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Abstract: The Trojan Y Chromosome Strategy (TYC) is the only genetic biological control method
in practice in North America for controlling invasive populations with an XX–XY sex determinism.
Herein a modified organism, that is a supermale or feminised supermale, is introduced into an
invasive population to skew the sex ratio over time, causing local extinction. We consider the three
species TYC reaction diffusion model, and show that introduction of supermales above certain
thresholds, and for certain initial data, solutions can blow-up in finite time. Thus, in order to have
biologically meaningful solutions, one needs to restrict parameter and initial data regimes, in TYC
type models.

Keywords: Trojan Y chromosome strategy; finite time blow-up; reaction diffusion system; invasive
species control

MSC: 35B44; 92D40

1. Introduction

The detrimental effects of invasive species is well-documented [1–7]. Current control
methods rely, primarily, on chemical treatment [8] and are environmentally detrimental.
Biological control is an alternative means of control, where a species is released to control
the invasive population by predation, competition, disease, or manipulating the mating
system [9,10]. The recent advancement with gene drive technology makes this approach
even more promising, from both modeling and practical standpoints [11–14]. The Trojan Y
chromosome strategy (TYC) is a promising genetic biocontrol strategy which circumvents
the detriment due to chemical control [15–19]. It involves introducing a YY male or YY
male and feminised YY male into an invasive population with an XX–XY sex determinism
system. The off-spring of the YY male or YY feminised male are only wild type males or YY
males. This skews the sex ratio of subsequent generations towards all males, and extinction
of the population may occur (see Figure 1). Note the TYC strategy has also been studied
for ZZ–ZW systems [20].

A mathematical model for the TYC strategy was first pioneered in [16], and has been
well investigated [11,19,21–24]. Prior work on TYC [25–28], shows that depending on the
introduction rate of the supermale/feminized supermale, and initial data, eradication is
always possible. These results rely on the assumption that solutions remain positive for
all non-negative initial data. The TYC strategy is now in current practice and field studies
that investigate the survivability and reproductivity of introduced supermales are reported
in [14,29]. In current field trials, only the YY supermale population has been introduced
into the wild [30]. Subsequently, what we have in practice then is a situation where only a
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YY supermale is introduced into a population of XX females and XY males. This leads to
the following reaction diffusion system:

∂ f
∂t

= D∆ f +
1
2

βL f m− δ f , (1)

∂m
∂t

= D∆m +
1
2

βL f m + βL f s− δm, (2)

∂s
∂t

= D∆s + µ− δs, (3)

specified over a bounded spatial domain Ω ⊂ Rn, n = 1, 2, 3 and subject to homogeneous
Neumann boundary conditions, that is,

∇ f · n = ∇m · n = ∇s · n = 0.

Figure 1. The pedigree tree of the TYC model (that demonstrates Trojan Y Chromosome eradication
strategy). (a) Mating of a wild-type XX female (f) and a wild-type XY male (m). (b) Mating of a
wild-type XX female (f) and a YY supermale (s).

The state variables f , m, s are the population densities/numbers of individuals in
each associated class: XX females, XY males, and YY males, respectively. The logistic term,
L = (1− ( f + m + s)/K), where K is the carrying capacity of the ecosystem, attempts
to penalize or encourage growth of populations when above or below K, respectively.
The positive constants β and δ represent the per capita birth and death rates, respectively;
non-negative constant µ denotes the rate at which the YY males s are introduced. The
kinetics describe that the female population increases due to mating between the XX
females and XY males, whereas the male population increases due to mating between the
XX females and XY males, as well as mating between the XX females and YY supermales.

