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We present a general approach to statistical problems with criteria based on probabilities of large
deviations. Our main idea, which originates from similarity in the definitions of the large-deviation
principle (LDP) and weak convergence, is to develop a large-deviation analogue of asymptotic
decision theory. We introduce the concept of the LDP for sequences of statistical experiments, which
parallels the concept of weak convergence of experiments, and prove that, in analogy with Le Cam’s
minimax theorem, the LDP provides an asymptotic lower bound for the sequence of appropriately
defined minimax risks. We also show that the bound is tight and give a method of constructing
decisions whose asymptotic risk is arbitrarily close to the bound. The construction is further specified
for hypothesis testing and estimation problems.

We apply the results to a number of standard statistical models: an independent and identically
distributed sample, regression, the change-point model and others. For each model, we check the LDP;
then, considering first a hypothesis testing problem and then an estimation problem, we calculate the
asymptotic minimax risks and indicate associated decisions.

Keywords: Bahadur efficiency; Chernoff’s function; large-deviation efficiency; large-deviation
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1. Introduction

The approach to statistical problems that bases its conclusions on the study of probabilities of
large deviations has been in use in statistical inference since the papers by Chernoff (1952)
and Bahadur (1960).

Chernoff (1952), considering the problem of discriminating between two simple
hypotheses, showed that, if the hypotheses are fixed, the error probabilities decrease
exponentially fast as the sample size tends to infinity; the corresponding optimal exponent
is specified by what is now known as Chernoff’s function.

Basu (1956) and Bahadur (1960) proposed a criterion for comparing statistical estimators
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based on the view that the quality of an estimator is characterized by the probability that
the true value of the parameter is covered by a confidence interval of given width 2¢ with
centre at the estimate. If the width 2¢ is held fixed as the sample size grows, then the
probabilities that the true value of the parameter is not covered are typically exponentially
small. The estimator giving the fastest decay is now called Bahadur efficient. Later Bahadur
et al. (1980) showed, for the model of independent and identically distributed observations,
that in the class of consistent estimators the optimal rate is specified by the Kullback—
Leibler information rather than Chernoff’s function.

The ideas of Chernoff and Bahadur have been developed in various directions. Ibragimov
and Radavicius (1981), Kallenberg (1981), Ibragimov and Khasminskii (1981) and
Radavicius (1983; 1991) studied the properties of maximum likelihood estimators from
the point of view of Bahadur’s criterion. Fu (1982) and Borovkov and Mogulskii (1992a;
1992b) analysed the second- and higher-order terms of asymptotic expansions of Bahadur
risks. Kallenberg (1983), Rao (1963), Wieand (1976) and Ermakov (1993) considered
intermediate criteria for statistical estimators when the width of the confidence interval goes
to zero at a certain rate. Sievers (1978) and Rubin and Rukhin (1983) evaluated Bahadur
risks for particular statistical models.

Lately this direction in mathematical statistics has received a new impetus, mostly in
papers by Korostelev (1996; 1995) — see also Korostelev and Spokoiny (1996) and
Korostelev and Leonov (1995) — where the classical large-deviation (LD) set-up is
considered in the minimax nonparametric framework.

Our aim here is to give a unified treatment of statistical problems that use LD
considerations. The idea is to capitalize on analogies between LD theory and weak
convergence theory (see Lynch and Sethuraman 1987; Vervaat 1988; Puhalskii 1991) and
develop an LD analogue of asymptotic decision theory (Strasser 1985). The approach of
invoking the methods of weak convergence theory to obtain results about large deviations
has proved its worth in various set-ups (Puhalskii 1991; 1993; 1994a; 1994b; 1995; 1996;
1997). We show that it can successfully be applied to statistical problems too.

We begin by defining in Section 2 the concept of the large-deviation principle (LDP) for
a sequence of statistical experiments. Analogously to the concept of weak convergence of
statistical experiments, it is a short-cut for saying that the distributions of suitably defined
likelihood processes satisfy the LDP (Varadhan 1966; 1984). We illustrate the general
definition by considering a number of standard statistical models (the Gaussian shift model,
the model of independent and identically distributed observations, the ‘signal plus white
noise’ model, the regression model with Gaussian and non-Gaussian errors, with
deterministic and random design, and the change-point model). We next study properties
of the LDP for statistical experiments and give a sufficient condition for it which is
analogous to the local asymptotic normality condition of Le Cam (1960).

The classical minimax theorem of Le Cam states that if statistical experiments weakly
converge then the minimax risks are asymptotically bounded from below by the
corresponding risk for the limit model (see Le Cam 1972; 1986; Strasser 1985). In
Section 3, we show that, similarly, if a sequence of statistical experiments obeys the LDP,
then there is an asymptotic lower bound for appropriately defined minimax risks. The
problem of evaluating the bound is a minimax optimization problem. Also in Section 3, we
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study the question of sharpness of the lower bound. We show that it is sharp under a
strengthened version of the LDP. This allows us to define LD efficient decisions as those
that attain the lower bound. We give a method of obtaining nearly LD efficient decisions,
i.e., those whose LD asymptotic risk is arbitrarily close to the lower bound.

Sections 4 and 5 deal with applications. Section 4 adapts the results of Section 3 to the
cases of hypothesis testing and estimation problems and presents explicit constructions of
nearly LD efficient decisions. In Section 5, we apply the machinery to the models
introduced in Section 2: we check the LDP, give conditions when the lower bounds are
attained, calculate them for hypothesis testing and estimation problems, and indicate nearly
LD efficient decisions. An appendix contains extensions and auxiliary results.

The results of Sections 2—4 are new. The results that we obtain for the models are partly
new and partly cover or extend earlier results.

2. The large-deviation principle for statistical experiments

Let {#,, n =1} be a sequence of statistical experiments &, = (Q,, .7 »; Png, 6 € ©) with
a parameter set © (Strasser 1985). In this section, we give the definition of the LDP for
{#,, n =1} and study its properties. We start with the case of dominated experiments.

2.1. The dominated case

Let us assume that each experiment &, = (Q,,.7 ,; Png, 0 € ®) is dominated by a
probability measure P,, ie., P,9 < P, for all 6 € ©. We abbreviate this by writing

{& s, Py, n = 1}. Denote

dPn 1/n

Znp = (dp’e) ., 6e®, @.1)
n

and let Z,0 = (Z,9, 0 € ©). We endow IR? with the Tihonov (product) topology and the
Borel o-field so that Z, g is a random element of R?; Z(Zne|P,) denotes the distribution of
Z,o on R? under P,. Roughly speaking, the LDP for {#,, P,, n = 1} means that the
sequence {Z(Z,eo|P,), n = 1} of distributions on [R%? obeys the LDP, so we recall some
basic notions of LD theory.

We use Varadhan’s (1966; 1984) original definitions of the rate function and the LDP. Let
S be a Hausdorff topological space. We say that a function 7: S — [0, oc] is a rate function
on S if the sets /7!([0, a]) are compact in S for all a = 0. A sequence {Q,, n =1} of
probability measures on the Borel o-field of S is said to obey the LDP with rate function /
if

1
lim — log 0,(G) = —inf I(x)
n xeG

n—oo

for all open G C S and
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— 1
lim — log O0,(F) < —inf /(x)
n—oo N xXeF

for all closed F C S.

We also say that I is a probability rate function if inf,cg /(x) = 0. Obviously, if I appears
in the LDP, it is a probability rate function.

Recall that the contraction principle states that continuous mappings preserve the LDP
(Varadhan 1966; 1984).

Next, we say that the sequence {#,, P,, n = 1} satisfies condition (U) if

(U) limpy_oo lim, oo EY"Z2 )1(Z,9> H) =0, 6€0.

Here and below, E, denotes an expectation with respect to P, and, by definition,
E}/"& = (B,8)'", P)/"(A) = (Py(A)'/".

Definition 2.1. We say that a sequence {# ,, P,, n = 1} of dominated statistical experiments
obeys the dominated large-deviation principle if:

1. the sequence {Z(Z,o|P)), n =1} obeys the LDP with some (probability) rate
function I;

2. condition (U) holds.

A critical part of the definition is condition 1. Condition (U) plays a subordinate though
essential role. If we disregard condition (U), the definition is analogous to the definition of
weak convergence of dominated statistical experiments (Strasser 1985) which states that the
likelihood ratios weakly converge. The role of condition (U) will become clear shortly: it
ensures the compatibility of this definition with a more general one which does not depend on
a choice of dominating measures and incorporates the non-dominated case too. In particular,
condition (U) implies that the lower bound that we obtain in Section 3 for the sequence of so-
called LD risks does not depend on dominating measures either (see Remark 3.2 below).
Note that an analogue of condition (U) in the theory of weak convergence of statistical
experiments is a consequence of weak convergence of the likelihood ratios and does not have
to be singled out.

In applications, rather than considering Z,g, it is more convenient to deal with log-
likelihood ratios =, defined as

- 1 1 dP,g

‘—'n,H_; 0og dPn .
Let us introduce £, 9 = (£,9, 0 € ©) and denote by £ (ZE,, ¢|P,) the distribution of =, ¢ on
R® under P,, where R® is supplied with the Tihonov topology and the Borel o-field. If the
Z,p are well defined then, by the contraction principle, the LDP for the sequence
{Z(E,0|Ps), n =1} implies the LDP for the sequence {4 (Z,o|P,), n = 1}.

Now we consider a number of statistical models which, on the one hand, show that the
LDP for the log-likelihood ratios arises quite naturally and, on the other hand, motivate and
illustrate theoretical developments below. We stop short of giving rigorous proofs of the
LDP for the models, deferring this until Section 5.
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Example 2.1 Gaussian observations. Let us observe a sample of »n independent real-valued
random variables X, = (X ,, ..., X,.,) normally distributed with ./"(6, 1), 8 € ® C R. For
this model, Q, = R"” and P,g = (/7(0, 1)), 0 € ©. We take P, as a dominating measure
P,. Then the corresponding log-likelihood ratios are of the form

1. dP, 1 1, P
Zao=—1 CXn) == (0X1n— =02 ) =07, —5
n,0 n 0og dP,, ( n) n £ (9 k,n 26 > 0 n b 0 5

where

l n
Yn:_g Xk,n, n=1.
Ly}

The sequence {%(Y,|P,), n =1} obeys the LDP in R with rate function IV(y) = y?/2,
v € R (see, e.g., Freidlin and Wentzell 1979). This yields by the contraction principle the
LDP for the log-likelihood ratios =, .

Example 2.2 An independent and identically distributed sample. Let X,, = (X1, ..., Xun)
be an independent and identically distributed sample from a distribution Py, 6 € ©, on the
real line. We do not specify the nature of the parameter set ®. For example, it can be a subset
of a finite-dimensional space, a set of distributions on R (or their probability density
functions), etc. We assume that the family & is dominated by a probability measure P, i.e.,
Py < P, 8 € ©. This model is described by dominated experiments &, = (R,, .7 »; Pno,
0 € ©) with Q, =R", 7, = ZR"), P,y = Py, 0 € © and P, = P".
We have

n

1 dP,g 1 dPy dPy
o =—1 20X =S = log LX) = | log S=2 () Fy(dv),
0= o AL = 3 ios g (K = | s GroR (@0

5]

where

1 n
Fux) ==Y 1(Xxn<x, x€R,
k=1

S

is an empirical distribution function.

Let 7/ be the space of cumulative distribution functions on R with the topology of weak
convergence of associated probability measures. By Sanov’s theorem (Sanov 1957; Deuschel
and Stroock 1989, Section 3.2.17), the sequence {4(F,|P,), n = 1} obeys the LDP in %/
with rate function I5(F) = K(F, P), F € %/, where K(F, P) denotes the Kullback—Leibler
information:

dF dF
— (x)log — (x)P if F< P
JRde og S5 (P, if F< P,

0, otherwise.

K(F, P) =

Let us also denote, for 6 € © and F € ¥/,
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dP
) = | tog G .

If the density functions (dPy/dP)(x) are bounded from above, bounded away from zero and
continuous in x for all @ € ©, then the (g(F) are continuous functions on %/ and, since
Eno = Co(Fy), the contraction principle yields the LDP for the sequence {&, @, n = 1}.

Example 2.3 “Signal plus white noise’. We observe a real-valued stochastic process X, =
(X,(1), t € [0, 1]) obeying the stochastic differential equation

dX, (1) = 0(r)dt + L dw(e), 0=sr=<1,
Vn

where W = (W (), t € [0, 1]) is a standard Wiener process and 6(-) is an unknown function

assumed to belong to some set ® of real-valued continuous functions on [0, 1].

This model is described by statistical experiments &, = (Q2,,.7 »; Pug, 0 € ©), where
Q, is C[0, 1], the space of continuous functions on [0, 1] with the uniform metric and
Borel o-field, and P, is the distribution of X, on C[0, 1] for 6. We take P, = P,, where
P,o corresponds to the zero function 6(-) =0. Then P,y < P, and, moreover, by
Girsanov’s formula, P,-almost surely,

_ 1 1 dP,
E,0=—1lo
A £ dpP,

Let Cy[0, 1] be the subset of C[0, 1] of the functions x(-) that are absolutely continuous with
respect to Lebesgue measure and equal to 0 at 0. Then the sequence {Z(X,|P,), n = 1}
obeys the LDP in C[0, 1] with rate function

1 1 1
(X,) = Le(t) dX,(f) — ELHZ(t)dt. (2.2)

1. .
I (x()) = EJo(x(t))zdt, if x(-) € Co[0, 1],
0, otherwise,

X(t) denoting the derivative of x(-) at ¢ (see, e.g., Freidlin and Wentzell, 1979).
Let us denote, for functions 6(-) € ® and x(-) € Cy[0, 1],

1 1 1
Lo(x) = Joem dx(r) - Ejoezmdr,

where the integral is understood as a Lebesgue—Stieltjes integral.

Again the log-likelihood ratio =, can formally be represented as =, = Co(X,). Note,
however, that the first integral in (2.2) is an It0 integral, so the latter equality as well as the
continuity property for &y actually holds for functions 6(-) of a special sort (e.g., piecewise
constant or differentiable). For these functions, the contraction principle again implies the

LDP for {Z,0, n = 1}. A general case is studied in Section 5.

Example 2.4 Gaussian regression. We consider the regression model

k
Xk,n = a(tk,n) + gk,na tk, = k= 1: BRI (5 (23)

n )
n
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where errors &, are independent standard normal and 6(-) is an unknown real-valued
continuous function.

In this model, Q, =R", ® C C[0, 1] and P,y is the distribution of X, = (X, ...,
Xn,n) for 6(-). As above, we take P, = P,o. Then

- 1 | dP,g
E,9g=—1lo
0= g ar,

(Xn)

1 <& 1 &
== 0t ) Xiw—— 0*(tr,

1 1 & 5
= [ oo~ 53,

where

[n1]
XAQ:ZE:XW, 0<r=<1.
k=1

Let %/ be the space of right-continuous functions on [0, 1] with left-hand limits and with the
uniform metric (for measurability of X,, see Billingsley 1968, Section 8).

Since the X}, are distributed as ./7(0, 1) under P,, the sequence {Z(X,|P,), n =1}
obeys the LDP in %/ with rate function /" (Mogulskii 1976, Theorem 2).

Since the function 6(-) is continuous, we have, for large », the approximate equality

1 n 1
SO AUDE J 6*(1)dt
3 0

and hence 5,9 =~ {o(X,), with the same function g as in the preceding example. If the 6 are
differentiable, integration by parts shows that the 5,4 are continuous functions of the X,
and the LDP for {Z, ¢, n = 1} follows by the contraction principle. Again, a general case is

deferred until Section 5.

Example 2.5 Non-Gaussian regression. We consider the same regression model (2.3) but now
assume that independent and identically distributed errors &, have a distribution P with a
positive probability density function p(x) with respect to Lebesgue measure on the real line.
An unknown regression function 6(-) is assumed to be continuous, so ® C C[0, 1].

As above, for a regression function 6(-), we denote by P,y the distribution of X, =
X1 ---» Xnn). We have, with P, = P,,

_ 1 dPnG 1< p(an - G(Ik n))
Epo=—log S0 (x,) = -3 log Btkn ~ Hlkn)
0= 108 5= (X) ; BT )

Introducing the empirical process F, = F,(x, 1), x € R, t € [0, 1], by
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[nf]
1
Folx, 1) == 1(X g = %),

=3

we have that

1
Eup= J J log MFn(dx, dr). (2.4)
’ 0JRr p(x)

Let us define %/ as the space of cumulative distribution functions F = F(x, 1), x € R,
t€[0, 1], on R X [0, 1] with the weak topology. Let %/ be the subset of 2/ of functions
F(x, t) absolutely continuous with respect to Lebesgue measure on R X [0, 1] and with
densities py(x) such that [gp,(x)dx =1 for 7 € [0, 1].

