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We present a general approach to statistical problems with criteria based on probabilities of large

deviations. Our main idea, which originates from similarity in the de®nitions of the large-deviation

principle (LDP) and weak convergence, is to develop a large-deviation analogue of asymptotic

decision theory. We introduce the concept of the LDP for sequences of statistical experiments, which

parallels the concept of weak convergence of experiments, and prove that, in analogy with Le Cam's

minimax theorem, the LDP provides an asymptotic lower bound for the sequence of appropriately

de®ned minimax risks. We also show that the bound is tight and give a method of constructing

decisions whose asymptotic risk is arbitrarily close to the bound. The construction is further speci®ed

for hypothesis testing and estimation problems.

We apply the results to a number of standard statistical models: an independent and identically

distributed sample, regression, the change-point model and others. For each model, we check the LDP;

then, considering ®rst a hypothesis testing problem and then an estimation problem, we calculate the

asymptotic minimax risks and indicate associated decisions.
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1. Introduction

The approach to statistical problems that bases its conclusions on the study of probabilities of

large deviations has been in use in statistical inference since the papers by Chernoff (1952)

and Bahadur (1960).

Chernoff (1952), considering the problem of discriminating between two simple

hypotheses, showed that, if the hypotheses are ®xed, the error probabilities decrease

exponentially fast as the sample size tends to in®nity; the corresponding optimal exponent

is speci®ed by what is now known as Chernoff's function.

Basu (1956) and Bahadur (1960) proposed a criterion for comparing statistical estimators
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based on the view that the quality of an estimator is characterized by the probability that

the true value of the parameter is covered by a con®dence interval of given width 2c with

centre at the estimate. If the width 2c is held ®xed as the sample size grows, then the

probabilities that the true value of the parameter is not covered are typically exponentially

small. The estimator giving the fastest decay is now called Bahadur ef®cient. Later Bahadur

et al. (1980) showed, for the model of independent and identically distributed observations,

that in the class of consistent estimators the optimal rate is speci®ed by the Kullback±

Leibler information rather than Chernoff's function.

The ideas of Chernoff and Bahadur have been developed in various directions. Ibragimov

and Radavicius (1981), Kallenberg (1981), Ibragimov and Khasminskii (1981) and

Radavicius (1983; 1991) studied the properties of maximum likelihood estimators from

the point of view of Bahadur's criterion. Fu (1982) and Borovkov and Mogulskii (1992a;

1992b) analysed the second- and higher-order terms of asymptotic expansions of Bahadur

risks. Kallenberg (1983), Rao (1963), Wieand (1976) and Ermakov (1993) considered

intermediate criteria for statistical estimators when the width of the con®dence interval goes

to zero at a certain rate. Sievers (1978) and Rubin and Rukhin (1983) evaluated Bahadur

risks for particular statistical models.

Lately this direction in mathematical statistics has received a new impetus, mostly in

papers by Korostelev (1996; 1995) ± see also Korostelev and Spokoiny (1996) and

Korostelev and Leonov (1995) ± where the classical large-deviation (LD) set-up is

considered in the minimax nonparametric framework.

Our aim here is to give a uni®ed treatment of statistical problems that use LD

considerations. The idea is to capitalize on analogies between LD theory and weak

convergence theory (see Lynch and Sethuraman 1987; Vervaat 1988; Puhalskii 1991) and

develop an LD analogue of asymptotic decision theory (Strasser 1985). The approach of

invoking the methods of weak convergence theory to obtain results about large deviations

has proved its worth in various set-ups (Puhalskii 1991; 1993; 1994a; 1994b; 1995; 1996;

1997). We show that it can successfully be applied to statistical problems too.

We begin by de®ning in Section 2 the concept of the large-deviation principle (LDP) for

a sequence of statistical experiments. Analogously to the concept of weak convergence of

statistical experiments, it is a short-cut for saying that the distributions of suitably de®ned

likelihood processes satisfy the LDP (Varadhan 1966; 1984). We illustrate the general

de®nition by considering a number of standard statistical models (the Gaussian shift model,

the model of independent and identically distributed observations, the `signal plus white

noise' model, the regression model with Gaussian and non-Gaussian errors, with

deterministic and random design, and the change-point model). We next study properties

of the LDP for statistical experiments and give a suf®cient condition for it which is

analogous to the local asymptotic normality condition of Le Cam (1960).

The classical minimax theorem of Le Cam states that if statistical experiments weakly

converge then the minimax risks are asymptotically bounded from below by the

corresponding risk for the limit model (see Le Cam 1972; 1986; Strasser 1985). In

Section 3, we show that, similarly, if a sequence of statistical experiments obeys the LDP,

then there is an asymptotic lower bound for appropriately de®ned minimax risks. The

problem of evaluating the bound is a minimax optimization problem. Also in Section 3, we
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study the question of sharpness of the lower bound. We show that it is sharp under a

strengthened version of the LDP. This allows us to de®ne LD ef®cient decisions as those

that attain the lower bound. We give a method of obtaining nearly LD ef®cient decisions,

i.e., those whose LD asymptotic risk is arbitrarily close to the lower bound.

Sections 4 and 5 deal with applications. Section 4 adapts the results of Section 3 to the

cases of hypothesis testing and estimation problems and presents explicit constructions of

nearly LD ef®cient decisions. In Section 5, we apply the machinery to the models

introduced in Section 2: we check the LDP, give conditions when the lower bounds are

attained, calculate them for hypothesis testing and estimation problems, and indicate nearly

LD ef®cient decisions. An appendix contains extensions and auxiliary results.

The results of Sections 2±4 are new. The results that we obtain for the models are partly

new and partly cover or extend earlier results.

2. The large-deviation principle for statistical experiments

Let fE n, n > 1g be a sequence of statistical experiments E n � (Ùn, F n; Pn,è, è 2 È) with

a parameter set È (Strasser 1985). In this section, we give the de®nition of the LDP for

fE n, n > 1g and study its properties. We start with the case of dominated experiments.

2.1. The dominated case

Let us assume that each experiment E n � (Ùn, F n; Pn,è, è 2 È) is dominated by a

probability measure Pn, i.e., Pn,è � Pn for all è 2 È. We abbreviate this by writing

fE n, Pn, n > 1g. Denote

Z n,è � dPn,è

dPn

� �1=n

, è 2 È, (2:1)

and let Z n,È � (Z n,è, è 2 È). We endow RÈ
� with the Tihonov (product) topology and the

Borel ó-®eld so that Z n,È is a random element of RÈ
� ; L (Z n,ÈjPn) denotes the distribution of

Z n,È on RÈ
� under Pn. Roughly speaking, the LDP for fE n, Pn, n > 1g means that the

sequence fL (Z n,ÈjPn), n > 1g of distributions on RÈ
� obeys the LDP, so we recall some

basic notions of LD theory.

We use Varadhan's (1966; 1984) original de®nitions of the rate function and the LDP. Let

S be a Hausdorff topological space. We say that a function I : S ! [0, 1] is a rate function

on S if the sets Iÿ1([0, a]) are compact in S for all a > 0. A sequence fQn, n > 1g of

probability measures on the Borel ó-®eld of S is said to obey the LDP with rate function I

if

lim
n!1

1

n
log Qn(G) > ÿinf

x2G
I(x)

for all open G � S and
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lim
n!1

1

n
log Qn(F) < ÿinf

x2F
I(x)

for all closed F � S.

We also say that I is a probability rate function if inf x2S I(x) � 0. Obviously, if I appears

in the LDP, it is a probability rate function.

Recall that the contraction principle states that continuous mappings preserve the LDP

(Varadhan 1966; 1984).

Next, we say that the sequence fE n, Pn, n > 1g satis®es condition (U ) if

(U ) lim H!1 limn!1 E1=n
n Z n

n,è1(Z n,è . H) � 0, è 2 È.

Here and below, En denotes an expectation with respect to Pn and, by de®nition,

E1=n
n î � (Enî)1=n, P1=n

n (A) � (Pn(A))1=n.

De®nition 2.1. We say that a sequence fE n, Pn, n > 1g of dominated statistical experiments

obeys the dominated large-deviation principle if:

1. the sequence fL (Z n,ÈjPn), n > 1g obeys the LDP with some (probability) rate

function I;

2. condition (U ) holds.

A critical part of the de®nition is condition 1. Condition (U) plays a subordinate though

essential role. If we disregard condition (U), the de®nition is analogous to the de®nition of

weak convergence of dominated statistical experiments (Strasser 1985) which states that the

likelihood ratios weakly converge. The role of condition (U) will become clear shortly: it

ensures the compatibility of this de®nition with a more general one which does not depend on

a choice of dominating measures and incorporates the non-dominated case too. In particular,

condition (U) implies that the lower bound that we obtain in Section 3 for the sequence of so-

called LD risks does not depend on dominating measures either (see Remark 3.2 below).

Note that an analogue of condition (U) in the theory of weak convergence of statistical

experiments is a consequence of weak convergence of the likelihood ratios and does not have

to be singled out.

In applications, rather than considering Z n,è, it is more convenient to deal with log-

likelihood ratios Î n,è de®ned as

Î n,è � 1

n
log

dPn,è

dPn

:

Let us introduce Î n,È � (Î n,è, è 2 È) and denote by L (Î n,ÈjPn) the distribution of Î n,È on

RÈ under Pn, where RÈ is supplied with the Tihonov topology and the Borel ó- ®eld. If the

Î n,è are well de®ned then, by the contraction principle, the LDP for the sequence

fL (Î n,ÈjPn), n > 1g implies the LDP for the sequence fL (Z n,ÈjPn), n > 1g.
Now we consider a number of statistical models which, on the one hand, show that the

LDP for the log-likelihood ratios arises quite naturally and, on the other hand, motivate and

illustrate theoretical developments below. We stop short of giving rigorous proofs of the

LDP for the models, deferring this until Section 5.
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Example 2.1 Gaussian observations. Let us observe a sample of n independent real-valued

random variables Xn � (X 1,n, . . . , X n,n) normally distributed with N (è, 1), è 2 È � R. For

this model, Ùn � Rn and Pn,è � (N (è, 1))n, è 2 È. We take Pn,0 as a dominating measure

Pn. Then the corresponding log-likelihood ratios are of the form

Î n,è � 1

n
log

dPn,è

dPn

(Xn) � 1

n

Xn

k�1

èX k,n ÿ 1

2
è2

� �
� èYn ÿ 1

2
è2,

where

Yn � 1

n

Xn

k�1

X k,n, n > 1:

The sequence fL (YnjPn), n > 1g obeys the LDP in R with rate function IN (y) � y2=2,

y 2 R (see, e.g., Freidlin and Wentzell 1979). This yields by the contraction principle the

LDP for the log-likelihood ratios Î n,è.

Example 2.2 An independent and identically distributed sample. Let Xn � (X1,n, . . . , X n,n)

be an independent and identically distributed sample from a distribution Pè, è 2 È, on the

real line. We do not specify the nature of the parameter set È. For example, it can be a subset

of a ®nite-dimensional space, a set of distributions on R (or their probability density

functions), etc. We assume that the family P is dominated by a probability measure P, i.e.,

Pè � P, è 2 È. This model is described by dominated experiments E n � (Ùn, F n; Pn,è,

è 2 È) with Ùn � Rn, F n � B (Rn), Pn,è � Pn
è , è 2 È and Pn � Pn.

We have

Î n,è � 1

n
log

dPn,è

dPn

(Xn) �
Xn

k�1

1

n
log

dPè

dP
(X k,n) �

�
R

log
dPè

dP
(x)Fn(dx),

where

Fn(x) � 1

n

Xn

k�1

1(X k,n < x), x 2 R,

is an empirical distribution function.

Let Y be the space of cumulative distribution functions on R with the topology of weak

convergence of associated probability measures. By Sanov's theorem (Sanov 1957; Deuschel

and Stroock 1989, Section 3.2.17), the sequence fL (FnjPn), n > 1g obeys the LDP in Y
with rate function IS(F) � K(F, P), F 2 Y , where K(F, P) denotes the Kullback±Leibler

information:

K(F, P) �
�

R

dF

dP
(x) log

dF

dP
(x)P(dx), if F � P,

1, otherwise:

8<:
Let us also denote, for è 2 È and F 2 Y ,
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æè(F) �
�

R

log
dPè

dP
(x)F(dx):

If the density functions (dPè=dP)(x) are bounded from above, bounded away from zero and

continuous in x for all è 2 È, then the æè(F) are continuous functions on Y and, since

Î n,è � æè(Fn), the contraction principle yields the LDP for the sequence fÎ n,È, n > 1g.

Example 2.3 `Signal plus white noise'. We observe a real-valued stochastic process X n �
(X n(t), t 2 [0, 1]) obeying the stochastic differential equation

dX n(t) � è(t) dt � 1���
n
p dW (t), 0 < t < 1,

where W � (W (t), t 2 [0, 1]) is a standard Wiener process and è(:) is an unknown function

assumed to belong to some set È of real-valued continuous functions on [0, 1].

This model is described by statistical experiments E n � (Ùn, F n; Pn,è, è 2 È), where

Ùn is C[0, 1], the space of continuous functions on [0, 1] with the uniform metric and

Borel ó-®eld, and Pn,è is the distribution of X n on C[0, 1] for è. We take Pn � Pn,0, where

Pn,0 corresponds to the zero function è(:) � 0. Then Pn,è � Pn and, moreover, by

Girsanov's formula, Pn-almost surely,

Î n,è � 1

n
log

dPn,è

dPn

(X n) �
�1

0

è(t) dX n(t)ÿ 1

2

�1

0

è2(t) dt: (2:2)

Let C0[0, 1] be the subset of C[0, 1] of the functions x(:) that are absolutely continuous with

respect to Lebesgue measure and equal to 0 at 0. Then the sequence fL (X njPn), n > 1g
obeys the LDP in C[0, 1] with rate function

IW (x(:)) �
1

2

�1

0

( _x(t))2 dt, if x(:) 2 C0[0, 1],

1, otherwise,

8<:
_x(t) denoting the derivative of x(:) at t (see, e.g., Freidlin and Wentzell, 1979).

Let us denote, for functions è(:) 2 È and x(:) 2 C0[0, 1],

æè(x) �
�1

0

è(t) dx(t)ÿ 1

2

�1

0

è2(t) dt,

where the integral is understood as a Lebesgue±Stieltjes integral.

Again the log-likelihood ratio Î n,è can formally be represented as Î n,è � æè(X n). Note,

however, that the ®rst integral in (2.2) is an ItoÃ integral, so the latter equality as well as the

continuity property for æè actually holds for functions è(:) of a special sort (e.g., piecewise

constant or differentiable). For these functions, the contraction principle again implies the

LDP for fÎ n,È, n > 1g. A general case is studied in Section 5.

Example 2.4 Gaussian regression. We consider the regression model

X k,n � è(t k,n)� îk,n, t k,n � k

n
, k � 1, . . . , n, (2:3)
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where errors îk,n are independent standard normal and è(:) is an unknown real-valued

continuous function.

In this model, Ùn � Rn, È � C[0, 1] and Pn,è is the distribution of Xn � (X 1,n, . . . ,

X n,n) for è(:). As above, we take Pn � Pn,0. Then

Î n,è � 1

n
log

dPn,è

dPn

(Xn)

� 1

n

Xn

k�1

è(t k,n)X k,n ÿ 1

2n

Xn

k�1

è2(t k,n)

�
�1

0

è(t) dX n(t)ÿ 1

2n

Xn

k�1

è2(t k,n),

where

Xn(t) � 1

n

X[nt]

k�1

X k,n, 0 < t < 1:

Let Y be the space of right-continuous functions on [0, 1] with left-hand limits and with the

uniform metric (for measurability of X n, see Billingsley 1968, Section 8).

Since the X k,n are distributed as N (0, 1) under Pn, the sequence fL (X njPn), n > 1g
obeys the LDP in Y with rate function IW (Mogulskii 1976, Theorem 2).

Since the function è(:) is continuous, we have, for large n, the approximate equality

1

n

Xn

k�1

è2(t k,n) �
�1

0

è2(t) dt

and hence Î n,è � æè(X n), with the same function æè as in the preceding example. If the è are

differentiable, integration by parts shows that the Î n,è are continuous functions of the X n,

and the LDP for fÎ n,È, n > 1g follows by the contraction principle. Again, a general case is

deferred until Section 5.

Example 2.5 Non-Gaussian regression. We consider the same regression model (2.3) but now

assume that independent and identically distributed errors îk,n have a distribution P with a

positive probability density function p(x) with respect to Lebesgue measure on the real line.

An unknown regression function è(:) is assumed to be continuous, so È � C[0, 1].

As above, for a regression function è(:), we denote by Pn,è the distribution of X n �
(X 1,n, . . . , X n,n). We have, with Pn � Pn,0,

Î n,è � 1

n
log

dPn,è

dPn

(Xn) � 1

n

Xn

k�1

log
p(X k,n ÿ è(t k,n))

p(X k,n)
:

Introducing the empirical process Fn � Fn(x, t), x 2 R, t 2 [0, 1], by

On large-deviation ef®ciency in statistical inference 209



Fn(x, t) � 1

n

X[nt]

k�1

1(X k,n < x),

we have that

Î n,è �
�1

0

�
R

log
p(xÿ è(t))

p(x)
Fn(dx, dt): (2:4)

Let us de®ne Y as the space of cumulative distribution functions F � F(x, t), x 2 R,

t 2 [0, 1], on R 3 [0, 1] with the weak topology. Let Y 0 be the subset of Y of functions

F(x, t) absolutely continuous with respect to Lebesgue measure on R 3 [0, 1] and with

densities pt(x) such that
�

R pt(x) dx � 1 for t 2 [0, 1].

It is shown in Dembo and Zajic (1995) ± see also Theorem 1 in Puhalskii (1996) ± that

the sequence fL (FnjPn), n > 1g obeys the LDP in Y with rate function ISK (F) given by

ISK (F) �
�1

0

�
R

log
pt(x)

p(x)
pt(x) dx dt, if F 2 Y 0,

1, otherwise:

8<:
Denote, for F 2 Y 0 and è 2 È,

æè(F) �
�1

0

�
R

log
p(xÿ è(t))

p(x)
F(dx, dt):

Then by (2.4), Î n,è � æè(Fn) and if the logs in the integrals in the de®nition of the æè are

bounded and continuous, we have the LDP for fÎ n,È, n > 1g.

Example 2.6 The change-point model. Let us observe a sample Xn � (X1,n, . . . , X n,n) of

real-valued random variables, where, for some kn > 1, the observations X 1,n, . . . , X k n,n are

independent and identically distributed with a distribution P0 and the observations

X k n�1,n, . . . , X n,n are independent and identically distributed with a distribution P1. We

assume that P0 and P1 are known and kn is unknown. Let us also assume that kn � [nè],

where è 2 È � [0, 1]. For this model, Ùn � Rn and Pn,è stands for the distribution of X n

for è.

Let a probability measure P dominate P0 and P1 and

f0(x) � dP0

dP
(x), f 1(x) � dP1

dP
(x), x 2 R,

be respective densities. Assume that f 0(x) and f1(x) are positive and continuous. Denoting

Pn � Pn, we have

Î n,è � 1

n
log

dPn,è

dPn

(X n) � 1

n

X[nè]

i�1

log f 0(X i,n)� 1

n

Xn

i�[nè]�1

log f 1(X i,n),

so that, de®ning an empirical process again by
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Fn(x, t) � 1

n

X[nt]

i�1

1(X i,n < x), x 2 R, t 2 [0, 1],

we obtain the representation

Î n,è �
�è

0

�
R

log f 0(x)Fn(dx, dt)�
�1

è

�
R

log f 1(x)Fn(dx, dt):

Let a space Y be de®ned as for the preceding model and Y P be the set of those F 2 Y that

are absolutely continuous with respect to the measure P(dx) 3 dt and admit densities pt(x)

such that
�

R pt(x)P(dx) � 1, t 2 [0, 1]. As above, the Fn obey the LDP with rate function

I SK
P of the form

I SK
P (F) �

�1

0

�
R

pt(x) log pt(x)P(dx) dt, if F 2 Y P,

1, otherwise:

8<:
De®ne next for F 2 Y P

æè(F) �
�è

0

�
R

log f 0(x)F(dx, dt)�
�1

è

�
R

log f 1(x)F(dx, dt):

Then again Î n,è � æè(Fn), and the LDP for fÎ n,È, n > 1g holds, e.g., when log f 0(x) and

log f 1(x) are bounded and continuous.

Example 2.7 Regression with random design. We consider the model

X k,n � è(t k,n)� îk,n, k � 1, . . . , n,

where real-valued errors îk,n and design points t k,n are independent with respective

distributions P and Ð dominated by Lebesgue measure. We denote the respective densities by

p(x) and ð(t). We also assume that the prior measure Ð has a compact support D, ð(t) is

continuous and positive on the support, p(x) is continuous and positive on R, and an

unknown regression function è(:) is continuous.

