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A b s t r a c t .  The Laplace continued fraction is derived through a power series. 
It provides both upper bounds and lower bounds of the normal tail probability 
(~(x), it is simple, it converges for x :> 0, and it is by far the best approximation 
for x ~ 3. The Laplace continued fraction is rederived as an extreme case of 
admissible bounds of the Mills' ratio, (P(x)/¢(x), in the family of ratios of two 
polynomials subject to a monotone decreasing absolute error. However, it is 
not optimal at any finite x. Convergence at the origin and local optimality of a 
subclass of admissible bounds are investigated. A modified continued fraction 
is proposed. It is the sharpest tail bound of the Mills' ratio, it has a satisfactory 
convergence rate for x > 1 and it is recommended for the entire range of x if a 
maximum absolute error of 10 -a is required. 

Key words and phrases: Admissibility, approximation, convergence, Mills' ra- 
tio, optimality, rational bound. 

i. Introduction 

Let  ¢(x) ,  O(x) and (~(x) be the normal  density function, the normal  distribu- 
t ion function and the normal  tail probabil i ty  function respectively. The  purpose of 
this article is to find bounds of the Mills' rat io R(x)  = J~(x)/O(x), or equivalently 
of the normal distr ibution function (I)(x). Earlier published results for bounds 
and approximat ions  can be found in Mitrinovid (1970), Abramowitz  and Stegun 
(1972), Kendall  and Stuar t  (1977) and Patel  and Read (1982). The  Laplace (1805) 
continued fraction, 

i 1 2 3 n 
(1.1) Ln = - -  

x +  x +  x +  x +  " "  x '  

is the best approximat ion to R(x)  for x _> 3. However, it has seldom been rec- 
ognized in the l i terature  as providing an a l ternat ing sequence of upper  and lower 

* The efforts of the author were supported by the NSERC of Canada. 

107 



10~ CHU-IN CHARLES LEE 

bounds of the Mills' ratio. It is known tha t  Ln converges to R(x)  for each x > 0. 
The  derivation of Ln as a power series can be found in Kendall  and Stuar t  ((1977), 
p. 145) and they said tha t  "the most useful forms for the calculation of ~(x) ,  
or equivalently of R(x), however, are continued fractions." Kerridge and Cook 
(1976) s ta ted tha t  "If accuracy is the only consideration, and speed unimpor tan t ,  
Laplace's continued fraction can hardly be improved on, a l though many  thousand 
terms may be needed if x is small." The Laplace continued fraction was used even 
for small x by Sheppard (1939) to produce his highly accurate  tables of the normal  
integral. 

The  Laplace continued fraction can be expressed as a rat io of two polynomials 
with degrees n and n + 1 respectively. In the family of ratios of two polynomials,  
there  is no uniformly best bound of the Mills' ratio. A subclass having the best 
tail bound is the continued fraction 

1 1 2 3 n - 1  bn 
(1.2) fn(X;an,bn) . . . . . .  an 

x +  x +  x +  x +  x +  x +  

with admissible coefficients an and b~, and it shall be shown tha t  

(1.3) {x< ¢ ( x )  -- ¢ (x)  x +  x +  x +  x +  x +  + 

even at x ---- 0 where en represents a quant i ty  converging to zero as n --~ cx). The  
expression (1.3) is very simple to compute.  It requires n + 1 additions, n + 1 
reciprocals and n + 1 multiplications. For example,  {(al  + x ) - lb l  + x } - l ¢ ( x )  
at x = 2 has an error 0.000004 in approximat ing {)(x) if the opt imal  coefficients 
al  -- 1.252 and bl = 1.215 (see Section 5) at x = 2 and n -- 1 are used. 

The  admissibility of the parameters  a~ and bn in (1.2) is investigated in Sec- 
t ion 2 where the Laplace continued fraction Ln with an -- 0 and b~ = n is found 
to  be an ext reme case. Convergence at the origin and propert ies  of fn  are pre- 
sented in Section 3. Bounds of the Mills' rat io are compared in Section 4. It is 
found tha t  f3 is superior to bounds of the Mills' rat io in the l i terature if x > 0.7. 
Asymptot ic  opt imal i ty  of fn is discussed in Section 5. It is remarkable to ob- 
serve tha t  the simple expression (1.3) with n = 12 has a maximum absolute error 
no more than  10 -4 if an : 2{(bn J- 1)(bn - n)/bn} 1/2 and bn :-- 2n - xn 1/2 + 
(x 2 - 1)/2. In the last section, the continued fraction fn is compared  with other  
well-known approximations to O(x). The  continued fraction fn is recommended 
for desk computa t ion  in the range x > 1. 