It is shown in Dembo and Zajic (1995) — see also Theorem 1 in Puhalskii (1996) — that
the sequence {%(F,|P,), n = 1} obeys the LDP in 7/ with rate function IK(F) given by

1
IK(F) = J J log ?8 pi(x)dxdz, if F € %,
0JR

00, otherwise.

Denote, for F € 7/, and 0 € O,

1
J log P =) gy dr).

to) - | 70

0JR

Then by (2.4), Z,9 = Co(F,) and if the logs in the integrals in the definition of the &y are
bounded and continuous, we have the LDP for {Z,¢0, n = 1}.

Example 2.6 The change-point model. Let us observe a sample X, = (X1, ..., Xn,) of

real-valued random variables, where, for some k, = 1, the observations X ,, ..., Xy, are
independent and identically distributed with a distribution Py and the observations
Xk 410> ---» Xnpn are independent and identically distributed with a distribution P;. We

assume that Py and P; are known and £k, is unknown. Let us also assume that k, = [rf],
where 6 € © = [0, 1]. For this model, Q, = R” and P,y stands for the distribution of X,
for 6.

Let a probability measure P dominate Py and P; and

dP, dp
Sl =5 @ =5 @, xeR

be respective densities. Assume that fy(x) and f(x) are positive and continuous. Denoting
P, = P", we have

n

1 L] 1
Xo) = logfo(Xin) +— > log fi(Xin),
i=1

i=[nd]+1

- 1 1 dP,g
Z,0=—10
n,0 n g dP,,

so that, defining an empirical process again by
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[n1]
Fye)=-3 1Xiy<v, xeR €0, 1],

i=1
we obtain the representation

1r

o = KJR log folF(dx, dn) + | | tog Ao (a. do.

7]

Let a space %/ be defined as for the preceding model and %/ p be the set of those F' € 7/ that
are absolutely continuous with respect to the measure P(dx) X d¢ and admit densities p;(x)
such that [rp(x)P(dx) =1, ¢ € [0, 1]. As above, the F, obey the LDP with rate function
1 f,K of the form

1
If;K(F) _ JOJRp,(x) log p,(x)P(dx)dt, if FeYp,
00, otherwise.

Define next for F' € 7/p

0 1

Eo(F) = J

0

J log fo(x)F(dx, df) + J J log f1(x)F(dx, d?).
R R

0

Then again =, = {o(F,), and the LDP for {Z, e, n = 1} holds, e.g., when log fo(x) and
log f1(x) are bounded and continuous.

Example 2.7 Regression with random design. We consider the model
Xk,n = e(tk,n)+§k,ns k: ls crt na

where real-valued errors &, and design points f, are independent with respective
distributions P and I1 dominated by Lebesgue measure. We denote the respective densities by
p(x) and 7(¢). We also assume that the prior measure IT has a compact support D, 7(¢) is
continuous and positive on the support, p(x) is continuous and positive on R, and an
unknown regression function 6(-) is continuous.

In this model, P,p is the joint distribution of X, = (X;,, ..., X,,), and ¢, =
(tiny -+ tan) for 6. Let F, be the joint empirical distribution function of X, and ¢,:

n

1
Fu(d, B) == 1(Xpy € 4, 5, € B)
k=1

for Borel sets A CR, B C D, and let 2/ be the space of distributions on R X D with the
weak topology. Set also P, = P, = (P X II)".
With these definitions,
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1 dP,o
Enp =~ log —22(X,, 1,
0= log P, ( )

1 <& Xin—0(tsn
Zlogp( k, (tk,1))
=

n p(Xk,n)
B p(x — 0(1)
- DJ R R

Let #/; be the set of the cumulative distribution functions on R? that are absolutely
continuous with respect to Lebesgue measure on R? and have support in R X D. Under P,,
the random pairs (X ., tx.,) are independent and identically distributed with the distribution
P X I1, and hence, by Sanov’s theorem, the LDP holds for the F, with rate function I5(F)
given by

p(x, 1) , p

_— Y

ISS(F) _ JDJR log p(x, t)dxdt, if Fe v,

p(x)7(7) ,
00, otherwise.

Here F(dx, d¢f) = p(x, t)dxdz. The LDP for this model follows now in a manner similar to
the case of an independent and identically distributed sample.

We end this subsection with a simple but useful remark. It is noticeable that the
definition of the LDP given above uses the same letter n both to subscript probability
measures and associated random elements, and to denote a scaling parameter. One might
wonder whether this is not a loss of generality and how # should be chosen when
considering particular models. The answer to the first question is in the negative and
making n play the two roles economizes on notation. Indeed, if we have a sequence of
probability measures {Q,, n = 1} with log O, having the right rate b, — co as n — oo, we
can always reduce this case to the above ‘standard’ set-up by ‘relabelling’ the measures, i.e.,
by introducing measures Q) such that Q; = Q,; taking b, as a new n then gives log O,
the rate n as required. This argument, originating from Varadhan (1984), also answers the
second question: z in our formalism has the meaning of the right scale rather than ‘the
natural parameter of the model’. Of course, the two can coincide, as in most of the
examples we considered where n is a sample size, but not always, as Example 2.3 shows.
On the other hand, it is clear from the above that if we want n to be ‘the natural
parameter’, we can do this by introducing some b, — oo as a scale.

2.2. Sufficient conditions for the dominated LDP

We now study properties of the LDP for statistical experiments and begin with a sufficient
condition for the LDP. The condition serves two purposes: first, in particular statistical
models it is easier to check than the definition of the LDP; and second, this condition is
useful when constructing asymptotically optimal decisions (see Section 4). The idea behind
the condition is similar to that used in the condition of local asymptotic normality by Le Cam
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(1960) for studying weak convergence of experiments, or, more generally, in the condition of
A-convergence by Shiryaev and Spokoiny (1997).

Given a sequence of dominated statistical experiments {#,, P,, n = 1}, assume that
there exist statistics ¥, on (£2,,.7 ,) with values in a Hausdorff space ?/ such that the
sequence {4(Y,|P,), n = 1} obeys the LDP and the Y, are asymptotically sufficient in the
sense that Z, ¢ =~ 3¢(Y,) for some non-random functions 35 on 7/. In the above examples
the statistic Y, is easily identified: it is the empirical mean (X, + ...+ X,,)/n in the
case of a sample from the normal distribution in Example 2.1, the empirical distribution
function F), in the case of an independent and identically distributed sample in Example
2.2, the observation process X, for the ‘signal plus white noise’ model, the empirical pro-
cess F, for the regression model with non-Gaussian errors and the change-point model, etc.

If the functions 3y are continuous then, by the contraction principle, the LDP for the
sequence {Z(Y,|P,), n = 1} implies the LDP for the sequence { % (g(Y,)|P), n = 1} and
hence for {¥4(Z,9|P,), n = 1}. Unfortunately, by contrast with the theory of weak
convergence of experiments, in applications the functions 3y typically are not continuous.
For instance, the functions Cg(y) = log3p(y) generally are not continuous in the above
examples for an independent and identically distributed sample, the °‘signal plus white
noise’ model, the regression models and the change-point model. To overcome this
difficulty, we need to introduce ‘regularizations’ 3ps(y) of 3¢(y) that, on the one hand, are
continuous functions and, on the other hand, converge to 3¢(y) as 6 — 0.

Before stating the condition, let us review some more facts about large deviations used
below. Recall (Varadhan 1966; 1984; Deuschel and Stroock 1989; Bryc 1990) that if a
sequence of probability measures {Q,, n = 1} on the Borel o-field of a Hausdorff space S
obeys the LDP with rate function / then, for all non-negative bounded continuous functions
fon S,

1/n
tim | [ oy u@n] = sup v, @3)

where V(x) = exp(—I(x)). If S is a metric, or, more generally, a Tihonov (i.e., completely
regular) space (Engelking 1977; Kelley 1957) then (2.5) also is sufficient for the LDP
(Puhalskii 1993).

Moreover, the LDP implies (2.5) also for unbounded continuous non-negative functions f
under ‘the uniform exponential integrability condition’ (Varadhan 1984; Deuschel and
Stroock 1989)

1/n
im_Tim USU(x))"lcf<x)>H>Qn(dx>} —o. 2.6)

1
H—o00 n—
Also, if fis a lower semi-continuous non-negative function then
1/n
lim Us(f (X))"Qn(dX)} = Sugf (0¥ (x). 2.7
n—o0 xe

The function V(x) is henceforth referred to as a deviability. Equivalently, a deviability is
defined as a function V: S — [0, 1] such that sup,cg V(x) =1 and the inverse images
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V=!([a, 1]) are compact sets for all a>0. Obviously, there is one-to-one correspondence
between probability rate functions and deviabilities. We say that {Q,, n = 1} LD converges
to V and write O, — V (n — oo) if (2.5) holds for all bounded continuous non-negative
functions f (Puhalskii 1994a). Below we use the fact that, if S is metric, then one can only
require that the functions f be uniformly continuous (analogously to weak convergence
theory; Billingsley 1968, Theorem 2.1). By the above, if S is a Tihonov space then O, — V'
(n — o0) if and only if {Q,} obeys the LDP with 7 = —log V. All the spaces we consider
below are Tihonov and we mostly use the formulation of the LDP as LD convergence as
more convenient in theoretical considerations.
Next, let S and S’ be Hausdorff spaces and V a deviability on S. Denote

Dy(a)={x€S: V(x) = a}, a>0. (2.8)

As in Puhalskii (1997) — cf. Schwartz (1973) — we say that a map ¢: S — S’ is V-Luzin
measurable if it is continuous in restriction to each set ®y(a), a>0. The term F-Luzin is
motivated by the following analogy with Luzin’s theorem in measure theory. Let us extend V'
to a set function on S by defining V(I') = supyer V' (x), I’ C S. Then V as a set function is an
analogue of probability (for a discussion see Puhalskii, 1991; 1994; 1995), and, equivalently,
a function ¢ is J-Luzin measurable if, for every >0, there exists a set 4 C S with
V(S\A4) < e such that ¢ is continuous in restriction to 4. It is also interesting to note that one
can prove an analogue of Egorov’s theorem for sequences of Luzin measurable functions
Puhalskii (1991, 1997). Deviabilities are preserved under Luzin measurable maps: for any
V-Luzin measurable map ¢, the function Vo' on S, defined by Voo '(x')=
SUPyeq-1(x V' (x), x" €8, is a deviability on §" — see Deuschel and Stroock (1989, Section
2.1.4); the argument of Puhalskii (1991, Lemma 2.1) also applies.

Also, we say that a function ¢: S — S’ is V-almost everywhere (/-a.e.) continuous if it is
continuous at every x € § with V(x) > 0. Obviously, each J-a.e. continuous function is V-
Luzin measurable.

Some more notational conventions are in order. We denote by .Z(®) the family of all
finite subsets of ®. Elements of [R{(f are denoted by zg = (zg, 0 € ©), and elements of Rﬁ,
where A € Z(0), by zp = (zg, 0 € A). Maps mx and mp'p, Where A € Z(0), A’ € #(O)
and A C A, are the natural projections of R? onto Rﬁ and of [Rf onto Rﬁ, respectively:
7iA(zg, 0 € ©) = (29, 0 € A) and maa(zg, 0 € A') = (29, 0 € A). Since R® and R,
A € #(0), are supplied with the Tihonov topology, the projections are continuous.

We now state and prove the sufficient condition for the LDP. We thereby assume that the
statistics Y, take values in a metric space which is enough for applications, though this
restriction can be relaxed.

Lemma 2.1. Let {#£,, P,, n = 1} be a sequence of dominated experiments and Z,p, 0 € O,
be defined by (2.1). Assume that the following condition holds:

(Y) there exist statistics Y,: Q, — %/ with values in a metric space 7/ with the Borel o-
field, functions 39: 7/ — Ry, 0 €0, and 395 ¢/ — Ry, 0 € ©, >0, such that

(Y1) the sequence {%(Y,|P,),n=1} of distributions on %/ LD converges to a
deviability V(y), y € ¥
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(Y2) for all 6> 0, the functions 395: %/ — R, 6 € ©, are Borel measurable and V-a.e.
continuous;

(Y.3) limy_olim, oo PY/"(| Zp0 — 39.5(Y,)| >¢€) =0 for all e>0 and 6 € ©;

(Y4) lims_o SUpyead, (a) [36,6(¥) —30(»)| =0 for all a>0 and 6 € O.

Then £ (Zno|Py) L Vo (n — o), where Vg =V o 56', 30 = (39, 0 € O).

Proof. Conditions (Y.2) and (Y- 4) obviously imply that 39: 7/ — [R{G) is V-Luzin measurable,
hence Vg is a deviability on [R
Let A € %(©). We first prove that

GZunlP) S VA, 1 — o, (2.9)

where Z,A =(Z,9,0 €A), VA= Vo;,\ and 35, = (Gg, 0 € A). Let f: Rﬁ—>R+ be
bounded and uniformly continuous. Since, by the definition of V4,
Sup.,, cpa S@EA)VA(zA) = supyey fBA(»)V (), we need to prove that

lim E}/"f"(Zy.0) = sup FGANV (). (2.10)
YEY

Let 305 = (3p,9, 0 € A). Condition (¥3) implies, in view of the boundedness and uniform
continuity of f, that

lim Tim |EY"f"(Z,A) — EYV" £ s(Y,))| = 0. (2.11)
Since the sequence { % (Y,|P,), n = 1} LD converges to ¥ and the map 35 5: %/ — [R{ﬁ is V-
a.e. continuous, the sequence {%(ps(Yn)|Py), n =1} LD converges to V o(3p4)""
(Puhalskii 1991, Theorem 2.2). Thus, since f is non-negative, bounded and continuous,

lim E}/"f"Ga5(Y,) = sup FGas(NV (). (2.12)

By (2.11) and (2.12), for (2.10) it remains to show that

lim sup fGas(MV(y) = sup JSGAONV (»), (2.13)
=0 yey 574

which is an easy consequence of condition (¥4). Convergence (2.9) is proved. The assertion
of the lemma now follows by the Dawson—Gértner theorem on the projective limits of LD
systems (Dawson and Girtner 1987, Theorem 3.3) if we note that £(Z,e|P,) is the
projective limit of {Z(Z,A|P,), A € A©O)} and Vp = Vg omy', A € #4O). O

Remark 2.1. Since [R? is a Tihonov space, the lemma implies that, under conditions (Y) and
(U), the sequence {#,, P,, n = 1} obeys the dominated LDP.

Remark 2.2. As we have seen, in applications it is more convenient to manipulate rate
functions and log-likelihood ratios given by
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dP,p

. 0 € 0.

_ 1
En0=1logZ,g=—log
n

Accordingly, it is useful to state condition (Y) in these terms. Assume that the =,y are well
defined. It is easy to see that condition (Y) is implied by the following condition:

(Y') there exist statistics Y,: Q, — 7/ with values in a metric space 9/ with the Borel o-
field, functions Cg: 7/ — R, 0 €O, and Cys: 7/ — R, 0 € O, 6>0, such that

(Y'.1) the sequence {4 (Y,|P,), n = 1} of distributions on 3/ obeys the LDP with rate
functions 1(y), y € ¥

(Y'.2) for all 0>0, the functions Cps: %/ — R, 60 € O, are Borel measurable and
continuous at each point y such that 1(y) <oo;

(Y'.3) lims o Tim, oo PY/"(|Z 0 — Co.0(Yn)| >€) =0 for all e>0 and 6 € ©;

(Y'.4) lims_o Supyeaia) [S0.5() — Co(| =0 for all a =0 and 0 € O, where ®}(a) =
{ye 7 1(y) < a}.

Condition (U) takes the form
(U") limy_o lim, o EYV7"exp (nZ,0)1(Z,9> H) =0, 6 € ©.

By Lemma 2.1, conditions (Y') and (U') imply the dominated LDP.

2.3.The general case

The above definition of the LDP for statistical experiments covers only the dominated case
and depends on a choice of dominating measures. We now present another definition which is
free of these defects. It is motivated by Le Cam’s definition of weak convergence of
experiments (see, e.g., Strasser 1985).

Let |A| denote the number of elements in A € Z(0®). For zy = (zg, 0 € A) € Rﬁ and
zg = (29,0 € O) € R?, we set ||zalla = maxgea zo and ||zelle = maxgce zo, respectively,
and define Sh = {za € R} [zalla = 1} and Se = {ze € R?: |ze]le = 1}. In order not to
overburden notation, we sometimes omit the subscript A in |-[|s if there is no risk of
confusion.