In this model, Pn,è is the joint distribution of X n � (X 1,n, . . . , X n,n), and tn �
(t1,n, . . . , tn,n) for è. Let Fn be the joint empirical distribution function of X n and tn:

Fn(A, B) � 1

n

Xn

k�1

1(X k,n 2 A, t k,n 2 B)

for Borel sets A � R, B � D, and let Y be the space of distributions on R 3 D with the

weak topology. Set also Pn � Pn,0 � (P 3 Ð)n.

With these de®nitions,
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Î n,è � 1

n
log

dPn,è

dPn

(Xn, tn)

� 1

n

Xn

k�1

log
p(X k,n ÿ è(t k,n))

p(X k,n)

�
�

D

�
R

log
p(xÿ è(t))

p(x)
Fn(dx, dt):

Let Y 1 be the set of the cumulative distribution functions on R2 that are absolutely

continuous with respect to Lebesgue measure on R2 and have support in R 3 D. Under Pn,

the random pairs (X k,n, t k,n) are independent and identically distributed with the distribution

P 3 Ð, and hence, by Sanov's theorem, the LDP holds for the Fn with rate function ISS(F)

given by

ISS(F) �
�

D

�
R

log
p(x, t)

p(x)ð(t)
p(x, t) dx dt, if F 2 Y 1,

1, otherwise:

8<:
Here F(dx, dt) � p(x, t) dx dt. The LDP for this model follows now in a manner similar to

the case of an independent and identically distributed sample.

We end this subsection with a simple but useful remark. It is noticeable that the

de®nition of the LDP given above uses the same letter n both to subscript probability

measures and associated random elements, and to denote a scaling parameter. One might

wonder whether this is not a loss of generality and how n should be chosen when

considering particular models. The answer to the ®rst question is in the negative and

making n play the two roles economizes on notation. Indeed, if we have a sequence of

probability measures fQn, n > 1g with log Qn having the right rate bn !1 as n!1, we

can always reduce this case to the above `standard' set-up by `relabelling' the measures, i.e.,

by introducing measures Q9n such that Q9b n
� Qn; taking bn as a new n then gives log Q9n

the rate n as required. This argument, originating from Varadhan (1984), also answers the

second question: n in our formalism has the meaning of the right scale rather than `the

natural parameter of the model'. Of course, the two can coincide, as in most of the

examples we considered where n is a sample size, but not always, as Example 2.3 shows.

On the other hand, it is clear from the above that if we want n to be `the natural

parameter', we can do this by introducing some bn !1 as a scale.

2.2. Suf®cient conditions for the dominated LDP

We now study properties of the LDP for statistical experiments and begin with a suf®cient

condition for the LDP. The condition serves two purposes: ®rst, in particular statistical

models it is easier to check than the de®nition of the LDP; and second, this condition is

useful when constructing asymptotically optimal decisions (see Section 4). The idea behind

the condition is similar to that used in the condition of local asymptotic normality by Le Cam
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(1960) for studying weak convergence of experiments, or, more generally, in the condition of

ë-convergence by Shiryaev and Spokoiny (1997).

Given a sequence of dominated statistical experiments fE n, Pn, n > 1g, assume that

there exist statistics Yn on (Ùn, F n) with values in a Hausdorff space Y such that the

sequence fL (YnjPn), n > 1g obeys the LDP and the Yn are asymptotically suf®cient in the

sense that Z n,è � zè(Yn) for some non-random functions zè on Y . In the above examples

the statistic Yn is easily identi®ed: it is the empirical mean (X1,n � . . . � X n,n)=n in the

case of a sample from the normal distribution in Example 2.1, the empirical distribution

function Fn in the case of an independent and identically distributed sample in Example

2.2, the observation process Xn for the `signal plus white noise' model, the empirical pro-

cess Fn for the regression model with non-Gaussian errors and the change-point model, etc.

If the functions zè are continuous then, by the contraction principle, the LDP for the

sequence fL (YnjPn), n > 1g implies the LDP for the sequence fL (zè(Yn)jPn), n > 1g and

hence for fL (Z n,èjPn), n > 1g. Unfortunately, by contrast with the theory of weak

convergence of experiments, in applications the functions zè typically are not continuous.

For instance, the functions æè(y) � log zè(y) generally are not continuous in the above

examples for an independent and identically distributed sample, the `signal plus white

noise' model, the regression models and the change-point model. To overcome this

dif®culty, we need to introduce `regularizations' zè,ä(y) of zè(y) that, on the one hand, are

continuous functions and, on the other hand, converge to zè(y) as ä! 0.

Before stating the condition, let us review some more facts about large deviations used

below. Recall (Varadhan 1966; 1984; Deuschel and Stroock 1989; Bryc 1990) that if a

sequence of probability measures fQn, n > 1g on the Borel ó-®eld of a Hausdorff space S

obeys the LDP with rate function I then, for all non-negative bounded continuous functions

f on S,

lim
n!1

�
S

( f (x))nQn(dx)

� �1=n

� sup
x2S

f (x)V (x), (2:5)

where V (x) � exp (ÿI(x)). If S is a metric, or, more generally, a Tihonov (i.e., completely

regular) space (Engelking 1977; Kelley 1957) then (2.5) also is suf®cient for the LDP

(Puhalskii 1993).

Moreover, the LDP implies (2.5) also for unbounded continuous non-negative functions f

under `the uniform exponential integrability condition' (Varadhan 1984; Deuschel and

Stroock 1989)

lim
H!1

lim
n!1

�
S

( f (x))n1( f (x) . H)Qn(dx)

� �1=n

� 0: (2:6)

Also, if f is a lower semi-continuous non-negative function then

lim
n!1

�
S

( f (x))nQn(dx)

� �1=n

> sup
x2S

f (x)V (x): (2:7)

The function V (x) is henceforth referred to as a deviability. Equivalently, a deviability is

de®ned as a function V : S ! [0, 1] such that supx2S V (x) � 1 and the inverse images
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Vÿ1([a, 1]) are compact sets for all a . 0. Obviously, there is one-to-one correspondence

between probability rate functions and deviabilities. We say that fQn, n > 1g LD converges

to V and write Qn!l:d: V (n!1) if (2.5) holds for all bounded continuous non-negative

functions f (Puhalskii 1994a). Below we use the fact that, if S is metric, then one can only

require that the functions f be uniformly continuous (analogously to weak convergence

theory; Billingsley 1968, Theorem 2.1). By the above, if S is a Tihonov space then Qn!l:d: V
(n!1) if and only if fQng obeys the LDP with I � ÿlog V . All the spaces we consider

below are Tihonov and we mostly use the formulation of the LDP as LD convergence as

more convenient in theoretical considerations.

Next, let S and S9 be Hausdorff spaces and V a deviability on S. Denote

ÖV (a) � fx 2 S: V (x) > ag, a . 0: (2:8)

As in Puhalskii (1997) ± cf. Schwartz (1973) ± we say that a map j: S ! S9 is V-Luzin

measurable if it is continuous in restriction to each set ÖV (a), a . 0. The term V-Luzin is

motivated by the following analogy with Luzin's theorem in measure theory. Let us extend V

to a set function on S by de®ning V (Ã) � supx2ÃV (x), Ã � S. Then V as a set function is an

analogue of probability (for a discussion see Puhalskii, 1991; 1994; 1995), and, equivalently,

a function j is V-Luzin measurable if, for every å. 0, there exists a set A � S with

V (SnA) , å such that j is continuous in restriction to A. It is also interesting to note that one

can prove an analogue of Egorov's theorem for sequences of Luzin measurable functions

Puhalskii (1991, 1997). Deviabilities are preserved under Luzin measurable maps: for any

V-Luzin measurable map j, the function V � jÿ1 on S9, de®ned by V � jÿ1(x9) �
supx2jÿ1(x9)V (x), x9 2 S9, is a deviability on S9 ± see Deuschel and Stroock (1989, Section

2.1.4); the argument of Puhalskii (1991, Lemma 2.1) also applies.

Also, we say that a function j: S ! S9 is V-almost everywhere (V-a.e.) continuous if it is

continuous at every x 2 S with V (x) . 0. Obviously, each V-a.e. continuous function is V-

Luzin measurable.

Some more notational conventions are in order. We denote by A(È) the family of all

®nite subsets of È. Elements of RÈ
� are denoted by zÈ � (zè, è 2 È), and elements of RË

�,

where Ë 2A(È), by zË � (zè, è 2 Ë). Maps ðË and ðË9Ë, where Ë 2A(È), Ë9 2A(È)

and Ë � Ë9, are the natural projections of RÈ
� onto RË

� and of RË9
� onto RË

�, respectively:

ðË(zè, è 2 È) � (zè, è 2 Ë) and ðË9Ë(zè, è 2 Ë9) � (zè, è 2 Ë). Since RÈ
� and RË

�,

Ë 2A(È), are supplied with the Tihonov topology, the projections are continuous.

We now state and prove the suf®cient condition for the LDP. We thereby assume that the

statistics Yn take values in a metric space which is enough for applications, though this

restriction can be relaxed.

Lemma 2.1. Let fE n, Pn, n > 1g be a sequence of dominated experiments and Z n,è, è 2 È,

be de®ned by (2.1). Assume that the following condition holds:

(Y ) there exist statistics Yn: Ùn ! Y with values in a metric space Y with the Borel ó-

®eld, functions zè: Y ! R�, è 2 È, and zè,ä: Y ! R�, è 2 È, ä. 0, such that

(Y.1) the sequence fL (YnjPn), n > 1g of distributions on Y LD converges to a

deviability V (y), y 2 Y ;
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(Y.2) for all ä. 0, the functions zè,ä: Y ! R�, è 2 È, are Borel measurable and V-a.e.

continuous;

(Y.3) limä!0 limn!1 P1=n
n (jZ n,è ÿ zè,ä(Yn)j. å) � 0 for all å. 0 and è 2 È;

(Y.4) limä!0 sup y2ÖV (a) jzè,ä(y)ÿ zè(y)j � 0 for all a . 0 and è 2 È.

Then L (Z n,ÈjPn)!l:d: VÈ (n!1), where VÈ � V � zÿ1
È , zÈ � (zè, è 2 È).

Proof. Conditions (Y.2) and (Y.4) obviously imply that zÈ: Y ! RÈ
� is V-Luzin measurable,

hence VÈ is a deviability on RÈ
� .

Let Ë 2A(È). We ®rst prove that

L (Z n,ËjPn)!l:d: VË, n!1, (2:9)

where Z n,Ë � (Z n,è, è 2 Ë), VË � V � zÿ1
Ë and zË � (zè, è 2 Ë). Let f : RË

� ! R� be

bounded and uniformly continuous. Since, by the de®nition of VË,

supzË2RË
�

f (zË)VË(zË) � sup y2Y f (zË(y))V (y), we need to prove that

lim
n!1E1=n

n f n(Z n,Ë) � sup
y2Y

f (zË(y))V (y): (2:10)

Let zË,ä � (zè,ä, è 2 Ë). Condition (Y.3) implies, in view of the boundedness and uniform

continuity of f, that

lim
ä!0

lim
n!1 jE

1=n
n f n(Z n,Ë)ÿ E1=n

n f n(zË,ä(Yn))j � 0: (2:11)

Since the sequence fL (YnjPn), n > 1g LD converges to V and the map zË,ä: Y ! RË
� is V-

a.e. continuous, the sequence fL (zË,ä(Yn)jPn), n > 1g LD converges to V � (zË,ä)ÿ1

(Puhalskii 1991, Theorem 2.2). Thus, since f is non-negative, bounded and continuous,

lim
n!1E1=n

n f n(zË,ä(Yn)) � sup
y2Y

f (zË,ä(y))V (y): (2:12)

By (2.11) and (2.12), for (2.10) it remains to show that

lim
ä!0

sup
y2Y

f (zË,ä(y))V (y) � sup
y2Y

f (zË(y))V (y), (2:13)

which is an easy consequence of condition (Y.4). Convergence (2.9) is proved. The assertion

of the lemma now follows by the Dawson±GaÈrtner theorem on the projective limits of LD

systems (Dawson and GaÈrtner 1987, Theorem 3.3) if we note that L (Z n,ÈjPn) is the

projective limit of fL (Z n,ËjPn), Ë 2A(È)g and VË � VÈ � ðÿ1
Ë , Ë 2A(È). u

Remark 2.1. Since RÈ
� is a Tihonov space, the lemma implies that, under conditions (Y) and

(U), the sequence fE n, Pn, n > 1g obeys the dominated LDP.

Remark 2.2. As we have seen, in applications it is more convenient to manipulate rate

functions and log-likelihood ratios given by
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Î n,è � log Z n,è � 1

n
log

dPn,è

dPn

, è 2 È:

Accordingly, it is useful to state condition (Y ) in these terms. Assume that the Î n,è are well

de®ned. It is easy to see that condition (Y ) is implied by the following condition:

(Y 9) there exist statistics Yn: Ùn ! Y with values in a metric space Y with the Borel ó-

®eld, functions æè: Y ! R, è 2 È, and æè,ä: Y ! R, è 2 È, ä. 0, such that

(Y 9:1) the sequence fL (YnjPn), n > 1g of distributions on Y obeys the LDP with rate

functions I(y), y 2 Y ;

(Y 9:2) for all ä. 0, the functions æè,ä: Y ! R, è 2 È, are Borel measurable and

continuous at each point y such that I(y) ,1;

(Y 9:3) limä!0 limn!1 P1=n
n (jÎ n,è ÿ æè,ä(Yn)j. å) � 0 for all å. 0 and è 2 È;

(Y 9:4) limä!0 sup y2Ö9I (a) jæè,ä(y)ÿ æè(y)j � 0 for all a > 0 and è 2 È, where Ö9I (a) �
fy 2 Y : I(y) < ag.

Condition (U) takes the form

(U 9) lim H!1 limn!1 E1=n
n exp ( nÎ n,è)1(Î n,è . H) � 0, è 2 È.

By Lemma 2.1, conditions (Y 9) and (U 9) imply the dominated LDP.

2.3. The general case

The above de®nition of the LDP for statistical experiments covers only the dominated case

and depends on a choice of dominating measures. We now present another de®nition which is

free of these defects. It is motivated by Le Cam's de®nition of weak convergence of

experiments (see, e.g., Strasser 1985).

Let jËj denote the number of elements in Ë 2A(È). For zË � (zè, è 2 Ë) 2 RË
� and

zÈ � (zè, è 2 È) 2 RÈ
� , we set izË iË � maxè2Ë zè and izÈ iÈ � maxè2È zè, respectively,

and de®ne SË � fzË 2 RË
�: izË iË � 1g and SÈ � fzÈ 2 RÈ

� : izÈ iÈ � 1g. In order not to

overburden notation, we sometimes omit the subscript Ë in i:iË if there is no risk of

confusion.

Next, given a sequence of statistical experiments fE n, n > 1g, where E n �
(Ùn, F n; Pn,è, è 2 È), set, for Ë 2A(È),

Pn,Ë � 1

jËj
X
è2Ë

Pn,è,

Zn,è;Ë � dPn,è

dPn,Ë

� �1=n

, è 2 Ë, (2:14)

Zn,Ë � (Zn,è;Ë, è 2 Ë):

The de®nitions immediately imply that, Pn,Ë-almost surely,

216 A. Puhalskii and V. Spokoiny



X
è2Ë

Zn
n,è;Ë � jËj (2:15)

and

1 < iZn,Ë i < jËj1=n: (2:16)

De®nition 2.2. A sequence fE n, n > 1g of statistical experiments obeys the LDP if, for each

Ë 2A(È), the sequence fL (Zn,ËjPn,Ë), n > 1g of distributions on RË
� obeys the LDP with

some rate function.

Remark 2.3. Equivalently, fE n, n > 1g obeys the LDP if L (Zn,ËjPn,Ë)!l:d: VË, Ë 2A(È),

where VË is a deviability on RË
�.

We next study consequences of the de®nition and, particularly, prove that the de®nitions

of the LDP for the dominated and general cases are consistent. We start by giving another

characterization of the LDP. Let H Ë denote the set of all non-negative, continuous and

positively homogeneous functions on RË
�: h 2H Ë if h(zË) > 0, h is continuous and

h(ëzË) � ëh(zË) for all zË 2 RË
� and ë > 0. We say that a deviability VË has support in SË

if VË(zË) � 0 for zË =2 SË.

Lemma 2.2. Let Ë 2A(È). Then L (Zn,ËjPn,Ë)!l:d: VË if and only if VË has support in SË

and

lim
n!1E

1=n

n,Ëhn(Zn,Ë) � sup
zË2RË

�

h(zË)VË(zË) for every h 2H Ë:

In particular, if L (Zn,ËjPn,Ë)!l:d: VË then, for all è 2 Ë,

(R) supzË2RË
�
ðèzËVË(zË) � 1.

Proof. Let L (Zn,ËjPn,Ë)!l:d:VË. We have, using the equivalence of LD convergence and the

LDP on RË
�, that, for å. 0,

lim
n!1

P
1=n

n,Ë(j iZn,Ë i ÿ 1j. å) > sup
zË:ji zË iÿ1j.å

VË(zË):

Inequalities (2.16) imply that the left-hand side equals zero. Since å is arbitrary, VË has

support in Së. The claimed limit follows by the de®nition of LD convergence since, by (2.16),

h(Zn,Ë) � ĥ(Zn,Ë) Pn,Ë-almost surely, where ĥ(zË) � h(zË)[(2ÿ izË i=Ë) ^ 1 _ 0], and the

latter function is non-negative, bounded and continuous.

For the converse, pick a non-negative continuous bounded function f on RË
�. We need to

prove that

lim
n!1E

1=n

n,Ë f n(Zn,Ë) � sup
zË2RË

�

f (zË)VË(zË): (2:17)
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We de®ne a function ~f by

~f (zË) � izËi f
zË

izË i

� �
, if izË i . 0,

0, if izË i � 0:

8<:
Note that f and ~f coincide on SË and, since VË is supported by SË, we can change f to ~f on

the right-hand side of (2.17). The continuity of f and the inequalities (2.16) easily imply that

the random variables f (Zn,Ë) and ~f (Zn,Ë) are uniformly bounded and

lim
n!1 jE

1=n

n,Ë f n(Zn,Ë)ÿ E
1=n

n,Ë
~f n(Zn,Ë)j � 0:

Since ~f 2H Ë, taking h � ~f in the conditions of the lemma, we obtain

lim
n!1E

1=n

n,Ë
~f n(Zn,Ë) � sup

zË2RË
�

~f (zË)VË(zË),

concluding the proof of (2.17).

Property (R) follows by taking h(zË) � ðèzË. u

We now show that if Ë � Ë9 2A(È) then the deviability VË is a sort of projection of

the deviability VË9, the property being inherited from associated probabilities. Recall the

notation ðË9Ë and ðË for the projections from RË9
� onto RË

� and RÈ
� onto RË

�, respectively,

and let ÐË9Ë and ÐË stand for normalized projections:

ÐË9ËzË9 � ðË9ËzË9=iðË9ËzË9 iË, zË9 2 RË9
� , iðË9ËzË9 iË . 0,

ÐËzÈ � ðËzÈ=iðËzÈ iË, zÈ 2 RÈ
� , iðËzÈ iË . 0:

Also we adhere to the convention that supÆ � 0.

Lemma 2.3. Let Ë � Ë9 2A(È). If L (Zn,ËjPn,Ë)!l:d: VË and L (Zn,Ë9jPn,Ë9)!l:d: VË9 then

the following conditions hold:

(C) supzË2RË
�

h(zË)VË(zË) � supzË92RË9
�

h(ðË9ËzË9)VË9(zË9), h 2H Ë;

(S) VË(zË) � supzË92Ðÿ1
Ë9Ë zË

iðË9ËzË9 iËVË9(zË9), zË 2 RË
�,

where Ðÿ1
Ë9ËzË � fzË9 2 RË9

� : ÐË9ËzË9 � zËg.

Proof. De®ne

Zn,Ë;Ë9 � dPn,Ë

dPn,Ë9

� �1=n

:

By (2.14),

ðË9ËZn,Ë9 � Zn,ËZn,Ë;Ë9 Pn,Ë9-almost surely,

and, since h 2H Ë, we have that
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E
1=n

n,Ëhn(Zn,Ë) � E
1=n

n,Ë9[h(Zn,Ë9)Zn,Ë;Ë9]
n � E

1=n

n,Ë9 h
n(ðË9ËZn,Ë9):

Applying Lemma 2.2 to the leftmost and rightmost sides, we obtain condition (C).