2. Admissible bounds 

Let P(x ) /Q(x )  be a ratio of two polynomials with degrees n and m respec- 
tively. The  Laplace continued fraction Ln is such a ratio. The  ratio is a lower 
(upper) bound of ~ ( x ) / ¢ ( x )  if the integral J t  An(x)¢(x)dx  is nonnegative (non- 
positive) for each t > 0 where An(x)  = 1 + d { P ( x ) / Q ( x ) } / d x -  x P ( x ) / q ( x ) .  The  
integral constraint  is very complicated and it can at best  achieve local optimality. 
We consider in this article a simpler constraint  t ha t  requires An(x)  itself to be 
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nonnegative or nonpositive for each x > 0 as in Feller ((1968), p. 179). Under this 
requirement, the bound P ( x ) / Q ( x )  has a monotone decreasing absolute error in x 
and hence it is least favorable at the origin. The lower bound P ( x ) / Q ( x )  is said 
to be admissible if there does not exist a ratio p(x) /q(x )  of two polynomials with 
the degree of the numerator no more than n such that 

P(z)/Q(x) 

The admissible upper bound is defined similarly. The purpose of this section is to 
establish the following theorem. 

THEOREM 2.1. Let n be an odd (even) integer. Then a continued fraction 
f~(x; an, bn) is an admissible lower (upper) bound of ~ ( x ) / ¢ ( x )  subject to a mono- 
tone decreasing absolute error in the family of ratios of two polynomials with the 
degree of the numerator no more than n if 

(2.1) a n = 2 { ( b n + l ) ( b n - n ) / b n }  1/2 and n<_bn<_(n 2 + n + 1 )  1 / 2 + ( n - 1 ) .  

It is an admissible upper (lower) bound of ~ ( x ) / ¢ ( x )  under the same conditions 
i f  an = (n + 1) 1/2 and b n = n. 

We shall first introduce the following notation. For nonnegative integers n 
and m with m < n/2, let 

Cn,n--2vn ~- { ( 2 m ) ' / ( 2 m m ' ) } ( ? m  ) ,  

m 

d . , . - 2 m  = 
t : 0  

[,~/2] 
n-2m C,~(x) = Z Cn,n-2mX and 

rn=(} 
[(n-1)/2] 

Dn(x) d x ~- n,n-2m 
rn:O 

where the symbol [~] represents the largest integer less than or equal to ~. It can 
be shown that c~,~ = 1, dn,n = 1, 

Cn,n--2m = Cn--l,n--l--2m + (n -- 1)Cn-2,~-2m and 

dn,n-2m = d n - l , n - l - 2 m  + (n - 1)dn-2,n-2m. 

Furthermore, C2m,0 = ( 2 m -  1)c~m_2,0, d2m,0 -- 0 and d2m+l,1 = 2mdem_l,1 if 
m > 1. It follows that 

(2.2) 

and 

Cn(x) = xCn- l (X)  + (n - 1)Cn_2(x) 

D,~(x) = xDn_ l ( x )  + (n - 1)Dn-2(x). 
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The polynomial Cn(x) can also be expressed by Hn(ix)/i n where i is the imaginary 
number and H~ (x) is the n-th Hermite polynomial (see Kendall and Stuart ((1977), 
p. 167)). 

LEMMA 2.1. Let an and b~ be nonnegative real numbers and let 

Pn(x) = (x + an)On(X) -t- bnDn-l(X) and 

Qn(X) = (x + an)Cn(x) + bnCn-l(x). 

Then the continued fraction fn(x; an, bn) in (1.2) can be expressed by P,~(x)/Qn(x). 

PROOF. It is trivial that f l  = PI(x)/QI(x). By (2.2), 

(2.3) Qn+l(x;an+l,bn+l) = (x +an+l)Qn{x;bn+l/(x +an+l),n} 

and the identity also holds for Pn+] (x). The proof is completed by induction. [] 

LEMMA 2.2. Let an and bn be nonnegative real numbers and let 

A n ( Z  ) ~-- 1 -t- dfn/dx - Xfn. 