Next, given a sequence of statistical experiments {#%,, n =1}, where &, =
(R, 7 3 Pnp, 0 € 09), set, for A € #40O),

1
Pn,A =T Pnﬁa
A2

dPn 1/n
Zn,a;A=<dPi), 0c A, (2.14)

Zn,A = (Zn,O;Aa 0 c A)

The definitions immediately imply that, P, s-almost surely,
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Z Zion = IA| (2.15)
A
and
1< |[Z,all < |A]". (2.16)

Definition 2.2. A sequence {# ,, n = 1} of statistical experiments obeys the LDP if, for each
A € A#(0), the sequence { £ (Lyn|Pnp), n = 1} of distributions on [R{ﬁ obeys the LDP with
some rate function.

Remark 2.3. Equivalently, {#,, n = 1} obeys the LDP if Z(Z, A|Pun) ke Va, A € #(0),
where V4 is a deviability on Rﬁ.

We next study consequences of the definition and, particularly, prove that the definitions
of the LDP for the dominated and general cases are consistent. We start by giving another
characterization of the LDP. Let .77, denote the set of all non-negative, continuous and
positively homogeneous functions on Rﬁ: he Za if h(za) =0, h is continuous and
h(Azp) = Ah(zp) for all zp € Rﬁ and A = 0. We say that a deviability Vo has support in Sp
if Vo(zpa) =0 for zp ¢ Sa.

Lemma 2.2. Let A € #(0). Then £ (Z,A|Pun) L4 Vo if and only if VA has support in Sa
and

lim EYXW"(Zyn) = sup h(za)Va(za) — for every h € Fa.

ZAERQ
In particular, if L (L, A|PnA) L4 VA then, for all 0 € A,

(R) SuPer[RQ JIQZAVA(ZA) =1.

Proof. Let £ (ZyA|Pnn) L4 Va. We have, using the equivalence of LD convergence and the
LDP on R’l, that, for € >0,

lim PYU(|Zoal —1]>€)=  sup  Va(za).

znl|zall-1]>e

Inequalities (2.16) imply that the left-hand side equals zero. Since ¢ is arbitrary, V, has
support in S;. The claimed limit follows by the definition of LD convergence since, by (2.16),
W(Zyp) = W(Zyp) Poa-almost surely, where h(zp) = h(zaA)[(2 — ||zall/A) A1V 0], and the
latter function is non-negative, bounded and continuous.

For the converse, pick a non-negative continuous bounded function f on [Rﬁ:. We need to
prove that

lim E}/X/"(Zna) = sup [(za)VAGa). 2.17)

zAERQ
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We define a function f by

~ if >0,
den = Ll () il
0, if za] = 0.

Note that fand }” coincide on S and, since Vj is supported by Sp, we can change f'to }” on
the right-hand side of (2.17). The continuity of f and the inequalities (2.16) easily imply that
the random variables f(Z,) and f(Z,) are uniformly bounded and

Tim B}/ /"(Zn) = BN "(Znp)| = 0.

Since f € ., taking h = f in the conditions of the lemma, we obtain
1im BN "(Zon) = sup fGAIVaGA),

ZAE[R

concluding the proof of (2.17).
Property (R) follows by taking A(zA) = 7oza.- O

We now show that if A C A’ € _#(0) then the deviability V, is a sort of projection of
the deviability Vu:, the property being inherited from associated probabilities. Recall the
notation ;wa'a and ;o for the projections from [R{f onto IR? and [R? onto Rﬁ, respectively,
and let ITp'A and IT5 stand for normalized projections:

[la >0,

Iaaza = JTA'AZA'/”JTA'AZA' ZN € Rf,
Maze = waze/|mazel|a, ze € R?, [aze A > 0.

Also we adhere to the convention that supg = 0.

Lemma 2.3. Let A C A' € A4O). If £ (ZyA|Pun) L4 Vi and L (Zyn'|Punr) k4 Var then
the following conditions hold:

(C) sup,, cpa H(ZA)VA(ZA) = sup, gy A(TAAZA) VA (20)s h e Zn;
) VA(ZA) SUP.,.e11 !, 2 ||Jl’,\ "AZA’ ”AVA (zar), ZA € R

where H/_\/AZA = {ZA' € R+ aaza = ZA}.

Proof. Define

dP, A\ "
Zoan = (20
o (dpn,A)

By (2.14),
TNALp N = Lp ALy p:N P, A-almost surely,

and, since h € .77 5, we have that
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E W (Znn) = B N Zyn ) naia]" = EL K (AN AZn ).

Applying Lemma 2.2 to the leftmost and rightmost sides, we obtain condition (C).

Now, condition (S), for a given zp € SA, can formally be obtained by substituting
h(za) = 1(za = ||za|lza)||z] into condition (C) and using the fact that Va4 has support in
Sa. However, the function / is not continuous, so we approximate it with a sequence of
continuous functions h; € ., k =1, as follows. Let

hi(zn) = (zall = Fllza = Zllzall D"

Since the 7y are from .77 5, they satisfy condition (C). Also /i(za) | iz(zA) as k — oo. From
the fact that the /;(z) are continuous and Vj, and V,' are deviabilities, it is not difficult to
check by using Dini’s theorem (for a proof see, e.g., Lemmas A.1 and A.4 in Puhalskii 1997)
that one can take the limit as £ — oo in condition (C) for the /4, as required. O

Remark 2.4. Property (S) implies that condition (C) holds for non-continuous positively
homogeneous non-negative functions, too.

In analogy with statistical decision theory (Strasser 1985), we call a family of
deviabilities { VA, A € .Z(©)}, where VA is defined on R”, conical if it satisfies (C). If, in
addition, VA(zpa) = 0 for all zp ¢ Sa, the family is called standard. The proof of Lemma
2.3 shows that a family is standard if it meets condition (S).

The next result is of particular important for the minimax theorem below. It states that
every standard family of deviabilities admits an extension to a function on IR? which
preserves the conical property.

Lemma 2.4. For every standard family of deviabilities {Va, A € 4(©)}, there exists a
function Vg on [R?? such that the following conditions hold:

(i) the function Vg is upper semi-continuous, assumes values in [0, 1],

sup Vo(ze) =1 and Ve(ze) =0 if ze ¢ Se;

Z@ER?
(ii) for all A € Z(O) and h € T,
sup h(za)Va(za) = sup h(zmaze)Ve(ze);

Z/\E[R/l Z@ER?
A
(iii) for all zp € RZ,

Va(za) = sup |lmazellaVe(ze),
2961_[7\]2,\

where HXIZA ={zp € [F\Q?: Mpze = zA}-

We relegate the proof to the Appendix.
We conclude this section by showing consistency of the above definitions of the LDP for
statistical experiments.
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Lemma 2.5. Let {#,, P,, n =1} be a sequence of dominated statistical experiments. If
it obeys the dominated LDP then it obeys the LDP More specifically, denoting by Vg
the devzablllly on IR that is the LD limit of ¥4 (Z,0|Py) as n— oo, we have that
Y(Z,lA|P,,A)HVA, A € 4(0), where

_ sup,cnns, [7azel|Ve(ze), if za € Sa,
Vaza) {0, ! otherwise.

Also, denoting by Vg the extension of the standard family {Va, A € #(O)} defined in
Lemma 2.4, we have that, for every A € #4(®) and h € T/ (N),

sup n(7aze)Vel(ze) = sup h(waze)Ve(ze).
zeeR? Z@ER?

Proof. We first prove that, for all A € .#4(©) and h € .F x,
11m El/ A" (Zyp) = sup h(waze)Vel(ze). (2.18)

Z@GRe

Since by (2.1) and (2.14),

dP, A\ "
—"A) P,-almost surely, 6 € A,

Zng = Zn,a;A< ap
n

and & is positively homogeneous, we have that

dp,,
By AW (Zn) = B W (L) 12 =

n

EV" W (A Z o). (2.19)

Now using the assumed LD convergence 2 (Z,¢o|P,) s Ve, we want to prove that

hm El/”h”(nAZn @) = Ssup h(.TL',\Z@)V@(Z@) (220)

zZe GRO

which by (2.19) would yield (2.18). The function % being non-negative and continuous but
not bounded, (2.20) would follow if the uniform exponential integrability condition
introduced in (2.6) holds:

Jlim Tim EY" W75 Z,.0) 1 (W(7tp Z o) > H) = 0. (2.21)

H—o00 n—o0

It is here that we need condition (U). Let h* = Supz,es, M(za), which is finite by the
continuity of /. Since & € .7, it follows that A(Z,A) < h*||Z,A, so, in view of condition
),

lim EY" W (7tp Z,0) 1 (W(7TA Z,0) > H) < Tim ZEI/"h*"Z" V(h* Z,9> H)

n—oo n—0o0

— 0 as H — oo.

So, (2.20) and hence (2.18) have been proved.
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Since by the definition of Vj,
sup (za)Va(za) = sup h(zwaze)Ve(ze), (2.22)

ZAERQ Z@ER?
Lemma 2.2 implies that the proof of the first claim of the lemma is completed by checking
that V, is a deviability on R”.
Limit (2.21), in view of the LD convergence of #(Z,o|P,) to Ve, implies (using
property (2.7)) that

sup |[azellal(|mazella > H)Ve(ze) = 0.

lim
H—00 zZe ER?

Therefore, for every & >0 there exists H, such that

&
{zo € R$: |mazellaVo(zo) = €} C {Z@ € R?: Vo(zo) = F}

so that the set on the left is compact. Since also ||Taze|a = & when |mazolla Ve (zo) = &,
and TII, is continuous on {zg € [R?(f: [Tazolla =€}, it follows that the set
Ia{ze € [R{(E: [7azellaVe(ze) = €} is compact. Since, for a >0,

= 1
A, [ON
{ZA S RJr. VA(ZA) = a} = QHA{Z@ S R+. ||.7TAZ(-)||AV@(Z@) = a(l _n—H) },

we conclude that the sets {zp € Rﬁ: VA(za) = a} are compact. Thus, we are left to check
that

sup Va(za) = 1. (2.23)

Z/\GRQ
By (2.18) with A(zp) = mozp, 0 € A,

sup pzeVe(ze) = 1,
Z(-)ERE;)

hence,

sup ||TazellaVe(ze) = sup sup mpzeVel(ze) = 1,
Z@ER? OcA Z@ER?

and (2.23) follows by the definition of Vj.
The second claim of the lemma follows by (2.22) and Lemma 2.4. The lemma is
proved. O

Remark 2.5. Equality (2.22) and Lemmas 2.2 and 2.3 imply that projections Vx, A € Z(0),
of Vg defined by

Va(za) = sup Vel(ze)

—1
Z@E./'[A ZA

constitute a family of deviabilities with properties (C) and (R).
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3. A minimax theorem

We start this section by showing that, in analogy with the classical asymptotic theory of
statistical experiments (Strasser 1985), the LDP for statistical experiments allows us to obtain
an asymptotic lower bound for appropriately defined risks, which, in fact, has been the
purpose of introducing the concept of the LDP for sequences of statistical experiments. We
next prove that under additional conditions the bound is tight, and study the problem of
constructing decisions attaining it.

We consider a sequence of statistical experiments {#,, n = 1}, where &, = (Q, .7 ,;
P,p, 0 € ©), and assume that it obeys the LDP. The associated deviabilities are denoted by
VA, A € Z(0), and Vg denotes the extension defined in Lemma 2.4.

We introduce some more notation common in statistical decision theory (see, e.g., Strasser
1985). We denote by &/ a Hausdorff topological space with the Borel o-field which we take
as a decision space; Wy = (Wy(r), r € &), 0 € O, are, for each 8, non-negative and lower
semi-continuous functions on & which play the role of loss functions; .72, denotes the set
of all measurable mappings p,: Q, — ¥, i.e., .72, is the set of all decision functions with
values in &. We define the LD risk of a decision p, € .72, in the experiment &, by

Ru(pn) = SUp E)/ Wi(p.). (3.1)
6cO

Obviously, this is an analogue of the risk in minimax decision theory (cf. Strasser 1985).

Recall that a function f: U — R on a topological space U is level-compact if it is
bounded from below and the sets {u € U: f(u) < a} are compact for all a <sup,cy f(v)
(Strasser 1985, Definition 6.3). Obviously, if U is Hausdorff, a level-compact function is
lower semi-continuous and the supremum of a family of level-compact functions is level-
compact. For what follows, it is also worth mentioning that level-compact functions attain
infima on closed sets.

Theorem 3.1. Let the sequence {# ,, n = 1} obey the LDP. Assume that the functions Wy,
0 € O, are level-compact. Then

lim inf R,(p,) =

n—00 Pn€/y

where

R* = sup inf sup We(r)zgVe(ze).

2) €R® €Y gc®

In particular, if {#,, P,, n =1} obeys the dominated LDP and Vg is the associated
deviability then the lower bound can be rewritten as

R* = sup inf sup Wy(r)zeVe(ze). (3.2)

GRG IS ere)
If, moreover, conditions (Y) and (U) hold then

R* = sup inf sup Wy(r)36(»)V(»).
yey/ €Y 9c®
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Proof. Let A € Z(©). We first prove that

lim inf supE o Wo(pn) = sup inf sup Wo(r)zoVa(za). (3.3)

n—oo Pn GcA zn G[RAf

Let {pn, n =1} be an arbitrary sequence of decisions. We have, by the definition of Z, A
(see (2.14)),

lim sup EY/y Wi(p,) = lim sup EY Wi (pa)Z g

n—oo O A n—00 e
1/n
= lim |[— n/\ZWg(pn)ZZ,G;A
n—o0 |A| O
> lim E, / sup Wo(pn)Zy o0
n—oo

\%

lim E}/\w"(Z),

n—oQ

where

w(za) = inf sup Wy(r)zg, zn = (29, 0 €A) € Rﬁ.
r€Y geA

Since the set A is finite and the functions Wy are level-compact, it is not difficult to see that
the function w(-) is lower semi-continuous (cf. Aubin 1984, Proposition 1.7). So by the LD
convergence of £ (Z,A|Pun) to Va,

lim EL{XWn(Zﬂ,A) = sup w(za)Va(za),

n—0o0 zAERﬁ:

implying (3.3).
Since the function w(-) belongs to .77, an application of Lemma 2.4(ii) yields

sup inf sup Wy(r)zgVa(za) = sup mf sup Wo(r)zoVe(ze),

Z
zAE[RQ reZ geA R@) reos

so by (3.3)

lim inf supE o Wi(pn) = sup 1nf sup Wo(r)zeVe(ze).

n—oo Pn GeA Zo GRO re

Now the proof of the lower bound is completed by observing that, for every zg =
(z0, 0 € ©) € R,

sup inf sup Wy(r)zp = 1nf sup Wo(r)ze 3.4
Ae /(©) T€EY geA

(for a proof see Lemma A.3 in the Appendix; or Aubin and Ekeland 1984, Theorem 6,
Section 2, Chapter 6).
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If {#,, P,, n=1} obeys the dominated LDP, then by Lemma 2.5
sup inf sup Wy(r)zeVe(ze) = sup inf sup Wo(r)zoVe(ze),

[RO r€Y geA [R{O res

and representation (3.2) follows by (3.4). The last representation for R* in the statement of
the theorem follows since, by Lemma 2.1, Vg = V 03g'. O

Remark 3.1. Note that the proof only uses what is known as a lower bound in the LDP.

Remark 3.2. We are now in a position to explain why we consider condition (U) in the
definition of the dominated LDP to be important. Assume that {#£,, n = 1} is a dominated
family with dominating measures P, such that, for a deviability Vg on [R{ , we have the LD
convergence % (Z,,@\P ) — Veg. The proof of Theorem 3.1 with Vg replaced by Ve and Vj
replaced by Vg om,' (which would not use condition (U)) would still give the right-hand
side of (3.2) as a lower bound. However, these lower bounds can generally be different for
different sequences of dominating measures. The role of condition (U) is to eliminate this
possibility by making sure that equality (3.2) holds so that the lower bounds do not depend
on a choice of dominating measures.

In applications, as we will see, the assumption that the loss functions are level-compact is
normally met. However, in the appendix we give a variant of Theorem 3.1 for more general
loss functions. As in the classical theory, tackling this case requires considering generalized
decisions (cf. Strasser 1985).

We now turn to the question of tightness of the above lower bound and start with
defining the concept of LD efficiency. We say that a sequence of decisions {p¥, n = 1} is
LD efficient if, for any other sequence of decisions {p,},

r@o (Rn(p:) - Rn(pn)) <0

Theorem 3.1 implies that to construct LD efficient decisions one can apply an approach
similar to that used in the classical asymptotic decision theory. Indeed, by Theorem 3.1, if the
Wy, 6 € O, are level-compact, then, for any sequence of decisions {p,, n = 1},

lim R,(p,) = R*

n—oo
Now if a sequence {p*, n =1} is such that R,(p*) — R™ as n — oo, it is obviously LD
efficient.

