT
J XJ̄ )T XT

J̄
XJ̄

]
.

Therefore, the ith diagonal of the residual error follows as

(QJ̄×J̄ − QT
J×J̄ Q−1

J×J QJ×J̄ )ii = (XT
J̄ XJ̄ − XT

J̄ XJ (XT
J XJ )−1XT

J XJ̄ )ii

= (XT
J̄

[
I − XJ (XT

J XJ )−1XT
J

]
XJ̄ )ii ,

and hence the Nyström error in trace norm is given by the sum of squared
residuals obtained by projecting columns of XJ̄ on to the space spanned by
columns of XJ . �

(b) Annealed determinantal distributions

With this error characterization in hand, we may now define and introduce the
notion of annealed determinantal distributions, which in turn provide a framework
for the analysis and comparison of landmark selection and sampling methods.
Phil. Trans. R. Soc. A (2009)
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Definition 4.5 (Annealed determinantal distributions). Let Q � 0 be a positive
semidefinite kernel of dimension n, and fix an exponent s ≥ 0. Then, for fixed
k ≤ n, Q admits a family of probability distributions defined on the set of all
J ⊂ {1, 2, . . . , n} : |J | = k as follows:

ps(J ) ∝ det(QJ×J )s, s ≥ 0, |J | = k. (4.5)

This distribution is well defined because all principal submatrices of a positive
semidefinite matrix are themselves positive semidefinite, and hence have non-
negative determinants. The term annealing is suggestive of its use in stochastic
computation and search, where a probability distribution or energy function
is gradually raised to some non-negative power over the course of an iterative
sampling or optimization procedure.

Indeed, for 0 < s < 1, the determinantal annealing of definition 4.5 amounts to
a flattening of the distribution of det(QJ×J ), whereas for 1 < s < ∞ it becomes
more and more peaked. In the limiting cases, we recover, of course, the uniform
distribution on the range of det(QJ×J ), and, respectively, mass concentrated on
its maximal element(s).

It is instructive to consider these limiting cases in more detail. Taking s = 0, we
observe that the method of uniform sampling typically favoured by practitioners
(Smola & Schölkopf 2000; Fowlkes et al. 2001, 2004; Talwalkar et al. 2008) is
trivially recovered, with negligible associated computational cost. By extending
the result of Belabbas & Wolfe (2009), the induced error may be bounded as
follows.

Theorem 4.6 (Uniform sampling). Let Q � 0 have the Nyström extension Q̃,
where subset J : |J | = k is chosen uniformly at random. Averaging over this choice,
we have

E‖Q − Q̃‖tr ≤ n − k
n

tr(Q).

Note that this bound is tight, with equality attained for diagonal Q � 0.
Uniform sampling thus averages the effects of all eigenvalues of Q, in contrast
to the optimal rank-k approximation obtained by retaining the k principal
eigenvalues and eigenvectors from an exact spectral decomposition, which incurs
an error in trace norm of only

∑n
i=k+1 λi .

In contrast to annealed determinant sampling, uniform sampling fails to place
zero probability of selection on subsets J such that det(QJ×J ) = 0. As the
following proposition of Belabbas & Wolfe (2009) shows, the exact reconstruction
of rank-k kernels from k-subsets via the Nyström completion requires the
avoidance of such subsets.

Proposition 4.7 (Perfect reconstruction via Nyström extension). Let Q � 0 be
n × n and of rank k, and suppose that a subset J : |J | = k is sampled according
to the annealed determinantal distribution of definition 4.5. Then, for all s > 0,
the error ‖Q − Q̃‖tr incurred by the Nyström completion of equation (3.2 ) will be
equal to zero.

Proof. Whenever rank(Q) = k, only full-rank (i.e. rank-k) principal submatrices
of Q will be non-singular, and hence admit non-zero determinants. Therefore,
for any s > 0, these will be the only submatrices selected by the annealed
Phil. Trans. R. Soc. A (2009)
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Figure 3. Diffusion maps embedding of the video fuji.avi from the Honda/UCSD database
(Lee et al. 2003, 2005), implemented in the pixel domain after data normalization, σ = 100.

determinantal sampling scheme. By proposition 4.4, the full-rank property implies
that the regression error sum-of-squares will in this case be zero, implying
that Q̃ = Q. �

Considering the limiting case as s → ∞, we equivalently recover the problem
of maximizing the determinant, which is well known to be NP-hard. As det(Q) =
det(QJ×J ) × det(QJ̄×J̄ − QT

J×J̄
Q−1

J×J QJ×J̄ ), the notion of subset selection based on
the maximal determinant admits the following interesting correspondence because
if x is a vector-valued Gaussian random variable with a covariance matrix Q,
then the Schur complement of QJ×J in Q is the conditional covariance matrix of
components xJ̄ given xJ .