Then 

/ kn(X) : ( - 1 ) n - l ( n  -- 1 ) ! { (bn  - n)x 2 ÷ an(bn - 2n)x 

+ b . ( b n  + 1) -  a n}/Qn(z) 

PROOF. Suppose instead that  a n is a function of x. It shall be established 
that An(x;an,bn) is given by the above identity except we add another term 
( -1)  n - l ( n -  1)!bn(da~/dx)/Qn(x) 2 to the right-hand side. The new identity holds 
when n = 1. By (2.3) and 

An+l (x; an+l, bn+l) -- An(x; bn+l/(X + as+l),  n), 

the proof is completed by induction. [] 

PROOF OF THEOREM 2.1. We shall consider only the case that n is an odd 
integer. The case of even n follows similarly. The continued fraction fn(x; an, bn) 
with nonnegative coefficients an and bn is a lower bound of the Mills' ratio subject 
to a monotone decreasing absolute error if As(x) _> 0 for each x > 0. By Lemma 

2 anda2bn<_4(b~+l ) (b~  n) if 2.2, it is required that bn >_ n, bn(bn + 1) > nan, 
b~ _< 2n. Let a, b, A and B be any nonnegative real numbers. Then 

if and only if 

(2 .4)  

f~(x;a,b) <_ fn(x;A,B)  

( b -  B)x + (bA - aB) >0. 
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Consider a specific lower bound fn(x;  A, B) with A = (4n + 2) 1/2 and B = 2n. If 
b _> 2n and b(b + 1) > na 2 then (2.4) holds and the lower bound fn(X; a, b) is not 
admissible. It follows from (2.4) tha t  admissibility for fixed b requires the largest 
a and it suffices to consider n ~ b ~ 2n and a2b = 4(b + 1)(b - n). Since a/b as 
a function of b has a unique mode B = (n 2 + n + 1) 1/2 + (n - 1), it follows from 
(2.4) again tha t  admissibility requires n < b < B. On the other hand, a continued 
fraction f~(x; an, bn) with nonnegative coefficients an and bn is an upper bound 
of the Mills' ratio subject to the same constraint if An(x) _< 0 for each x > 0 
or equivalently bn <_ n and na 2 >_ bn(b~ + 1). It can be shown by (2.4) tha t  
admissibility requires an = (n + 1) 1/2 and bn = n. 

Let a and b be any pair of real numbers. Suppose tha t  fn(X; a, b) is a lower 
bound of the Mills' ratio and it is uniformly no smaller than  one of the lower bound 
fn(x;  an, bn) with an and bn satisfying (2.1). Since it is bounded from above by 
fn{x;  (n + 1) 1/2, n}, by (2.4) we have tha t  (b - n)x  + (n + 1)1/25 - na > 0 for 
each x > 0. Therefore, b > n. By (2.4) again, for fixed b it suffices to consider 
a _> 0. On the other hand, suppose tha t  f,~(x; a, b) is an upper bound of the Milks' 
ratio and it is uniformly no larger than  fn{x;  (n + 1) 1/2, n}. Since it is bounded 
from below by f~(x;O,n) ,  by (2.4) we have tha t  (n - b ) x + n a  >_ 0 for each x > 0. 
Therefore a _ 0. By (2.4) again, for fixed a it suffices to consider b :> 0. 

Let P(x)  and Q(x) be any pair of polynomials with the degree of P(x)  no 
more than  n. Suppose tha t  P ( x ) / Q ( x )  is a lower bound of the Mills' ratio and 
fn(x;  a, b) <_ P ( x ) / Q ( x )  for a pair of nonnegative real numbers a and b. It suffices 
to consider P(x)  = x n + pn_lX n-1 + . . .  + Po and Q(x) = q,~x m + . . .  + qo for some 
integer m. Then P ( x ) / Q ( x )  <_ fn(x; A, B)  with A = (n + 1) 1/2 and B = n. By 
the fact tha t  a continued fraction 

bo bl b2 bn ( )  . . . . . . .  a,~ 
. 2 . 5  x +  x +  x +  x +  

can be expressed by bo(x n -~ anx n-1 +."  ")/(X n+l -'[- a~x ~ + . . . ) ,  

and 

qmx m+n + (aqr~ + qm-1)x m+n l + . . .  <_ x2n+l + (a + p , _ l ) X  2 n + . . .  