Now, condition (S), for a given ẑË 2 SË, can formally be obtained by substituting

ĥ(zË) � 1(zË � izË i ẑË)izË i into condition (C) and using the fact that VË has support in

SË. However, the function ĥ is not continuous, so we approximate it with a sequence of

continuous functions hk 2H Ë, k > 1, as follows. Let

hk(zË) � (izË i ÿ k izË ÿ ẑizË i i)�:

Since the hk are from H Ë, they satisfy condition (C). Also hk(zË) # ĥ(zË) as k !1. From

the fact that the hk(zË) are continuous and VË, and VË9 are deviabilities, it is not dif®cult to

check by using Dini's theorem (for a proof see, e.g., Lemmas A.1 and A.4 in Puhalskii 1997)

that one can take the limit as k !1 in condition (C) for the hk , as required. u

Remark 2.4. Property (S) implies that condition (C) holds for non-continuous positively

homogeneous non-negative functions, too.

In analogy with statistical decision theory (Strasser 1985), we call a family of

deviabilities fVË, Ë 2A(È)g, where VË is de®ned on RË
�, conical if it satis®es (C). If, in

addition, VË(zË) � 0 for all zË =2 SË, the family is called standard. The proof of Lemma

2.3 shows that a family is standard if it meets condition (S).

The next result is of particular important for the minimax theorem below. It states that

every standard family of deviabilities admits an extension to a function on RÈ
� which

preserves the conical property.

Lemma 2.4. For every standard family of deviabilities fVË, Ë 2A(È)g, there exists a

function VÈ on RÈ
� such that the following conditions hold:

(i) the function VÈ is upper semi-continuous, assumes values in [0, 1],

sup
zÈ2RÈ

�

VÈ(zÈ) � 1 and VÈ(zÈ) � 0 if zÈ =2 SÈ;

(ii) for all Ë 2A(È) and h 2H Ë,

sup
zË2RË

�

h(zË)VË(zË) � sup
zÈ2RÈ

�

h(ðËzÈ)VÈ(zÈ);

(iii) for all zË 2 RË
�,

VË(zË) � sup
zÈ2Ðÿ1

Ë zË

iðËzÈ iËVÈ(zÈ),

where Ðÿ1
Ë zË � fzÈ 2 RÈ

� : ÐËzÈ � zËg.
We relegate the proof to the Appendix.

We conclude this section by showing consistency of the above de®nitions of the LDP for

statistical experiments.
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Lemma 2.5. Let fE n, Pn, n > 1g be a sequence of dominated statistical experiments. If

it obeys the dominated LDP, then it obeys the LDP. More speci®cally, denoting by VÈ

the deviability on RÈ
� that is the LD limit of L (Z n,ÈjPn) as n!1, we have that

L (Zn,ËjPn,Ë)!l:d:VË, Ë 2A(È), where

VË(zË) � supzÈ2Ðÿ1
Ë zË

iðËzÈ iVÈ(zÈ), if zË 2 SË,

0, otherwise:

�
Also, denoting by VÈ the extension of the standard family fVË, Ë 2A(È)g de®ned in

Lemma 2.4, we have that, for every Ë 2A(È) and h 2H (Ë),

sup
zÈ2RÈ

�

h(ðËzÈ)VÈ(zÈ) � sup
zÈ2RÈ

�

h(ðËzÈ)VÈ(zÈ):

Proof. We ®rst prove that, for all Ë 2A(È) and h 2H Ë,

lim
n!1E

1=n

n,Ëhn(Zn,Ë) � sup
zÈ2RÈ

�

h(ðËzÈ)VÈ(zÈ): (2:18)

Since by (2.1) and (2.14),

Z n,è � Zn,è;Ë
dPn,Ë

dPn

� �1=n

Pn-almost surely, è 2 Ë,

and h is positively homogeneous, we have that

E
1=n

n,Ëhn(Zn,Ë) � E1=n
n hn(Zn,Ë)

dPn,Ë

dPn

� E1=n
n hn(ðË Z n,È): (2:19)

Now using the assumed LD convergence L (Z n,ÈjPn)!l:d: VÈ, we want to prove that

lim
n!1E1=n

n hn(ðË Z n,È) � sup
zÈ2RÈ

�

h(ðËzÈ)VÈ(zÈ), (2:20)

which by (2.19) would yield (2.18). The function h being non-negative and continuous but

not bounded, (2.20) would follow if the uniform exponential integrability condition

introduced in (2.6) holds:

lim
H!1

lim
n!1E1=n

n hn(ðË Z n,È)1(h(ðË Z n,È) . H) � 0: (2:21)

It is here that we need condition (U ). Let h� � supzË2SË h(zË), which is ®nite by the

continuity of h. Since h 2H Ë, it follows that h(Z n,Ë) < h� i Z n,Ë i, so, in view of condition

(U ),

lim
n!1E1=n

n hn(ðË Z n,È)1(h(ðË Z n,È) . H) < lim
n!1

X
è2Ë

E1=n
n h�n Z n

n,è1(h� Z n,è . H)

! 0 as H !1:
So, (2.20) and hence (2.18) have been proved.
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Since by the de®nition of VË,

sup
zË2RË

�

h(zË)VË(zË) � sup
zÈ2RÈ

�

h(ðËzÈ)VÈ(zÈ), (2:22)

Lemma 2.2 implies that the proof of the ®rst claim of the lemma is completed by checking

that VË is a deviability on RË
�.

Limit (2.21), in view of the LD convergence of L (Z n,ÈjPn) to VÈ, implies (using

property (2.7)) that

lim
H!1

sup
zÈ2RÈ

�

iðËzÈ iË1(iðËzÈ iË . H)VÈ(zÈ) � 0:

Therefore, for every å. 0 there exists Hå such that

fzÈ 2 RÈ
� : iðËzÈ iËVÈ(zÈ) > åg � zÈ 2 RÈ

� : VÈ(zÈ) >
å

Hå

� �
so that the set on the left is compact. Since also iðËzÈ iË > å when iðËzÈ iËVÈ(zÈ) > å,

and ÐË is continuous on fzÈ 2 RÈ
� : iðËzÈ iË > åg, it follows that the set

ÐËfzÈ 2 RÈ
� : iðËzÈ iËVÈ(zÈ) > åg is compact. Since, for a . 0,

fzË 2 RË
�: VË(zË) > ag �

\1
n�1

ÐË zÈ 2 RÈ
� : iðËzÈ iËVÈ(zÈ) > a 1ÿ 1

n� 1

� �� �
,

we conclude that the sets fzË 2 RË
�: VË(zË) > ag are compact. Thus, we are left to check

that

sup
zË2RË

�

VË(zË) � 1: (2:23)

By (2.18) with h(zË) � ðèzË, è 2 Ë,

sup
zÈ2RÈ

�

ðèzÈVÈ(zÈ) � 1,

hence,

sup
zÈ2RÈ

�

iðËzÈ iËVÈ(zÈ) � sup
è2Ë

sup
zÈ2RÈ

�

ðèzÈVÈ(zÈ) � 1,

and (2.23) follows by the de®nition of VË.

The second claim of the lemma follows by (2.22) and Lemma 2.4. The lemma is

proved. u

Remark 2.5. Equality (2.22) and Lemmas 2.2 and 2.3 imply that projections VË, Ë 2A(È),

of VÈ de®ned by

VË(zË) � sup
zÈ2ðÿ1

Ë zË

VÈ(zÈ)

constitute a family of deviabilities with properties (C) and (R).
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3. A minimax theorem

We start this section by showing that, in analogy with the classical asymptotic theory of

statistical experiments (Strasser 1985), the LDP for statistical experiments allows us to obtain

an asymptotic lower bound for appropriately de®ned risks, which, in fact, has been the

purpose of introducing the concept of the LDP for sequences of statistical experiments. We

next prove that under additional conditions the bound is tight, and study the problem of

constructing decisions attaining it.

We consider a sequence of statistical experiments fE n, n > 1g, where E n � (Ù, F n;

Pn,è, è 2 È), and assume that it obeys the LDP. The associated deviabilities are denoted by

VË, Ë 2A(È), and VÈ denotes the extension de®ned in Lemma 2.4.

We introduce some more notation common in statistical decision theory (see, e.g., Strasser

1985). We denote by D a Hausdorff topological space with the Borel ó-®eld which we take

as a decision space; Wè � (Wè(r), r 2 D ), è 2 È, are, for each è, non-negative and lower

semi-continuous functions on D which play the role of loss functions; Rn denotes the set

of all measurable mappings rn: Ùn ! D , i.e., Rn is the set of all decision functions with

values in D . We de®ne the LD risk of a decision rn 2Rn in the experiment E n by

Rn(rn) � sup
è2È

E
1=n

n,è W n
è(rn): (3:1)

Obviously, this is an analogue of the risk in minimax decision theory (cf. Strasser 1985).

Recall that a function f : U ! R on a topological space U is level-compact if it is

bounded from below and the sets fu 2 U : f (u) < ág are compact for all á, supu2U f (u)

(Strasser 1985, De®nition 6.3). Obviously, if U is Hausdorff, a level-compact function is

lower semi-continuous and the supremum of a family of level-compact functions is level-

compact. For what follows, it is also worth mentioning that level-compact functions attain

in®ma on closed sets.

Theorem 3.1. Let the sequence fE n, n > 1g obey the LDP. Assume that the functions Wè,

è 2 È, are level-compact. Then

lim
n!1

inf
rn2R n

Rn(rn) > R�,
where

R� � sup
zÈ2RÈ

�

inf
r2D

sup
è2È

Wè(r)zèVÈ(zÈ):

In particular, if fE n, Pn, n > 1g obeys the dominated LDP and VÈ is the associated

deviability then the lower bound can be rewritten as

R� � sup
zÈ2RÈ

�

inf
r2D

sup
è2È

Wè(r)zèVÈ(zÈ): (3:2)

If, moreover, conditions (Y ) and (U ) hold then

R� � sup
y2Y

inf
r2D

sup
è2È

Wè(r)zè(y)V (y):
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Proof. Let Ë 2A(È). We ®rst prove that

lim
n!1

inf
rn

sup
è2Ë

E
1=n

n,è W n
è(rn) > sup

zË2RË
�

inf
r2D

sup
è2Ë

Wè(r)zèVË(zË): (3:3)

Let frn, n > 1g be an arbitrary sequence of decisions. We have, by the de®nition of Zn,Ë

(see (2.14)),

lim
n!1

sup
è2Ë

E
1=n

n,è W n
è(rn) � lim

n!1
sup
è2Ë

E
1=n

n,ËW n
è(rn)Zn

n,è;Ë

> lim
n!1

1

jËjEn,Ë

X
è2Ë

W n
è(rn)Zn

n,è;Ë

" #1=n

> lim
n!1

E
1=n

n,Ë sup
è2Ë

W n
è(rn)Zn

n,è;Ë

> lim
n!1

E
1=n

n,Ëw n(Zn,Ë),

where

w(zË) � inf
r2D

sup
è2Ë

Wè(r)zè, zË � (zè, è 2 Ë) 2 RË
�:

Since the set Ë is ®nite and the functions Wè are level-compact, it is not dif®cult to see that

the function w(:) is lower semi-continuous (cf. Aubin 1984, Proposition 1.7). So by the LD

convergence of L (Zn,ËjPn,Ë) to VË,

lim
n!1

E
1=n

n,Ëwn(Zn,Ë) > sup
zË2RË

�

w(zË)VË(zË),

implying (3.3).

Since the function w(:) belongs to H Ë, an application of Lemma 2.4(ii) yields

sup
zË2RË

�

inf
r2D

sup
è2Ë

Wè(r)zèVË(zË) � sup
zÈ2RÈ

�

inf
r2D

sup
è2Ë

Wè(r)zèVÈ(zÈ),

so by (3.3)

lim
n!1

inf
rn

sup
è2Ë

E
1=n

n,è W n
è(rn) > sup

zÈ2RÈ
�

inf
r2D

sup
è2Ë

Wè(r)zèVÈ(zÈ):

Now the proof of the lower bound is completed by observing that, for every zÈ �
(zè, è 2 È) 2 RÈ

� ,

sup
Ë2A(È)

inf
r2D

sup
è2Ë

Wè(r)zè � inf
r2D

sup
è2È

Wè(r)zè (3:4)

(for a proof see Lemma A.3 in the Appendix; or Aubin and Ekeland 1984, Theorem 6,

Section 2, Chapter 6).
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If fE n, Pn, n > 1g obeys the dominated LDP, then by Lemma 2.5

sup
zÈ2RÈ

�

inf
r2D

sup
è2Ë

Wè(r)zèVÈ(zÈ) � sup
zÈ2RÈ

�

inf
r2D

sup
è2Ë

Wè(r)zèVÈ(zÈ),

and representation (3.2) follows by (3.4). The last representation for R� in the statement of

the theorem follows since, by Lemma 2.1, VÈ � V � zÿ1
È . u

Remark 3.1. Note that the proof only uses what is known as a lower bound in the LDP.

Remark 3.2. We are now in a position to explain why we consider condition (U) in the

de®nition of the dominated LDP to be important. Assume that fE n, n > 1g is a dominated

family with dominating measures Pn such that, for a deviability VÈ on RÈ
� , we have the LD

convergence L (Z n,ÈjPn)!l:d: VÈ. The proof of Theorem 3.1 with VÈ replaced by VÈ and VË

replaced by VÈ � ðÿ1
Ë (which would not use condition (U)) would still give the right-hand

side of (3.2) as a lower bound. However, these lower bounds can generally be different for

different sequences of dominating measures. The role of condition (U) is to eliminate this

possibility by making sure that equality (3.2) holds so that the lower bounds do not depend

on a choice of dominating measures.

In applications, as we will see, the assumption that the loss functions are level-compact is

normally met. However, in the appendix we give a variant of Theorem 3.1 for more general

loss functions. As in the classical theory, tackling this case requires considering generalized

decisions (cf. Strasser 1985).

We now turn to the question of tightness of the above lower bound and start with

de®ning the concept of LD ef®ciency. We say that a sequence of decisions fr�n , n > 1g is

LD ef®cient if, for any other sequence of decisions frng,
lim
n!1 (Rn(r�n )ÿ Rn(rn)) < 0:

Theorem 3.1 implies that to construct LD ef®cient decisions one can apply an approach

similar to that used in the classical asymptotic decision theory. Indeed, by Theorem 3.1, if the

Wè, è 2 È, are level-compact, then, for any sequence of decisions frn, n > 1g,
lim
n!1

Rn(rn) > R�:

Now if a sequence fr�n , n > 1g is such that Rn(r�n )! R� as n!1, it is obviously LD

ef®cient.

Furthermore, motivated by applications, we assume that the sequence fE n, n > 1g is

dominated and conditions (Y ) and (U ) hold. Then, by Theorem 3.1, the asymptotic

minimax risk can be written as

R� � sup
y2Y

inf
r2D

sup
è2È

Wè(r)zè(y)V (y): (3:5)

Representation (3.5) prompts considering for each y 2 Y the subproblem

(Q) Q�(y) � inf
r2D

sup
è2È

Wè(r)zè(y):
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Since the functions Wè are level-compact for each è 2 È, it follows that, given y 2 Y , we

can ®nd r�(y) 2 D that delivers the in®mum in (Q). The value r�(y) can be viewed as `the

best decision if the value of Yn is y'. Hence, provided the function r�(y): Y ! D is Borel

measurable, the decisions r�(Yn) are natural candidates for the LD ef®cient decisions.

Unfortunately, we cannot prove this without requiring that Q�(y) be continuous (or upper

semi-continuous) which usually is not ful®lled in applications. The reason for the latter, as in

condition (Y ) above, is that the zè(y) typically are not continuous as maps from Y into R�.

Therefore, as in condition (Y ), we invoke the idea of regularization. We require that there

exist functions zè,ä(y) such that functions Qä(y) de®ned by

(Qä) Qä(y) � inf
r2D

sup
è2È

Wè(r)zè,ä(y), y 2 Y ,

are continuous in y, on the one hand, and approximate Q�(y) for small ä, on the other hand.

A rigorous formulation is given by condition (sup Y ), which strengthens condition (Y ) to the

effect that the requirements of (Y ) hold uniformly in è 2 È. This way of handling the

technical dif®culties does not allow us, however, to get LD ef®cient decisions: as the next

theorem shows, in general we are only able to obtain decisions whose asymptotic risk is

arbitrarily close to the lower bound. Still, we succeed in proving that the lower bound of

Theorem 3.1 is tight and LD ef®cient decisions exist. We next state the condition. Recall that

Z n,è � (dPn,è=dPn)1=n.

(sup Y ) There exist statistics Yn: Ùn ! Y with values in a metric space Y with the Borel

ó-®eld, functions zè: Y ! R�, è 2 È, and zè,ä: Y ! R�, è 2 È, ä. 0, such that:

(Y :1) the sequence fL (YnjPn), n > 1g LD converges to a deviability V (y), y 2 Y ;

(sup Y :2) for the uniform topology on RÈ
� , the functions zÈ,ä � (zè,ä, è 2 È): Y ! RÈ

� ,

ä. 0, are Borel measurable and continuous V a.e.;

(sup Y :3) limä!0 limn!1 supè2È P1=n
n (jZ n,è ÿ zè,ä(Yn)j. å) � 0 for all å. 0;

(sup Y :4) limä!0 supè2È sup y2ÖV (a) jzè,ä(y)ÿ zè(y)j � 0 for all a . 0.

In the next theorem, condition (sup Y ) is used together with condition (sup U ) which

strengthens (U):

(sup U ) lim H!1 limn!1 supè2È E1=n
n Z n

n,è1(Z n,è . H) � 0

.
Theorem 3.2. Let a sequence of dominated experiments fE n, Pn, n > 1g satisfy conditions

(sup Y ) and (sup U ). Let the function Wè(r) be bounded in (è, r) and level-compact in r for

each è 2 È. Assume that there exist Borel functions rä(y): Y ! D such that the in®mum in

(Qä) is attained at rä(y), and denote rn,ä � rä(Yn). Then

lim
ä!0

lim
n!1 Rn(rn,ä) � lim

ä!0
lim
n!1

Rn(rn,ä) � R�

so that

lim
n!1 inf

rn2R n

Rn(rn) � R�:
In particular, for some sequence r�n ,

lim
n!1 Rn(r�n ) � R�:
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Proof. Since (sup Y ) implies (Y ), by Lemma 2.1, L (Z n,ÈjPn)!l:d: VÈ � V � zÿ1
È , so by

Theorem 3.1, for each ä,

lim
n!1

Rn(rn,ä) > R�:

The proof of the ®rst set of equalities would be ®nished if

lim
ä!0

lim
n!1 Rn(rn,ä) < R�: (3:6)

Let C be an upper bound for W : Wè(r) < C. Since

Rn(rn,ä) � sup
è2È

E
1=n

n,è W n
è(rn,ä) � sup

è2È
E1=n

n W n
è(rn,ä)Z n

n,è,

we have that, for any H . 0,

Rn(rn,ä) < sup
è2È

E1=n
n W n

è(rn,ä)(Z n,è ^ H)n � C sup
è2È

E1=n
n Z n

n,è1(Z n,è . H):

The second term on the right tends to 0 as n!1 and H !1 by condition (sup U ), so the

required limit would follow by

lim
ä!0

lim
n!1 sup

è2È
E1=n

n W n
è(rn,ä)(Z n,è ^ H)n < R�: (3:7)

Since

jsup
è2È

E1=n
n W n

è(rn,ä)(Z n,è ^ H)n ÿ sup
è2È

E1=n
n W n

è(rn,ä)(zn,ä(Yn) ^ H)nj

< C sup
è2È

E1=n
n (jZ n,è ÿ zè,ä(Yn)j ^ H)n,

condition (sup Y.3) implies that

lim
ä!0

lim
n!1 jsup

è2È
E1=n

n W n
è(rn,ä)(Z n,è ^ H)n ÿ sup

è2È
E1=n

n W n
è(rn,ä)(zè,ä(Yn) ^ H)nj � 0: (3:8)

Next, using the de®nitions of Qä and rn,ä and the inequality Wè(r) < C, we obtain

sup
è2È

E1=n
n W n

è(rn,ä)(zè,ä(Yn) ^ H)n < E1=n
n (sup

è2È
(W n

è(rä(Y n))zè,ä(Yn)) ^ CH)n

� E1=n
n (Qä(Yn) ^ CH)n: (3:9)

The last two expectations in (3.9) are well de®ned since the assumptions of the theorem

imply that Qä(y) � supè2È Wè(rä(y))zè,ä(y) is a Borel function.

By the boundedness of Wè(r) and (sup Y.2), the function Qä(y) is V-a.e. continuous.