Furthermore, motivated by applications, we assume that the sequence {#,, n =1} is

dominated and conditions (Y) and (U) hold. Then, by Theorem 3.1, the asymptotic
minimax risk can be written as

R* = sup inf sup Wo(r)30()V (). (3.5)

VE/ res
Representation (3.5) prompts considering for each y € %/ the subproblem
(0) O*(y) = inf sup Wy(r)se(»)-
r€Y pcO
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Since the functions Wy are level-compact for each 6 € O, it follows that, given y € 7/, we
can find *(y) € & that delivers the infimum in (Q). The value 7*(y) can be viewed as ‘the
best decision if the value of Y, is »’. Hence, provided the function *(y): 2/ — & is Borel
measurable, the decisions r*(Y,,) are natural candidates for the LD efficient decisions.
Unfortunately, we cannot prove this without requiring that 0*(y) be continuous (or upper
semi-continuous) which usually is not fulfilled in applications. The reason for the latter, as in
condition (Y) above, is that the 3¢(y) typically are not continuous as maps from 7/ into R,.
Therefore, as in condition (Y), we invoke the idea of regularization. We require that there
exist functions 34 4(y) such that functions Qs(y) defined by

(Qs5) Os(y) = inf sup Wo(r)39,5(»), ye,
€Y 9c@

are continuous in y, on the one hand, and approximate O™ (y) for small d, on the other hand.
A rigorous formulation is given by condition (sup Y), which strengthens condition (Y) to the
effect that the requirements of (Y) hold uniformly in 8 € ®. This way of handling the
technical difficulties does not allow us, however, to get LD efficient decisions: as the next
theorem shows, in general we are only able to obtain decisions whose asymptotic risk is
arbitrarily close to the lower bound. Still, we succeed in proving that the lower bound of
Theorem 3.1 is tight and LD efficient decisions exist. We next state the condition. Recall that
Zn,9 = (dPn,H/dPn)l/n~

(sup Y) There exist statistics Y,: Q, — %/ with values in a metric space 7/ with the Borel
o-field, functions 39: %/ — Ry, 0 € ©, and 395 7/ — Ry, 0 € ©, 6 >0, such that:

(Y.1) the sequence { % (Y,|P,), n =1} LD converges to a deviability V(y), y € ¥/,

(sup Y.2) for the uniform topology on [R(i), the finctions 305 = (399, 0 € ©): 7/ — IR?,
0>0, are Borel measurable and continuous V a.e.;

(sup ¥.3) lims_oTim, .o supgeo P/ (| Zno — 306(Ys)| >¢€) = 0 for all >0,

(sup Y.4) limy_q Supgee SUP yed, (o) [30.0(3) — 30(»)| = 0 for all a> 0.

In the next theorem, condition (sup Y) is used together with condition (sup U) which
strengthens (U):

(sup U) 1im yy—.oc Tim, o supgeo E)/" Z0 g 1(Zo > H) = 0

Theorem 3.2. Let a sequence of dominated experiments {# ,, P,, n = 1} satisfy conditions
(sup Y) and (sup U). Let the function Wy(r) be bounded in (0, r) and level-compact in r for
each 0 € ©. Assume that there exist Borel functions rs(y): 2/ — & such that the infimum in
(Qs) is attained at rs(y), and denote p,s = rs(Y,). Then

lim lim R,(p,s) = lim lim R,(p,s) = R*
lim lim (Pno) Jim lim (Pno)

so that
lim inf R,(p,) = R*.

n—00 p, Xy
In particular, for some sequence p,
. * *
lim R,(p,) =R".
n—0o0
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Proof. Since (sup ¥) implies (¥), by Lemma 2.1, Z(Z,0|P)) "% Ve =V o3g', so by
Theorem 3.1, for each O,

li_m Rn(pn,é) =

The proof of the first set of equalities would be finished if

(1§1n(1) lim R,(p,s) < 3.6)

Let C be an upper bound for W: Wy(r) < C. Since

1/n 70 nyn n
Ru(pns) = Sup E}Jg Wi(pns) = sup E/ "W i(pno) 22,
0cO 6cO

we have that, for any H >0,
Ru(pno) < Sup EY " Wi(pno)(Zuo A H)" + Csup EY " Z2 ) 1(Z,9 > H).
0cO 0cO
The second term on the right tends to 0 as » — oco and H — oo by condition (sup U), so the
required limit would follow by

lim lim sup El/” WopnoXZno N H)" < 3.7

0—0 n—oo e
Since

sup EY "W 3(p oW Zng A H)" — sup EY "W (0 .)Gus(Ya) A H)"|
0cO 0cO

= Csup Eb/nﬂzn,(i - 56,6(Yn)| A H)n’
0cO
condition (sup ¥.3) implies that
lim lim |Sup EY"W3(pno)(Zno N H)" — sup EY"W3(0no)Goo(Ya) A H)'| =0.  (3.8)

0—0 n—oo

Next, using the definitions of Qs and p,s and the inequality Wy(r) < C, we obtain

sup B "W (pns)Goo(Ya) N H)' < EL/"(zug(WS(ra(Yn))5o,a(Yn)) A CH)"
S S

= E/"(Qs(Y,) A CH)". (3.9)

The last two expectations in (3.9) are well defined since the assumptions of the theorem

imply that Os(») = supgco Wo(rs(y))30,5(y) is a Borel function.
By the boundeddness of Wy(r) and (sup Y.2), the function Qs(y) is F-a.e. continuous.
Since £(Y, |P)—> V, we obtain

lim E}/"(Qs(Y,) A CH)" = sup (Qs(y) A CH)V (). (3.10)
o0 yey

By (Q), (Os) and the inequality Wy(r) < C, we have that
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[sup (Qs(») A CH)V () — sup (Q*(») A CHYV ()| < C sup sup ([30,5(») — 30(»)| A H)V (),
yey yey Y€y 60

and (sup Y.4) easily implies that the right-hand side tends to 0 as 6 — 0. Thus,
lim sup (Qs(y) A CH)V(y) = sup (Q*(») A CH)V(»)
0=0 ey ey

< sup 0*())V(») = R¥, (3.11)
yey

where the last equality follows by (3.5) and (Q). Putting together (3.8)—(3.11) proves (3.7)
and hence (3.6).
The second claim of the theorem follows by (3.6) and the string of inequalities the first
of which is Theorem 3.1:
R* = h_m inf Rn(pn) < lim infRn(pn) < lim Rn(pn,6)~
n—oo P, n—oo

n—oo Pn

Remark 3.3. Obviously, 7s(y) chosen so that
sup Wo(rs(»)3e.(y) = Qs(y) — €5,
S

where ¢5 — 0 as 0 — 0, would work too.

Remark 3.4. 1If condition (sup Y) holds with 3¢ 5(») = 36(»), then the rs(y) in the theorem do
not depend on ¢ and the decisions p* := p, s are LD efficient.

Remark 3.5. As with condition (Y), in applications it is more convenient to deal with a
logarithmic form of condition (sup Y). Specifically, defining =,¢ and ®7(a) as in Remark
2.2, let us introduce condition (sup Y'):

(sup Y') there exist statistics Y,: Q, — %/ with values in a metric space 7/ with the Borel
o-field, functions Cg: 7/ — R, 0 € ©, and Lg5: 7/ — R, 6 € ©, 0>0, such that

(Y'.1) the sequence {#(Y,|P,), n =1} obeys the LDP with rate function 1(y), y € ¥/,

(sup Y'.2) for the uniform topology on R®, the functions {o = (Cps, 0 € ©): ¥/ — R®,
0>0, are Borel measurable and continuous at each point y such that
I(y) < 0;

(sup ¥".3) limy o lim, .. suppce PY/"(|1Z00 — Eos(Y,)| > &) = 0 for all £>0;

(sup Y'.4) lims_o Supgeo SUp yedj(a) |So.0(») — Co(¥)| = 0 for all a = 0.

Then condition (sup Y) is implied by condition (sup Y'). Similarly, condition (sup U) follows
from the condition

(sup U") lim 7 lim,, . suppee EY" exp (nZ,0)1(Z,0> H) = 0.

We henceforth refer to the decisions p, s as nearly LD efficient.
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4. Asymptotic LD risks and efficient decisions for hypothesis
testing and estimation problems

This section specifies the asymptotic minimax bound of Theorem 3.1 and (nearly) LD
efficient decisions for some typical statistical set-ups by considering hypothesis testing and
estimation with Bahadur-type criteria. We consider indicator loss functions, i.e.,

Wg(r) =1(r¢ 4g), rez,0€0,

where Ay are closed subsets of &7. Then the LD risk of a decision p, in the nth experiment
is

Ry(py) = sup P/, (pu & Ap).
0cO
For applications, it is convenient to introduce the logarithmic risk

Ru(pn) = sup log Pog(pn & Ag). 4.1)

Accordingly, we consider the logarithm of the lower bound R*:

R'* = sup inf sup (Cyp —Ie(Co)),
tocRe €Y 9c@:49Fr

where Ig({o) = —log Ve(ze) for zg = (exp (Cy), 0 € O), Lo = (§p, 6 € ©). Theorem 3.1
then yields the following result.

Theorem 4.1. Assume that the Ag, 0 € O, are compact. If the sequence {#,, n = 1} obeys
the LDP then

lim 1nf Riy(pa) = R'™.

n—00 Pn€Sn

Let us assume now that the sequence {#,, n = 1} is dominated and conditions (Y') and
(U’) hold. According to Remark 2.2 and Theorem 3.1, we then have that

R™ =sup inf sup (o(y) — 1(»)). (4.2)
yey/ "€ 9c®O: 4o Fr

Similarly, subproblems (Q) and (Qs) of Section 3 take the form
Q) 0"(y) = inf LS L. ye,

€O: AgFr
and
(Q5) Q5(y)=inf sup Gps(y), yev.
r€Y 9e®: AgFr
Obviously,

R™ = sup (0"(») — 1(»)).
yey/
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Let the infimum in (Qg) be attained at some point r5(y) which is the case, e.g., if the Ay,
0 € ©, are compact. We denote p, s = rs5(Y,).

Combining Theorem 4.1 and Theorem 3.2, and taking into account Remarks 2.2 and 3.5,
we obtain the following theorem.

Theorem 4.2. Assume that {4 ,, P,, n=1} is a dominated sequence of statistical
experiments and the Ag, 0 € ©, are compact.

1. If conditions (Y') and (U") hold then
lim inf R(p,) = R'™.

n—00 Pn€Sn

2. Let the functions ry, 0 >0, which map %/ into &, be Borel measurable. If conditions
(sup Y') and (sup U') hold then
lim hm Ry(pho) = lim lim Ry(pho) = R"™.

so that
lim inf R,(p,) = R'".

n—o0 p,E72,

4.1. Hypothesis testing

Let ©®p and ®; be non-intersecting subsets of the parameter set ®: ©y C O, ©; C O,
®)NO; =J. We want to test the hypothesis Hy: 0 € O, versus the alternative H;: 6 € ©.
The decision space & consists of two points: & = {0, 1}. We endow it with the discrete
topology and, for any decision (test) p, we treat the event {p =0} (or {p =1}) as
accepting (or rejecting) the null hypothesis.
An associated loss function Wy(r) is the indicator of the wrong choice:

Wg(r) = 1(0¢ ®r)5 r= 07 13 (43)
and the logarithmic risk R'(p,) of a decision p, in (4.1) takes the form

R, (pn) = max { sup —log Pro(pn = 1), v 10g Pro(pn = 0)} (4.4)
96.0 Oe
Denoting the corresponding asymptotic minimax risk R'* by 7™, we have by (4.2) that
T* = sup min (sup (So(y) — 1(»)), sup (Co(y) = 1(y)} (4.5)
yey 6O Oe

For what follows, it is more convenient to use another representation for 7%,

T = sup S0,86, (4.6)
6€0,0'cO,
where
S(0, 0") = sup min {&o(») — 1(»), Eor(¥) — I(M)}. 4.7)

ey
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Next, subproblem (Qj) for this case is
T5(y) = min sup Cp,(y), yey.

0€O,_,

It has the solution
r3(¥) = 1(sup &os(») < sup Los(»)).
0O, 6O,
which leads us to tests of the form

Pro = 10sup Cos(Y,) < sup Lyo(Yn)). 4.8)
0€©y 0O,

In the case of two simple hypotheses 6y and 6, the tests reduce to a regularization of the
Neyman—Pearson test:

pz,-,é = 1(@90,6(}]”) < §91,6(Yn))~

Applying Theorem 4.2, we obtain the following theorem.

Theorem 4.3. Let Oy and ©, be non-intersecting subsets of ©. If a sequence of dominated
experiments {& ,, P,, n = 1} satisfies conditions (Y") and U') then

lim inf R? w(on) =

n—00 Pn€F#n

If conditions (sup Y') and (sup U") hold then
lim inf RT 2(Pn) =

n—00 p, €A,

and the tests pid are nearly LD efficient:

lim lim RT(p 8= 11m lim R (p o) = T*.

0—0 n—oo 0—0 n—oo

4.2. Parameter estimation

Let © be a subset of a normed space .%# with norm ||-|. We are interested in estimating a
parameter 0 under the Bahadur-type loss function
Wo(r) = 1(||r — 6] >¢) (4.9)

for a given positive ¢. The logarithmic risk of an estimator p, is
RE(py) = sup 10g Poo(llpn — 0] > o). (4.10)

We assume that the decision space &/ is either a compact subset of .7 with the induced
topology or a closed convex subset of .7 with the weak topology; in the latter case, .7 is
assumed to be a reflexive Banach space. For both cases, the functions Wy, 0 € O, are level-
compact on .
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In this set-up, we denote the asymptotic minimax risk R’™ from (4.2) by E*:

E* = sup inf  sup  (Go(») — 1(y)), (4.11)
ye¥ €Y 9co:|r—0|>c

and the corresponding subproblem (Qj) is

(Es) Es(y) = inf,e supgee:|r—o| > Go.0(), yev.
We next describe solutions to (Es). Consider a real-valued function f(6), 8 € ©, and let

A(h) = {0 € ©: f(0)> h}, heR, (4.12)
r(h) = inf sup ||r— 6|, heR, (4.13)
€Y 9 A(h)

he. = inf (h: r(h) < ¢).

We assume that 4. <oo (e.g., f(0) is bounded). Note that, for both definitions of &7, the
infimum in (4.13) is attained since the functions » — |7 — 0| from & to R, are level-
compact for all § € ©.

Lemma 4.1. The set D. = {r € &: supge . ||r — 0|| < ¢} is non-empty and consists of all
re € & at which inf,co, SUpgeg.|,—g|>c f(0) is attained. Also the latter infimum equals he.

Proof. Since the function (r, ) — suppecn || — 0| is decreasing in % and level-compact in

r € &, the function r(h) is decreasing and right-continuous. Hence, r(%.) < ¢ and, since

inf,co supgean,) |7 — 6| = (h.) and the infimum is attained, the set D, is non-empty.
Now let 7. € D,. By definition, |7, — 0| < ¢ for all 6 € © such that f(0) > h.. Hence,

sup  f(0) < he. (4.14)
0€O:||r.—0||>c

On the other hand, if A<<h., then r(h)>c, which implies that, for every r € &,
supgecn ||# — 0] > ¢ or, equivalently, there exists @ such that f(6)>h and ||r — 6]|>c so
that inf,eo Supgee:|,—g|>f(0) = h. Since h is arbitrarily close to 4., we conclude that

inf sup  f(0) = h,

"€ 9| r—0|>c

which by (4.14) proves that inf,co supyce.|,—g|>c.f(0) = hc and r. delivers the infimum.
Finally, if » ¢ D, then supge 4n,)||r — 6| > ¢, i.e., there exists 6 such that ||r — || > ¢ and
f(0)> he, which yields the inequality supgce.|,—g|>c.f(0) > he. O

Remark 4.1. Informally, r(#) is the smallest radius of the balls that contain all the 8 with
f(0)>h, and h, is the lowest level A for which there exists a ball of radius ¢ with this
property. The lemma states, in particular, that 4. is the infimum over all the balls of radius ¢
of the largest values of f(0) outside the balls. For a one-dimensional parameter 60, the
construction in the lemma chooses the largest level set of the function f contained in an
interval of length 2¢, and the r. are the centres of the intervals.
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Let r.(f) denote an element of the set D, in the lemma and, taking f(6) = Cgs(»), let
rgc(y) = r(8os(»)). We assume that the functions rgc(y): Y — & are Borel measurable.
We can then define the estimators

Pro = Toc(Yn)- (4.15)

Motivated by Remark 4.1, we call these estimators interval-median.
A version of Theorem 4.2 for this case is the following.

Theorem 4.4. Assume that either % is a normed space and & is its compact subset with the
induced topology, or % is a reflexive Banach space and & is its closed convex subset with
the weak topology. Let © C .%. If a sequence of dominated experiments {& ,, P,, n = 1}
satisfies conditions (Y') and (U") then

lim inf RE(pn)

n—00 Pn€Fn
If conditions (sup Y') and (sup U") hold then
lim 1nf RE(pn)—E*

n—00 p,E 7y
and the interval-median estimators pn 5= r(S (Y,) are nearly LD eﬁ‘icienl:
lim lim RE(pna) = hm hm RE(pné) =

0—0 n—

Remark 4.2. 1f .77 is a separable reflexive Banach space then the Borel o-fields for the strong
and weak topologies coincide, hence the condition of measurability of r(‘f’c does not depend
on which topology on . has been chosen.