x 2~+1 + (A + pn_l)X 2n + . . .  < q,~x m+n + (Aq,~ + qm_l)X re+n-1 "-{-''. 

for each x > 0. It follows tha t  m = n + 1, qm = 1 and qm-1 = Pn-1. Taking the 
reciprocal and then subtracting x, we have 

1 2 

x+  x+  

n - 1  b 1 2 n - 1  B 
a > {Q(x) - x P ( x ) } / P ( x )  > . . . . .  A 

x+ x+ - - x + x +  x+ x+ 

where Q(x) - x P ( x )  is a polynomial with degree no more than  n - 1. Successive 
reduction will eatablish tha t  P ( x ) / Q ( x )  is the continued fraction fn in (1.2). The 
results for the case tha t  P ( x ) / Q ( x )  is an upper bound of the Mills' ratio follow 
similarly. [] 
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3. Convergence and properties of fn 

The sequence {L~} of Laplace continued fractions in (1.1) is by Theorem 2.1 a 
sequence of admissible bounds {fn} in (1.2) when an = 0 and bn = n. It is known 
that 

(3.1) L1 < L3 < " "  < + ( x ) / ~ ) ( x )  < . . .  < L4 < L2 

if x > 0. By the fact that Ln - Ln-1 = (-1)n/c,~(x)Cn+l(X) (see Abramowitz 
and Stegun ((1972), p. 19)), the difference converges to zero for each fixed x > 0. 
It follows that (1.3) holds for each x > 0. However, L1 = L3 . . . . .  0 and 
L 2  = L 4  . . . . .  c<) at the origin. Consequently, its convergence rate is very slow 
for small x. 

The Laplace continued fraction may be written in another form { fn(x;n  + 
1, n)}. However, this sequence also fails to converge at the origin. Furthermore, the 
bound fn(x; n + 1,n) is not admissible. By Theorem 2.1, the superior admissible 
bound is 

1 1 2 n 
fn(X; (n + 1) 1/2, n) = L~ = x----+ x ~  z---+"" (n + 1) 1/2. 

x~- 

It can be shown that 

L~ < L~4 < . . .  < ~(x) /¢(x)  < . . .  < L~ < L~I . 

It can also be shown that L~ satisfies (1.3) for each x _> 0 including the origin. It 
is trivial that L2n-1 < L~n and L2n+l < L~n if x < (2n+ 1) 1/2, and L~n+l < L2~, 

L~n+I < L 2 n + 2  if x < (2n + 2) 1/2. One would prefer L~ to Ln. 
In the remainder of this article, the continued fraction fn(X; an, b~) will be 

reserved for the case 

an = 2{(bn + 1)(bn - n)/bn} 1/2 and n < bn < (n 2 + n + 1) 1/2 + (n - 1). 

It can be shown that 

(3.2) L2,--1 < f2~+1 < (P(x)/¢(x) < f2,. < L2~-2 

for each x > 0. By Stirling's formula, fn satisfies (1.3) including the origin if and 
only if 

(3.3) bn = 2n + O(n r) 

with r < 1. The coefficient bn, denoted by bn(0), which minimizes the absolute 
error I~(x) - fn¢(x)l at the origin is of the form 

(3 .4)  b . ( o )  = + + 1) /2 + _ 1) 
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and {fn}, with bn = bn(O), satisfies (3.1) and (1.3) including the origin. The 
corresponding aN can be expressed by 

2[{2(n 2 + n + 1) 1/2 + (n - 1 ) } / 3 ]  1/2.  

The continued fraction fn has an absolute error uniformly no more than L~_ 1 if 
and only if b 3 < 4n(bn + 1)(b, - n). The coefficient b,(0) satisfies this constraint. 
The solution to the cubic polynomial is of the form 

(3.5) 5n = 4{n + (n 2 + 3n) U2 sin(0/3 - 7r/6)}/3 

where 0 = arctan[{27(Sn 2 + 13n + 16)/n}1/2/(9 - 4n)]. The absolute error of fn 
with bn in (3.5) is less than that  of fn with b~ in (3.4) if x _> 1. One would prefer 
fn with b~ in (3.4) or (3.5) to L~ and L,r~. 