Since L (YnjPn)!l:d: V , we obtain

lim
n!1E1=n

n (Qä(Yn) ^ CH)n � sup
y2Y

(Qä(y) ^ CH)V (y): (3:10)

By (Q), (Qä) and the inequality Wè(r) < C, we have that
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j sup
y2Y

(Qä(y) ^ CH)V (y)ÿ sup
y2Y

(Q�(y) ^ CH)V (y)j < C sup
y2Y

sup
è2È

(jzè,ä(y)ÿ zè(y)j ^ H)V (y),

and (sup Y :4) easily implies that the right-hand side tends to 0 as ä! 0. Thus,

lim
ä!0

sup
y2Y

(Qä(y) ^ CH)V (y) � sup
y2Y

(Q�(y) ^ CH)V (y)

< sup
y2Y

Q�(y)V (y) � R�, (3:11)

where the last equality follows by (3.5) and (Q). Putting together (3.8)±(3.11) proves (3.7)

and hence (3.6).

The second claim of the theorem follows by (3.6) and the string of inequalities the ®rst

of which is Theorem 3.1:

R� < lim
n!1

inf
rn

Rn(rn) < lim
n!1 inf

rn

Rn(rn) < lim
n!1 Rn(rn,ä):

u

Remark 3.3. Obviously, rä(y) chosen so that

sup
è2È

Wè(rä(y))zè,ä(y) > Qä(y)ÿ Eä,

where Eä ! 0 as ä! 0, would work too.

Remark 3.4. If condition (sup Y) holds with zè,ä(y) � zè(y), then the rä(y) in the theorem do

not depend on ä and the decisions r�n :� rn,ä are LD ef®cient.

Remark 3.5. As with condition (Y ), in applications it is more convenient to deal with a

logarithmic form of condition (sup Y ). Speci®cally, de®ning Î n,È and Ö9I (a) as in Remark

2.2, let us introduce condition (sup Y 9):

(sup Y 9) there exist statistics Yn: Ùn ! Y with values in a metric space Y with the Borel

ó-®eld, functions æè: Y ! R, è 2 È, and æè,ä: Y ! R, è 2 È, ä. 0, such that

(Y 9:1) the sequence fL (YnjPn), n > 1g obeys the LDP with rate function I(y), y 2 Y ;

(sup Y 9:2) for the uniform topology on RÈ , the functions æÈ,ä � (æè,ä, è 2 È): Y ! RÈ ,

ä. 0, are Borel measurable and continuous at each point y such that

I(y) ,1;

(sup Y 9:3) limä!0 limn!1 supè2È P1=n
n (jÎ n,è ÿ æè,ä(Yn)j. å) � 0 for all å. 0;

(sup Y 9:4) limä!0 supè2È sup y2Ö9I (a) jæè,ä(y)ÿ æè(y)j � 0 for all a > 0.

Then condition (sup Y ) is implied by condition (sup Y 9). Similarly, condition (sup U ) follows

from the condition

(sup U 9) lim H!1 limn!1 supè2È E1=n
n exp (nÎ n,è)1(Î n,è . H) � 0:

We henceforth refer to the decisions rn,ä as nearly LD ef®cient.
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4. Asymptotic LD risks and ef®cient decisions for hypothesis
testing and estimation problems

This section speci®es the asymptotic minimax bound of Theorem 3.1 and (nearly) LD

ef®cient decisions for some typical statistical set-ups by considering hypothesis testing and

estimation with Bahadur-type criteria. We consider indicator loss functions, i.e.,

Wè(r) � 1(r =2 Aè), r 2 D , è 2 È,

where Aè are closed subsets of D . Then the LD risk of a decision rn in the nth experiment

is

Rn(rn) � sup
è2È

P
1=n

n,è (rn =2 Aè):

For applications, it is convenient to introduce the logarithmic risk

R9n(rn) � sup
è2È

1

n
log Pn,è(rn =2 Aè): (4:1)

Accordingly, we consider the logarithm of the lower bound R�:
R9� � sup

æÈ2RÈ

inf
r2D

sup
è2È:Aè 63r

(æè ÿ IÈ(æÈ)),

where IÈ(æÈ) � ÿlog VÈ(zÈ) for zÈ � (exp (æè), è 2 È), æÈ � (æè, è 2 È). Theorem 3.1

then yields the following result.

Theorem 4.1. Assume that the Aè, è 2 È, are compact. If the sequence fE n, n > 1g obeys

the LDP then

lim
n!1

inf
rn2R n

R9n(rn) > R9�:

Let us assume now that the sequence fE n, n > 1g is dominated and conditions (Y 9) and

(U 9) hold. According to Remark 2.2 and Theorem 3.1, we then have that

R9� � sup
y2Y

inf
r2D

sup
è2È:AÈ 63r

(æè(y)ÿ I(y)): (4:2)

Similarly, subproblems (Q) and (Qä) of Section 3 take the form

(Q9) Q9�(y) � inf
r2D

sup
è2È:Aè 63r

æè(y), y 2 Y ,

and

(Q9ä) Q9ä(y) � inf
r2D

sup
è2È:Aè 63r

æè,ä(y), y 2 Y :

Obviously,

R9� � sup
y2Y

(Q9�(y)ÿ I(y)):
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Let the in®mum in (Q9ä) be attained at some point r9ä(y) which is the case, e.g., if the Aè,

è 2 È, are compact. We denote r9n,ä � r9ä(Yn).

Combining Theorem 4.1 and Theorem 3.2, and taking into account Remarks 2.2 and 3.5,

we obtain the following theorem.

Theorem 4.2. Assume that fE n, Pn, n > 1g is a dominated sequence of statistical

experiments and the Aè, è 2 È, are compact.

1. If conditions (Y 9) and (U 9) hold then

lim
n!1

inf
rn2R n

R9n(rn) > R9�:

2. Let the functions r9ä, ä. 0, which map Y into D , be Borel measurable. If conditions

(sup Y 9) and (sup U 9) hold then

lim
ä!0

lim
n!1 R9n(r9n,ä) � lim

ä!0
lim
n!1

R9n(r9n,ä) � R9�:

so that

lim
n!1 inf

rn2R n

R9n(rn) � R9�:

4.1. Hypothesis testing

Let È0 and È1 be non-intersecting subsets of the parameter set È: È0 � È, È1 � È,

È0 \È1 � Æ. We want to test the hypothesis H0: è 2 È0 versus the alternative H1: è 2 È1.

The decision space D consists of two points: D � f0, 1g. We endow it with the discrete

topology and, for any decision (test) r, we treat the event fr � 0g (or fr � 1g) as

accepting (or rejecting) the null hypothesis.

An associated loss function Wè(r) is the indicator of the wrong choice:

Wè(r) � 1(è =2 Èr), r � 0, 1, (4:3)

and the logarithmic risk R9(rn) of a decision rn in (4.1) takes the form

RT
n (rn) � max sup

è2È0

1

n
log Pn,è(rn � 1), sup

è2È1

1

n
log Pn,è(rn � 0)

( )
: (4:4)

Denoting the corresponding asymptotic minimax risk R9� by T�, we have by (4.2) that

T� � sup
y2Y

min ( sup
è2È0

(æè(y)ÿ I(y)), sup
è2È1

(æè(y)ÿ I(y))g: (4:5)

For what follows, it is more convenient to use another representation for T�,
T� � sup

è2È0,è92È1

S(è, è9), (4:6)

where

S(è, è9) � sup
y2Y

min fæè(y)ÿ I(y), æè9(y)ÿ I(y)g: (4:7)
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Next, subproblem (Q9ä) for this case is

T 9ä(y) � min
r�0,1

sup
è2È1ÿ r

æè,ä(y), y 2 Y :

It has the solution

rT
ä (y) � 1( sup

è2È0

æè,ä(y) , sup
è2È1

æè,ä(y)),

which leads us to tests of the form

rT
n,ä � 1( sup

è2È0

æè,ä(Yn) , sup
è2È1

æè,ä(Yn)): (4:8)

In the case of two simple hypotheses è0 and è1, the tests reduce to a regularization of the

Neyman±Pearson test:

rT
n,ä � 1(æè0,ä(Yn) , æè1,ä(Yn)):

Applying Theorem 4.2, we obtain the following theorem.

Theorem 4.3. Let È0 and È1 be non-intersecting subsets of È. If a sequence of dominated

experiments fE n, Pn, n > 1g satis®es conditions (Y 9) and U 9) then

lim
n!1

inf
rn2R n

RT
n (rn) > T�:

If conditions (sup Y 9) and (sup U 9) hold then

lim
n!1 inf

rn2R n

RT
n (rn) � T�,

and the tests rT
n,ä are nearly LD ef®cient:

lim
ä!0

lim
n!1 RT

n (rT
n,ä) � lim

ä!0
lim
n!1

RT
n (rT

n,ä) � T�:

4.2. Parameter estimation

Let È be a subset of a normed space B with norm i:i. We are interested in estimating a

parameter è under the Bahadur-type loss function

Wè(r) � 1(i r ÿ èi . c) (4:9)

for a given positive c. The logarithmic risk of an estimator rn is

RE
n (rn) � sup

è2È

1

n
log Pn,è(irn ÿ èi . c): (4:10)

We assume that the decision space D is either a compact subset of B with the induced

topology or a closed convex subset of B with the weak topology; in the latter case, B is

assumed to be a re¯exive Banach space. For both cases, the functions Wè, è 2 È, are level-

compact on D .
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In this set-up, we denote the asymptotic minimax risk R9� from (4.2) by E�:
E� � sup

y2Y
inf
r2D

sup
è2È:i rÿèi.c

(æè(y)ÿ I(y)), (4:11)

and the corresponding subproblem (Q9ä) is

(Eä) Eä(y) � inf r2D supè2È:i rÿèi . c æè,ä(y), y 2 Y :

We next describe solutions to (Eä). Consider a real-valued function f (è), è 2 È, and let

A(h) � fè 2 È: f (è) . hg, h 2 R, (4:12)

r(h) � inf
r2D

sup
è2A(h)

i r ÿ èi, h 2 R, (4:13)

hc � inf (h: r(h) < c):

We assume that hc ,1 (e.g., f (è) is bounded). Note that, for both de®nitions of D , the

in®mum in (4.13) is attained since the functions r! i r ÿ èi from D to R� are level-

compact for all è 2 È.

Lemma 4.1. The set Dc � fr 2 D : supè2A(hc) i r ÿ èi < cg is non-empty and consists of all

rc 2 D at which inf r2D supè2È:i rÿèi.c f (è) is attained. Also the latter in®mum equals hc.

Proof. Since the function (r, h)! supè2A(h) i r ÿ èi is decreasing in h and level-compact in

r 2 D , the function r(h) is decreasing and right-continuous. Hence, r(hc) < c and, since

inf r2D supè2A(hc) i r ÿ èi � r(hc) and the in®mum is attained, the set Dc is non-empty.

Now let rc 2 Dc. By de®nition, i rc ÿ èi < c for all è 2 È such that f (è) . hc. Hence,

sup
è2È:i rcÿèi.c

f (è) < hc: (4:14)

On the other hand, if h , hc, then r(h) . c, which implies that, for every r 2 D ,

supè2A(h) i r ÿ èi . c or, equivalently, there exists è such that f (è) . h and i r ÿ èi . c so

that inf r2D supè2È:i rÿèi.c f (è) > h. Since h is arbitrarily close to hc, we conclude that

inf
r2D

sup
è2È:i rÿèi.c

f (è) > hc,

which by (4.14) proves that inf r2D supè2È:i rÿèi.c f (è) � hc and rc delivers the in®mum.

Finally, if r =2 Dc then supè2A(hc) i r ÿ èi . c, i.e., there exists è such that i r ÿ èi . c and

f (è) . hc, which yields the inequality supè2È:i rÿèi.c f (è) . hc. u

Remark 4.1. Informally, r(h) is the smallest radius of the balls that contain all the è with

f (è) . h, and hc is the lowest level h for which there exists a ball of radius c with this

property. The lemma states, in particular, that hc is the in®mum over all the balls of radius c

of the largest values of f (è) outside the balls. For a one-dimensional parameter è, the

construction in the lemma chooses the largest level set of the function f contained in an

interval of length 2c, and the rc are the centres of the intervals.
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Let rc( f ) denote an element of the set Dc in the lemma and, taking f (è) � æè,ä(y), let

rE
ä,c(y) � rc(æÈ,ä(y)). We assume that the functions rE

ä,c(y): Y ! D are Borel measurable.

We can then de®ne the estimators

rE
n,ä � rE

ä,c(Yn): (4:15)

Motivated by Remark 4.1, we call these estimators interval-median.

A version of Theorem 4.2 for this case is the following.

Theorem 4.4. Assume that either B is a normed space and D is its compact subset with the

induced topology, or B is a re¯exive Banach space and D is its closed convex subset with

the weak topology. Let È � B . If a sequence of dominated experiments fE n, Pn, n > 1g
satis®es conditions (Y 9) and (U 9) then

lim
n!1

inf
rn2R n

RE
n (rn) > E�:

If conditions (sup Y 9) and (sup U 9) hold then

lim
n!1 inf

rn2R n

RE
n (rn) � E�,

and the interval-median estimators rE
n,ä � rE

ä,c(Yn) are nearly LD ef®cient:

lim
ä!0

lim
n!1 RE

n (rE
n,ä) � lim

ä!0
lim
n!1

RE
n (rE

n,ä) � E�:

Remark 4.2. If B is a separable re¯exive Banach space then the Borel ó-®elds for the strong

and weak topologies coincide, hence the condition of measurability of rE
ä,c does not depend

on which topology on B has been chosen.

4.3. Estimation of linear functionals

Let È be a subset of a vector space and L(:) a linear functional on the vector space. Consider

the problem of estimating L(è). We take D � R, the real line. As above, we consider

Bahadur-type criteria: the loss function is

Wè(r) � 1(jr ÿ L(è)j. c), è 2 È, r 2 R,

where c . 0 is ®xed, and the risk of an estimator rn is given by

RF
n (rn) � sup

è2È

1

n
log Pn,è(jrn ÿ L(è)j. c): (4:16)

The asymptotic minimax lower bound R9� assumes the form

F� � sup
y2Y

inf
r2D

sup
è2È:jrÿL(è)j.c

(æè(y)ÿ I(y)), (4:17)

and subproblem (Q9ä) becomes

(Fä) Fä(y) � inf r2D supè2È:jrÿL(è)j.c æè,ä(y), y 2 Y :
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Associated solutions r9ä(y) can be constructed along the same lines as for the parameter

estimation problem. Speci®cally, ®xing y and ä, let us denote f (è) � æè,ä(y) and, for h 2 R

and A(h) from (4.12), denote by L � A(h) the image of A(h) on the real line for the mapping

L:

L � A(h) � fL(è): è 2 A(h)g:
Let B(h) be the smallest closed interval in R containing L � A(h). Furthermore, denoting by

d(B(h)) the length of B(h), set

hc,L � inf fh: d(B(h)) < 2cg:
Finally, consider the intervals Bc,L of length 2c that contain B(hc,L) (note that d(B(hc,L)) <
2c), and let Dc,L be the set of the centres of all such intervals. The argument of the proof of

Lemma 4.1 yields the following lemma.

Lemma 4.2. The set Dc,L is non-empty and consists of all rc,L 2 D at which

inf r2D supè2È:jrÿL(è)j. c f (è) is attained. Also, the latter in®mum equals hc, l.

To emphasize dependence on f, let us denote the elements of Dc,L by rc,L( f ). By the lemma,

rF
ä,c(y) � rc,L(æÈ,ä(y)) solves (Fä). Assuming that the rF

ä,c(y) are Borel functions from Y
into R, we introduce the estimators rF

n,ä of L(è) by

rF
n,ä � rc,L(æÈ,ä(Yn)), (4:18)

and call them also interval-median. Applying Theorem 4.2, we obtain the following result.

Theorem 4.5. If a sequence of dominated experiments fE n, Pn, n > 1g satis®es conditions

(Y 9) and (U 9) then

lim
n!1

inf
rn2R n

RF
n (rn) > F�:

If conditions (sup Y 9) and (sup U 9) hold then

lim
n!1 inf

rn2R n

RF
n (rn) � F�,

and the interval-median estimators rF
n,ä � rc,L(æÈ,ä(Yn)) are nearly LD ef®cient:

lim
ä!0

lim
n!1 RF

n (rF
n,ä) � lim

ä!0
lim
n!1

RF
n (rF

n,ä) � F�:

We conclude the section by giving a more explicit representation for F�.

Lemma 4.3. Under the above notation and conditions,

F� � sup
è,è9:jL(èÿè9)j.2c

S(è, è9),

where S(è, è9) is de®ned by (4.7).
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Proof. We ®x y 2 Y with I(y) ,1, set f (è) � æè(y) and de®ne hc,L as above. We show

that

hc,L � sup
è,è9:jL(èÿè9)j. 2c

min f f (è), f (è9)g:

By (4.17) and Lemma 4.2, this implies the claim.

Since d(B(h)) < 2c for h . hc,L, we have that if è, è9 2 È are such that jL(èÿ è9)j. 2c

then min ( f (è), f (è9)) < hc,L. Conversely, if h , hc,L then d(B(h)) . 2c, hence there exist

è, è9 2 È such that L(èÿ è9) . 2c and f (è) . h, f (è9) . h, which, by the arbitrariness of

h , hc,L completes the proof. u

Remark 4.3. The latter case of functional estimation includes the case of the estimation of a

one-dimensional parameter è if we take L(è) � è, so the result of Lemma 4.3 can be used for

evaluating E� from (4.11) too.

5. Statistical applications

In this section, we go back to the statistical models introduced in Section 2 and apply to them

the general results of Sections 3 and 4. We ®rst verify the LDP for the models by checking

conditions (Y 9) and (U 9). This is done under weaker assumptions than in Section 2. After that

we give conditions that imply (sup Y 9) and (sup U 9). Next, considering certain hypothesis

testing and estimation problems for the models, we calculate the asymptotic minimax risks

and indicate (nearly) LD ef®cient decisions.

Each of the subsections below uses its own notation. We mention it if different subsections

reuse certain symbols for the same objects. For the reader's convenience, we repeat the main

points of the analysis of the models in Section 2 and recall the models themselves. Also, we

implicitly assume that the functions we choose as estimators are properly measurable.

5.1. Gaussian observations

We observe a sample of n independent real-valued random variables Xn � (X1,n, . . . , X n,n)

normally distributed as N (è, 1), è 2 È � R. For this model, Ùn � Rn and Pn,è �
(N (è, 1))n, è 2 È. We take Pn,0 as a dominating measure Pn. Then

1

n
log

dPn,è

dPn

(X) � 1

n

Xn

k�1

èX k ÿ 1

2
è2

� �
, X � (X1, . . . , Xn) 2 Rn:

Thus, it is natural to take

Yn � 1

n

Xn

k�1

X k,n, n > 1,

so that

Î n,è � 1

n
log

dPn,è

dPn

(Xn) � èYn ÿ 1

2
è2:
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Then fL (YnjPn), n > 1g obeys the LDP in R with rate function IN (y) � y2=2, y 2 R (see,

e.g., Freidlin and Wentzell, 1979). This veri®es condition (Y 9:1).

We next take

æè(y) � æè,ä(y) � èyÿ 1

2
è2: (5:1)

Conditions (Y 9:2)±(Y 9:4) are then obvious. Condition (U 9) follows by Chebyshev's inequality

since

E1=n
n exp (nÎ n,è)1(Î n,è . H) < eÿH E1=n

n exp (2nÎ n,è)! eÿH eè
2

:

By Remark 2.2, the sequence fE n, n > 1g obeys the LDP. Moreover, condition (sup Y )

trivially holds. If, in addition, È is bounded, it readily follows that condition (sup U 9) is met

as well.

We now turn to hypothesis testing and estimation problems and begin with calculating,

for è, è9 2 È, the value of the function S(è, è9) from (4.7).

Lemma 5.1. For all è, è9 2 È,

S(è, è9) :� sup
y2R

min fæè(y)ÿ IN (y), æè9(y)ÿ IN (y)g � ÿ (èÿ è9)2

8
:

Proof. By (5.1) and the de®nition of IN , æè(y)ÿ I(y) � ÿ(yÿ è)2=2, so

S(è, è9) � sup
y2R

min ÿ (yÿ è)2

2
, ÿ (yÿ è9)2

2

� �
� ÿ (èÿ è9)2

8
:

u

5.1.1. Testing è � 0 versus jèj > 2c

Assume that È contains 0 as an internal point. We test the simple hypothesis H0: è � 0

versus the two-sided alternative H1: jèj > 2c with some c . 0 such that the interval

[ÿ2c, 2c] is contained in È. The logarithmic risk of a test rn is given by (see (4.4))

RT
n (rn) � max

1

n
log Pn,0(rn � 1),

1

n
sup
jèj>2c

log Pn,è(rn � 0)

( )
:

Now, using (4.6) with È0 � f0g and È1 � fè 2 È: jèj > 2cg and Lemma 5.1, we readily

obtain

T� � sup
jè9j>2c

S(0, è9) � ÿ c2

2
:

Next, by Theorem 4.3 and Remark 3.4, LD ef®cient tests rT
n can be taken in the form

rT
n � 1( sup

jèj>2c

æè(Yn) . æ0(Yn)) � 1 sup
jèj>2c

èYn ÿ è2

2

� �
. 0

 !
� 1(jYnj. c):
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Applying Theorem 4.3 and Remark 3.4, we arrive at the following result.