Positive initial data, ( f (x, 0), m(x, 0), s(x, 0)), is assumed herein. Movement of species
modeled via random diffusion, incorporated as reaction diffusion equations, has a long
standing history in population dynamics [7,31]. Thus, we assume the species f , m, s move
via random diffusion, with equal speeds modeled via equal diffusion coefficients D. These
could be thought of as purely movement of the species (D) or pure movement (D1) plus
some “eddy” diffusion (D1), which the species could be subject to, due to the flow of
the water body they are present in [31] (herein D = D1 + D2). The bounded domain,
Ω, represents the water body the species is present in, such as a lake or stream [32–34].
The Neumann or no flux boundary condition implies that no species enters or leaves
through the boundary Ω [31]. In the setting of a lake or pond, this implies that there are no
inlets/outlets in or out of the water body in question. Thus, no species can enter the lake
from surrounding water bodies or leave the lake, and go into those other water bodies [35].
Note Dirichlet or lethal boundary conditions could also be imposed, and this would imply
the species die on hitting the boundary, due to rotenone poisoning sprayed around a pond
for example [8,36].

The current manuscript shows that under certain initial data and parametric restric-
tions, the PDE model can produce negative (biologically spurious) solutions. Thus, we
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purport that in order for the TYC model to have practical applicability, such as for simu-
lation purposes in the current field trials [30], one needs to restrict initial conditions and
parameters. The current work focuses on showing:

1. The three species reaction diffusion TYC model, (1)–(3), results in negative solutions in
the male population m. These conditions include the choice of large initial conditions
( f0 + m0 + s0 >> K) and/or large introduction rate of supermales s. This result is
given via Lemma 2;

2. The negativity of m may lead to finite time blow-up in Lp of f and m. This happens for
large initial data as seen via Theorem 1, but is also possible for small initial data, which
is seen via Theorem 2, in the PDE model. Similar results are derived via Corollary A1,
Corollary A2 for the ODE model;

3. We numerically derive regions of invariance in the phase space, for the three species
TYC PDE model, via Figure 2. Additionally, chemotaxis type mechanisms can damp
blow-up solutions;

4. We discuss the practical relevance of these results to biological control and possible re-
strictions.

(a) (b)

Figure 2. In these simulations we consider the three species TYC PDE model (6)–(8) with Neumann
boundary conditions. The phase space is partitioned into three regions showing various dynamics.
The blue region in (a,b) indicates where positive solutions are guaranteed for f and m where s(0) < s∗

and γ < γ∗. The magenta region shows where negative solutions for m exist mathematically for
s∗∗ > s(0) ≥ s∗ and γ∗∗ > γ ≥ γ∗. In this region, f converges asymptotically to zero in (a) and f
goes to a non-negative steady state in (b). The red region in (a,b) indicates where negative solutions
for m exist and f blows-up in finite time for s(0) ≥ s∗∗ and γ ≥ γ∗∗. In each simulation in (a), γ = 0
and in (b), s(0) = 0. Simulation uses D = 1 and ρ = 18.

2. Finite Time Blow Up
2.1. Preliminaries

We aim to prove the possibility of finite time blow-up in (1)–(3). To this end we use
standard techniques [37–39]. We first recall classical results guaranteeing non-negativity of
solutions, local and global existence [38,40]:

Lemma 1. Let us consider the following m×m - reaction diffusion system: for all i = 1, ..., m,

∂tui − di∆ui = fi(u1, ..., um) in R+ ×Ω, ∂vui = 0 on ∂Ω, ui(0) = ui0, (4)

where di ∈ (0,+∞), f = ( f1, ..., fm) : Rm → Rm is C1 and ui0 ∈ L∞(Ω). Then, there exists a
T > 0 and a unique classical solution of (4) on [0, T). If T∗ denotes the greatest of these T′s, then[

sup
t∈[0,T∗),1≤i≤m

||ui(t)||L∞(Ω) < +∞

]
=⇒ [T∗ = +∞].
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If the nonlinearity ( fi)1≤i≤m is moreover quasi-positive, which means

∀i = 1, ..., m, ∀u1, ..., um ≥ 0, fi(u1, ..., ui−1, 0, ui+1, ..., um) ≥ 0,

then
[∀i = 1, ..., m, ui0 ≥ 0] =⇒ [∀i = 1, ..., m, ∀t ∈ [0, T∗), ui(t) ≥ 0].