4. Bounds of Mills' ratio 

The first three orders of L~, L~ or fn are respectively 

(x + a l ) / ( x  2 + a l x  + bl), 

(x 2 + a2x + b2) /{x  3 + a2x 2 + (b2 + 1)x + a2} and 

{x 3 + a3x 2 + (53 ÷ 2)x + 2a3} / { x  4 + a3 x3 + (53 + 3)x 2 + 3aax + 53}. 

It will be shown that  these bounds are superior to bounds of the Mills' ratio in the 
literature where the Laplace continued fraction L~ has seldom been recognized as 
a bound. The upper bound and the lower bound of the Mills' ratio in Gordon 
(1941) are L0 = 1/x and L1 = z / ( z  2 + 1) respectively. The lower bound and 
the upper bound of the Mills' ratio in Gross and Hosmer (1978) are L1 and L2 = 

(x 2 + 2)/(x 3 + 3x) respectively. For lower bounds of the Mills' ratio, L1 is superior 
to the Laplace (1785) asymptotic expansion 1/x - 1/x 3 (see Feller ((1968), p. 175 
and p. 193)), L~ is superior to {(x 2 + 4) 1/2 - x} /2  of Birnbaum (1942), and 
f3{x; ha, b3(0)} is better than 7r/{(Tr-1)x+(x2+2~r) 1/2} of noyd (1959)ifx > 0.1. 
For upper bounds of the Mills' ratio, L~ is superior to 4/{3x + (x 2 + 8) 1/2} of 
Sampford (1953), f2{x; a2, b2(0)} is better than 2/{x  + (x 2 + 2) 1/2} of Komatu  
(1955), 2/{x  + (x 2 + 8/7r) 1/2 } of Pollak (1956) if x _> 0.1 and 7c/[2x + {27r + (Tr - 
2)2x2} 1/2] of Boyd (1959) if x > 0.7. Continued fractions fn and L~ provide the 
sharpest tail bounds of the Mills' ratio in the literature if x > 0.7. 

Other complicated bounds of the Mills' ratio are also investigated. Laplace 
asymptotic expansions, the six rational bounds in Shenton ((1954), p. 188) and 
the three rational lower bounds in Ruben ((1963), p. 362) can be expressed by the 
continued fraction (2.5). While the leading coefficients bo,bl,b2,b3,..,  have the 
pat tern 1, 1, 2, 3 , . . . ,  there is always a first negative coefficient, say b~+1, with two 
exceptions. These bounds can be expressed as ratios of two polynomials with the 
degree of the numerator no less than n + 1. Laplace asymptotic expansions are 
inferior to Lo, L1, L2, L 3 , . . . ,  except that  the first one 1/x is L0. The six rational 
bounds of Shenton (1954) are inferior to L3, Lb, L4, L6, L5 and L6 respectively. 
The three rational lower bounds of Ruben (1963) are inferior to L1, L3 and L5 
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respectively except that the first one is L1. The sequence of lower bounds of the 
Mills' ratio of the form (x 2 + 2r + 2) -1/2 in (2.10) of Ruben (1964) are inferior to 

, L4, L6 , . . . .  Even though the numbers of terms in Ln are larger, expressions 
and computations are, however, much simpler. 

When x is small, say x _ 1, the Laplace (1785) series 

n 

(4.1) O(x) = ~(0) + 0(0) E( -1 ) t x2 t+ l /2 t (2 t  + 1)t! + e~ 
t=O 

and the Laplace (1812) series, rediscovered by Pdlya (1949), 

(4.2) 

n 

e ( x )  = ¢(0)  + ¢(x)  x2 +1/1 • 3 . 5 . . .  (2t + 1) + 
t=O 

are very good bounds of q)(x). If the same number of terms is used, the absolute 
error of (4.1) is less than that of (4.2) in the range x < 2. While the Laplace series 
is alternatively an upper bound and a lower bound, the Laplace-P61ya series is 
always a lower bound. These bounds will be compared to other approximations 
to ap(x) in the last section. 