Proposition 4.8 (Minimax relative entropy). Fix an n-dimensional kernel
Q � 0 as the covariance matrix of a random vector x ∈ R

n and fix an integer k < n.
Minimizing the maximum relative entropy of coordinates xJ̄ , conditional upon
having observed coordinates xJ , corresponds to selecting J such that det(QJ×J )
is maximized.

Proof. The Schur complement SC (QJ×J ) represents the covariance matrix of
xJ̄ conditional upon having observed xJ . To this end, we first note the following
relationship (Horn & Johnson 1990):

det(Q) = det(QJ×J ) × det(SC (QJ×J )).

Moreover, for fixed covariance matrix Q, the multi-variate normal distribution
maximizes entropy h(x), and hence for SC (QJ×J ), we have that

h(xJ̄ | xJ ) = 1
2

log
|2πe Q|

|2πe QJ×J | = log |2πe SC (QJ×J )|1/2

is the maximal relative entropy attainable upon having observed xJ . �
Phil. Trans. R. Soc. A (2009)
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Figure 4. Average normalized approximation error of the Nyström reconstruction of the diffusion
maps kernel obtained from the video of figure 3 using different subset selection methods.
Sampling according to the determinant yields overall the best performance. Blue circles, uniform
sampling (s = 0); red squares, determinantal maximization (s = ∞); black diamonds, determinantal
sampling (s = 1).

To this end, the bound of Goreinov & Tyrtyshnikov (2001) extends to the case
of the trace norm as follows.

Theorem 4.9 (Determinantal maximization). Let Q̃ denote the Nyström
completion of a kernel Q � 0 via subset J = arg maxJ ′:|J ′|=k det(QJ ′×J ′). Then

‖Q − Q̃‖tr ≤ (k + 1) (n − k)λk+1(Q),

where λk+1(Q) is the (k + 1)th largest eigenvalue of Q.

We conclude with a recent result (Belabbas & Wolfe 2009) bounding the
expected error for the case s = 1, which in turn improves upon the additive
error bound of Drineas & Mahoney (2005) for sampling according to the squared
diagonal elements of Q.

Theorem 4.10 (Determinantal sampling). Let Q � 0 have the Nyström
extension Q̃, where subset J : |J | = k is chosen according to the annealed
determinantal distribution of equation (4.5 ) with s = 1. Then,

E‖Q − Q̃‖tr ≤ (k + 1)

n∑
i=k+1

λi(Q),

with λi(Q) the ith largest eigenvalue of Q.
Phil. Trans. R. Soc. A (2009)
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This result can be related to that of theorem 4.9, which depends on n − k
times λk+1(Q), the (k + 1)th largest eigenvalue of Q, rather than the sum of
its n − k smallest eigenvalues. It can also be interpreted in terms of the volume
sampling approach proposed by Deshpande et al. (2006), applied to the Gram
matrix XT

J XJ of an ‘arbitrary’ matrix XJ , as det(QJ×J ) = det(XT
J XJ ) = det(XJ )2.

By this same argument, Deshpande et al. (2006) show the result of theorem 4.10
to be essentially the best possible.

We conclude by noting that, for most values of s, sampling from the
distribution ps(J ) presents a combinatorial problem, because of the

(n
k

)
distinct

k-subsets associated with an n-dimensional kernel Q. To this end, a simple
Markov chain Monte Carlo method has been proposed by Belabbas & Wolfe
(2009) and shown to be effective for sampling according to the determinantal
distribution on k-subsets induced by Q. This Metropolis algorithm can easily
be extended to the cases covered by definition 4.5 for all s ≥ 0. We also
note that tridiagonal approximations to det(QJ×J ) can be computed in O(k)
operations, and hence offer an alternative to the O(k3) cost of exact determinant
computation.

5. Case study: application to computer vision

In the light of the range of methods described above for optimizing the landmark
selection process through sampling, we now consider a case study drawn from
the field of computer vision, in which a low-dimensional manifold structure
is extracted from high-dimensional video data streams. This field provides a
particularly compelling example, as algorithmic aspects, both of space and time
complexity, have historically had a high impact on the efficacy of computer
vision solutions.