2.2. Negative Solutions

Remark 1. Notice via (1)–(3), that f1( f , m, s) = 1
2 βL f m− δ f , f2( f , m, s) = 1

2 βL f m + βL f s−
δm and f3( f , m, s) = µ− δs. Thus f2( f , 0, s) = β f s(1− ( f + s)/K).

Even if f , s > 0, (1− ( f + s)/K) does not have a definite sign, and so f2( f , 0, s) =
β f s(1− ( f + s)/K) does not have a definite sign. This suggests negative solutions are a pos-
sibility in (2), and so m could possibly be negative.

We next state the following lemma.

Lemma 2. Consider the TYC system given by (1)–(3). Then, there exists positive initial data
( f0(x), m0(x), s0(x)) ∈ L∞(Ω), and a time interval [T1, T2] ∈ (0, ∞), s.t for solutions emanating
from these data, m(x, t) < 0 on [T1, T2].

Proof. Consider (1)–(3), then we have,

f1(0, m, s) = 0, f3( f , m, 0) = µ ≥ 0.

Thus, f , s ≥ 0 for all time. However,

f2( f , 0, s) = β f s
(

1− f + s
K

)
,

and so if one chooses initial data f0(x), s0(x) � K, and 0 < m0(x) << 1, we have by
continuity of solutions f , s >> K for t ∈ [0, T∗], for some time T∗. Thus, for t ∈ [0, T∗],
f2( f , 0, s) < 0, violating the necessary requirement for positive solutions from Lemma 1,
and will yield negative solutions in m, for t ∈ [T1, T2] ⊂ [0, T∗].

2.3. Finite Time Blow-Up in the PDE Model

We see that for positive solutions to (1)–(3), classical methods [38], can be applied to
yield global in time existence of solutions. In our case this is fairly easy as the equations
could be added up, to derive an equation for a grouped variable V = f + m + s, as the
diffusion coefficients are all the same, on which uniform estimates can then be made.
However, these methods will not apply if m < 0. We show next that the negativity of m,
can, in turn, lead to finite time blow-up. We state the following theorem,

Theorem 1. Consider the TYC system given by (1)–(3), with µ = 0. Then, there exists positive
initial data ( f (x, 0), m(x, 0), s(x, 0)) ∈ L∞(Ω), such that solutions emanating from this data, can
blow-up in finite time, that is

lim sup
t→T∗<∞

|| f ||p → +∞

and
lim sup
t→T∗<∞

||m||p → ∞

for all p ≥ 1.

Proof. Consider the equation for f expanded:

∂ f
∂t

= ∆ f +
β

2
f m− β

2K
f 2m− β

2K
f m2 − β

2K
f ms− δ f .
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Via Lemma 2 we know that for large s(x, 0) and f (x, 0), that is s(x, 0), f (x, 0) � K,
that m(x, t) < 0 for t ∈ [T1, T2] and x ∈ Ω. Let m = −m̃, where m̃ > 0 for t ∈ [T1, T2] and
x ∈ Ω. By direct substitution,

∂ f
∂t

= ∆ f − β

2
f m̃ +

β

2K
f 2m̃− β

2K
f m̃2 +

β

2K
f m̃s− δ f .

Integrating over the spatial domain Ω and rearranging yields,

d
dt

∫
Ω

f dx =
β

2K

∫
Ω

f 2m̃ dx +
β

2K

∫
Ω

f m̃s dx− β

2

∫
Ω

f m̃ dx

− β

2K

∫
Ω

f m̃2 dx− δ
∫

Ω
f dx.

Since m(x, t) < 0 for (x, t) ∈ Ω × [T1, T2] then −δ2 < m(x, t) < −δ1, for positive
constants δ1 and δ2. Thus via standard comparison as earlier and Hölder’s inequality we
have,

d
dt

∫
Ω

f dx ≥ βδ1

2K

(∫
Ω

f dx
)2
−
(

βδ2

2
+

β(δ2)
2 + δ

2K

) ∫
Ω

f dx.