5. Asymptotic optimality 

Consider admissilble bounds f~ (x; a, b) with the coefficients a and b satisfying 
(2.1). The coefficient b is said to be optimal at a fixed x0 if it has the smallest 
absolute error If~(x0; a, b) - R(xo)l. Since a/b is unimodal with the unique mode 
bn(O), by (2.4) we have that every coefficient b, n < b < bn(O), is optimal at a 
unique finite x, x _> 0, with the exception of b = n when fn = Ln. By (2.4), 
f,~{x; an, b~(0)} has smaller absolute error than Ln if x < 2[{2(n 2 + n + 1) 1/2 + 
(n + 2)}/3] 1/2. Suppose that one has a specific x0 in mind. The optimal b~ is the 
solution to the equation 

xo = {3n + 2(n - 1)b~ - b2~}/(b~(b~ + 1)(bn - n)} 1/2 

in the range of n < bn <_ bn(O). The expression of this solution is rather compli- 
cated. However, it can be expressed asymptotically by 

(5.1) bn(xo) = 2n - x0rt 1/2 + (x02 - 1)/2 + Cn 

w i t h  g n  ----- O(n-1/2) • The solution bn(xo) is of the form (3.3). Some selected 
values of bn(xo) are provided in Table 1. When x0 -- 0, bu(0) is given in (3.4) 
and the corresponding -~n lies between 0 and 3/(8n + 4). It is interesting to note 
that bn in (3.5) can be expressed by bn(21/2) + vn. The value bn(xo) is monotone 
decreasing in Xo. However, the three-term expression in (5.1) is not. To remedy 
this deficiency, one may use 

(5.2) b,~(xo) = (3n - 1)/2 + cn if x0 > n 1/~ 
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or expand ¢n in (5.1) to several extra terms. In view of (3.2) and the fact that 
L~ is a very good approximation for large x, the use of the three terms in (5.1) is 
adequate. 

Table 1. Optimal values of bn(xo)/n. 

xo 
n 

0 1 2 3 4 5 6 

4 

5 

I0 

20 

50 

100 

1 1.732 1.376 1.215 1.135 1.090 1.064 1.047 

2 1.823 1.465 1,283 1.184 1.126 1.091 1.068 

3 1.869 1.526 1.335 1.224 1.157 1.115 1.087 

1.896 1.571 1.377 1.259 1.185 1.137 1.105 

1.914 1.605 1.412 1.289 1.210 1.157 1.121 

1.954 1.703 1.524 1.396 1.305 1.239 1.190 

1.976 1.783 1.631 1.512 1.418 1.344 1.286 

1.990 1.860 1.748 1.652 1.569 1.498 1.437 

1.995 1.901 1.815 1.739 1.670 1.608 1.552 

Table 2. Absolute errors of L~ and fn as approximations to ~(x) t. 

degree n 

x 1 2 3 4 5 6 7 8 

0.5 Ln O.17 0.18 O.11 0.10 T.72 i.69 T.51 T.48 

fn T.30 3.14 5.33 5.13 4.62 4.34 4.20 4.13 

1.OLn 1.38 T.23 T.13 5.89 5.58 5.40 3.28 3.20 

fn T.38 5.52 4.82 4,22 5.78 5.33 5.16 9.81 

1.5Ln 5.70 3.31 5.15 5.77 5.42 5.24 5.14 4.88 

fn 5.56 4.53 5.85 5,20 9.62 6.22 7-89 7,39 

2.0Ln 5.12 5.39 5.15 4.63 4.28 4.14 5.68 5.35 

f~ 5.18 5.25 9.19 Z51 Z17 5.64 5.25 8.10 

2.5 Ln 5.17 4.44 4.13 5.47 5.18 6.70 9.30 9.13 

fn 5.20 5.72 9.50 7.54 5.79 5.15 §.35 10.95 

3 .0L .  4.20 5.43 5.10 6.31 7.96 7.33 7.12 8.45 

fn 4.76 5.31 9.23 7.25 5.34 9.58 §.12 10.26 

3.5 Ln 5.21 6.36 7.74 7.18 8.47 8.14 9.42 9.14 

fn 4.17 9.68 7.49 5.50 9.64 1--0.99 1-'0.18 1"-1,36 

4.0 Ln 6.18 7.25 8.44 9.88 9.20 1"-0.49 1--0.13 1-~.38 

fn 5.28 9.10 5.66 9.61 1--6,72 1-6.10 1-1.16 1-2,30 

t0.17 stands for 0.17 and T.30 for 0.030, 



116 C H U - I N  C H A R L E S  L E E  

Let an = 2{(bn + 1)(bn - r t ) /bn}  1/2 and b~ = 2n - x n  1/2 + (x  2 - 1)/2. The 
normal integral ~(x) is approximated by 

1 1 2 3 ( n - l )  bn } 
(5.3) ~(x) = 1 - ¢(x) x-G=+ x+ x + ' "  x ~  x+a"  + ~n. 