4.3. Estimation of linear functionals

Let © be a subset of a vector space and L(-) a linear functional on the vector space. Consider
the problem of estimating L(0). We take & = R, the real line. As above, we consider
Bahadur-type criteria: the loss function is

Wo(r)=1(Ir — LO)| >c),  0€©,reR,

where ¢ >0 is fixed, and the risk of an estimator p, is given by
R%PM)mmeﬂww) (4.16)

The asymptotic minimax lower bound R'* assumes the form

F* = sup inf sup (Co(y) — 1(y)), (4.17)
yeY €Y 9c@:|r—L(0)|>c

and subproblem (Qj) becomes

(Fs) Fs(y) = inf,co supgee:|—1o)>c Go.0(1), ye .
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Associated solutions r5(y) can be constructed along the same lines as for the parameter
estimation problem. Specifically, fixing y and J, let us denote f(6) = Cps(y) and, for h € R
and A(#) from (4.12), denote by L o A(h) the image of A(%) on the real line for the mapping
L:

Lo A(h) = {L(0): 0 € A(h)}.
Let B(h) be the smallest closed interval in R containing L o A(%). Furthermore, denoting by
d(B(h)) the length of B(h), set

he = inf {h: d(B(h)) < 2c}.

Finally, consider the intervals B, ; of length 2¢ that contain B(k. ;) (note that d(B(h. 1)) <
2c), and let D, ; be the set of the centres of all such intervals. The argument of the proof of
Lemma 4.1 yields the following lemma.

Lemma 4.2. The set D.; is non-empty and consists of all r., €2 at which
inf,co supgpee:|r—r1(9) > f(0) is attained. Also, the latter infimum equals h.,.

To emphasize dependence on f, let us denote the elements of D, ; by r. .(f). By the lemma,
rg L) = re1(Cos(y)) solves (Fy). Assuming that the r(‘; (») are Borel functions from %/
into R, we introduce the estimators p,‘z s of L(0) by

phs = rei(Gos(Ya)), (4.18)

and call them also interval-median. Applying Theorem 4.2, we obtain the following result.

Theorem 4.5. If a sequence of dominated experiments {# ,, P,, n = 1} satisfies conditions
(Y") and (U') then

lim inf RE(p,) = F*.
n p

n—o0 Pn€ERn
If conditions (sup Y') and (sup U'") hold then
lim inf Rf(p,) = F*,

=00 p, €/
and the interval-median estimators pf s = e..(Co,6(Yn)) are nearly LD efficient:
im lim RY(pf ) = (lsim lim RY(pF ) = F*.
: 0 .

1
0—0 n—oo

We conclude the section by giving a more explicit representation for F*.

Lemma 4.3. Under the above notation and conditions,

F* - Sup S(Gs 0’)7
0,0":|L(O—0")|>2c¢

where S(0, ') is defined by (4.7).
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Proof. We fix y € 2/ with I(y) <oo, set f(0) = {o(y) and define h.; as above. We show
that
hep = sup min {/(6), /(0")}.
6.0":| L(6—6")| > 2¢
By (4.17) and Lemma 4.2, this implies the claim.

Since d(B(h)) < 2c¢ for h> h. 1, we have that if 6, 8’ € © are such that |L(6 — 6")| > 2¢
then min (f(0), f(0")) < h. . Conversely, if h<<h. then d(B(h))>2c, hence there exist
0, 6" € © such that L(0 — 8')>2c and f(0)> h, f(6")> h, which, by the arbitrariness of
h<h.; completes the proof. O

Remark 4.3. The latter case of functional estimation includes the case of the estimation of a
one-dimensional parameter 6 if we take L(0) = 0, so the result of Lemma 4.3 can be used for
evaluating E* from (4.11) too.

5. Statistical applications

In this section, we go back to the statistical models introduced in Section 2 and apply to them
the general results of Sections 3 and 4. We first verify the LDP for the models by checking
conditions (Y') and (U"). This is done under weaker assumptions than in Section 2. After that
we give conditions that imply (sup Y') and (sup U’). Next, considering certain hypothesis
testing and estimation problems for the models, we calculate the asymptotic minimax risks
and indicate (nearly) LD efficient decisions.

Each of the subsections below uses its own notation. We mention it if different subsections
reuse certain symbols for the same objects. For the reader’s convenience, we repeat the main
points of the analysis of the models in Section 2 and recall the models themselves. Also, we
implicitly assume that the functions we choose as estimators are properly measurable.

5.1. Gaussian observations

We observe a sample of » independent real-valued random variables X, = (X1, ..., Xn.n)
normally distributed as ./7(0,1), 6 € ® C R. For this model, Q,=R" and P,p =
7@, 1))", 0 € ©. We take P, as a dominating measure P,. Then

1

P, 1 1 2)
—1 ~(X) =— X, —=0 X=WX, ..., X R".
n Og dPn( ) n;( k 2 > ( 1, s I’l)e

Thus, it is natural to take

1 n
V== Xew 0=l
Ly
so that
1. dPy 1,
S0 =—log = "0(X,)=0Y, —~0
0 P, (X») 5
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Then {£(Y,|P,), n = 1} obeys the LDP in R with rate function IV (y) = y%/2, y € R (see,
e.g., Freidlin and Wentzell, 1979). This verifies condition (Y'.1).
We next take

Eo(2) = Easl) = Oy — 56" 5.1

Conditions (Y'.2)—(Y"'.4) are then obvious. Condition (U") follows by Chebyshev’s inequality
since
EY" exp (nE,0) (B9 > H) < ¢ "EY/" exp(2nZ,9) — ¢ e

By Remark 2.2, the sequence {#,, n =1} obeys the LDP. Moreover, condition (sup ¥)
trivially holds. If, in addition, ® is bounded, it readily follows that condition (sup U’) is met
as well.

We now turn to hypothesis testing and estimation problems and begin with calculating,
for 6, 6’ € O, the value of the function S(0, 0") from (4.7).

Lemma 5.1. For all 6, ' € ©,

: : N N 0-0)
80, 0) := Sugmln{ée(y) — O L) =T} = =5
ye

Proof. By (5.1) and the definition of IV, Co(y) — I(y) = —(y — 6)*/2, so

{_@—@2_w—0¥}_w—0¥
2 2 ) 8

S0, 8") = supmin
yeR

5.1.1. Testing 6 =0 versus |6] = 2¢

Assume that ® contains 0 as an internal point. We test the simple hypothesis Hy: 0 =0
versus the two-sided alternative H;: |#] = 2¢ with some ¢>0 such that the interval
[—2c, 2¢] is contained in ©. The logarithmic risk of a test p, is given by (see (4.4))

1 1
RZ(Pn) = max ¢ — 10g Pn,O(,Dn = 1), — Sup IOg Pn,@(pn = 0) :
n n |o|=2¢
Now, using (4.6) with @y = {0} and ©; = {6 € ©: || = 2¢} and Lemma 5.1, we readily
obtain

CZ

T = sup S(0,0")=——.
0'>2¢ 2

Next, by Theorem 4.3 and Remark 3.4, LD efficient tests pg can be taken in the form

pr = 1(sup &o(Yn)>Co(Yy)) = 1<sup (OYn —%2) >0> = 1(|Ya] > 0).

|0]=2¢ 10|=2¢
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Applying Theorem 4.3 and Remark 3.4, we arrive at the following result.

Proposition 5.1. Let [—2¢, 2¢] C ©O. Then

S}

lim inf R7(p,) = — 5.
n—oo Pn 2
If © is bounded then
T c?
lim inf R (p,) = ——,
Jim inf R on) = =5
and the tests p! are LD efficient:
2
c

lim R}(p}) = ——
n—oo

5.1.2. Parameter estimation

We now consider the problem of estimating the parameter 6. We take the real line as a
decision space &/. Recall (see (4.10)) that, for a given ¢ >0, the risk of an estimator p, is
defined by

1
Rf(p,,) = sup— log P, o(|pn — 0] > ¢).
ECRA

In view of Remark 4.3, the asymptotic minimax risk E* is given by Lemma 4.3:

E¥ = sup S, 6.
0,0'cO:/6—6'| >2¢
Lemma 5.1 implies that if © contains an interval of length greater than 2c¢, then E* =
—c?/2. An application of Theorem 4.4 and Remark 3.4 yields the following result.

Proposition 5.2. Let © contain an interval of length greater than 2c. Then

E c?
lim inf R =
Lm inf R, (pn) = =5

If © is bounded then

2
lim inf RE(p,) = — —

n—o0 P, 27

and the interval-median estimators pf = r.(Co(Y,)) (see Section 4.2) are LD efficient:
. E, E C2
im R = =7
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Remark 5.1. 1t is easy to see that the estimator pf = r.(§,(Y,)) coincides with Y, if
Y,—c€® and Y, + ¢ € O. Direct calculations show that the estimators p, = Y, are also
LD efficient, i.e., lim, RZ(p,) = —c?/2. The latter estimator is of simpler structure and does
not depend on either ¢ or ©. However, the p£ seem to perform better at points outside or
close to the boundary of ®. In particular, if Y, ¢ © then p, ¢ ©, whereas, for © convex, pf
always belongs to ©.

5.2. An independent and identically distributed sample

We observe an independent and identically distributed sample X, = (X1, ..., X ) from a
distribution Py, 6 € ©, on the real line. We assume that the family & = {Py, 6 € O} is
dominated by a probability measure P, i.e., Py < P, 6 € ©. This model is described by
dominated experiments &, = (R, .7 n; Pug, 0 € ©) with Q, =R", .7, = Z(R"), Pnp =
Py, 0 €0, and P, = P".

Assume that the family & satisfies the following regularity conditions:

(R.1) the densities dPy/dP(x), 8 € O, are continuous and positive functions of x € R;
(R2) [r((dPy/dP)(x))’ P(dx)<oc, 8 € ©, for all y € R.
We have that
dPng i 1 dPg dPO

I X)=S “log —2(Xi) = | log =2 (x)F,(dx),
LX) = > og G (X = | 1og GHA

Enﬁ = log
n

where

F.(x) = % 1(Xkp=<x), x€R, 5.2)
k=1
are empirical distribution functions.

We take the latter as statistics Y, in condition (Y). The underlying space %/ is the space
of cumulative distribution functions on R which we denote by .7 and endow with the
topology of weak convergence of associated probability measures. By Sanov’s theorem
(Sanov 1957; Deuschel and Stroock 1989, Section 3.2.17), the sequence { Z(Y,|P,), n = 1}
obeys the LDP with rate function I5(F)= K(F, P), F €.7, where K(F, P) is the
Kullback—Leibler information:

dr dr .
K(F, P) = JRE(X) log @(x)P(dx), if F <P, (5.3)

00, otherwise.

This checks condition (Y'.1). The verification of the rest of condition (Y") is more intricate
than in the previous example.
Denote for 0 € ©, x € R and 6 >0,
dP,
Ly(x) = log T;(x)’
Los(x) = Lo(x) A0~ V(=071
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and let
Coo(F) = J Los(x)F(dx),  Fe7.
R

By (R.1), the functions g, are continuous on .7, so (Y'.2) holds.
We now check (Y'.3). Condition (R.2) implies that, for all y >0,

lim jR[exp (7|Zo(x) — Los()]) — 11P(dx) = 0. (5.4)
Then, for y >0, ¢ >0, with the use of Chebyshev’s inequality,

P20 — Eop(Fy)| >e) < PL/" (JRLe(x) — Lpo(x)| Fp(dx) > e)
< exp (—ye)E}/"exp (”VJR|L0(X) —~ Le,é(x)Fn(dx))

= exp (—ye)JR exp (7| Lo(x) — Loo(0)) P(d).

By (5.4), it then follows that

lim Tim PY/"(|Z,9 — Cos(Fu)| > €) < exp (—ye).

0—0 n—oo

Since y is arbitrary, (¥'.3) follows.
We next check (Y'.4) with

Lo(x)F(dx if IS(F)<

CO(F) — J[R H(X) ( )s 1 ( ) oo, (55)
0, otherwise.

To begin, we show that the y are well defined. Since the functions xlogx —x + 1 and

expx — 1 are convex conjugates (Rockafellar 1970), by the Young—Fenchel inequality
(Rockafellar 1970; Krasnoselskii and Rutickii 1961), for F < P,

I

d
L) )

P(dv) = JR[exp(ILe(x)l) 1P
dF dF dF
+ JR (dP (x)log P (x) — 1P (x) + 1) P(dx)

_ apy, \ s
<1+ JR (@ (x)) P(dx) + I5(F).

In view of (R.2), this proves that the (y are well defined.
Now, for F with I5(F)<oo, we have, for y >0, using the Young—Fenchel inequality
again,
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YIEas — Lo(F)| < JRV|L0,5(X) L) F(dx)
< jR[exp (| Los(x) — Lo()]) — 11P(dv)
d d d
+ JR <d—£ (x)log d—i(x) — %(x) + 1) P(dx)

- jR[exp (Y Los(x) — Lo())) — 11P(dx) + I5(F).

Hence, by (5.4)
_ a
lim sup [Gpo(F) — Co(F)| < —,
0-0 Fedis(a) Y
and letting y — oo, we arrive at (Y'.4). Remark 2.2 then implies that the the LDP holds for
{'—%;(En,®|Pn)a n = 1}
It remains to check (U"). Using Chebyshev’s inequality once again, we obtain, for H >0,

El/"exp (n5,0) (5,9 > H) < exp(— H)E!/" exp (2nZ,.9)

d 2
— exp (—H)JR (dff (x)) P(dx),

and the result follows by condition (R.2).
Conditions (Y') and (U’) have been verified, and thus the LDP holds.

Remark 5.2. 1t is possible to do without condition (R.1). Then the functions Lgs =
(Los(x), x € R), 6 >0, 6 € O, should be chosen bounded, continuous and so that (5.4) holds.
The existence of such functions follows from (R.2).

To check (sup Y') and (sup U’), we assume that stronger versions of conditions (R.1) and
(R.2) hold:

(sup R.1) the functions (dPy/dP)(x), O € ©, are positive and equicontinuous at each
xeR;
(sup R.2) supgeo [r((dPy/dP)(x))’ P(dx) < oo, for all y € R.

Defining Cy, Cps, Lo and Lgs as above, we have, by (sup R.2), that for all y >0
lim supj [exp (y|Lo(x) — Lgs)|) — 11P(dx) = 0.
0—0gco JR

The latter equality enables us to check conditions (sup ¥’.3) and (sup Y'.4) in the same way
as conditions (Y'.3) and (Y'.4). Condition (sup U’) is also checked analogously to condition
(U"), with the use of (sup R.2). Condition (Y'.1) has already been checked.

It remains to check (supY’.2). We show that the functions (§ps(F), 6 € ©) are
continuous in F for the uniform topology on IR? which obviously implies (sup Y'.2). Since



240 A. Puhalskii and V. Spokoiny

the weak topology on .7 is metrizable, it is enough to check sequential continuity. Let F
weakly converge to F as n — oo. Then the definition of the Lys, and (sup R.1) imply that
the Lgs(x), 6 € O, for 6 fixed, are uniformly bounded and equicontinuous at each x € R so
that (see, e.g., Billingsley 1968, Problem 8, Section 2)

sup — 0

j Loo()F(dx) —j Loo () F(dx)
0cO |JR R

verifying (sup Y'.2). Conditions (sup Y') and (sup U') have been checked.
We now proceed to considering concrete statistical problems for the model. For this we
need the following result by Chernoff (1952); see also Kullback (1959).

Lemma 5.2. Let & be the space of probability measures on a Polish space E with the Borel
o-field, and let measures B Q € &’ be dominated by a measure u and have respective
densities p(x) and q(x). Then

}nt;)max {K(F, P), K(F, Q)} = C(P, Q),
=
where K(F, P) is the Kullback—Leibler information (5.3) and C(P, Q) is Chernoff’s function:

C(P, Q)= — inf log LPV(X)ql_y(X)ﬂ(dX)-

We next apply Lemma 5.2 to calculating the function S(6, 6') from (4.7).

Lemma 5.3. For 6, 6’ € ©,
S(0, 6') := sup min {Ey(F) — I°(F), Eg(F) — I°(F)} = —C(Py, Py).