Applications in areas as diverse as image segmentation (Fowlkes et al. 2004),
image matting (Levin et al. 2008), spectral mesh processing (Liu et al. 2006) and
object recognition through the use of appearance manifolds (Lee & Kriegman
2005) all rely in turn on the eigendecomposition of a suitably defined kernel.
However, at a complexity of O(n3), the full spectral analysis of real-world datasets
is often prohibitively costly—requiring in practice an approximation to the exact
spectral decomposition. Indeed, the aforementioned tasks typically fall into this
category, and several share the common feature that their kernel approximations
are obtained in exactly the same way—via the process of selecting a subset of
landmarks to serve as a basis for computation.

(a) The spectral analysis of large video datasets

Video datasets may often be assumed to have been generated by a dynamical
process evolving on a low-dimensional manifold, for example a line in the case
of a translation, or a circle in the case of a rotation. Extracting this low-
dimensional space has applications in object recognition through appearance
manifolds (Lee et al. 2005), motion recognition (Blackburn & Ribeiro 2007),
pose estimation (Elgammal & Lee 2004) and others. In this context, nonlinear
dimension-reduction algorithms (Lin & Zha 2008) are the key ingredients
mapping the video stream to a lower dimensional space. The vast majority of
Phil. Trans. R. Soc. A (2009)
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these algorithms require one to obtain the eigenvectors of a positive-definite
kernel Q of size equal to the number of frames in the video stream, which quickly
becomes prohibitive and entails the use of approximations to the exact spectral
analysis of Q.

To begin our case study, we first tested the efficacy of the Nyström extension
coupled with the subset selection procedures given in §4 on different video
datasets. In figure 3, we show the exact embedding in three dimensions, using the
diffusion map algorithm (Coifman et al. 2005), of a video from the Honda/UCSD
database (Lee et al. 2003, 2005), as well as some selected frames. In this video,
the subject rotates his head in front of the camera in several directions, with each
motion starting from the resting position of looking straight at the camera. We
observe that with each of these motions is associated a circular path, and that
they all originate from the same area (the lower front-right area) of the graph,
which corresponds to the resting position.

In figure 4, the average approximation error for the diffusion map kernel
corresponding to this video is evaluated, for an approximation rank between
2 and 20. The results are averaged over 2000 trials. The sampling from the
determinant distribution is done via a Monte Carlo algorithm similar to that
of Belabbas & Wolfe (2009) and the determinant maximization is obtained
by keeping the subset J with the largest corresponding determinant QJ over
a random choice of 2500 subsets. For this setting, sampling according to the
determinant distribution yields the best results uniformly across the range of
approximations. We observe that keeping the subset with a maximal determinant
does not give a good approximation at low ranks. A further analysis showed that
in this case the chosen landmarks tend to concentrate around the lower front-right
region of the graph, which yields a good approximation locally in this part of the
space but fails to recover other regions properly. This behaviour illustrates the
appeal of randomized methods, which avoid such pitfalls.

As a subsequent demonstration, we collected video data of the first author
moving slowly in front of a camera at an uneven speed. The resulting embedding,
given again by the diffusion map algorithm, is a non-uniformly sampled straight
line. In this case, we can thus evaluate by visual inspection the effect of an
approximation of the diffusion map kernel on the quality of the embedding. This
is shown in figure 5, where typical results from different subset selection methods
are displayed. We see that sampling according to the determinant recovers the
linear structure of the dynamical process, up to an affine transformation, whereas
sampling uniformly yields some folding of the curve over itself at the extremities
and centre.

In figure 6, we show the approximation error of the kernel associated with
this video averaged over 2000 trials, similar to the previous example. In
this case, maximizing the determinant yields the best overall performance.
We observe that sampling according to the determinant easily outperforms
choosing the subset uniformly at random, lending further credence to our
analysis framework and its practical implications for landmark selection and
data subsampling.

This material is based in part upon work supported by the Defense Advanced Research
Projects Agency under grant HR0011-07-1-0007, by the National Institutes of Health under
grant P01 CA134294-01 and by the National Science Foundation under grants DMS-0631636
and CBET-0730389. Work was performed in part while the authors were visiting the
Phil. Trans. R. Soc. A (2009)
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(a) (b) (c)

Figure 5. (a) Exact, (b) determinant sampling and (c) uniform sampling diffusion maps embedding
of a video showing movement at an uneven speed, implemented in the pixel domain with σ = 100
after data normalization. Note that the linear structure of this manifold is recovered almost exactly
by the determinantal sampling scheme, whereas it is lost in the case of uniform sampling, where
the curve folds over onto itself.
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Figure 6. Average normalized approximation error of the Nyström reconstruction of the diffusion
maps kernel obtained from the video of figure 5 using different subset selection methods.
Sampling uniformly is consistently outperformed by the other methods. Blue circles, uniform
sampling (s = 0); red squares, determinantal maximization (s = ∞); black diamonds, determinantal
sampling (s = 1).
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