Absolute errors of (5.3) and those corresponding to Ln for x -- 0.5, 1.0, 1 .5 , . . . ,  
4.0 and n = 1, 2 , . . . ,  8 are provided in Table 2. The notation ~.bc, used by Ruben 
(1964), is to be interpreted as O.bc x 10 -a', e.g. 0.17 = 0.17 x 10 -o = 0.17 and 
1.30 = 0.30 x 10 -1 = 0.030. The values of these two approximations are upper 
bounds of ~(x) if n is odd and lower bound if n is even. The approximation (5.3) 
is superior to its predecessor L,~. If (5.2) is also used, then absolute errors of fn 
will remain the same if x < n 1/2 and they are identical to those of Ln if n = 1 
and x > 1. However, it is superior for almost all other combination of x and n in 
Table 2. For instance, its asbolute errors at n = 2 and x > 1.5 are 4.54, 5.16, 6.14, 
7.86, 7.21, 8.31; at n = 8 and x _> 3.0 are 1-0.25~ 1-1.25, 1--2.15. While L~ is a good 
bound of the Mills' ratio, it is not as efficient as fn in approximation ~(x). Its 
absolute errors when n = 8 are 2.27, 3.23, 4.15, 6.86, 7.42, 8.18, 10.68 and 1--1.22 
respectively at x = 0.5, 1 .0 , . . . ,  4.0. 

6. Approximations to ¢(x) 

There is a vast literature in approximating the normal integral. For example, 
the result in Hastings ((1955), p. 185) 

)4 
~(x)  = ~ c~x ~ + c 

not only has a fixed maximum absolute error 0.00025 but also requires a ta- 
ble of six significant digit coefficients. The rational approximation in Gray and 
Schucany (1968) is inferior to f7 of the same degree in (5.3) except in a very small 
neighbourhood where the error changes sign. Convergent approximations having 
simple expressions are Ln,  f n  in (5.3), Shenton's (1954) continued fraction, the 
Laplace-PSlya series in (4.2), the Laplace series in (4.1) and Kerridge and Cook's 
(1976) expansion. Shenton (1954) proposed a continued fraction 

x x 2 2x  2 3x  2 4x  2 5x  2 n x  2 

• ( x ) = 4 P ( 0 ) + O ( x )  1 - 3 +  5 -  7+ 9 -  l l + ' " 2 n + l ~  + ¢ n  

and Kerridge and Cook (1976) derived an expansion 

,~(x) = ,~(o) + x¢(x/2) f i  o2~(x/2) 
2 t +  1 

t=O 

- -  q - C n  

where Oo(X) = 1, 01(x)  = x 2 and 0n(x) = x 2 { O n _ l ( x )  - O n - 2 ( x ) } / n  for n ~ 2. 
While Ln,  f n ,  the Laplace-P61ya series and the Laplace series are bounds of the 
normal integral, the Kerridge and Cook expansion is not. 
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For  desk  c o m p u t a t i o n  a n d  single p r ec i s i on  p r o g r a m m i n g ,  we a re  i n t e r e s t e d  in 
a b s o l u t e  e r ro r  no m o r e  t h a n  10 - 4 ,  10 --5, 10 - 6  a n d  10 -7 .  Deg ree  n or  n u m b e r  

of  t e r m s  r e q u i r e d  to  ach ieve  the  de s i r ed  a c c u r a c y  for t h e  s ix  c onve rge n t  a p p r o x -  

i m a t i o n s  in t h e  o r d e r  of  s i m p l i c i t y  in c o m p u t a t i o n  a re  p r o v i d e d  in T a b l e  3 for 

x = 0.5, 1 . 0 , . . . ,  4.0. I t  is found  t h a t  fn(x)¢(x) is t h e  b e s t  a p p r o x i m a t i o n  for t h e  

n o r m a l  t a i l  p r o b a b i l i t y  ~)(x) in t he  r a n g e  x >_ 1.5. For  x _< 1, t h e  las t  four  a p p r o x -  

i m a t i o n s  in T a b l e  3 a re  ve ry  efficient.  I t  is r e m a r k a b l e  to  obse rve  t h a t  t h e  s i m p l e  

e x p r e s s i o n  (5.3) has  a m a x i m u m  a b s o l u t e  e r ro r  no m o r e  t h a n  10 - 4  for t h e  en t i r e  

r a n g e  of  x _> 0 in n = 12. 