Define F(t) =
∫

Ω
f dx, then,

d
dt

F(t) ≥ βδ1

2K
(F(t))2 −

(
βδ2

2
+

β(δ2)
2 + δ

2K

)
F(t)

which yields the finite time blow-up of F(t), for large enough initial data. That is for

F(0) =
∫

Ω
f (x, 0)dx ≥

(
βδ2
2 + β(δ2)

2+δ
2K

)
(

βδ2
2Kδ

) .

Thus, the L1(Ω) norm of f blows-up in finite time. Since Lp(Ω) ↪→ L1(Ω), for p ≥ 1,
we have that the Lp norm of f blows-up for any p, for large enough initial conditions. This
completes the proof of the blow-up of f . In order to establish the proof of blow-up in

m, we can proceed by contradiction. That assumes F(t) =
∫

Ω
f dx blows up at time T∗,

but G(t) =
∫

Ω
mdx, does not and is bounded. So F(T∗) = +∞, but −∞ < G(T∗) < +∞.

Let us integrate (2) in the time interval [0, T∗] and then over the spatial domain Ω, we obtain

−∞ < G(T∗) =
∫ T∗

0

∫
Ω

(
1
2

βL f m + βL f s− δm
)

dxdt = −∞.

This follows due to the negativity of m, and the blow-up of f , via Theorem 1. Thus,
we have a contradiction, which implies the blow-up of m at T∗ as well.

Remark 2. Note, Theorem 1 shows that for (1)–(3), we do not have control of mass or L1(Ω)
control.

The previous theorem proves that the finite time blow-up is a possibility even if the
only introduction of s is through the initial condition. In the following theorem we prove
that regardless of the initial condition size that there exists a threshold to the introduction
rate, µ, such that rates beyond this value will lead to finite time blow-up in f .
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Theorem 2. Consider the TYC system given by (1)–(3), with µ > 0. Then, for any positive initial
data ( f (x, 0), m(x, 0), s(x, 0)) ∈ L∞(Ω), there exists a µ∗, such that if µ > µ∗, then solutions
emanating from these data, can blow-up in finite time, that is

lim sup
t→T∗<∞

|| f ||p → +∞

and
lim sup
t→T∗<∞

||m||p → ∞

for all p ≥ 1.

Proof. Let µ > δK. Following similar estimates as in the previous theorem yields,

d
dt

∫
Ω

f dx =
β

2K

∫
Ω

f 2m̃ dx +
β

2K

∫
Ω

f m̃sdx− β

2

∫
Ω

f m̃dx− β

2K

∫
Ω

f m̃2dx− δ
∫

Ω
f dx.

Via Holder’s inequality we have,

d
dt

∫
Ω

f dx ≥ C1
βδ1

2K

(∫
Ω

f dx
)2

+
βδ2µ

2Kδ

∫
Ω

f dx−
(

βδ2

2
+

β(δ2)
2 + δ

2K

) ∫
Ω

f dx.

= C1
βδ1

2K

(∫
Ω

f dx
)2

+

(
βδ2µ

2Kδ
−
(

βδ2

2
+

β(δ2)
2 + δ

2K

)) ∫
Ω

f dx

The result follows for µ∗ chosen s.t,

µ > µ∗ =

(
βδ2

2
+

β(δ2)
2 + δ

2K

)
(

βδ2

2Kδ

) . (5)

Remark 3. The thresholds provided in (5) are not sharp. In fact, numerical experiments suggest
the critical values of initial condition size or introduction may be much smaller than (5) for finite
time blow-up. However, this result shows that small data blow-up is possible in the three species
TYC system, if the introduction rate µ is sufficiently large.

3. Numerical Experiments for TYC PDE Model

We perform numerical experiments to show that the f variable has a potential to
blow-up in finite time in a three species classical TYC PDE model. We also show via
simulations that blow-up phenomenon in the f variable can be curtailed when spatial
damping mechanisms are introduced.