Proposition 5.1. Let [ÿ2c, 2c] � È. Then

lim
n!1

inf
rn

RT
n (rn) > ÿ c2

2
:

If È is bounded then

lim
n!1 inf

rn

RT
n (rn) � ÿ c2

2
,

and the tests rT
n are LD ef®cient:

lim
n!1 RT

n (rT
n ) � ÿ c2

2
:

5.1.2. Parameter estimation

We now consider the problem of estimating the parameter è. We take the real line as a

decision space D . Recall (see (4.10)) that, for a given c . 0, the risk of an estimator rn is

de®ned by

RE
n (rn) � sup

è2È

1

n
log Pn,è(jrn ÿ èj. c):

In view of Remark 4.3, the asymptotic minimax risk E� is given by Lemma 4.3:

E� � sup
è,è92È:jèÿè9j. 2c

S(è, è9):

Lemma 5.1 implies that if È contains an interval of length greater than 2c, then E� �
ÿc2=2. An application of Theorem 4.4 and Remark 3.4 yields the following result.

Proposition 5.2. Let È contain an interval of length greater than 2c. Then

lim
n!1

inf
r n

RE
n (rn) > ÿ c2

2
:

If È is bounded then

lim
n!1 inf

rn

RE
n (rn) � ÿ c2

2
,

and the interval-median estimators rE
n � rc(æÈ(Yn)) (see Section 4.2) are LD ef®cient:

lim
n!1 RE

n (rE
n ) � ÿ c2

2
:
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Remark 5.1. It is easy to see that the estimator rE
n � rc(æn(Yn)) coincides with Yn if

Yn ÿ c 2 È and Yn � c 2 È. Direct calculations show that the estimators r̂n � Yn are also

LD ef®cient, i.e., limn RE
n (r̂n) � ÿc2=2. The latter estimator is of simpler structure and does

not depend on either c or È. However, the rE
n seem to perform better at points outside or

close to the boundary of È. In particular, if Yn =2 È then r̂n =2 È, whereas, for È convex, rE
n

always belongs to È.

5.2. An independent and identically distributed sample

We observe an independent and identically distributed sample Xn � (X1,n, . . . , X n,n) from a

distribution Pè, è 2 È, on the real line. We assume that the family P � fPè, è 2 Èg is

dominated by a probability measure P, i.e., Pè � P, è 2 È. This model is described by

dominated experiments E n � (Ùn, F n; Pn,è, è 2 È) with Ùn � Rn, F n � B (Rn), Pn,è �
Pn
è , è 2 È, and Pn � Pn.

Assume that the family P satis®es the following regularity conditions:

(R.1) the densities dPè=dP(x), è 2 È, are continuous and positive functions of x 2 R;

(R.2)
�

R((dPè=dP)(x))ãP(dx) ,1, è 2 È, for all ã 2 R.

We have that

Î n,è � 1

n
log

dPn,è

dPn

(Xn) �
Xn

k�1

1

n
log

dPè

dP
(X k,n) �

�
R

log
dPè

dP
(x)Fn(dx),

where

Fn(x) � 1

n

Xn

k�1

1(X k,n < x), x 2 R, (5:2)

are empirical distribution functions.

We take the latter as statistics Yn in condition (Y ). The underlying space Y is the space

of cumulative distribution functions on R which we denote by F and endow with the

topology of weak convergence of associated probability measures. By Sanov's theorem

(Sanov 1957; Deuschel and Stroock 1989, Section 3.2.17), the sequence fL (YnjPn), n > 1g
obeys the LDP with rate function IS(F) � K(F, P), F 2 F , where K(F, P) is the

Kullback±Leibler information:

K(F, P) �
�

R

dF

dP
(x) log

dF

dP
(x)P(dx), if F � P,

1, otherwise:

8<: (5:3)

This checks condition (Y 9:1). The veri®cation of the rest of condition (Y 9) is more intricate

than in the previous example.

Denote for è 2 È, x 2 R and ä. 0,

Lè(x) � log
dPè

dP
(x),

Lè,ä(x) � Lè(x) ^ äÿ1 _ (ÿäÿ1)
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and let

æè,ä(F) �
�

R

Lè,ä(x)F(dx), F 2 F :

By (R.1), the functions æè,ä are continuous on F , so (Y 9:2) holds.

We now check (Y 9:3). Condition (R:2) implies that, for all ã. 0,

lim
ä!0

�
R

[exp (ãjLè(x)ÿ Lè,ä(x)j)ÿ 1]P(dx) � 0: (5:4)

Then, for ã. 0, å. 0, with the use of Chebyshev's inequality,

P1=n
n (jÎ n,è ÿ æè,ä(Fn)j. å) < P1=n

n

�
R

jLè(x)ÿ Lè,ä(x)jFn(dx) . å

� �

< exp (ÿãå)E1=n
n exp nã

�
R

jLè(x)ÿ Lè,ä(x)jFn(dx)

� �

� exp (ÿãå)

�
R

exp (ãjLè(x)ÿ Lè,ä(x)j)P(dx):

By (5.4), it then follows that

lim
ä!0

lim
n!1 P1=n

n (jÎ n,è ÿ æè,ä(Fn)j. å) < exp (ÿãå):

Since ã is arbitrary, (Y 9:3) follows.

We next check (Y 9:4) with

æè(F) �
�

R

Lè(x)F(dx), if IS(F) ,1,

0, otherwise:

8<: (5:5)

To begin, we show that the æè are well de®ned. Since the functions x log xÿ x� 1 and

exp xÿ 1 are convex conjugates (Rockafellar 1970), by the Young±Fenchel inequality

(Rockafellar 1970; Krasnoselskii and Rutickii 1961), for F � P,�
R

����Lè(x)
dF

dP
(x)

����P(dx) <

�
R

[exp (jLè(x)j)ÿ 1]P(dx)

�
�

R

dF

dP
(x) log

dF

dP
(x)ÿ dF

dP
(x)� 1

� �
P(dx)

< 1�
�

R

dPè

dP
(x)

� �ÿ1

P(dx)� IS(F):

In view of (R:2), this proves that the æè are well de®ned.

Now, for F with IS(F) ,1, we have, for ã. 0, using the Young±Fenchel inequality

again,
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ãjæè,ä ÿ æè(F)j <
�

R

ãjLè,ä(x)ÿ Lè(x)jF(dx)

<

�
R

[exp (ãjLè,ä(x)ÿ Lè(x)j)ÿ 1]P(dx)

�
�

R

dF

dP
(x) log

dF

dP
(x)ÿ dF

dP
(x)� 1

� �
P(dx)

�
�

R

[exp (ãjLè,ä(x)ÿ Lè(x)j)ÿ 1]P(dx)� IS(F):

Hence, by (5.4)

lim
ä!0

sup
F2Ö9

I S (a)

jæè,ä(F)ÿ æè(F)j < a

ã
,

and letting ã!1, we arrive at (Y 9:4). Remark 2.2 then implies that the the LDP holds for

fL (Î n,ÈjPn), n > 1g.
It remains to check (U 9). Using Chebyshev's inequality once again, we obtain, for H . 0,

E1=n
n exp (nÎ n,è)1(Î n,è . H) < exp (ÿH)E1=n

n exp (2nÎ n,è)

� exp (ÿH)

�
R

dPè

dP
(x)

� �2

P(dx),

and the result follows by condition (R:2).

Conditions (Y 9) and (U 9) have been veri®ed, and thus the LDP holds.

Remark 5.2. It is possible to do without condition (R:1). Then the functions Lè,ä �
(Lè,ä(x), x 2 R), ä. 0, è 2 È, should be chosen bounded, continuous and so that (5.4) holds.

The existence of such functions follows from (R:2).

To check (sup Y 9) and (sup U 9), we assume that stronger versions of conditions (R:1) and

(R:2) hold:

(sup R.1) the functions (dPè=dP)(x), è 2 È, are positive and equicontinuous at each

x 2 R;

(sup R.2) supè2È
�

R((dPè=dP)(x))ãP(dx) ,1, for all ã 2 R.

De®ning æè, æè,ä, Lè and Lè,ä as above, we have, by (sup R:2), that for all ã. 0

lim
ä!0

sup
è2È

�
R

[exp (ãjLè(x)ÿ Lè,ä)j)ÿ 1]P(dx) � 0:

The latter equality enables us to check conditions (sup Y 9:3) and (sup Y 9:4) in the same way

as conditions (Y 9:3) and (Y 9:4). Condition (sup U 9) is also checked analogously to condition

(U 9), with the use of (sup R:2). Condition (Y 9:1) has already been checked.

It remains to check (sup Y 9:2). We show that the functions (æè,ä(F), è 2 È) are

continuous in F for the uniform topology on RÈ
� which obviously implies (sup Y 9:2). Since
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the weak topology on F is metrizable, it is enough to check sequential continuity. Let F (n)

weakly converge to F as n!1. Then the de®nition of the Lè,ä, and (sup R:1) imply that

the Lè,ä(x), è 2 È, for ä ®xed, are uniformly bounded and equicontinuous at each x 2 R so

that (see, e.g., Billingsley 1968, Problem 8, Section 2)

sup
è2È

�����
R

Lè,ä(x)F (n)(dx)ÿ
�

R

Lè,ä(x)F(dx)

����! 0

verifying (sup Y 9:2). Conditions (sup Y 9) and (sup U 9) have been checked.

We now proceed to considering concrete statistical problems for the model. For this we

need the following result by Chernoff (1952); see also Kullback (1959).

Lemma 5.2. Let P be the space of probability measures on a Polish space E with the Borel

ó-®eld, and let measures P, Q 2 P be dominated by a measure ì and have respective

densities p(x) and q(x). Then

inf
F2P

max fK(F, P), K(F, Q)g � C(P, Q),

where K(F, P) is the Kullback±Leibler information (5.3) and C(P, Q) is Chernoff's function:

C(P, Q) � ÿ inf
ã2[0,1]

log

�
E

pã(x)q1ÿã(x)ì(dx):

We next apply Lemma 5.2 to calculating the function S(è, è9) from (4.7).

Lemma 5.3. For è, è9 2 È,

S(è, è9) :� sup
F2F

min fæè(F)ÿ IS(F), æè9(F)ÿ IS(F)g � ÿC(Pè, Pè9):

Proof. Let IS(F) ,1. Then F � P and, since the densities dPè=dP(x), è 2 È, are positive,

we also have that F � Pè and P-almost surely

dF

dP
� dF

dPè

dPè

dP
:

Therefore, by the de®nitions of æè, and IS,

æè(F)ÿ IS(F) �
�

R

log
dPè

dP
(x)F(dx)ÿ

�
R

log
dF

dP
F(dx)

� ÿ
�

R

log
dF

dPè
F(dx) � ÿK(F, Pè),

and the result follows by Lemma 5.2. u

We now give an application to hypothesis testing problems. Consider the tests from (4.8):

rT
n,ä � 1( sup

è2È0

æè,ä(Fn) , sup
è2È1

æè,ä(Fn)):
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As above, the risk RT
n (rn) of a test rn is de®ned by (4.4). By (4.6) and Lemma 5.3,

T� � ÿ inf
è2È0,è92È1

C(Pè, Pè9),

so Theorem 4.3 yields the following.

Proposition 5.3. Let È1 and È2 be non-intersecting subsets of È. If conditions (R:1) and

(R:2) hold then

lim
n!1

inf
r n

RT
n (rn) > ÿ inf

è2È0,è92È1

C(Pè, Pè9):

If conditions (sup R:1) and (sup R:2) hold then

lim
n!1 inf

rn

RT
n (rn) � ÿ inf

è2È0,è92È1

C(Pè, Pè9),

and the tests rT
n,ä are nearly LD ef®cient, i.e.,

lim
ä!0

lim
n!1 RT

n (rT
n,ä) � lim

ä!0
lim
n!1

RT
n (rT

n,ä)

� ÿ inf
è2È0,è92È1

C(Pè, Pè9):

In a similar manner one can tackle estimation problems for è or linear functionals of è.

5.3. `Signal plus white noise'

We observe a real-valued stochastic process Xn � (Xn(t), t 2 [0, 1]) obeying the stochastic

differential equation

dX n(t) � è(t) dt � 1���
n
p dW (t), 0 < t < 1, (5:6)

where W � (W (t), t 2 [0, 1]) is a standard Wiener process and è(:) is an unknown

continuous function.

This model is described by statistical experiments E n � (Ùn, F n; Pn,è, è 2 È), where

Ùn � C[0, 1], the space of continuous functions on [0, 1] with the uniform metric,

È � C[0, 1] and Pn,è is the distribution of X n on C[0, 1] for è. We take Pn � Pn,0, where

Pn,0 corresponds to the zero function è(:) � 0. Then Pn,è � Pn and, moreover, by

Girsanov's formula, Pn-almost surely,

Î n,è � 1

n
log

dPn,è

dPn

(X n) �
�1

0

è(t) dX n(t)ÿ 1

2

�1

0

è2(t) dt: (5:7)

So, to check condition (Y 9), we take Yn � X n and Y � C[0, 1].

Let C0[0, 1] be the subset of C[0, 1] of the functions x(:) that are absolutely continuous

with respect to Lebesgue measure and equal to 0 at 0. Since the sequence fL (XnjPn),

n > 1g obeys the LDP in C[0, 1] with rate function
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IW (x(:)) �
1

2

�1

0

( _x(t))2 dt, if x(:) 2 C0[0, 1],

1, otherwise,

8<: (5:8)

where _x(t) denotes the derivative of x(:) 2 C[0, 1] at t (see, e.g., Freidlin and Wentzell,

1979), condition (Y 9:1) holds.

We next take

æè,ä(x(:)) �
�1

0

èä(t) dx(t)ÿ 1

2

�1

0

è2(t) dt, x(:) 2 C[0, 1], (5:9)

where

èä(t) �
X[1=ä]

k�0

è(kä)1(t 2 [kä, (k � 1)ä)), t 2 [0, 1], (5:10)

the ®rst integral on the right of (5.9) being understood as a ®nite sum.

By the continuity of è(:),

lim
ä!0

�1

0

(è(t)ÿ èä(t))2 dt � 0: (5:11)

The æè,ä are obviously continuous in x(:) 2 C[0, 1], so (Y 9:2) holds. Next, by (5.7) and (5.9),

we have, for å. 0 and ã. 0, in view of Chebyshev's inequality,

P1=n
n (jÎ n,è ÿ æè,ä(X n)j. å) < P1=n

n

�����1

0

(è(t)ÿ èä(t))
1���
n
p dW (t)

����. å

 !

< 2eÿãå exp
ã2

2

�1

0

(è(t)ÿ èä(t))2 dt

 !
,

and by (5.11)

lim
ä!0

lim
n!1 P1=n

n (jÎ n,è ÿ æè,ä(Xn)j. å) < 2 exp (ÿãå),

which proves (Y 9:3) by the arbitrariness of ã.

For condition (Y 9:4), we take

æè(x(:)) �
�1

0

è(t) _x(t) dt ÿ 1

2

�1

0

è2(t) dt, if IW (x(:)) ,1,

0, otherwise:

8<:
The æè are well de®ned, since, by the Cauchy±Schwarz inequality and (5.8), if x(:) is

absolutely continuous then�1

0

jè(t) _x(t)j dt <

�1

0

è2(t) dt

 !1=2

(2IW (x(:)))1=2:
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Moreover, if IW (x(:)) ,1 then

jæè,ä(x(:))ÿ æè(x(:))j <
�1

0

jèä(t)ÿ è(t)j j _x(t)j dt

<

�1

0

(èä(t)ÿ è(t))2 dt

 !1=2 �1

0

( _x(t))2 dt

 !1=2

,

so

sup
x(:)2Ö9

I W (a)

jæè,ä(x(:))ÿ æè(x(:))j < (2a)1=2

�1

0

(èä(t)ÿ è(t))2 dt

 !1=2

,

and the latter goes to 0 as ä! 0 by (5.11). Condition (Y 9) has been veri®ed.

It remains to check (U 9). Using the model equation (5.6), (5.7) and Chebyshev's

inequality once again, we have that

E1=n
n exp (nÎ n,è)1(Î n,è . H) < exp (ÿH)E1=n

n exp (2nÎ n,è)

� exp (ÿH) exp

�1

0

è2(t) dt

 !
! 0 as H !1,

verifying condition (U 9).

Remark 5.3. The condition of continuity of the functions è(:) can be weakened to the

condition �1

0

è2(t) dt ,1:

The functions èä should then be chosen as step functions for which (5.11) holds.

For conditions (sup Y 9) and (sup U 9), we require that the functions è(:) belong to a

compact set in C[0, 1]. More speci®cally, for ®xed â 2 (0, 1], M . 0 and K . 0, we

introduce the HoÈlder class

Ó(â, M) � fè(:): jè(t)ÿ è(s)j < M jt ÿ sjâ, for all s, t 2 [0, 1]g, (5:12)

de®ne ÓK (â, M) to be the subset of Ó(â, M) of functions è such that sup t2[0,1] jè(t)j < K and

assume that È � ÓK (â, M). By the ArzelaÁ ±Ascoli theorem, the set ÓK (â, M) is compact in

C[0, 1]. Also

sup
è(:)2ÓK (â,M)

�1

0

è2(t) dt ,1 (5:13)

and

lim
ä!0

sup
è(:)2ÓK (â,M)

�1

0

(è(t)ÿ èä(t))2 dt � 0: (5:14)
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Now conditions (sup Y 9:3) and (sup Y 9:4) are checked as conditions (Y 9:3) and (Y 9:4),

respectively, with the use of (5.14) in place of (5.11). Condition (sup Y 9:2) follows by the

uniform boundedness of functions from ÓK (â, M), which implies that x(:)! (æè,ä(x(:)),
è 2 ÓK (â, M)) is a continuous map from C[0, 1] into RÈ

� with the uniform topology.

Finally, condition (sup U 9) follows in analogy with condition (U 9) with the use of (5.13).

This completes veri®cation of conditions (sup Y 9) and (sup U 9).
We now calculate the function S(è, è9) for the model.

Lemma 5.4. For all è, è9 2 C[0, 1],

S(è, è9) :� sup
x(:)2C[0,1]

min fæè(x(:))ÿ IW (x(:)), æè9(x(:))ÿ IW (x(:))g

� ÿ 1

8

�1

0

[è(t)ÿ è9(t)]2 dt:

Proof. Since by the de®nitions of IW and æè, for x(:) with IW (x(:)) ,1,

æè(x(:))ÿ IW (x(:)) � ÿ 1

2

�1

0

( _x(t)ÿ è(t))2 dt,

we obtain, by the inequality max (a2, b2) > (aÿ b)2=4,

S(è, è9) � ÿ inf
x(:)2C[0,1]

max
1

2

�1

0

[ _x(t)ÿ è(t)]2 dt,
1

2

�1

0

[ _x(t)ÿ è9(t)]2 dt

( )

< ÿ 1

8

�1

0

[è(t)ÿ è9(t)]2 dt:

On the other hand, for x(:) with _x(t) � [è(t)� è9(t)]=2, we have that

1

2

�1

0

[ _x(t)ÿ è(t)]2 dt � 1

2

�1

0

[ _x(t)ÿ è9(t)]2 dt � 1

8

�1

0

[è(t)ÿ è9(t)]2 dt,

and the result follows. u

Now we apply these formulae and the general results from Section 4 to two statistical

problems concerning the value of the function è(:) at an internal point t0 of [0, 1].

5.3.1. Testing è(t0) � 0 versus jè(t0)j > 2c

Given c . 0, denote È0 � fè 2 È: è(t0) � 0g, È1 � fè 2 È: jè(t0)j > 2cg and de®ne the

risk RT
n (rn) of a test rn by (4.4). Introduce

t� � (c=M)1=â: (5:15)
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Proposition 5.4. Let c, â, M, K and t0 be such that [t0 ÿ t�, t0 � t�] � [0, 1] and K > 2c.