Fer

Proof. Let I5(F)<oo. Then F < P and, since the densities d Py /dP(x), 6 € O, are positive,
we also have that F < Py and P-almost surely

dF _ dF dpy
dP  dPydP’
Therefore, by the definitions of y, and I8,

d d
) = 1) = | tog G @F@n) — | 1og 5 Fa

dF
=—| log—F =—K(F, P
| 10e 35 @0 = —kcr. P,

and the result follows by Lemma 5.2. Ul

We now give an application to hypothesis testing problems. Consider the tests from (4.8):

pls = 1(sup Eps(Fy) < sup Eos(Fy)).
0€Oy 00,
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As above, the risk R7(p,) of a test p, is defined by (4.4). By (4.6) and Lemma 5.3,

T* =— inf C(Py, Py),
96@0,0’6@1

so Theorem 4.3 yields the following.

Proposition 5.3. Let © and ©, be non-intersecting subsets of ©. If conditions (R.1) and
(R.2) hold then

lim inf RI(p,) = — inf  C(Py, Pp).

n—oo Pn 0€0,,0'cO,

If conditions (sup R.1) and (sup R.2) hold then
lim inf Rl(p,) = — inf  C(Py, Py),
nerolo 1/?,, n(Pn) ee@)lgl,lo'e@, (Po, Por)

and the tests p! , are nearly LD efficient, i.e.,

lim lim R (p,,5) = lim lim R, (p, )
- —VY n—oo

= — inf C(Pg, ng).
0€0,,0'cO,

In a similar manner one can tackle estimation problems for 6 or linear functionals of 6.

5.3.‘Signal plus white noise’

We observe a real-valued stochastic process X, = (X,(¢), ¢t € [0, 1]) obeying the stochastic
differential equation

dX, (1) =0(Hdt + L dw(e), 0=sr=<1|, (5.6)
Vn
where W = (W(¢t), t € [0, 1]) is a standard Wiener process and 6(-) is an unknown
continuous function.

This model is described by statistical experiments &, = (Q2,,.7 »; Pug, 0 € ©), where
Q, = C[0, 1], the space of continuous functions on [0, 1] with the uniform metric,
® C ([0, 1] and P,y is the distribution of X, on C[0, 1] for 8. We take P, = P,p, where
P,o corresponds to the zero function 6(:) =0. Then P,p < P, and, moreover, by
Girsanov’s formula, P,-almost surely,

_ 1. dP,e ! 1t
E,9=—log —(X,) = | 6()dX,(1) —= | 6°(r)dt. 5.7
n dPn 0 2 0
So, to check condition (Y'), we take ¥, = X, and %/ = C[0, 1].
Let Cy[0, 1] be the subset of C[0, 1] of the functions x(-) that are absolutely continuous
with respect to Lebesgue measure and equal to 0 at 0. Since the sequence {Z(X,|P,),
n =1} obeys the LDP in C[0, 1] with rate function
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I :
Py — 3], G0 it s € colo. 1) 58
0, otherwise,
where x(#) denotes the derivative of x(-) € C[0, 1] at ¢ (see, e.g., Freidlin and Wentzell,

1979), condition (Y'.1) holds.
We next take

1
Eos(x() —j B(1) dx(1) ——J B(ndi,  x() e Clo, 11, (5.9
where
[1/0]
05() = 3 O(kO)(1 € [kS, (k+1d), 1[0, 1], (5.10)
k=0

the first integral on the right of (5.9) being understood as a finite sum.
By the continuity of 6(-),

1
lim L(e(z) — 05(£))*dt = 0. (5.11)

The &y are obviously continuous in x(-) € C[0, 1], so (Y'.2) holds. Next, by (5.7) and (5.9),
we have, for £>0 and y >0, in view of Chebyshev’s inequality,
. )

1
PU(E 00 — Los(X)| > ) < PV <U0(6<t) - eam)% (o)

2 1
< 2e 7 exp ( J (6(1) — 05(1))? dt)

and by (5.11)
lim im PY"(1Z,0 — Sos(Xa)| > €) < 2exp(—ye),

0—0 n—o0

which proves (Y'.3) by the arbitrariness of y.
For condition (Y'.4), we take

Ea(x()) = J O()x(r)dt — —J 0’ (nds,  if 1" (x(-)) < oo,

0, otherwise.

The Cy are well defined, since, by the Cauchy—Schwarz inequality and (5.8), if x(-) is
absolutely continuous then

1 1 172
J |0()x(1)| dt < (J 02(t)dt> Q1" (x()))'2.
0 0
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Moreover, if 1" (x(-)) <oo then

1
|80,6(x()) — Lo(x()| < J |05() — 6()] |x(1)] dz

0

X 12, 12
< (J (1) 0(r)>2dr> (J G dr) ,
0 0

SO

X 1/2
sup  [Gos(x() — Co(x()| < (2a)'? <J0(9cs(l) - 9(t))2dt> ,

x()EP;w (a)

and the latter goes to 0 as 0 — 0 by (5.11). Condition (Y") has been verified.
It remains to check (U’). Using the model equation (5.6), (5.7) and Chebyshev’s
inequality once again, we have that

EY"exp (nZ,0)1(E,0> H) < exp(— H)EY/" exp (2nZ,4)

1
=exp(—H)exp (J 0%(1) dt) —0 as H — oo,
0
verifying condition (U").

Remark 5.3. The condition of continuity of the functions 6(-) can be weakened to the
condition

1
J 6%(1)dt < co.
0
The functions 65 should then be chosen as step functions for which (5.11) holds.

For conditions (sup Y') and (sup U’), we require that the functions 6(-) belong to a
compact set in C[0, 1]. More specifically, for fixed g€ (0,1], M>0 and K>0, we
introduce the Holder class

(B, M) = {6(): |0(1) — 6(s)| < M|t — s|P, for all 5, ¢ € [0, 1]}, (5.12)

define ¢ (B, M) to be the subset of (8, M) of functions 6 such that sup,co,1) |6(¢)| < K and
assume that @ C Zg (3, M). By the Arzela—Ascoli theorem, the set (3, M) is compact in
C[0, 1]. Also

1

sup J 6(£)dr < oo (5.13)
0()exk(B,M) JO

and

1
lim  sup J (6(1) — 05(1))* dr = 0. (5.14)
0—=0 g ye=x (B, M) Jo
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Now conditions (sup Y'.3) and (sup Y'.4) are checked as conditions (Y’'.3) and (Y'.4),
respectively, with the use of (5.14) in place of (5.11). Condition (sup Y'.2) follows by the
uniform boundedness of functions from (B, M), which implies that x(-) — (§g5(x(-)),
0 € Zx(B, M)) is a continuous map from C[0, 1] into [R{? with the uniform topology.
Finally, condition (sup U") follows in analogy with condition (U") with the use of (5.13).
This completes verification of conditions (sup Y') and (sup U").
We now calculate the function S(0, 6’) for the model.

Lemma 5.4. For all 0, 6’ € C[0, 1],
S0, 6):= sup min{Ee(x(-)) — I" (x("), Lor(x(-)) — I (x(-))}

x(1)eC[0,1]

1
— JJ [6(6) — 0'(0)]* dt.
8Jo

Proof. Since by the definitions of I and g, for x(-) with " (x(})) < oo,

1
o)~ 1" ) = =5 | )~ 00 .
0

we obtain, by the inequality max (a?, b*) = (a — b)*/4,

1! 1!
S, 6')=— inf max {EL[}C(r)—B(r)]ZdI,EJO[X(t)—H’(t)]Zdt}

x()eC[0,1]

1
< 1J [6(1) — 0'(£)]? dt.

\—go

On the other hand, for x(-) with x(¢) = [0(¢) + 0'(?)]/2, we have that
1! 1! 1!
3 | o - owp ar=3 [ o - oo =g | oo - oo ar
2)o 2o 8Jo
and the result follows. O

Now we apply these formulae and the general results from Section 4 to two statistical
problems concerning the value of the function 6(-) at an internal point 7, of [0, 1].

5.3.1. Testing 0(to) = 0 versus |0(ty)| = 2¢

Given ¢ >0, denote Oy = {6 € O: (1)) =0}, O, = {0 € O: |6(ty)| = 2c} and define the
risk RT(p,) of a test p, by (4.4). Introduce

= (c/M)'P. (5.15)
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Proposition 5.4. Let ¢, B, M, K and ty be such that [ty — t*, to + t*]1 C [0, 1] and K = 2c.
If © =2(8, M) then

282 c? c\P
lim inf RI(p,) = ———"——— [ — .
s R0 = = s+ (M)
If © =Zk(B8, M) then
2522 c\ /A
lim inf R7(p,) = — (=] ,
I IDE R () (ﬁ+1)(2ﬂ+1)<M>
and the tests pié from (4.8) are nearly LD efficient, i.e.,
o 2822 c\ VA
lim lim RT(pT ) = lim lim RI(pT )= —— " — [~} .
611;% n1~>nolo n(pn,é) (311(1),/%0 n(pn,()) (ﬁ+ 1)(2ﬁ+ 1) M

Proof. By Theorem 4.3, we need only to calculate 7* from (4.6). Denote

0% (1) = [c — M|t — 1|°T", (5.16)
where a* = max (a, 0). If 6 € © and 0’ € O, then the inequality |6(#) — 6'(#p)| = 2¢ and
the Holder constraints (5.12) imply that |0(r) — 0'(£)] = 2[c — M|t — t|f1" = 267 (¢), and
hence

1 1
J O(1) — 0'(1))* dt = J 4(0* (1)) dt.
0 0

This yields, by Lemma 5.4,

*

50, 0" < —14J1(e*(t))2 dr = —Jl (c — M%) dt
’ 8 0 0

2% ¢? e\ P
T BB+ (ﬁ> '
On the other hand, evidently, ¢—0* € ®), c+0*c®, and S(c—0*, c+0%) =
—L[1(6*(1))*dt so that

2ﬁ2c2 c 1/
"= sup S0 :——<—> ,
e o SO = hes =\

and the proof is complete. ]

5.3.2. Estimating 0(ty)

Treating 6(ty) as a linear functional of 6(-), we define the risk of an estimator p, of 6(#y) by

1
RE(p,) = sup — log P,g(|p. — (1) > ©).
pcO N
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Proposition 5.5. Let ¢, B, M, K and ty be such that [ty — t*, ty + t*] C [0, 1] and K >c. If
© = X(, M) then

282 c\ VA
lim inf R (p,) = —————— (=) .
e T S Ve ) (M)
If © =Zk(B8, M) then
o 2522 c\ VP
lim inf RY =———|— s
m inf R, (on) (,3+1)(2ﬂ+1)<M>
and the interval-median estimators pi 5 from (4.18) are nearly LD efficient, i.e.,
R o 2822 c\ VA
lim lim RI(pf ) = lim lim R (pf )= ———""—— (=] .
611% ninolo n(pn,é) (311(1),/%0 n(pn,()) (ﬁ + 1)(2ﬁ + 1) M
Proof. By Theorem 4.5 and Lemma 4.3,
lim inf RE(p,) = F* = sup S, 6").
n—oo Pn 0,0":10(t0)—0'(t0)| > 2¢

Repeating the above calculation for the testing problem, we obtain with 6*(7) from (5.16)
2822 1/
F* =5(6%, —-0") = ,L < ,
B+ D2+ 1)\ M

and we are done. O

Remark 5.4. The latter problem has been studied by Korostelev (1996), who suggests
different upper estimators, namely, the kernel estimators

P = JK(to X,

with the kernel K(f)=[(8+ 1)/Q2cB)(M/c)'/lc — M|t — ty|]]*. These estimators have
proved to be asymptotically efficient in the sense that RZ (pn) — F* as n — oo.

5.4. Gaussian regression

We consider the regression model

k
Xk,nza(tk,n)+§k,n> tk,n = k= 1’ BRI () (517)
n

where errors &, are independent standard normal and 6(-) is an unknown continuous
function.

In this model, Q, =R", ® C C[0, 1] and P,y is the distribution of X, = (X1, --.,
Xn.n) for 0(-). As above, we take P, = P,o. Then
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_ 1 1 dP,g
E,.9=—1lo
0 =7 g ap,

(Xn)
lenja(tk )Xk —LG:y(tk )
4 ’ T 2ni ’

1 1 & 5
o G C U SOt (5.18)

where
[n1]
Xu(t) == Xpn, 0<t<1.
ni3

This prompts taking the process X, = (X,(¢), t € [0, 1]) as a statistic Y, in condition (Y").
We define %/ to be the space of right-continuous functions on [0, 1] with left-hand limits and
with the uniform metric.
Since the Xy, are distributed as ./7(0, 1) under P,, the sequence {(X,|P,), n= 1}
obeys the LDP with 77 from (5.8) (Mogulskii 1976). This verifies condition (Y'.1).
Next, we define {gs(x(-)) as in Section 5.3, i.e.,

1 1 1
o) = [ (0~ 5 | B0t xr € 7, (5.19)

0 0
with 05(7) as in (5.10). Note that the {g s are measurable with respect to the Borel o-field on
7/ and continuous at x(-) with I"(x(-)) = co since they are continuous at continuous
functions and 1" (x(-)) = co when x(-) is not absolutely continuous. This verifies condition

(Y'.2).
Now, by (5.18) and (5.19),
>€/4>
>e/2>.

The first term on the right is zero for all » large enough by the continuity of 8(-). The second,
for y >0, is not greater than

1 n
PY (100 — Eoa(X)] > ) <1 ( | a2 > o/
k=1

1
+ P <U0(9(r> — 05(1) dX,(1)

1
e 72!/ " exp <n7/ JO(H(I) — 05(1) dX,(1)

) <2e¢7"?exp <§ En:(ﬁ(k/n) — 0,5(k/n))2>.
k=1

Since the 6(-) are continuous and the 6s(-) are step functions,
1 :
lim —> (O(k/n) — Os(k/m)* = J (0(1) — 0s(1)* dt,
n—00 past 0

and the latter goes to 0 as 0 — 0. Since vy is arbitrary, condition (Y'.3) follows.
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Conditions (Y'.4) and (U') are checked as for the ‘signal plus white noise’ model (with
the same choice of p).

Remark 5.5. As in the ‘signal plus white noise’ model, instead of continuity of 8(-), we could
require that it be square-integrable on [0, 1].

To obtain nearly LD efficient decisions, we assume that the 6(-) belong to the class
2x(B, M) defined above. Conditions (sup Y'.2), (sup Y'.3), (sup ¥Y'.4) and (sup U') are
checked as for the ‘signal plus white noise’ model if, in addition, we take into account that

1
lim  sup J (O([nt] + 1/n) — 6(1))* dt = 0.
=00 g(yezk(B.M) JO

Condition (sup Y'.2) is obvious.
Since here we have the same functions /" (x) and y(x) as for the ‘signal plus white
noise’ model, the statistical problems of Section 5.3 are solved in the same way.

5.5. Non-Gaussian regression

We consider the regression model (5.17) but now assume that independent and identically
distributed errors &, have a distribution P on the real line with a probability density
function p(x) with respect to Lebesgue measure. An unknown regression function 6(-) is
again assumed to be continuous, so ® C ([0, 1].

Next, we assume that the density p(x) obeys the following condition, cf. conditions (R.1)
and (R.2) for the model of an independent and identically distributed sample:

(P) the density p(x) is positive and continuous, and the function
()= | p70p! 79
R

is bounded over s from bounded domains for all y € R.

As above, for a regression function 6(-), we denote by P,y the distribution of X, =
(X1 --.s Xnn). We have, with P, = P,,

1 dPnH 1 p(Xk n G(k/n))
En =—1 - Xn = 1 - .
0= log “p=(Xo) n; S

As in the case of an independent and identically distributed sample, this representation
suggests taking for Y, the empirical process F, = F,(x, f), x € R, t € [0, 1], defined by
F,(x,0) =0 and

1 [n1]
Fo(x, 1) =;Z1(Xk,n < x), 0<r=<1. (5.20)
k=1
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Then

1
Eup= J J log Pa—00) . dr). (5.21)
’ 0Jr p(x)

We define %/ as the space of cumulative distribution functions F' = F(x, 1), x € R, ¢ € [0, 1],
on R X [0, 1] with the weak topology. Let 7/, be the subset of %/ of absolutely continuous
functions F(x, ¢) with respect to Lebesgue measure on R X [0, 1] and with densities p,(x)
satisfying the condition IR pi(x)dx =1, t € [0, 1]. As follows from Dembo and Zajic (1995)
or Theorem 1 of Puhalskii (1996), the sequence { %(F,|P,), n = 1} obeys the LDP in %/
with rate function ISX(F) given by

” log 2% ) ydvdr,  if Fe 2
X 7/
ISK(F) = oJr g () Dr ) ./0,
00, otherwise.
This verifies (Y'.1).
To define Gy s(F), introduce the functions

Lo(x, £) = log M,
p(x)
Loo(x, 1) = Lo(x, ) V(=0 )Y A0, xeR, €0, 1].