T h e  las t  four  a p p r o x i m a t i o n s  in T a b l e  3 a re  a lso  c o m p u t e d  a t  x = 0.5, 1 . 0 , . . . ,  

4.0 a n d  n = 1, 2 , . . . ,  8. S h e n t o n ' s  c o n t i n u e d  f r a c t i o n  is b e t t e r  t h a n  fn in T a b l e  

2 i f x  = 0.5 or  x = 1.0 a n d  n > 5. T h e  s a m e  re su l t  ho lds  t r u e  for b o t h  t h e  

L a p l a c e - P 6 1 y a  ser ies  a n d  t h e  L a p l a c e  ser ies  e x c e p t  n _> 6 a t  x = 1.0. T h e s e  

t h r e e  a p p r o x i m a t i o n s  a re  no t  r e c o m m e n d e d  for x >_ 2 b e c a u s e  of  l a rge  e r rors .  For  

e x a m p l e ,  a t  x = 4 a n d  n = 8, t h e  S h e n t o n  c o n t i n u e d  f r ac t i on  has  as  a b s o l u t e  e r ro r  

0.49, t h e  L a p l a c e - P d l y a  ser ies  0.24 a n d  t h e  L a p l a c e  ser ies  21.33. T h e  K e r r i d g e  a n d  

C o o k  e x p a n s i o n  is b e t t e r  t h a n  fn  in T a b l e  2 if x = 0.5, x = 1.0 or  x = 1.5 a n d  

n _> 5. However ,  i t  is no t  so easy  to  c o m p u t e .  Fo r  t h e  r e m a i n i n g  x a n d  n in  T a b l e  

2, fn w i t h  b,, in (5.1) a n d  (5.2) has  t h e  s m a l l e s t  a b s o l u t e  e r ror .  T h e  c o n t i n u e d  

f r ac t i on  fT, in (5.3) is r e c o m m e n d e d  for de sk  c o m p u t a t i o n  in t h e  r a n g e  of  x >_ 1. 

Table 4. Degree n or number of terms required for accuracy 10 -d .  

degree n terms 

Laplace Kerridge 

x d Ln f~ Shenton -P61ya Laplace and Cook 

1 10 131 35 9 10 10 6 

15 297 110 12 14 13 9 

2 10 32 11 14 16 16 9 

15 73 34 18 21 21 13 

3 10 13 8 19 24 25 13 

15 31 18 25 30 31 17 

4 10 6 5 26 32 35 15 

15 16 12 * 39 * 21 

5 10 2 3 34 41 48 20 

15 9 8 * 50 * 24 

6 10 1 2 * 51 63 23 
15 4 5 * 61 * 30 

* Specified accuracy not attainable in double precision programming. 
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The six approximations are also compared at accuracy of 10 -1° and 10 -15 
when double precision programming is used. The results for x = 1, 2 , . . . ,  6 are 
provided in Table 4. It is found that f ,  is the best if x _> 3. If (5.2) is also 
used, the eight degrees for x = 3, 4, 5 and 6 are 7, 18, 4, 12, 2, 8, 1, and 4 
respectively, and they are 6, 16, 4, 10, 2, 7, 1, and 3 respectively if Cn in (5.1) is 
approximated by x0(6 - X2o)/Sn 1/2 + (X3o - 4x~ + 2x0 - 4)/8n. For x _< 1, the last 
four approximations in Table 4 are very efficient. Double precision computation 
carries 16 significant digits during the course of execution. If one subtracts two 
numbers with the matching leading digits then the accuracy of the difference will 
suffer by the same number of digits. That is why both the Shenton continued 
fraction and the Laplace series fail to attain the specified accuracies in Table 4. 
On the other hand, the Laplace continued fraction Ln is tested at x -- 0.001. 
It is found that its absolute error will eventually be reduced to less than 10 -15 
once n _> 2.934 × 10 s. The accuracy of fn and Laplace continued fraction Ln 
are superior because the effects of rounding errors are not cumulative. While the 
values of f~ in (5.3) and the Laplace-PSlya series lie between 0 and 1, the values of 
Shenton's (1954) continued fraction, the Laplace series and Kerridge and Cook's 
(1976) expansion may be less than 0 or greater than 1. 
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