If È � Ó(â, M) then

lim
n!1

inf
rn

RT
n (rn) > ÿ 2â2c2

(â� 1)(2â� 1)

c

M

� �1=â

:

If È � ÓK(â, M) then

lim
n!1 inf

rn

RT
n (rn) � ÿ 2â2c2

(â� 1)(2â� 1)

c

M

� �1=â

,

and the tests rT
n,ä from (4.8) are nearly LD ef®cient, i.e.,

lim
ä!0

lim
n!1 RT

n (rT
n,ä) � lim

ä!0
lim
n!1

RT
n (rT

n,ä) � ÿ 2â2c2

(â� 1)(2â� 1)

c

M

� �1=â

:

Proof. By Theorem 4.3, we need only to calculate T� from (4.6). Denote

è�(t) � [cÿ M jt ÿ t0jâ]�, (5:16)

where a� � max (a, 0). If è 2 È0 and è9 2 È1 then the inequality jè(t0)ÿ è9(t0)j > 2c and

the HoÈlder constraints (5.12) imply that jè(t)ÿ è9(t)j > 2[cÿ M jt ÿ t0jâ]� � 2è�(t), and

hence �1

0

(è(t)ÿ è9(t))2 dt >

�1

0

4(è�(t))2 dt:

This yields, by Lemma 5.4,

S(è, è9) < ÿ 1

8
4

�1

0

(è�(t))2 dt � ÿ
� t�

0

(cÿ Mtâ)2 dt

� ÿ 2â2c2

(â� 1)(2â� 1)

c

M

� �1=â

:

On the other hand, evidently, cÿ è� 2 È0, c� è� 2 È1 and S(cÿ è�, c� è�) �
ÿ1

2

� 1

0
(è�(t))2 dt so that

T� � sup
è2È0,è92È1

S(è, è9) � ÿ 2â2c2

(â� 1)(2â � 1)

c

M

� �1=â

,

and the proof is complete. u

5.3.2. Estimating è(t0)

Treating è(t0) as a linear functional of è(:), we de®ne the risk of an estimator rn of è(t0) by

RF
n (rn) � sup

è2È

1

n
log Pn,è(jrn ÿ è(t0)j. c):
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Proposition 5.5. Let c, â, M, K and t0 be such that [t0 ÿ t�, t0 � t�] � [0, 1] and K . c. If

È � Ó(â, M) then

lim
n!1

inf
rn

RF
n (rn) > ÿ 2â2c2

(â� 1)(2â� 1)

c

M

� �1=â

:

If È � ÓK(â, M) then

lim
n!1 inf

rn

RF
n (rn) � ÿ 2â2c2

(â� 1)(2â� 1)

c

M

� �1=â

,

and the interval-median estimators rF
n,ä from (4.18) are nearly LD ef®cient, i.e.,

lim
ä!0

lim
n!1 RT

n (rF
n,ä) � lim

ä!0
lim
n!1

RT
n (rF

n,ä) � ÿ 2â2c2

(â� 1)(2â� 1)

c

M

� �1=â

:

Proof. By Theorem 4.5 and Lemma 4.3,

lim
n!1

inf
rn

RF
n (rn) > F� � sup

è,è9:jè( t0)ÿè9( t0)j. 2c

S(è, è9):

Repeating the above calculation for the testing problem, we obtain with è�(t) from (5.16)

F� � S(è�, ÿè�) � ÿ 2â2c2

(â� 1)(2â� 1)

c

M

� �1=â

,

and we are done. u

Remark 5.4. The latter problem has been studied by Korostelev (1996), who suggests

different upper estimators, namely, the kernel estimators

r̂n �
�

K(t0 ÿ t) dXn(t)

with the kernel K(t) � [(â� 1)=(2câ)](M=c)1=â[cÿ M jt ÿ t0j]�. These estimators have

proved to be asymptotically ef®cient in the sense that RT
n (r̂n)! F� as n!1.

5.4. Gaussian regression

We consider the regression model

X k,n � è(t k,n)� îk,n, t k,n � k

n
, k � 1, . . . , n, (5:17)

where errors îk,n are independent standard normal and è(:) is an unknown continuous

function.

In this model, Ùn � Rn, È � C[0, 1] and Pn,è is the distribution of Xn � (X 1,n, . . . ,

X n,n) for è(:). As above, we take Pn � Pn,0. Then
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Î n,è � 1

n
log

dPn,è

dPn

(X n)

� 1

n

Xn

k�1

è(t k,n)X k,n ÿ 1

2n

Xn

k�1

è2(t k,n)

�
�1

0

è(t) dX n(t) � 1

2n

Xn

k�1

è2(t k,n), (5:18)

where

Xn(t) � 1

n

X[nt]

k�1

X k,n, 0 < t < 1:

This prompts taking the process Xn � (Xn(t), t 2 [0, 1]) as a statistic Yn in condition (Y 9).
We de®ne Y to be the space of right-continuous functions on [0, 1] with left-hand limits and

with the uniform metric.

Since the X k,n are distributed as N (0, 1) under Pn, the sequence fL (X njPn), n > 1g
obeys the LDP with IW from (5.8) (Mogulskii 1976). This veri®es condition (Y 9:1).

Next, we de®ne æè,ä(x(:)) as in Section 5.3, i.e.,

æè,ä(x(:)) �
�1

0

èä(t) dx(t)ÿ 1

2

�1

0

è2(t) dt, x(:) 2 Y , (5:19)

with èä(t) as in (5.10). Note that the æè,ä are measurable with respect to the Borel ó-®eld on

Y and continuous at x(:) with IW (x(:)) � 1 since they are continuous at continuous

functions and IW (x(:)) � 1 when x(:) is not absolutely continuous. This veri®es condition

(Y 9:2).

Now, by (5.18) and (5.19),

P1=n
n (jÎ n,è ÿ æè,ä(Xn)j. å) <1

�����1

0

è2(t) dt ÿ 1

n

Xn

k�1

è2(k=n)

����. å=4

 !

� P1=n
n

�����1

0

(è(t)ÿ èä(t)) dXn(t)

����. å=2

 !
:

The ®rst term on the right is zero for all n large enough by the continuity of è(:). The second,

for ã. 0, is not greater than

eÿãå=2E1=n
n exp nã

�����1

0

(è(t)ÿ èä(t)) dXn(t)

����
 !

< 2eÿãå=2 exp
ã2

2n

Xn

k�1

(è(k=n)ÿ èä(k=n))2

 !
:

Since the è(:) are continuous and the èä(:) are step functions,

lim
n!1

1

n

Xn

k�1

(è(k=n)ÿ èä(k=n))2 �
�1

0

(è(t)ÿ èä(t))2 dt,

and the latter goes to 0 as ä! 0. Since ã is arbitrary, condition (Y 9:3) follows.
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Conditions (Y 9:4) and (U 9) are checked as for the `signal plus white noise' model (with

the same choice of æè).

Remark 5.5. As in the `signal plus white noise' model, instead of continuity of è(:), we could

require that it be square-integrable on [0, 1].

To obtain nearly LD ef®cient decisions, we assume that the è(:) belong to the class

ÓK(â, M) de®ned above. Conditions (sup Y 9:2), (sup Y 9:3), (sup Y 9:4) and (sup U 9) are

checked as for the `signal plus white noise' model if, in addition, we take into account that

lim
n!1 sup

è(:)2ÓK (â,M)

�1

0

(è([nt]� 1=n)ÿ è(t))2 dt � 0:

Condition (sup Y 9:2) is obvious.

Since here we have the same functions IW (x) and æè(x) as for the `signal plus white

noise' model, the statistical problems of Section 5.3 are solved in the same way.

5.5. Non-Gaussian regression

We consider the regression model (5.17) but now assume that independent and identically

distributed errors îk,n have a distribution P on the real line with a probability density

function p(x) with respect to Lebesgue measure. An unknown regression function è(:) is

again assumed to be continuous, so È � C[0, 1].

Next, we assume that the density p(x) obeys the following condition, cf. conditions (R:1)

and (R:2) for the model of an independent and identically distributed sample:

(P) the density p(x) is positive and continuous, and the function

Hã(s) �
�

R

pã(x) p1ÿã(xÿ s) dx

is bounded over s from bounded domains for all ã 2 R.

As above, for a regression function è(:), we denote by Pn,è the distribution of X n �
(X 1,n, . . . , X n,n). We have, with Pn � Pn,0,

Î n,è � 1

n
log

dPn,è

dPn

(X n) � 1

n

Xn

k�1

log
p(X k,n ÿ è(k=n))

p(X k,n)
:

As in the case of an independent and identically distributed sample, this representation

suggests taking for Yn the empirical process Fn � Fn(x, t), x 2 R, t 2 [0, 1], de®ned by

Fn(x, 0) � 0 and

Fn(x, t) � 1

n

X[nt]

k�1

1(X k,n < x), 0 , t < 1: (5:20)
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Then

Î n,è �
�1

0

�
R

log
p(xÿ è(t))

p(x)
Fn(dx, dt): (5:21)

We de®ne Y as the space of cumulative distribution functions F � F(x, t), x 2 R, t 2 [0, 1],

on R 3 [0, 1] with the weak topology. Let Y 0 be the subset of Y of absolutely continuous

functions F(x, t) with respect to Lebesgue measure on R 3 [0, 1] and with densities pt(x)

satisfying the condition
�

R pt(x) dx � 1, t 2 [0, 1]. As follows from Dembo and Zajic (1995)

or Theorem 1 of Puhalskii (1996), the sequence fL (FnjPn), n > 1g obeys the LDP in Y
with rate function ISK (F) given by

ISK (F) �
�1

0

�
R

log
pt(x)

p(x)
pt(x) dx dt, if F 2 Y 0,

1, otherwise:

8<:
This veri®es (Y 9:1).

To de®ne æè,ä(F), introduce the functions

Lè(x, t) � log
p(xÿ è(t))

p(x)
,

Lè,ä(x, t) � Lè(x, t) _ (ÿäÿ1) ^ äÿ1, x 2 R, t 2 [0, 1]:

The functions Lè,ä are bounded, continuous and, in view of (P), satisfy the relations

lim
ä!0

�1

0

�
R

[exp (ãjLè(x, t)ÿ Lè,ä(x, t)j)ÿ 1] p(x) dx dt � 0, ã. 0, (5:22)

and, for every ã. 0,

lim
n!1

�1

0

�
R

exp ã

����Lè x,
[nt]

n

� �
ÿ Lè,ä x,

[nt]

n

� �����
 !

ÿ 1

" #
p(x) dx dt! 0 (5:23)

as ä! 0. We set

æè,ä(F) �
�1

0

�
R

Lè,ä(x, t)F(dx, dt): (5:24)

Then condition (Y 9:2) holds by the de®nition of the topology on Y and choice of the Lè,ä.

For condition (Y 9:3), write, for ã. 0, using Chebyshev's inequality, and (5.20), (5.21) and

(5.24),

1

n
log Pn(jÎ n,è ÿ æè,ä(Fn)j. å)

<
1

n
log Pn

�1

0

�
R

jLè(x, t)ÿ Lè,ä(x, t)jFn(dx, dt) . å

 !

< ÿãå� 1

n

Xn

k�1

log

�
R

exp (ãjLè(x, k=n)ÿ Lè,ä(x, k=n)j) p(x) dx:
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Limit (5.23) yields

lim
ä!0

lim
n!1

1

n
log Pn(jÎ n,è ÿ æè,ä(Fn)j. å) < ÿãå,

which proves (Y 9:3) since ã is arbitrary.

For condition (Y 9:4), we take

æè(F) �
�1

0

�
R

Lè(x, t)F(dx, dt), if ISK (F) ,1,

0, otherwise:

8<:
The æè are well de®ned since, by the Young±Fenchel inequality, if F(x, t) �� t

0

� x

ÿ1 ps(y) dy ds then�1

0

�
R

jLè(x, t)j pt(x)

p(x)
p(x) dx dt <

�1

0

�
R

[exp (jLè(x, t)j)ÿ 1] p(x) dx dt

�
�1

0

�
R

pt(x)

p(x)
log

pt(x)

p(x)
ÿ pt(x)

p(x)
� 1

� �
p(x) dx dt

< 1�
�1

0

�
R

p2(x)( p(xÿ è(t)))ÿ1 dx dt � ISK (F),

which is ®nite when ISK (F) ,1 by condition (P).

Next, once again by the Young±Fenchel inequality, we have, for ã. 0,

ãjæè,ä(F)ÿ æè(F)j <
�1

0

�
R

ãjLè,ä(x, t)ÿ Lè(x, t)jF(dx, dt)

<

�1

0

�
R

[exp (ãjLè,ä(x, t)ÿ Lè(x, t)j)ÿ 1] p(x) dx dt � ISK (F),

so by (5.22)

lim
ä!0

sup
F2Ö9

I SK (a)

jæè,ä(F)ÿ æè(F)j < a

ã
,

which proves (Y 9:4) since ã is arbitrary.

Condition (U 9) is checked as in the case of an independent and identically distributed

sample with the use of condition (P).

We now check conditions (sup Y 9) and (sup U 9). For this purpose, we assume that the

è(:) are again from the set ÓK(â, M) de®ned in Section 5.3. Then limits (5.22) and (5.23)

hold uniformly over è 2 ÓK(â, M), which allows us to check (sup Y 9:3), (sup Y 9:4) and

(sup U 9) analogously to (Y 9:3), (Y 9:4) and (U 9), respectively. Condition (sup Y 9:2) follows

from the fact that the Lè,ä(x, t), è 2 ÓK (â, M), are equicontinuous at each (x, t) and

uniformly bounded, so the (æè,ä, è 2 È): Y ! RÈ
� are continuous for the uniform topology

on RÈ
� .
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We now calculate the function S(è, è9), è, è9 2 È. This is carried out with the use of a

generalization of Chernoff's result in Lemma 5.2 which we state and prove next. Let E be a

Polish space with the Borel ó-®eld E and P (E), the space of probability measures on

(E, E ). As above, for F, P 2 P (E), we denote by K(F, P) the Kullback±Leibler

information:

K(F, P) �
�

E

log
dF

dP
(x)F(dx), if F � P,

1, otherwise:

8<:
Recall that K(F, P), for P ®xed, is convex and is a rate function in F for the weak topology

on P (E) (Deuschel and Stroock 1989, Section 3.2.17).

If the role of E is taken over by E 3 [0, 1] with the product topology, then given a

probability Borel measure í on [0, 1], we denote by P í(E 3 [0, 1]) the subset of

P (E 3 [0, 1]) of measures F such that F(E 3 [0, t]) � í([0, t]), t 2 [0, 1].

Our version of Chernoff's result is the following lemma.

Lemma 5.5. Let E be a Polish space. Let probability measures P, Q 2 P (E 3 [0, 1]) be

dominated by the product measure ì 3 í, where ì and í are Borel measures on E and [0, 1],

respectively, with í([0, 1]) � 1. Then

inf
F2P í(E3[0,1])

max fK(F, P), K(F, Q)g � ÿ inf
ã2[0,1]

�1

0

log

�
E

p
ã
t (x)q

1ÿã
t (x)ì(dx)

� �
í(dt),

where pt(x) and qt(x) are the respective densities of P and Q relative to ì 3 í.

Proof. Obviously,

max fK(F, P), K(F, Q)g � sup
ã2[0,1]

(ãK(F, P)� (1ÿ ã)K(F, Q)): (5:25)

Let P (E 3 [0, 1]) be endowed with the weak topology. Since K(F, P) is convex and is a rate

function in F, we deduce that the function ãK(F, P)� (1ÿ ã)K(F, Q), ã 2 [0, 1],

F 2 P í(E 3 [0, 1]), meets the conditions of a minimax theorem (see, e.g., Aubin and

Ekeland 1984, Theorem 7, Section 2, Chapter 6). Hence,

inf
F2P í(E3[0,1])

sup
ã2[0,1]

(ãK(F, P)� (1ÿ ã)K(F, Q))

� sup
ã2[0,1]

inf
F2P í(E3[0,1])

(ãK(F, P)� (1ÿ ã)K(F, Q)): (5:26)

The latter in®mum can equivalently be taken over F dominated by P and Q, and hence by

ì 3 í. Denote by f t(x) the density of F with respect to ì 3 í. Since, by the de®nition of

P í(E 3 [0, 1]),

F(E 3 [0, t]) �
� t

0

�
E

f t(x)ì(dx)í(dt) � í([0, t]), t 2 [0, 1],
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we have that �
E

f t(x)ì(dx) � 1 í-almost everywhere: (5:27)

Next, by the de®nition of the Kullback±Leibler information,

ãK(F, P)� (1ÿ ã)K(F, Q) �
�1

0

�
E

log
f t(x)

p
ã
t (x)q

1ÿã
t (x)

f t(x)ì(dx)í(dt), (5:28)

where 0=0 � 0, 0 log 0 � 0. Since the function x log x, x > 0, is convex, an application of

Jensen's inequality and (5.27) gives that í-almost everywhere in t 2 [0, 1]�
E

log
f t(x)

p
ã
t (x)q

1ÿã
t (x)

f t(x)ì(dx) > ÿlog

�
E

p
ã
t (x)q

1ÿã
t (x)ì(dx):

On the other hand, taking

f t(x) � p
ã
t (x)q

1ÿã
t (x)

�
E

p
ã
t (x)q

1ÿã
t (x)ì(dx)

� �ÿ1

, (5:29)

we get equality above. Since the measure F with the density de®ned by (5.29) belongs to

P í(E 3 [0, 1]), we obtain by (5.28) that

inf
F2P í(E3[0,1])

[ãk(F, P)� (1ÿ ã)K(F, Q)] � ÿ
�1

0

log

�
E

p
ã
t (x)q

1ÿã
t (x)ì(dx)

� �
í(dt)

which, by (5.25) and (5.26), concludes the proof. u

Remark 5.6. Chernoff's result follows when í is a Dirac measure.

We now apply Lemma 5.5 to evaluating the function S(è, è9).

Lemma 5.6. For all è, è9 2 È,

S(è, è9) � inf
ã2[0,1]

�1

0

log Hã(è9(t)ÿ è(t)) dt:

Proof. We have, for F 2 Y 0 with ISK (F) ,1,

æè(F)ÿ ISK (F) � ÿK(F, �Pè),

where �Pè(dx, dt) � p(xÿ è(t)) dx dt, and the claim follows by (4.7) and Lemma 5.5 with

E � R, ì(dx) � dx, í(dt) � dt, P � �Pè and Q � �Pè9. u

The latter result enables us to calculate asymptotic minimax risks for various statistical

problems. To compare with the Gaussian case, let us consider the same statistical problems

as in Sections 5.3 and 5.4 dealing with the value of è(t0) for a given t0. Sets Ó(â, M) and

ÓK(â, M) are de®ned above.
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5.5.1. Testing è(t0) � 0 versus jè(t0)j > 2c

Given c . 0, let È0 � fè 2 È: è(t0) � 0g, È1 � fè 2 È: jè(t0)j > 2cg and de®ne the risk

RT
n (rn) of a test rn by (4.4). Recall that t� was de®ned in (5.15).

Proposition 5.6. Let c, â, M, K and t0 be such that [t0 ÿ t�, t0 � t�] � [0, 1] and K > 2c.

Let the measure P satisfy condition (P) and the function Hã(s) monotonically decrease in

s > 0 for each ã 2 [0, 1]. If È � Ó(â, M) then

lim
n!1

inf
rn

RT
n (rn) > inf

ã2[0,1]
2

� t�

0

log Hã(2(cÿ Mtâ)) dt:

If È � ÓK(â, M) then

lim
n!1 inf

rn

RT
n (rn) � inf

ã2[0,1]
2

� t�

0

log Hã(2(cÿ Mtâ)) dt,

and the tests rT
n,ä from (4.8) are nearly LD ef®cient, i.e.,

lim
ä!0

lim
n!1 RT

n (rT
n,ä) � lim

ä!0
lim
n!1

RT
n (rT

n,ä)

� inf
ã2[0,1]

2

� t�

0

log Hã(2(cÿ Mtâ)) dt:

Proof. By Theorem 4.3 we need only to evaluate T� from (4.6). A straightforward

calculation using Lemma 5.6 and the monotonicity of Hã(s) shows that

T� :� sup
è2È0,è92È1

S(è, è9) � inf
ã2[0,1]

2

�1

0

log Hã(2è�(t)) dt,

where è�(t) � [cÿ M jt ÿ t0jâ]�. The claim follows. u

5.5.2. Estimating è(t0)

For the problem of estimating è(t0), the risk of an estimator rn is de®ned by

RF
n (rn) � sup

è2È

1

n
log Pn,è(jrn ÿ è(t0)j. c):

Proposition 5.7. Let the conditions of Proposition 5.6 hold. If È � Ó(â, M) then

lim
n!1

inf
rn

RF
n (rn) > inf

ã2[0,1]
2

� t�

0

log Hã(2(cÿ Mtâ)) dt:

If È � ÓK(â, M) then

lim
n!1 inf

rn

RF
n (rn) � inf

ã2[0,1]
2

� t�

0

log Hã(2(cÿ Mt â)) dt,

and the interval-median estimators rF
n,ä from (4.18) are nearly LD ef®cient, i.e.,
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lim
ä!0

lim
n!1 RF

n (rF
n,ä) � lim

ä!0
lim
n!1

RF
n (rF

n,ä)

� inf
ã2[0,1]

2

� t�

0

log Hã(2(cÿ Mtâ)) dt:

Proof. By Theorem 4.5 and Remark 4.3 it suf®ces to calculate the asymptotic minimax risk

given by Lemma 4.3:

F� � sup
è,è92È:jè( t0)ÿè9( t0)j. 2c

S(è, è9)

which is done as for the `signal plus white noise' model. u

Remark 5.7. The latter problem of estimating è(t0) has been considered by Korostelev and

Spokoiny (1996) under the assumption that log p(x) is concave upwards, and by Korostelev

and Leonov (1995), who study the double asymptotics as n!1 and then c! 0.