3.1. Scaling of TYC PDE Model

We non-dimensionalize the PDE form of TYC models. We let f → f
K

, m→ m
K

, s→ s
K

,

τ → δt, γ =
µ

Kδ
and ρ =

βK
2δ

. The dimensionless variables ρ is a ratio of the two time
scales in the TYC model, that is, the birth and death rates. D is the diffusion co-efficient.
The dimensionless spatio-temporal three species TYC model is given as,
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∂ f
∂t

= D∆ f + ρm f L− f , (6)

∂m
∂t

= D∆m + ρm f L + 2ρs f L−m, (7)

∂s
∂t

= D∆s + γ− s, (8)

specified over the scaled spatial domain Ω = (0, 1) and t ∈ (0, ∞). We, prescribe both
homogeneous and Neumann boundary conditions in simulations seen in Figure 3.

(a)

(b)

Figure 3. (a) Simulation for scaled system (6)–(8) with f (x, 0) = m(x, 0) = 0.3 and s(x, 0) = 2.75
and Neumann boundary conditions. The increase in the initial amount of s results in finite time
blow-up in f . This clearly shows blow-up of L1(Ω) norm is possible, as seen via Theorems 1 and 2.
(b) Simulation with the initial conditions f (x, 0) = m(x, 0) = x(1− x) and s(x, 0) = 4smaxx(1− x),
with smax = 3 and Dirichlet boundary conditions. The increase in the maximum number of s results
in finite time blow-up in f . Simulation uses D = 0.01, γ = 0 and ρ = 18.

3.2. Spatial Damping

We aim to investigate spatial pressures, via numerical simulations, that might inhibit
or damp the blow-up. For example, what happens if f moves towards lower concentrations
of s? We now consider the spatially explicit version of the TYC model with a chemotaxis
term [41] given by,

∂ f
∂t

= ∆ f + χ∇ · ( f∇s) +
1
2

βL f m− δ f , (9)

∂m
∂t

= ∆m +
1
2

βL f m + βL f s− δm, (10)

∂s
∂t

= ∆s + µ− δs, (11)
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specified over the domain (x, t) ⊂ Ω × (0, ∞) and subject to a Neumann and mixed
boundary conditions on the boundary ∂Ω, that is,

∇ f · n = ∇m · n = 0, s +∇s · n = 0,

where L, β, δ, and µ are as defined previously and χ is the chemotatic parameter. Here,
we use mixed boundary conditions for s, as homogenous Neumann boundary conditions
would lead to blow-up upon a simple integration of (9). Our goal is to investigate the effect
of the chemotaxis pressure herein. See Figures 4 and 5.

(a) (b) (c)

Figure 4. Simulation for scaled system (9)–(11) (see Appendix B) with f (x, 0) = m(x, 0) = 0.3 and
s(x, 0) = 2.75 and Neumann boundary conditions for both f and m and a mixed boundary condition
for s. Here, χ = 0. (a) The increase in the initial amount of s results in finite time blow-up in f and
in (b), m goes negative. (c) s reaches a non constant steady state. Simulation uses D = 1, γ = 0 and
ρ = 18.

(a) (b) (c)

Figure 5. Simulation for scaled system (9)–(11) with f (x, 0) = m(x, 0) = 0.3 and s(x, 0) = 2.75 and
Neumann boundary conditions for both f and m and a mixed boundary condition for s. Here, χ = 2.2.
(a) Finite time blow-up in f is damped and f goes to 0. (b) m goes to 0. (c) s reaches a non constant
steady state. Simulation uses D = 1, γ = 0 and ρ = 18.

4. Discussion and Conclusions

This paper proves and provides numerical experiments indicating negativity of so-
lutions and subsequent finite time blow-up in the three species reaction diffusion TYC
model. The cause of the negativity of solutions is a result of the form of the reaction terms
incorporating mating between females and males, as well as the mating between females
and supermales. Note, although classical methods to prove global existence [37,38,40]
require quasi-positivity, see Lemma 2, there are not many examples in the literature (to the
best of our knowledge) where loss of positivity, leads to global non-existence such as via
finite time blow-up.