The functions Lgs are bounded, continuous and, in view of (P), satisfy the relations

1
tim | | fexptlLat. 0~ Lostx, D)~ Upodrdr =0, y>0.  (522)
—0 0JR

Ly (x, [nnt]> — Loy (x, [nnt]> D — 1] p(x)dxdt — 0 (5.23)

1

and, for every y >0,

1
m” exp [ 7
n—oQ OR

as 0 — 0. We set

Eao(F) = j

J Los(x, H)F(dx, do). (5.24)
0JR

Then condition (Y'.2) holds by the definition of the topology on %/ and choice of the Lg.
For condition (Y'.3), write, for y >0, using Chebyshev’s inequality, and (5.20), (5.21) and
(5.24),

1 -
; 10g Pn(":nﬁ - Cﬁ,é(Fn)| >€)

1 1
< —log P, (J J |Lo(x, t) — Lgs(x, t)|Fp(dx, dt) > 8)
n R

0

1 n
< <ye > log | exp(yILis k/m = Loat, k/mp(r)
k=1
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Limit (5.23) yields

lim lim — logP (1En0 — Cop(Fu)| >e) <

0—0 n—oo

which proves (Y'.3) since y is arbitrary.
For condition (Y'.4), we take

1
o 7SK
Eo(F) = LJRLe(x, NF(dx, dr),  if I*(F) <o,
0, otherwise.

The g are well defined since, by the Young—Fenchel inequality, if F(x, t)=
Jo I*. ps(»)dyds then

1
j J Lot 0] 247 )y dedr = j JR[exdee(x, O - 11p(x) dxdr

w7
U p® p® )
| — dxd
*LL«(p(x) 0 ply TP

1
=! +J J PEO(px — 0(1)) " dxde + I (F),
0JR

which is finite when /5K(F) < oo by condition (P).
Next, once again by the Young—Fenchel inequality, we have, for v >0,

1
YICo.s(F) — Co(F)| < JOJRHLH,(S(?C, 1) — Lg(x, )| F(dx, d)

1
= JOJR[‘”‘" (ILos(x, ) — LoCx, D) — 1p(x) dxdr + 155(F),
so by (5.22)

_ a
lim  sup |8os(F)— Co(F)| < —,
0=0 Fed; s (a) Y

which proves (Y'.4) since y is arbitrary.

Condition (U') is checked as in the case of an independent and identically distributed
sample with the use of condition (P).

We now check conditions (sup Y') and (sup U’). For this purpose, we assume that the
0(-) are again from the set Zx (B, M) defined in Section 5.3. Then limits (5.22) and (5.23)
hold uniformly over 6 € Zg(f, M), which allows us to check (sup Y'.3), (sup Y'.4) and
(sup U") analogously to (Y'.3), (Y'.4) and (U’), respectively. Condition (sup Y'.2) follows
from the fact that the Lys(x, 1), 8 € Zx(f, M) are equicontinuous at each (x, r) and
umfor.mly bounded, so the (§g4, 0 € ®): ¥/ — [RR are continuous for the uniform topology
on R
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We now calculate the function S(6, 8'), 6, 8’ € ©. This is carried out with the use of a
generalization of Chernoff’s result in Lemma 5.2 which we state and prove next. Let E be a
Polish space with the Borel o-field ¢ and Z°(E), the space of probability measures on
(E, #). As above, for F, P& A(E), we denote by K(F, P) the Kullback—Leibler
information:

K(F, P) = J 108 aP (X)F (dx), if F< P,

00, otherwise.

Recall that K(F, P), for P fixed, is convex and is a rate function in F for the weak topology
on Z(E) (Deuschel and Stroock 1989, Section 3.2.17).

If the role of E is taken over by [E X [0, 1] with the product topology, then given a
probability Borel measure v on [0, 1], we denote by Z,(E X [0, 1]) the subset of
P(E X [0, 1]) of measures F such that F(E X [0, ¢]) = v([0, ¢]), ¢t € [0, 1].

Our version of Chernoff’s result is the following lemma.

Lemma 5.5. Let E be a Polish space. Let probability measures P Q € Z(E X [0, 1]) be
dominated by the product measure u X v, where u and v are Borel measures on E and [0, 1],
respectively, with v([0, 1]) = 1. Then

1
it g (KO P K ) = = int. | o || plwal”7 e

where p,(x) and q,x) are the respective densities of P and Q relative to u X v.

Proof. Obviously,
max {K(F, P), K(F, Q)} = S%Pl](VK(F, P)+ (1 = y)K(F, Q). (5.25)
V€L,

Let 2(E X [0, 1]) be endowed with the weak topology. Since K(F, P) is convex and is a rate
function in F, we deduce that the function yK(F, P)+ (1 —y)K(F, Q), y €]O0, 1],
F € #,(E X [0, 1]), meets the conditions of a minimax theorem (see, e.g., Aubin and
Ekeland 1984, Theorem 7, Section 2, Chapter 6). Hence,

inf su K(F, P)+ (1 —y)K(F,
p B SO (PKCEL P (1= PK(F, )

= s FeAl(%£01 (YK(F, P)+ (1 = y)K(F, Q). (5.26)

The latter infimum can equivalently be taken over F dominated by P and Q, and hence by
u X v. Denote by f;(x) the density of F with respect to u X v. Since, by the definition of
Z([E X [0, 1),

HEXWJD=LkM@MMWM0=WWJh feqo, 11,
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we have that
J fiu(dx) =1 v-almost everywhere. (5.27)
E

Next, by the definition of the Kullback—Leibler information,

Si(x)
PACTTEY
where 0/0 =0, 0log0 = 0. Since the function xlogx, x = 0, is convex, an application of
Jensen’s inequality and (5.27) gives that v-almost everywhere in ¢ € [0, 1]

J log - / t(ifzy
E P09 T(x)
On the other hand, taking

1
yK(F, P)+ (1 — )K(F, Q) = L L lo Fiou(dx(dn), (5.28)

Flu(dn) = —log J{Epﬁx)q}*y(x)ﬂ(dx).

-1
f1x) = plx)g; 7 (x) (Lpﬁx)qiy(x)u(dx)) : (5.29)

we get equality above. Since the measure F' with the density defined by (5.29) belongs to
Z(E X [0, 1]), we obtain by (5.28) that

1

rer oy RS PY (1= )K(E, O)] = _Jo

which, by (5.25) and (5.26), concludes the proof. ]

log U[Ezﬁ (x)qW(x)u(dx)] v(d)

Remark 5.6. Chernoff’s result follows when v is a Dirac measure.
We now apply Lemma 5.5 to evaluating the function S(6, 8").

Lemma 5.6. For all 6, ' € ©,

1

S, 0') = inf J log H,(6'(t) — 6(t)) dt.
yelo.] Jo

Proof. We have, for F € 7/, with ISK(F) < oo,

Co(F) — I*(F) = —K(F, Py),
where Py(dx, dt) = p(x — 6(¢)) dxdt, and the claim follows by (4.7) and Lemma 5.5 with
E =R, u(dx) = dx, v(dt) = dt, P= Py and Q = Py. O

The latter result enables us to calculate asymptotic minimax risks for various statistical
problems. To compare with the Gaussian case, let us consider the same statistical problems
as in Sections 5.3 and 5.4 dealing with the value of 0(#y) for a given #,. Sets (3, M) and
2k(B, M) are defined above.



On large-deviation efficiency in statistical inference 253

5.5.1. Testing 0(ty) = 0 versus |0(ty)| = 2¢

Given ¢ >0, let ©g = {0 € O: 6(t)) = 0}, O, = {0 € O: |6(¢y)| = 2¢} and define the risk
RI(p,) of a test p, by (4.4). Recall that r* was defined in (5.15).

Proposition 5.6. Let ¢, 8, M, K and ty be such that [ty — t*, to + *] C [0, 1] and K = 2c.
Let the measure P satisfy condition (P) and the function H,(s) monotonically decrease in
s =0 for each y € [0, 1]. If © = Z(B, M) then

t
lim inf RT w(on) = 1nf ZJ log H,(2(c — MiPy)du.

n—oo Pn

If © =2k (B, M) then

*

t
lim inf R (p,) = 1nf 2J log H,(2(c — M%) dr,

n—o00 Py,
and the tests pié from (4.8) are nearly LD efficient, i.e.,
lim Tim R (p] ;) = hm hm RT(p o)

0—0 n—oo

*

t
— inf 2J log H,(2(c — MtP)) dt.
y€l[0,1] 0

Proof. By Theorem 4.3 we need only to evaluate T from (4.6). A straightforward
calculation using Lemma 5.6 and the monotonicity of H,(s) shows that

1
T := sup S(6,0")= inf 2J log H,(20% (1)) dt,
6€0,,0'cO, v€[0,1] 0
where 0%(f) = [c — M|t — 1,|f]*. The claim follows. ]
) =1 ]

5.5.2. Estimating 0(ty)

For the problem of estimating 6(#), the risk of an estimator p, is defined by

1
R} (pn) = sup - 1og Prllpn — 0(10)] > ).

Proposition 5.7. Let the conditions of Proposition 5.6 hold. If ® = Z(f3, M) then
f*
lim inf RE(p,) = 1nf1]ZJ log H,(2(c — MtP)) dt.
n—oo Pn s 0
If © =Zk(B, M) then
t*

lim inf Rf(p,) = 1nf 2J log H,(2(c — MtP))dt,

n—oo p,

and the interval-median estimators pnﬁ(3 from (4.18) are nearly LD efficient, i.e.,
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lim Tim RY (p 8= hm hm RE (pn())
o0

0—0 n—

*

t
= inf 2J log H,(2(c — M%) dt.
y€[0

Proof. By Theorem 4.5 and Remark 4.3 it suffices to calculate the asymptotic minimax risk
given by Lemma 4.3:

F* = sup S0, 0)
0,0'€©:|6(19)—0'(19)| > 2¢

which is done as for the ‘signal plus white noise’ model. O

Remark 5.7. The latter problem of estimating 6(#;) has been considered by Korostelev and
Spokoiny (1996) under the assumption that log p(x) is concave upwards, and by Korostelev
and Leonov (1995), who study the double asymptotics as n — oo and then ¢ — 0.

5.6. The change-point model

Let us observe a sample X, = (X1, ..., X, ) of real-valued random variables, where, for
some k, =1, the observations X ,, ..., Xk, are independent and identically distributed
with a distribution Py and the observations Xy, 1., ..., X, are independent and identically

distributed with a distribution P,. We assume that P, and P; are known and £, is unknown.
Let us also assume that k, = [n6], where 0 € © = [0, 1]. For this model, €, = R"” and P,
denotes the distribution of X, for 6.

Let a probability measure P dominate P, and P, and let

d d
S =00, 0=, xeR

be the respective densities. We assume that f(x) and f(x) are positive and continuous and

J SH(x)P(dx) < oo, J ST (x)P(dx) < 00 for all y € R. (5.30)
R R
Introducing P, = P", we have
dP,, 0 1 &4 1
Eno =~ = (X) = Z 10g fo(X 1) +— Z 10g f1(Xi.),
i=[n0]+1

so that, defining an empirical process by
[n1]
F(x, ) ==> 1(X;, <x), eR, te]0, 1],
(D=3 1K=, x [0. 1]

we obtain the representation

0 1
o= J J log fo()F(dx, df) + J J log /1 (x) Fy(dx, do).
0JR 0JR
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We define statistics Y, and a space %/ as for the non-Gaussian regression model. Let Z/p
consist of the functions F € 7/ that are absolutely continuous with respect to the measure
P(dx) X d¢ with densities p,(x) such that [ gp,(x)P(dx) =1, t = 0. As for the non-Gaussian
regression model, condition (Y'.1) holds with

1
[;K(F) _ LJRpt(x) log p,(x)P(dx) d¢, if FeYp,

0, otherwise.

We next take, for F(-, -) € ¥,

1 1

Eao(F) = J

J Loo(x)ga(0 — HF(dr, di) + J
0JR

j Lip()gs(t — O)F(dx, do),
0JR

where
Lip(x) =log fi(x) A6~ v (=071, i=0,1,
gs(t)=0V(E+0 AL
The functions L;s and gs are bounded, continuous and

lim JR[eXp (v[log fi(x) — Lis(x)]) — 1]P(dx) = 0, i=0,1,7>0. (5.31)

The Cy s are easily seen to be continuous, so (Y'.2) holds.
For (Y'.3), write, by Chebyshev’s inequality, for y >0, £>0,

1
Pb/n(|5,,,(, —Cos(Fp)|>e) < Pz/n (J J [log fo(x) — Los(x)| Fu(dx, df) + 20 >§>
0JR

1
+P)" JJ [log f1(x) — Lis(x)| Fa(dx, dt)+2<3>E
0JR 2

< exp (—ye/2) exp (2y9)[E exp (y[log fo(X1,n) — Los(X1.0)|)
+ Eexp (y|log f1(X1.n) — Lis(X1.2)D],

)

Tim P)/"(1Z50 — Eoa(F)| > &) < exp(—ye/2) exp (20) (JR exp (yllog fo(x) — Los()) P(dx)
+ JR exp (y[log f1(x) — Ll,(s(x)l)P(dx)),

and, by (5.31), this goes to 2 exp (—ye/2) as 6 — 0. Since y is arbitrary, condition (Y'.3) is

verified.
To check (Y'.4), we take
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0 !
0, otherwise.

The facts that the g are well defined and (Y'.4) holds are proved as for the non-Gaussian
regression model with the use of (5.30). Condition (U’) also is easily checked.

Remark 5.8. The continuity condition on fy(x) and f(x) can be omitted. One should then
choose the L;s bounded, continuous and satisfying (5.31).

Next, the argument used for (Y') and (U") checks also conditions (sup Y') and (sup U")
(the verification of (sup Y'.2) uses the fact that the function gs(¢ — 6) is equicontinuous for
0 € [0, 1] at each ¢ € [0, 1]).

The next step is evaluating S(6, 8") for 6, ' € [0, 1].

Lemma 5.7. For all 0, 0’ € [0, 1],
S0, 0" =—|0—0'|C(Py, P).

Proof. In a manner similar to the case of non-Gaussian regression, we have, for any F' € %/p,
I3K(F) < 00, with F(dx, df) = p,(x)P(dx)dt,

pi(x)
Po(x)

0
Ce(F)—Ian(F)Z—JJ tog 2 1 o) P(dv) di
0JR

1
~ [ ] 108 29 popan ai = ~&(r. 7o),
ol = p1(x)

where Py(dx, df) = (fo(x)1(t < 0) + f1(x)1(¢> 0))P(dx)dt. The claim follows by (4.7),
Lemma 5.5 with E = R, u(dx) = P(dx), »(dt) = dt, P = Py and Q = Py and the definition
of Chernoff’s function in Lemma 5.2. L]

We apply this result and the general theorems from Section 4 to the problem of
estimating the parameter 6. The risk of an estimator p, is defined in a standard way:

1
R‘:(pn) = sup —log Pn,6(|pn - 0' > o). (5.32)
oo, 1

Proposition 5.8. For each ¢<1/2,
lim inf RE(p,) = —2cC(Py, Py).
n—00 Py,

prfﬁ are the interval-median estimators from (4.18) then

lim lim R} (phs) = hm lim R} (pls) = —2cC(Py, Py).

0—0 n—oo 0—0 n—o0o
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Proof. We apply Theorem 4.5. One needs only to calculate the minimax risk F*. Using
Lemmas 4.3 and 5.6, we obtain

F*=  sup S0, 0")= —2cC(Py, P)). H
0,0":10—0'| >2c

Remark 5.9. The same result has been obtained by Korostelev (1995), who uses another kind
of an upper estimator. The construction is based on considering the concave hull of a sample
path of the likelihood process. By Lemma 4.2 this estimator is a particular case of the
interval-median estimators pZ ;.

5.7. Regression with random design

We consider the model
Xk,n :G(tk,n)+§k,n, k=1,...,n, (533)

where real-valued errors &y , are independent with a common distribution P having a density
p(x) that obeys condition (P) of Section 5.5, and design points ¢, are real-valued
independent random variables with a common distribution IT and are independent of the &y ,,.
We impose a standard condition on the design measure II.

(IT) The measure 11 is compactly supported and has a positive density with respect to
Lebesgue measure on the support.

We denote the support by D. An unknown regression function 6(-) is assumed to be
continuous. In this model, P,p is the joint distribution of X, = (X;,, ..., X,,) and
th =(tip, - tnn) for 0.

Let us take for Y, the joint empirical distribution function F, of X, and #¢,:

n

1
F,(A4, B) = ;Z 1(Xin € A, tin € B) (5.34)
k=1

for Borel sets 4 C R, B C D. We take 7/ to be the space of distributions on R X D with the
weak topology. Let also P, = P,y = (P X II)".
With these definitions,

_ 1 | dPn,g
E,o=—1lo
0T £ dpP,

(an tn)

_ 1 Xn: 1 p(Xk,n - e(tk,n))
= — g ———————
n =1 p(Xk,n)

p(x — 6(1))
= log ——— .
J DJ STy lded)
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Let 71 be the subset of the set 2/ of the cumulative distribution functions on R? that
are absolutely continuous with respect to Lebesgue measure on R? and have support in
R X D.