5.6. The change-point model

Let us observe a sample X n � (X 1,n, . . . , X n,n) of real-valued random variables, where, for

some kn > 1, the observations X1,n, . . . , X k n,n are independent and identically distributed

with a distribution P0 and the observations X k n�1,n, . . . , X n,n are independent and identically

distributed with a distribution P1. We assume that P0 and P1 are known and kn is unknown.

Let us also assume that kn � [nè], where è 2 È � [0, 1]. For this model, Ùn � Rn and Pn,è

denotes the distribution of X n for è.

Let a probability measure P dominate P0 and P1, and let

f0(x) � dP0

dP
(x), f 1(x) � dP1

dP
(x), x 2 R,

be the respective densities. We assume that f0(x) and f 1(x) are positive and continuous and�
R

f
ã
0(x)P(dx) ,1,

�
R

f
ã
1(x)P(dx) ,1 for all ã 2 R: (5:30)

Introducing Pn � Pn, we have

Î n,è � 1

n
log

dPn,è

dPn

(X n) � 1

n

X[nè]

i�1

log f 0(X i,n)� 1

n

Xn

i�[nè]�1

log f 1(X i,n),

so that, de®ning an empirical process by

Fn(x, t) � 1

n

X[nt]

i�1

1(X i,n < x), x 2 R, t 2 [0, 1],

we obtain the representation

Î n,è �
�è

0

�
R

log f 0(x)Fn(dx, dt)�
�1

è

�
R

log f 1(x)Fn(dx, dt):
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We de®ne statistics Yn and a space Y as for the non-Gaussian regression model. Let Y P

consist of the functions F 2 Y that are absolutely continuous with respect to the measure

P(dx) 3 dt with densities pt(x) such that
�

R pt(x)P(dx) � 1, t > 0. As for the non-Gaussian

regression model, condition (Y 9:1) holds with

I SK
P (F) �

�1

0

�
R

pt(x) log pt(x)P(dx) dt, if F 2 Y P,

1, otherwise:

8<:
We next take, for F(:, :) 2 Y ,

æè,ä(F) �
�1

0

�
R

L0,ä(x)gä(èÿ t)F(dx, dt)�
�1

0

�
R

L1,ä(x)gä(t ÿ è)F(dx, dt),

where

Li,ä(x) � log f i(x) ^ äÿ1 _ (ÿäÿ1), i � 0, 1,

gä(t) � 0 _ (1
2
� äÿ2 t) ^ 1:

The functions Li,ä and gä are bounded, continuous and

lim
ä!0

�
R

[exp (ãjlog f i(x)ÿ Li,ä(x)j)ÿ 1]P(dx) � 0, i � 0, 1, ã. 0: (5:31)

The æè,ä are easily seen to be continuous, so (Y 9:2) holds.

For (Y 9:3), write, by Chebyshev's inequality, for ã. 0, å. 0,

P1=n
n (jÎ n,è ÿ æè,ä(Fn)j. å) < P1=n

n

�1

0

�
R

jlog f 0(x)ÿ L0,ä(x)jFn(dx, dt)� 2ä.
å

2

 !

� P1=n
n

�1

0

�
R

jlog f 1(x)ÿ L1,ä(x)jFn(dx, dt)� 2ä.
å

2

 !

< exp (ÿãå=2) exp (2ãä)[E exp (ãjlog f 0(X 1,n)ÿ L0,ä(X 1,n)j)
� E exp (ãjlog f 1(X 1,n)ÿ L1,ä(X1,n)j)],

so

lim
n!1 P1=n

n (jÎ n,è ÿ æè,ä(Fn)j. å) < exp (ÿãå=2) exp (2ãä)

�
R

exp (ãjlog f 0(x)ÿ L0,ä(x)j)P(dx)

�
�
�

R

exp (ãjlog f 1(x)ÿ L1,ä(x)j)P(dx)

�
,

and, by (5.31), this goes to 2 exp (ÿãå=2) as ä! 0. Since ã is arbitrary, condition (Y 9:3) is

veri®ed.

To check (Y 9:4), we take
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æè(F) �
�è

0

�
R

log f 0(x)F(dx, dt)�
�1

è

�
R

log f 1(x)F(dx, dt), if I SK
P (F) ,1,

0, otherwise:

8<:
The facts that the æè are well de®ned and (Y 9:4) holds are proved as for the non-Gaussian

regression model with the use of (5.30). Condition (U 9) also is easily checked.

Remark 5.8. The continuity condition on f 0(x) and f 1(x) can be omitted. One should then

choose the Li,ä bounded, continuous and satisfying (5.31).

Next, the argument used for (Y 9) and (U 9) checks also conditions (sup Y 9) and (sup U 9)
(the veri®cation of (sup Y 9:2) uses the fact that the function gä(t ÿ è) is equicontinuous for

è 2 [0, 1] at each t 2 [0, 1]).

The next step is evaluating S(è, è9) for è, è9 2 [0, 1].

Lemma 5.7. For all è, è9 2 [0, 1],

S(è, è9) � ÿjèÿ è9jC(P0, P1):

Proof. In a manner similar to the case of non-Gaussian regression, we have, for any F 2 Y P,

I SK
P (F) ,1, with F(dx, dt) � pt(x)P(dx) dt,

æè(F)ÿ I SK
P (F) �ÿ

�è
0

�
R

log
pt(x)

p0(x)
pt(x)P(dx) dt

ÿ
�1

è

�
R

log
pt(x)

p1(x)
pt(x)P(dx) dt � ÿK(F, �Pè),

where �Pè(dx, dt) � ( f 0(x)1(t < è)� f 1(x)1(t . è))P(dx) dt. The claim follows by (4.7),

Lemma 5.5 with E � R, ì(dx) � P(dx), í(dt) � dt, P � �Pè and Q � �Pè9 and the de®nition

of Chernoff's function in Lemma 5.2. u

We apply this result and the general theorems from Section 4 to the problem of

estimating the parameter è. The risk of an estimator rn is de®ned in a standard way:

RF
n (rn) � sup

è2[0,1]

1

n
log Pn,è(jrn ÿ èj. c): (5:32)

Proposition 5.8. For each c , 1=2,

lim
n!1 inf

rn

RF
n (rn) � ÿ2cC(P0, P1):

If rF
n,ä are the interval-median estimators from (4.18) then

lim
ä!0

lim
n!1 RF

n (rF
n,ä) � lim

ä!0
lim
n!1

RF
n (rF

n,ä) � ÿ2cC(P0, P1):

256 A. Puhalskii and V. Spokoiny



Proof. We apply Theorem 4.5. One needs only to calculate the minimax risk F�. Using

Lemmas 4.3 and 5.6, we obtain

F� � sup
è,è9:jèÿè9j. 2c

S(è, è9) � ÿ2cC(P0, P1): u

Remark 5.9. The same result has been obtained by Korostelev (1995), who uses another kind

of an upper estimator. The construction is based on considering the concave hull of a sample

path of the likelihood process. By Lemma 4.2 this estimator is a particular case of the

interval-median estimators rF
n,ä.

5.7. Regression with random design

We consider the model

X k,n � è(t k,n)� îk,n, k � 1, . . . , n, (5:33)

where real-valued errors îk,n are independent with a common distribution P having a density

p(x) that obeys condition (P) of Section 5.5, and design points t k,n are real-valued

independent random variables with a common distribution Ð and are independent of the îk,n.

We impose a standard condition on the design measure Ð.

(Ð) The measure Ð is compactly supported and has a positive density with respect to

Lebesgue measure on the support.

We denote the support by D. An unknown regression function è(:) is assumed to be

continuous. In this model, Pn,è is the joint distribution of X n � (X 1,n, . . . , X n,n) and

tn � (t1,n, . . . , tn,n) for è.

Let us take for Yn the joint empirical distribution function Fn of Xn and tn:

Fn(A, B) � 1

n

Xn

k�1

1(X k,n 2 A, t k,n 2 B) (5:34)

for Borel sets A � R, B � D. We take Y to be the space of distributions on R 3 D with the

weak topology. Let also Pn � Pn,0 � (P 3 Ð)n.

With these de®nitions,

Î n,è � 1

n
log

dPn,è

dPn

(Xn, tn)

� 1

n

Xn

k�1

log
p(X k,n ÿ è(t k,n))

p(X k,n)

�
�

D

�
R

log
p(xÿ è(t))

p(x)
Fn(dx, dt):
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Let Y 1 be the subset of the set Y of the cumulative distribution functions on R2 that

are absolutely continuous with respect to Lebesgue measure on R2 and have support in

R 3 D.

Under Pn, the random pairs (X k,n, t k,n) are independent and identically distributed with

the distribution P 3 Ð, and hence, by Sanov's theorem, the LDP holds for the Fn with rate

function ISS(F) de®ned by

ISS(F) �
�

D

�
R

log
p(x, t)

p(x)ð(t)
p(x, t) dx dt, if F 2 Y 1,

1, otherwise:

8<:
Here F(dx, dt) � p(x, t) dx dt. This veri®es (Y 9:1).

Next set, for F 2 Y ,

æè(F) �

�
D

�
R

log
p(xÿ è(t))

p(x)
F(dx, dt), if ISS(F) ,1,

0, otherwise,

8>><>>:
æè,ä(F) �

�
D

�
R

log
p(xÿ è(t))

p(x)

� �
^ äÿ1 _ (ÿäÿ1)F(dx, dt):

With this notation, the rest of condition (Y 9) and condition (U 9) are veri®ed in analogy with

the case of non-Gaussian regression. This proves the LDP for the model.

For conditions (sup Y 9) and (sup U 9), we again assume that è 2 ÓK (â, M), where the set

ÓK(â, M) was de®ned above. The conditions are then checked as for the non-Gaussian

regression model.

We now calculate the function S(è, è9) from (4.7). Recall that the function Hã(s) was

de®ned in condition (P).

Lemma 5.8. Under conditions (P) and (Ð),

S(è, è9) � inf
ã2[0,1]

log

�
D

Hã(è9(t)ÿ è(t))ð(t) dt:

Proof. Given F 2 Y 1 with ISS(F) ,1, we easily obtain

æè(F)ÿ ISS(F) � ÿK(F, �Pè),

where �Pè(dx, dt) � p(xÿ è(t))ð(t) dx dt, and the claim follows by (4.7) and Lemma 5.2 with

E � R 3 D, ì(dx, dt) � dx dt, P � �Pè and Q � �Pè9. u

We now consider the same two statistical problems as in Section 5.5 and compare the

results for the cases of random and deterministic design.
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5.7.1. Testing è(t0) � 0 versus jè(t0)j > 2c

Given t0 2 D and c . 0, consider the hypothesis testing problem: è(t0) � 0 versus

jè(t0)j > 2c. The risk RT
n (rn) of a test rn, as well as the sets Ó(â, M) and Ó0(â, M), and

t� are de®ned as above.

Proposition 5.9. Let D � [0, 1]. Let c, â, M, K and t0 be such that [t0 ÿ t�, t0 � t�] �
[0, 1] and K > 2c. Let conditions (P) and (Ð) hold and the function Hã(s) monotonically

decrease in s > 0 for each ã 2 [0, 1]. If È � Ó(â, M) then

lim
n!1

inf
rn

RT
n (rn) > T�,

where

T� � inf
ã2[0,1]

log 1�
� t0� t�

t0ÿ t�
[Hã(2(cÿ M jt ÿ t0jâ))ÿ 1]ð(t) dt

 !
:

If È � ÓK(â, M) then

lim
n!1 inf

rn

RT
n (rn) � T�,

and the tests rT
n,ä from (4.8) are nearly LD ef®cient, i.e.,

lim
ä!1

lim
n!1 RT

n (rT
n,ä) � lim

ä!0
lim
n!1

RT
n (rT

n,ä) � T�:

Proof. Theorem 4.3 reduces the proof to calculating T� from (4.6) Using the result of

Lemma 5.8 and proceeding in analogy with the case of deterministic design, we conclude

that

T� � S(cÿ è�, c� è�)

� inf
ã2[0,1]

log

� t0ÿ t�

0

ð(t) dt �
� t0� t�

t0ÿ t�
Hã(2(cÿ M jt ÿ t0jâ))ð(t) dt �

�1

t0� t�
ð(t) dt

 !
:

Now the claim follows by the equality
�

Dð(t) dt � 1. u

5.7.2. Estimating è(t0)

As above, when estimating è(t0), we de®ne the risk of an estimator rn by

RF
n (rn) � sup

è2ÓK (â,M)

1

n
log Pn,è(jrn ÿ è(t0)j. c):

Proposition 5.10. Let the conditions of Proposition 5.9 hold. If È � Ó(â, M) then

lim
n!1

inf
rn

RF
n (rn) > F�,
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where

F� � inf
ã2[0,1]

log 1�
� t0� t�

t0ÿ t�
[Hã(2(cÿ M jt ÿ t0jâ))ÿ 1]ð(t) dt

 !
:

If È � ÓK(â, M) then

lim
n!1 inf

rn

RF
n (rn) � F�,

and the interval-median estimators rF
n,ä from (4.18) are nearly LD ef®cient, i.e.,

lim
ä!0

lim
n!1 RF

n (rF
n,ä) � lim

ä!0
lim
n!1

RF
n (rF

n,ä) � F�:

Proof. By Theorem 4.5 it suf®ces to calculate the asymptotic minimax risk F� from Lemma

4.3, which is done in analogy with the proof of Proposition 5.9. u

Remark 5.10. If we consider the uniform random design on [0, 1], i.e., take ð(t) � 1,

Jensen's inequality easily implies that its asymptotic minimax risks are not greater than the

corresponding risks for regression with deterministic design (see Section 5.5). This fact also

follows from comparing Lemma 5.2 and Lemma 5.5.

Remark 5.11. The problem of estimating è(t0) for the uniform random design has been

considered by Korostelev (1995), who studies the double asymptotics as n!1 and then

c! 0.

Appendix

Proof of Lemma 2.4

Let fVË, Ë 2A(È)g be a standard family of deviabilities so that for all Ë � Ë9 2A(È)

and zË 2 SË,

VË(zË) � sup
zË92Ðÿ1

Ë9Ë zË

iðË9ËzË9 iËVË9(zË9): (A:1)

We de®ne

VÈ(zÈ) � infË2A(È) iðËzÈ iÿ1

Ë VË(ÐËzÈ), zÈ 2 SÈ,

0, otherwise,

�
(A:2)

where we set VË(ÐËzÈ) � 1 and iðËzÈ iÿ1

Ë VË(ÐËzÈ) � 1 when iðËzÈ iË � 0.

The functions iðËzÈ iÿ1

Ë VË(ÐËzÈ), Ë 2A(È), are easily seen to be upper semi-

continuous on SÈ, so (VÈ(zÈ), zÈ 2 RÈ
�) is upper semi-continuous as the in®mum of a

family of upper semi-continuous functions. Moreover, since, for every zÈ 2 SÈ and å. 0,

there exists Ë 2A(È) such that iðËzÈ iË . 1ÿ å, and since VË(ÐËzÈ) < 1, we conclude
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that VÈ(zÈ) < 1. Since (ii) obviously follows by (iii), we are left to prove (iii) and the

equality

sup
zÈ2SÈ

VÈ(zÈ) � 1: (A:3)

We begin with (iii). Let us ®x Ë and zË, assuming that zË 2 SË. De®nition (A.2) implies that

VË(zË) > sup
zÈ2Ðÿ1

Ë zË

iðËzÈ iËVÈ(zÈ),

so we need to prove that

VË(zË) < sup
zÈ2Ðÿ1

Ë zË

iðËzÈ iËVÈ(zÈ): (A:4)

First, we note that (A.2) and (A.1) imply that

VÈ(zÈ) � inf
Ë92A(È)
Ë9�Ë

iðË9zÈ iÿ1

Ë9 VË9(ÐË9zÈ), zÈ 2 SÈ: (A:5)

Indeed, by (A.1), if Ë � Ë9 2A(È) and zÈ 2 SÈ is such that iðËzÈ iË . 0 then

VË(ÐËzÈ) > iðË9ËÐË9zÈ iËVË9(ÐË9zÈ),

and hence, since ðË9ËÐË9zÈ � ðËzÈ=iðË9zÈ iË9,

iðË9zÈ iÿ1

Ë9 VË9(ÐË9zÈ) < iðËzÈ iÿ1

Ë VË(ÐËzÈ),

which, in view of (A.2), proves (A.5).

Next, we obviously can assume that a :� VË(zË) . 0. For Ë9 � Ë, Ë9 2A(È), introduce

the sets

AË9 � fzË9 2 SË9: ÐË9ËzË9 � zË and iðË9ËzË9 iËVË9(zË9) � ag: (A:6)

We show that AË9 is non-empty. Since VË9(zË9) < 1, the supremum on the right of (A.1) can

equivalently be taken over the set Ðÿ1
Ë9ËzË \ fiðË9ËzË9 iË > a=2g. This set is closed since the

projection ÐË9Ë is continuous in restriction to the set fzË9: iðË9ËzË9 iË > a=2g. Since VË9 is

a deviability, it attains suprema on closed sets, so the supremum on the right of (A.1)

is attained, which is equivalent to AË9 being non-empty. Next, AË9 is closed and hence

compact since VË9 is upper semi-continuous and, by (A.1) and the de®nition of a,

iðË9ËzË9 iËVË9(zË9) � a if and only if iðË9ËzË9 iËVË9(zË9) > a.

Now we introduce for each Ë9 2A(È), Ë9 � Ë,

AË9 � fzÈ 2 [0, 1]È: ÐË9zÈ 2 AË9 and iðË9zÈ iË9 > ag:
These sets are easily seen to be non-empty (e.g., if zË9 2 AË9 then zÈ � (zè, è 2 È), de®ned

by (zè, è 2 Ë9) � zË9 and zè � 0, è =2 Ë9, belongs to AË9) and compact for the Tihonov

topology on [0, 1]È (the latter holds because ÐË9 is continuous in restriction to the set

fzÈ: iðË9zÈ iË9 > ag and AË9 is closed).

We next show that, for all elements Ë9 and Ë 0 of A(È) containing Ë, the sets AË9 and
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AË 0 have a non-empty intersection. Indeed, let Ë- � Ë9 [Ë 0 and zÈ 2 [0, 1]È be such

that zÈ 2 AË- and iðË-zÈ i � 1 (such a zÈ obviously exists). We prove that zÈ 2 AË9 and

zÈ 2 AË 0.

Denote zË- � ÐË-zÈ, zË9 � ÐË9zÈ, the latter being well de®ned since the de®nitions of

AË- and AË- imply that iðËzÈ iË > a. First, note that

ÐË9ËzË9 � ÐËzÈ � ÐË-ËzË- � zË, (A:7)

where the last equality follows by the fact that zË- 2 AË-. This and (A.1) yield, in view of

the equality ÐË-Ë9zË- � zË9,

VË(zË) > iðË9ËzË9 iËVË9(zË9), (A:8)

VË9(zË9) > iðË-Ë9zË- iË9VË-(zË-): (A:9)

Next, by the de®nitions of zË- and zË9,

iðË-ËzË- iË � iðË9ËzË9 iË . iðË-Ë9zË- iË9,

so that, by (A.8) and (A.9),

VË(zË) > iðË9ËzË9 iË . iðË-Ë9zË- iË9VË-(zË-) � iðË-ËzË- iËVË-(zË-):

Since zË- 2 AË-, we actually have equality here and hence in (A.8) and (A.9). (A.8)

and (A.7) prove that zË9 2 AË9. Equalities in (A.8) and (A.9) together imply, since

VË-(zË-) < 1 and iðË9ËzË9 iË < 1, that iðË-Ë9zË- iË9 > VË9(zË9) > VË(zË) � a; since also

iðË-zÈ iË- � 1, we obtain

iðË9zÈ iË9 � iðË-zÈ iË-
. iðË-Ë9zË- iË9 > a:

This concludes the proof of the inclusion zÈ 2 AË9. The inclusion zÈ 2 AË 0 is proved by the

same argument.