In the three species reaction diffusion model (in the most realistic case µ = 0) blow-up
seems to occur only for sufficiently large initial conditions, about three times the magnitude
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of carrying capacity. A necessary condition on the data guaranteeing globally existing
solutions for initial conditions between carrying capacity and three times carrying capacity,
is yet to be proven. Therefore, caution and discretion should be taken in choosing the
parameter regime and initial condition size when utilizing the TYC model for predictions
of the efficacy of the TYC strategy. Additionally note, in [26], population experiments with
guppy fish were performed and subsequently used to determine the best parameters, in the
least squares sense, to the mating model, with no supermales. The best fit parameters
suggested ρ ≈ 17.8125. Thus, we use this value throughout the numerical simulations.

Revisions to the TYC model may remove this inconsistency present in current models.
A promising revision and modification to the classical TYC model are models that include
the strong Allee effect [11,23,42] and intraspecies competition [11] for females among males
and supermales, and finite time effects [43]. Sexual selection, might also play a role herein.
For example, if f selects m over the mutant male s, and so moves away from s, blow-up
can be attenuated, see Figure 4 and 5.

Numerical experiments in these works indicate that negativity of solutions remains a
mathematical possibility for certain parameter regime and initial data choice—but blow-up
is not noticed in simulations. We conjecture that the intraspecies competition terms remove
this unrealistic dynamic since large populations will attenuate the growth rates of the female
and male populations. An interesting numerical observation is that a blow-up solution
in the 3 species model can be attenuated in the 4 species one [16,36], if enough feminised
supermales are introduced. Alternatively, one can phrase this as introducing supermales (in
3 species model) accentuates blow-up, but introducing feminized supermales (in 4 species
model) attenuates blow-up. This remains unproven and is the focus of our current and
future research efforts.

Clearly, additional refinement of the TYC model is still required to eliminate the
possibility of negative solutions and/or blow-up solutions. An interesting question to
study is if the choice of very different diffusion coefficients in the species could lead to
attenuation of negativity and blow-up—at least in certain regimes of initial conditions.
Additionally, alternatives to the classical logistic term are plentiful. For instance, one
such alternative is to consider a logistic term of the form exp(1− ( f + m + s)). Hence,
populations are still penalized with a dampened growth rate when populations exceed
the carrying capacity. However, preliminary analysis of this type of logistic term have
proven difficult for mathematical analysis and, moreover, can generate stable nontrivial
equilibrium solutions, such that the total population size asymptotically approaches values
above the carrying capacity. Another alternative, is based on the work of mating models,
see [44] and references therein. Another interesting direction, although challenging could
be relaxing of the quasi-positivity condition, via Lemma 2, to the reaction terms being

∀i = 1, ..., m, ∀u1, ..., um ≥ 0, fi(u1, ..., ui−1, 0, ui+1, ..., um) ≥ −C,

C > 0, and derive bounds on the C, perhaps in terms of initial conditions or other parame-
ters in the system, to prove global existence or blow-up. In particular it might be interesting
to see how the C in question scales with the ε, from recent results, where | fi(u)| ≤ |u|2+ε,
is sufficient for global existence [45,46].

In all, we show that earlier TYC models produce unphysical (blow-up) solutions,
if initial conditions are chosen much larger than carrying capacity. This is due to a modeling
flaw in their formulation. It is important to note that the TYC strategy remains the most
effective use of genetic bio-control in the United States. Preliminary results from its use in
field trials are very promising [12]. It also yields as fast an extinction, if we restrict initial
conditions to less than carrying capacity. Note, modeling forecasts using classical TYC have
maintained these restrictions [47].