Thus, ®nite intersections of the compact sets AË9, Ë9 � Ë, are non-empty, hence

\Ë9�ËAË9 6� Æ. Pick zÈ from this intersection and let ẑÈ � zÈ=izÈ iÈ. We prove that

ÐË ẑÈ � zË (A:10)

and

VÈ(ẑÈ) � iðË ẑÈ iÿ1

Ë VË(zË), (A:11)

which yields (A.4) since ẑÈ 2 SÈ. Let Ë9 2A(È) with Ë � Ë9. Since

ÐË9 ẑÈ � ÐË9zÈ 2 AË9, it follows by the de®nition of AË9 that ÐË ẑÈ � ÐË9ËÐË9 ẑÈ � zË
verifying (A.10); also

VË(zË) � a � iðË9ËÐË9 ẑÈ iËVË9(ÐË9 ẑÈ) � iðË ẑÈ iË
iðË9 ẑÈ iË9

VË9(ÐË9 ẑÈ),

so

iðË ẑÈ iÿ1

Ë VË(zË) � iðË9 ẑÈ iÿ1

Ë9 VË9(ÐË9 ẑÈ):

In view of (A.5), this implies (A.11), and (A.4) follows. Assertion (iii) has been proved.
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Finally, according to (iii),

1 � sup
zË2SË

VË(zË) � sup
zÈ2SÈ

iðËzÈ iËVÈ(zÈ) < sup
zÈ2SÈ

VÈ(zÈ),

proving (A.3). u

Remark A.1. Equality (A.5) shows that VÈ can equivalently be de®ned as

VÈ(zÈ) � lim
Ë2A(È)

VË(ÐËzÈ), zÈ 2 SÈ,

where the limit is with respect to the partial ordering by inclusion: Ë < Ë9 if Ë � Ë9.

A minimax theorem for non-level-compact loss functions

This subsection contains a minimax theorem for generalized risks and non-level-compact loss

functions. We assume the setting described at the beginning of Section 3 and start by

introducing an extension of the decision space (cf. Strasser 1985).

Denote by C �(D ) the set of all non-negative bounded continuous functions on D , and

let B(D ) be the set of all functionals b: C �(D )! R� with the following properties:

(1) b(0) � 0, b(1) � 1, where 0 (1) denotes the element of C �(D ) identically equal to 0

(1);

(2) b( f ) < b(g) if f < g, f , g 2 C �(D );

(3) b(ë f ) � ëb( f ), f 2 C �(D ), ë 2 R�;

(4) b( f � g) < b( f )� b(g), f , g 2 C �(D ).

Also let B1(D ) be the subset of those b 2 B(D ) for which, in addition,

(5) b( f _ g) � b( f ) _ b(g), f , g 2 C �(D ),

where f _ g denotes the maximum of f and g.

We endow B(D ) with the weak topology which is the topology induced by the Tihonov

(product) topology on RC �(D )
� , i.e., a net fbó , ó 2 Óg of elements of B(D ), where Ó is a

directed set, converges to b 2 B(D ) if limó2Ó bó ( f ) � b( f ) for all f 2 C �(D ). Obviously,

B(D ) is closed in RC �(D )
� .

We extend the domain of the functionals b to the set C �(D ) of lower semi-continuous

non-negative functions on D by letting

b(g) � sup fb( f ): f < g, f 2 C �(D )g, g 2 C �(D ): (A:12)

It is easily seen that the map b! b(g) is lower semi-continuous on B(D ) for each

g 2 C �(D ).

Next, let us denote by B n the set of all random elements on (Ùn, F n) with values in

B(D ). We call the elements of B n generalized decision functions (or generalized

decisions). Given loss functions Wè, è 2 È, which are lower semi-continuous by de®nition,
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and a generalized decision ân 2 B n, we de®ne ân(W n
è) according to (A.12), and de®ne the

LD risk Bn(ân) of a generalized decision ân 2 B n in the experiment E n � (Ùn, F n;

Pn,è, è 2 È) by

Bn(ân) � sup
è2È

E
1=n

n,è ân(W n
è): (A:13)

Theorem A.1. Let fE n, n > 1g satisfy the LDP. Then

lim
n!1

inf
ân2B n

Bn(ân) > B�,

where

B� � sup
zÈ2RÈ

�

inf
b2B1(D )

sup
è2È

b(Wè)zèVÈ(zÈ):

For a proof, we need to study properties of B(D ) and B1(D ).

Lemma A.1. Let f 1, f 2, . . . , f k 2 C �(D ) and fbn, n > 1g be a sequence of elements of

B(D ). Then there exists b 2 B1(D ) such that b( f i) is an accumulation point of the sequence

fb1=n
n ( f n

i ), n > 1g for i � 1, . . . , k.

Proof. Let i:i denote the uniform norm on C �(D ). De®ne C 1,�(D ) as the subset of C �(D )

of functions f with i f i < 1. Introduce the functionals �bn( f ) � b1=n
n ( f n), f 2 C 1,�(D ). Then

the set B � f�bn, n > 1g is contained in the set [0, 1]C 1,�(D ) By Tihonov's theorem,

[0, 1]C 1,�(D ) with the product topology is compact, and hence B is relatively compact. Let ~b
denote any accumulation point. We extend ~b to a functional on C �(D ) by letting
~b(ë f ) � ë~b( f ), ë. 0, f 2 C 1,�(D ). Since bn 2 B(D ), it is easy to see that ~b 2 B(D ). Also,

since the topology on B(D ) is the restriction of the product topology on RC �(D )
� , it follows

that ~b is an accumulation point of f~bn, n > 1g, where the �bn are extended to functionals on

C �(D ) by letting �bn(ë f ) � ë�bn( f ), ë. 0, f 2 C 1,�(D ). This implies, by the de®nition of

the �bn, that ~b( f i) is an accumulation point of fb1=n
n ( f n

i ), n > 1g for i � 1, . . . , k.

We complete the proof by showing that ~b 2 B1(D ). Let f, g 2 C �(D ). Then, since ~b is

an accumulation point of f�bn, n > 1g, it follows that ~b( f ), ~b(g) and ~b( f _ g) are

respective accumulation points of f~bn( f ), n > 1g, f�bn(g), n > 1g and f�bn( f _ g), n > 1g.
Hence, by the de®nition of the �bn, for a subsequence (n9), we have that b

1=n9
n9 ( f n9)! ~b( f ),

b
1=n9
n9 (gn9)! ~b(g) and b

1=n9
n9 (( f _ g)n9)! ~b( f _ g). By properties (2) and (4) of B(D ),

b1=n
n ( f n) _ b1=n

n (gn) < b1=n
n (( f _ g)n) < 21=n[b1=n

n ( f n) _ b1=n
n (gn)],

and we conclude that ~b( f _ g) � ~b( f ) _ ~b(g). u

264 A. Puhalskii and V. Spokoiny



Lemma A.2. The set B1(D ) is compact.

Proof. An argument similar to that used in the proof of Lemma A.1 shows that the set of

functionals f(b( f ), f 2 C 1,�(D )), b 2 B1(D )g is closed in [0, 1]C 1,�(D ) and hence compact,

which obviously is equivalent to the compactness of B1(D ). u

The next lemma is motivated by and extends Proposition 8.2 of Aubin (1984).

Lemma A.3. Let T be an arbitrary set and U a topological space. Assume that a real-valued

function g(t, u), t 2 T , u 2 U , has the following properties:

(a) g(t, u) is level-compact in u 2 U for every t 2 T,

(b) for every t1, t2 2 T , there exists t3 2 T such that g(t3, u) > g(t1, u) _ g(t2, u) for

all u 2 U .

Then

sup
t2T

inf
u2U

g(t, u) � inf
u2U

sup
t2T

g(t, u):

Remark A.2. Condition (a) holds when g(t, u) is lower semi-continuous in u and U is a

compact topological space.

Remark A.3. If T is a directed set, condition (b) holds when g(t, u) is increasing in t for all

u, i.e., g(t1, u) < g(t2, u), u 2 U , for t1 < t2 (the latter inequality is with respect to the

order on T ).

Proof. We proceed analogously to Aubin (1984). Pick á. sup t2T inf u2U g(t, u). We need to

prove that

á > inf
u2U

sup
t2T

g(t, u): (A:14)

Let T0 � ft 2 T : supu2U g(t, u) .ág. If T0 is empty, the proof is complete. So we assume

that T0 6� Æ. By the choice of á, the sets At � fu 2 U : g(t, u) < ág are non-empty for all

t 2 T , and they are, moreover, compact for all t 2 T0, since the g(t, u), u 2 U , are level-

compact. Condition (b) implies that, whatever t1, t2 2 T , there exists t3 2 T such that

At1
\ At2

� At3
6� Æ, which shows that ®nite intersections of the compact sets At, t 2 T0, are

non-empty, and hence
T

t2T0
At 6� Æ. The latter is equivalent to

á > inf
u2U

sup
t2T0

g(t, u):

Since by the de®nition of T0, á > sup t2TnT0
g(t, u), u 2 U , (A.14) is proved. u

Proof of Theorem A.1. We need to prove that, for an arbitrary sequence ân, n > 1, of

generalized decisions,

lim
n!1

Bn(ân) > B�: (A:15)
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The argument is similar to that in the proof of Theorem 3.1. Let fè(r), è 2 È, be some non-

negative bounded functions continuous in r 2 D . Fix a non-empty Ë 2A(È). We have, by

the de®nition of Zn,Ë (see (2.14)),

lim
n!1

sup
è2Ë

E
1=n

n,è ân( f n
è) � lim

n!1
sup
è2Ë

E
1=n

n,Ëân( f n
è)Zn

n,È;Ë

> lim
n!1

1

jËjEn,Ë

X
è2Ë

ân( f n
è)Zn

n,è;Ë

" #1=n

> lim
n!1

E
1=n

n,Ë sup
è2Ë

ân( f n
è)Zn

n,è;Ë

> lim
n!1

E
1=n

n,Ëun
n(Zn,Ë), (A:16)

where

un(zË) � inf
b2B(D )

sup
è2Ë

b1=n( f n
è)zè, zË � (zè, è 2 Ë) 2 RË

�: (A:17)

Note that the un(zË), n � 1, 2, . . . , are upper semi-continuous (recall that Ë is ®nite) and

hence measurable so that the expectations on the rightmost side of (A.16) are well de®ned.

Let us introduce

u(zË) � inf
b2B1(D )

sup
è2Ë

b( fè)zè, zË 2 RË
�, (A:18)

and prove that

lim
n!1

un(zË(n)) > u(zË), zË 2 RË
�, (A:19)

for each sequence zË(n)! zË.

Let bn 2 B(D ) be such that

lim
n!1

un(zË(n)) � lim
n!1

sup
è2Ë

b1=n
n ( f n

è)zè(n): (A:20)

By Lemma A.1 and since Ë is ®nite, there exists ~b 2 B1(D ) such that ~b( fè) is an

accumulation point of fb1=n
n ( f n

è), n > 1g for all è 2 Ë. Therefore, we have, for a

subsequence (n9),

lim
n9

b
1=n9
n9 ( f n9

è ) � ~b( fè), è 2 Ë,

lim
n9

sup
è2Ë

b
1=n9
n9 ( f n9

è )zè(n9) � lim
n!1

sup
è2Ë

b1=n
n ( f n

è)zè(n):

Since Ë is ®nite and zË(n9)! zË, we conclude that

lim
n!1

sup
è2Ë

b1=n
n ( f n

è)zè(n) � sup
è2Ë

~b( fè)zè

which, in view of (A.20) and (A.18), proves (A.19).
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By (A.19) and the LD convergence of fL (Zn,ËjPn,Ë), n > 1g to VË, we have (see

Varadhan 1984; Chaganty 1993; Puhalskii (1995)

lim
n!1

E
1=n

n,Ëun
n(Zn,Ë) > sup

zË2RË
�

u(zË)VË(zË): (A:21)

Since by (A.18) u 2H Ë, property (ii) of VÈ in Lemma 2.4 yields

sup
zË2RË

�

u(zË)VË(zË) � sup
zÈ2RÈ

�

u(ðËzÈ)VÈ(zÈ):

Relations (A.16) and (A.21) imply then that

lim
n!1

sup
è2Ë

E
1=n

n,è ân( f n
è) > sup

zÈ2RÈ
�

u(ðËzè)VÈ(zÈ),

so, by the de®nition of the function u in (A.18),

lim
n!1

sup
è2Ë

E
1=n

n,è ân( f n
è) > sup

zÈ2RÈ
�

inf
b2B1(D )

sup
è2Ë

b( fè)zèVÈ(zÈ):

Hence, since Ë 2A(È) and ân( f ) are increasing in f from C �(D ), it follows that

lim
n!1

sup
è2È

E
1=n

n,è ân(W n
è) > sup

zÈ2RÈ
�

sup
Ë2A(È)

fÈ2CW

inf
b2B1(D )

sup
è2Ë

b( fè)zèVÈ(zÈ),

where CW � f fÈ � ( fè, è 2 È) 2 C �(D )È: fè < Wè, è 2 Èg. Thus, (A.15) and the

theorem would follow if, for every zÈ � (zè, è 2 È) 2 RÈ
�,

sup
Ë2A(È)

fÈ2CW

inf
b2B1(D )

sup
è2Ë

b( fè)zè � inf
b2B1(D )

sup
è2È

b(Wè)zè: (A:22)

Fixing zÈ, introduce, for Ë 2A(È), fÈ 2 C �(D )È, b 2 B1(D ),

g((Ë, fÈ), b) � sup
è2Ë

b( fè)zè:

We check that g((Ë, fÈ), b) satis®es the conditions of Lemma A.3. Endow the set

A(È) 3 CW with the natural order: (Ë, fÈ) < (Ë9, f 9È) if Ë � Ë9 and fè < f 9è, è 2 È. It is

easily seen that A(È) 3 CW is a directed set and g((Ë, fÈ), b) is increasing in (Ë, fÈ) for

each b. Also, since Ë is ®nite, the de®nition of the topology on B(D ) implies that

g((Ë, fÈ), b) is continuous in b for each (Ë, fÈ). Therefore, since B1(D ) is compact by

Lemma A.2, g((Ë, fÈ), b) is level-compact in b. Thus, by Lemma A.3,

sup
(Ë, fÈ)2A(È)3CW

inf
b2B1(D )

g((Ë, fÈ), b) � inf
b2B1(D )

sup
(Ë, fÈ)2A(È)3CW

g((Ë, fÈ), b):

Recalling the de®nition of g and using the fact that by (A.12),

b(Wè) � sup fb( fè): fè < Wè, fè 2 C �(D )g, è 2 È,

we obtain (A.22). u
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It is interesting to relate Theorem A.1 with Theorem 3.1. Let us associate with each

r 2 D an element br of B1(D ) de®ned by

br( f ) � f (r), f 2 C �(D ): (A:23)

Then brn
2 B n when rn 2 B n. Therefore, in view of extension (A.12) and de®nitions (3.1)

and (A.13), Bn(brn
) < Rn(rn), so

lim
n!1

inf
rn2R n

Rn(rn) > lim
n!1

inf
rn2R n

Bn(brn
) > lim

n!1
inf

ân2B n

Bn(ân):

Similarly, R� > B� so that Theorem 3.1 follows from Theorem A.1 if B� � R�. The next

lemma establishes conditions for the latter.

Lemma A.4. If the loss functions Wè are such that

Wè � sup f fè: fè < Wè, fè 2 C �(D ), fè are level-compactg, è 2 È,

then R� � B�.

Remark A.4. The conditions of the lemma hold when the Wè are level-compact and D is

locally compact (cf. Strasser 1985, Theorem 6.4). So, if D is locally compact, Theorem A.1

implies Theorem 3.1.

The proof is preceded by two lemmas. We ®rst derive an analogue of the partition of the

unity (cf. Strasser 1985, Lemma 6.6).

Lemma A.5. Let f 1, . . . , f k 2 C �(D ). For every å. 0, there exist h1, . . . , hm 2 C �(D )

with the following properties:

(i) max1< j<m hj(r) � 1, r 2 D ;

(ii) max1<i<k j f i(r1)ÿ f i(r2)j < å for all r1 and r2 such that hj(r1) . 0 and hj(r2) . 0

for some j � 1, . . . , m.

Proof. The argument is similar to that in Strasser (1985). Assume, ®rst, that k � 1 and

supr2D f1(r) � 1. Choose m such that 3=m < å and de®ne, for x > 0,

gj(x) � (xÿ ( jÿ 2))� ^ ( j� 1ÿ x)� ^ 1, 1 < j < m:

Let

hj(r) � gj(mf 1(r)), 1 < j < m, r 2 D :

It is readily seen, since gj(x) � 1 when jÿ 1 < x < j and 0 < f 1(r) < 1, that

max1< j<m hj(r) � 1, r 2 D .

Next, since, given j � 1, . . . , m, we have gj(x) � 0 when x =2 [( jÿ 2)�, j� 1], it follows

that if hj(r1) . 0 and hj(r2) . 0, then jmf 1(r1)ÿ mf 1(r2)j < 3, i.e., j f 1(r1)ÿ f 1(r2)j <
3=m < å as required.

Now, if supr2D f1(r) � a . 0, then the hj chosen as above for f 1=a and å=a satisfy (i)

and (ii).
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Finally, if k . 1, choose, for each i � 1, . . . , k, functions hi, j, 1 < j < mi, that satisfy (i)

and (ii). Then the functions

h j1,:::, j k
(r) �

Yk

i�1

hi, ji
(r), 1 < ji < mi, r 2 D ,

meet the requirement with m � m1 . . . mk . u

Denote by T1 the set of non-negative (upper semi-continuous) functions of ®nite support

(t(r), r 2 D ) such that supr2D t(r) � 1. De®ne B2(D ) as the set of those b 2 B1(D ) that

can be represented as b( f ) � supr2D f (r)t(r), f 2 C �(D ), for some (t(r), r 2 D ) 2 T1.

The next lemma parallels Strasser (1985, Theorem 42.5).

Lemma A.6. The set B2(D ) is dense in B1(D ) for the weak topology.

Proof. We proceed as in the proof of Strasser (1985, Theorem 42.5). Fix b 2 B1(D ) and

f1, . . . , f k 2 C �(D ). We have to check that for any å. 0 there exists ~b 2 B2(D ) such that

jb( f i)ÿ ~b( f i)j < å, 1 < i < k.

Let functions hj, 1 < j < m, be as in Lemma A.5. Obviously we can assume that they

are not identically equal to 0. For each j � 1, . . . , m, choose rj such that hj(rj) . 0. By the

de®nition of the hj, we have that, on the one hand,

j f i(r)hj(r)ÿ f i(rj)hj(r)j < å, 1 < i < k, r 2 D ,

and, on the other hand,

f i(r) � max
1< j<m

f i(r)hj(r), 1 < i < k, r 2 D :

Hence,

j f i(r)ÿ max
1< j<m

f i(rj)hj(r)j < max
1< j<m

j f i(r)hj(r)ÿ f i(rj)hj(r)j < å, 1 < i < k, r 2 D :

Properties (1), (3) and (4) of B(D ) then yield

jb( f i)ÿ b( max
1< j<m

f i(rj)hj)j < å, 1 < i < k: (A:24)

Now, since b 2 B1(D ) and by property (3) again,

b( max
1< j<m

f i(rj)hj) � max
1< j<m

f i(rj)b(hj), 1 < i < k: (A:25)

De®ne

t(r) � max l:rl�r j
b(hl), if r � rj for some j � 1, . . . , m,

0, otherwise,

�
and let

~b( f ) � sup
r2D

f (r)t(r), f 2 C �(D ):
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By properties (1) and (5) of B1(D ) and the choice of hj,

sup
r2D

t(r) � max
1< j<m

b(hj) � b( max
1< j<m

hj) � b(1) � 1,

so (t(r)) 2 T1.

Also, by the de®nitions of t(r) and ~b, the right-hand side of (A.25) equals ~b( f i), and

(A.25) and (A.24) yield the result. u

Proof of Lemma A.4. Since R� > B�, we prove the opposite inequality. Let fè, è 2 È,

belong to C �(D ), be level-compact and be less than or equal to Wè, è 2 È. By the

de®nition of B�,
B� > sup

zÈ2RÈ
�

inf
b2B1(D )

sup
è2Ë

b( fè)zèVÈ(zÈ), Ë 2A(È): (A:26)

By Lemma A.6 and the de®nition of B2(D ), for zÈ 2 RÈ
�, Ë 2A(È),

inf
b2B1(D )

sup
è2Ë

b( fè)zè � inf
b2B2(D )

sup
è2Ë

b( fè)zè

� inf
( t(r))2T1

sup
r2D

sup
è2Ë

t(r) fè(r)zè

� inf
r2D

sup
è2Ë

fè(r)zè:

Since the fè are level-compact, an application of Lemma A.3 shows, in analogy with the end

of the proof of Theorem A.1, that the supremum of the latter quantity over the fè and

Ë 2A(È) equals inf r2D supè2È Wè(r)zè, which by (A.26) proves that B� > R�. u
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