It, thus, remains an open and paramount problem in invasive species control to
continue to determine a complete mathematical model for the TYC strategy. That is one
which is valid in a full parameter regime, and applicable in various realistic ecological
scenarios, that also yields realistic solutions. Additionally, parametrizing these new models
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to field data, such as [12], as it becomes available, should also be a primary focus of current
and future work on invasive species control.
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Appendix A. Finite Time Blow-Up in the ODE Model

Appendix A.1. Three Species TYC Model

Consider the three species TYC model, that is,

ḟ = F( f , m, s) =
1
2

βL f m− δ f , (A1)

ṁ = G( f , m, s) =
1
2

βL f m + βL f s− δm, (A2)

ṡ = H( f , m, s) = µ− δs, (A3)

where the logistic term L and other parameters are as defined earlier. Again, the param-
eters are assumed to be non-negative. In addition, we assume positive initial conditions
( f0, m0, s0).

Appendix A.2. Finite Time Blow-Up of Solutions

We state the following Corollary,

Corollary A1. Consider the TYC system given by (A1)–(A3), with µ = 0. Then, there exists
sufficiently large positive initial data ( f0, m0, s0), such that solutions emanating from these data,
will blow-up in finite time, that is

lim sup
t→T∗<∞

f → +∞

or
lim sup
t→T∗<∞

m→ −∞.

We now prove the following result,

Lemma A1. In the case that finite time blow-up occurs in (A1)–(A3), with µ = 0, at some time
T∗ < ∞, we have,

m̃ = O( f ), as t→ T∗. (A4)

Proof. From Theorem 1 we see that blow-up is only possible if

lim sup
t→T∗<∞

f → +∞, lim sup
t→T∗∗<∞

m→ −∞.



Axioms 2022, 11, 120 11 of 13

Thus, if blow-up occurs we must have that,

ḟ > 0,

or,
1
2

β

(
1−

(
f + m + s

K

))
f m− δ f > 0

implying (
1−

(
f + m + s

K

))
m >

2δ

β
> 0,

since m is necessarily negative for blow-up to occur, the only way the above inequality can
continue to hold is if

f + m + s > K.

Since s is bounded for any time, we obtain the existence of a constant C s.t.,

C f > f + s > K + m̃ > m̃,

and this proves the lemma.

The previous theorem assumed that there was only an initial introduction of s through
the initial condition s(0). By choosing large enough initial data, it is clear now that m
can turn negative and subsequently f , m can blow-up in finite time. In the forthcoming
theorem, we turn our attention to the situation where µ 6= 0, that is, the case of a constant
introduction of s. It will be shown that for any initial data there exists a critical introduction
rate that will lead to blow-up in finite time.

Corollary A2. Consider the TYC system given by (A1)–(A3), with µ > 0. For any positive
initial data ( f0, m0, s0) large or small, there exists a critical µ∗( f0, m0, s0), such that for any
µ > µ∗( f0, m0, s0), solutions emanating from these data, will blow-up in finite time, that is

lim sup
t→T∗<∞

f → +∞

or
lim sup
t→T∗<∞

m→ −∞.

The proofs of Corollary A1 and Corollary A2 follow via mimicking the methods of
Theorems 1 and 2.

Appendix B. Scaling of Chemotaxis TYC PDE Models

We non-dimensionalize the chemotaxis PDE form of TYC model by letting f → f
K

,

m→ m
K

, s→ s
K

, τ → δt, γ =
µ

Kδ
and ρ =

βK
2δ

. The dimensionless variables ρ is a ratio of
the two time scales in the TYC model, that is, the birth and death rates. D is the diffusion
co-efficient. The dimensionless spatio-temporal three species chemotaxis TYC model is
given as,

∂ f
∂t

= D∆ f + χ∇ · ( f∇s) + ρm f L− f , (A5)

∂m
∂t

= D∆m + ρm f L + 2ρs f L−m, (A6)

∂s
∂t

= D∆s + γ− s, (A7)
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specified over the scaled spatial domain Ω = (0, 1) and t ∈ (0, ∞). χ is the chemostat
parameter. We, prescribe both Neumann boundary and mixed boundary conditions in
various simulations.
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