Under P,, the random pairs (X ,, tx,,) are independent and identically distributed with
the distribution P X I1, and hence, by Sanov’s theorem, the LDP holds for the F, with rate
function I55(F) defined by

px, 1) , ;
I(F) = JDJRIng(mmp(x’ Hdedi, I F e 2,

00, otherwise.

Here F(dx, df) = p(x, t)dxd¢. This verifies (Y'.1).
Next set, for F' € 7/,

JDJR log %F(d)@ dn,  if ISS(F) < oo,
Eo(F) =
0, otherwise,
Coo(F) = J {log %} A0V (=0 YF(dx, df).
R

With this notation, the rest of condition (Y"') and condition (U") are verified in analogy with
the case of non-Gaussian regression. This proves the LDP for the model.

For conditions (sup Y') and (sup U’), we again assume that 0 € 2 (8, M), where the set
2k(B, M) was defined above. The conditions are then checked as for the non-Gaussian
regression model.

We now calculate the function S(6, 6") from (4.7). Recall that the function H,(s) was
defined in condition (P).

Lemma 5.8. Under conditions (P) and (I1),

S0, 0") = inf logJ H,(6/(1) — 6(t))a(d) dt.
yelo.1] D

Proof. Given F € 7/; with I55(F) < oo, we easily obtain
Co(F) — I(F) = —K(F, Py),

where Py(dx, df) = p(x — 0(1))n(t) dx dt, and the claim follows by (4.7) and Lemma 5.2 with
E=RX D, u(dx, df) = dxdt, P= Py and Q = Py. O

We now consider the same two statistical problems as in Section 5.5 and compare the
results for the cases of random and deterministic design.
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5.7.1. Testing 0(ty) = 0 versus |0(ty)| = 2¢

Given ty € D and ¢>0, consider the hypothesis testing problem: 6(f)) =0 versus
|6(to)| = 2c. The risk R%(p,) of a test p,, as well as the sets =(3, M) and Zo(8, M), and
t* are defined as above.

Proposition 5.9. Let D=0, 1]. Let ¢, B, M, K and ty be such that [ty — t*, ty + £*] C
[0, 1] and K = 2c. Let conditions (P) and (II) hold and the function H,(s) monotonically
decrease in s = 0 for each y € [0, 1]. If © = Z(f, M) then

lim inf R7(p,) = T*,

n—oo Pn
where
to+1*
T* = inf log| 1 +J [H,(2(c — M|t — t0|ﬁ)) — 1]n(r)de ).
y€[0,1] —
If © =Zk(B, M) then
lim inf R (p,) = T*,

n—00 py

and the tests pié from (4.8) are nearly LD efficient, i.e.,

. E T, T : . T, T *
Jim, i, Ra(on) = Jim lim Ry(pap) =T

Proof. Theorem 4.3 reduces the proof to calculating 7% from (4.6) Using the result of
Lemma 5.8 and proceeding in analogy with the case of deterministic design, we conclude
that

T* = S(c — 0%, c + 6%)

to—t* to+1* 1
= inf log (J a(t)dt +J H,(2(c — M|t — to|ﬂ))n(t)dt+J Jt(t)dt).

y€[0,1 0 to—1* to+1*

Now the claim follows by the equality [ pm(¢)ds = 1. O

5.7.2. Estimating 6(ty)

As above, when estimating 6(¢y), we define the risk of an estimator p, by

1
RE(p,) = sup —log Poo(|p, — O(t0)| > c).
ez (B,M) 1

Proposition 5.10. Let the conditions of Proposition 5.9 hold. If ©® = Z(8, M) then

lim inf RE(p,) = F*,

n—oo Pn
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where
to+1*
F* = ir[lof]]log 1 +J [Hy(2(c - M|t — t0|ﬁ)) — 1z()de |.
vel0, *

to—t

If © =Zk(B, M) then
lim inf R 2 (Pn) = F*,

n—o00 P,
and the interval-median estimators pn s from (4.18) are nearly LD eﬁ‘icient, ie.,

lim lim RF(p o) = hm hm RF(p 8=

0—0 n—oo

Proof. By Theorem 4.5 it suffices to calculate the asymptotic minimax risk F* from Lemma
4.3, which is done in analogy with the proof of Proposition 5.9. O

Remark 5.10. If we consider the uniform random design on [0, 1], i.e., take z(#) =1,
Jensen’s inequality easily implies that its asymptotic minimax risks are not greater than the
corresponding risks for regression with deterministic design (see Section 5.5). This fact also
follows from comparing Lemma 5.2 and Lemma 5.5.

Remark 5.11. The problem of estimating 6(zy) for the uniform random design has been

considered by Korostelev (1995), who studies the double asymptotics as n — oo and then
c— 0.

Appendix

Proof of Lemma 2.4

Let {Va, A € #(©)} be a standard family of deviabilities so that for all A C A’ € .4(0)
and zp € SA,

VaGa) = sup  JlmaazallaVatza). (A1)
z/\rEHX,lAzA
We define
. -1
Vo(ze) = {mf/\e/%(@) |mazells VaTlaze),  ze € Se, (A.2)
, otherwise,

where we set Va(ITaze) = 1 and |7aze|[y Va(Taze) = 0o when |[aze]|a = 0.

The functions |7aze|y Va(Iaze), A € .4®), are casily seen to be upper semi-
continuous on Sg, so (Ve(ze), ze € RG) is upper semi-continuous as the infimum of a
family of upper semi-continuous functions. Moreover, since, for every zg € Sg and € >0,
there exists A € .#(0®) such that |aze|a >1 — &, and since Vo(ITrze) < 1, we conclude
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that Vg(zg) =< 1. Since (ii) obviously follows by (iii), we are left to prove (iii) and the
equality

sup Vo(ze) = 1. (A3)

ze€Se
We begin with (iii). Let us fix A and z, assuming that zy € Sx. Definition (A.2) implies that

Va(za) = sup ||.77J,\Z@||,\V@(Z@),
Z@)GHXIZA

so we need to prove that

Va(za) < sup |mazelaVe(ze). (A.4)

Z@GHXIZA

First, we note that (A.2) and (A.1) imply that

Vo(ze) =  inf | ltazoly VaMaze),  ze € So. (A.5)
AN DA

Indeed, by (A.1), if A C A’ € #(®) and zg € Sg is such that |rzel[a >0 then
Va(ITaze) = |waalla zol|aVa (ITa zo),

and hence, since maAllpze = azo/|TA zol|A"s

|7arzolx Var(Marze) < |azolly Va(Tlaze),

which, in view of (A.2), proves (A.5).
Next, we obviously can assume that a := VA(zp) > 0. For A’ D A, A’ € .Z(0), introduce
the sets

A,\' = {Z/\' € SA'i HArAZA' = ZA and ||JIA'AZ/\’||AVA'(ZA') = a}. (A.6)

We show that A5 is non-empty. Since Va'(zp') < 1, the supremum on the right of (A.1) can
equivalently be taken over the set IT',za N {||a'aza’||a = @/2}. This set is closed since the
projection ITx'4 is continuous in restriction to the set {za': [|[Ta'aza’|[a = a/2}. Since Vj' is
a deviability, it attains suprema on closed sets, so the supremum on the right of (A.l)
is attained, which is equivalent to A,' being non-empty. Next, A5’ is closed and hence
compact since Vpr is upper semi-continuous and, by (A.1) and the definition of a,
|lmaazarllaVa(zar) = a if and only if [[za'aza[[aVA'(za)) = a.
Now we introduce for each A’ € 4(0©), A’ D A,

Apn = {zo €[0, 11°: TIxze € Ap and |7arzo|ar = a}.

These sets are easily seen to be non-empty (e.g., if za € Ax’ then zg = (z¢, 0 € ©), defined
by (z9, 0 € A')=2za and zg =0, 8¢ A’, belongs to Ax') and compact for the Tihonov
topology on [0, 1]© (the latter holds because Il5s is continuous in restriction to the set
{zo: |Tazol|ar = a} and A is closed).

We next show that, for all elements A’ and A” of .Z(®) containing A, the sets Ay’ and
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A have a non-empty intersection. Indeed, let A” = A’ UA” and zg € [0, 1]° be such
that zg € Ax» and ||ma»ze|| = 1 (such a zg obviously exists). We prove that zg € Axs and
ze € Apr.

Denote zp» = Ilpnzg, za' = Ilp'zg, the latter being well defined since the definitions of
Ap» and Ax» imply that |maze|a = a@. First, note that

Maazar = laze = Harazar = za, (A7)
where the last equality follows by the fact that zo» € Ax~. This and (A.1) yield, in view of
the equality ITp»prza" = zp),

Va(za) = |waazarllaVar(za), (A-8)
Va(za) = |lwara zanlarVar(zam). (A.9)

Next, by the definitions of zp~ and za,
|Taazarlla = llmaazarla - leamazar|a,
so that, by (A.8) and (A.9),
V@) = lraazala - [eamn zanlla Var(zas) = ltasazarlaVa-(an).

Since zpa~ € Ax», we actually have equality here and hence in (A.8) and (A.9). (A.8)
and (A.7) prove that zp € Ax'. Equalities in (A.8) and (A.9) together imply, since
Var(zar) < 1 and ||maazarl|a < 1, that ||marazar||a = Var(za’) = Va(za) = a; since also
maze|la = 1, we obtain

mazella = Ia-zella= - leama-za-lla: =

This concludes the proof of the inclusion zg € Ap. The inclusion zg € A~ is proved by the
same argument.

Thus, finite intersections of the compact sets Ax, A’ D A, are non-empty, hence
NA'>AAA’ # D. Pick zg from this intersection and let zg = zg/||zolle. We prove that

HAé@ = ZA (AlO)

and

Vo(2o) = |[azelly Va(za), (A.11)

which yields (A4) since 2zg € Se. Let A'€ . Z(®) with A CA'. Since
IIpzg =TIpze € Aa, it follows by the definition of Aar that [Ixzg = [Ia'aAllp Ze = za
verifying (A.10); also

laZe|la

VA(za) = a = |waalla Zol[aVa (A 26) = | Va(IIa Zo),

|TA 20||Ar
SO
|7azollx' Va(za) = l7a 2olly Var(TTa 26).

In view of (A.5), this implies (A.11), and (A.4) follows. Assertion (iii) has been proved.
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Finally, according to (iii),

1= sup Va(za) = sup |7aze[aVe(ze) < sup Ve(ze),
ZAESA zp€Se ze€Se

proving (A.3). O

Remark A.1. Equality (A.5) shows that Vg can equivalently be defined as

Vo(ze) = Aeli/r}(l@) Va(Ilaze), zg € Se,

where the limit is with respect to the partial ordering by inclusion: A < A’ if A C A’.

A minimax theorem for non-level-compact loss functions

This subsection contains a minimax theorem for generalized risks and non-level-compact loss
functions. We assume the setting described at the beginning of Section 3 and start by
introducing an extension of the decision space (cf. Strasser 1985).

Denote by 7 .(Z) the set of all non-negative bounded continuous functions on &/, and
let B(Z) be the set of all functionals b: & (&) — R, with the following properties:

(1) 5(0) =0, b(1) =1, where 0 (1) denotes the element of 7, (&) identically equal to 0
(D;

@ bNH=bgif f<g f,ge?(Y);

() bAS) =2b(f), [ € (D), L €Ry;

4 b(f +8) <b(f)+b(g) [, g€ 7 (Y).

Also let B{(Z) be the subset of those b € B(Z) for which, in addition,
(5) bFV ©) = BNV Ng), f 8 € 7 (),

where [V g denotes the maximum of f and g.

We endow B(Z) with the weak topology which is the topology induced by the Tihonov
(product) topology on Rf*(y), i.e., a net {b,;, 0 € Z} of elements of B(Z), where X is a
directed set, converges to b € B(Y) if limyes by (f) = b(f) for all f € Z(&). Obviously,
B(2) is closed in RZ*‘”.

We extend the domain of the functionals b to the set £, (Z/) of lower semi-continuous
non-negative functions on &/ by letting

b(g) =sup{b(f): [ < g f € T (D)}, g€ L D). (A.12)

It is easily seen that the map b — b(g) is lower semi-continuous on B(Z) for each
g EZ (D).

Next, let us denote by .7, the set of all random elements on (,,.7 ,) with values in
B(Z). We call the elements of .%, generalized decision functions (or generalized
decisions). Given loss functions Wy, 6 € ©, which are lower semi-continuous by definition,
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and a generalized decision 3, € .%,, we define ,(W}) according to (A.12), and define the
LD risk B,(B,) of a generalized decision 3, € .7, in the experiment &, = (Q,, .7 ,;
n,@a 0 S G)) by

By(B) = sup E/g' B, (W D). (A.13)
0cO

Theorem A.1. Let {#,, n = 1} satisfy the LDP. Then

lim inf B,(,) =

n—o00 ﬂnE /’
where

B* = sup inf sup b(Wy)zyVe(ze).
20€R? beBI(Y) gcO

For a proof, we need to study properties of B(%) and B(%).

Lemma A.1. Let f1, f2, ..., fx € € (Z) and {b,, n =1} be a sequence of elements of
B(Z)). Then there exists b € Bi(Z) such that b(f;) is an accumulation point of the sequence

(B, n=1} fori=1,..., k

Proof. Let ||| denote the uniform norm on %, (¥). Define # | . () as the subset of Z (¥)
of functions f with ||f]| < 1. Introduce the functionals b,(f) = b'/"(f"), f € #1(Z). Then
the set B = {b,, n=1} is contained in the set [0, 1]7'+*) By Tihonov’s theorem,
[0, 117 +(“) with the product topology is compact, and hence B is relatively compact. Let b
denote any accumulation point. We extend 5 to a functional on % . (¥) by letting
b(Af) = Ab(f), A>0, f € 1 (¥). Since b, € B(Z), it is easy to see that b € B(). Also,
since the topology on B(Z) is the restriction of the product topology on R/*W) it follows
that b is an accumulation point of {b,,, n = 1}, where the b, are extended to functionals on

Z (Z) by letting b,y(Af) = Abu(f), A>0, f € £’ (Z). This implies, by the definition of
the b, that b(f;) is an accumulation point of {bl/"(f ,n=1}fori=1,..., k

We complete the proof by showing that b € B|(¥). Let £ g€ (D). Then since b is
an accumulation point of {b,, n =1}, it follows that b(f), b(g) and b(f V g) are
respective accumulation points of {b,(f), n =1}, {b,(g), n =1} and {b, Sf\/ g), n= 1}.
Hence by the definition of the b, for a subsequence (n'), we have that b (f™) — b(f),

(g ) — b(g) and b ((f V g)") — b(f V g). By properties (2) and (4) of B(Y),

BYM(fMyV Y (g") < bYM((f v @)y < 2V [BY " (f My v BY (g

and we conclude that b(f V g) = b(f) V b(g). ]
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Lemma A.2. The set B{(¥) is compact.

Proof. An argument similar to that used in the proof of Lemma A.1 shows that the set of
functionals {(b(f), f € Z14(Z)), b € Bi(Z)} is closed in [0, 117 +“) and hence compact,
which obviously is equivalent to the compactness of B{(Z). Il

The next lemma is motivated by and extends Proposition 8.2 of Aubin (1984).

Lemma A.3. Let T be an arbitrary set and U a topological space. Assume that a real-valued
function g(t, u), t € T, u € U, has the following properties:

(a) g(t, u) is level-compact in u € U for every t € T,
(b) for every ti, ty € T, there exists t3 € T such that g(t;, u) = g(t;, u)V g(t, u) for
all ue U.

Then

sup inf g(¢, u) = inf sup g(¢, u).
teT UeU ueU s

Remark A.2. Condition (a) holds when g(¢, u) is lower semi-continuous in u and U is a
compact topological space.

Remark A.3. If T is a directed set, condition (b) holds when g(z, ) is increasing in ¢ for all
u, i.e., g(ty, u) < g(tr, u), u € U, for t; < t, (the latter inequality is with respect to the
order on T).

Proof. We proceed analogously to Aubin (1984). Pick o > supcrinf,cy g(¢, u). We need to
prove that

o = inf sup g(t, u). (A.14)

uel yer

Let To = {t € T: sup,ev g(t, u)>a}. If Ty is empty, the proof is complete. So we assume
that Ty # &. By the choice of a, the sets 4, = {u € U: g(¢, u) < a} are non-empty for all
t € T, and they are, moreover, compact for all ¢ € Ty, since the g(¢, u), u € U, are level-
compact. Condition (b) implies that, whatever ¢, t, € T, there exists t3 € T such that
A, NA, D A, # D, which shows that finite intersections of the compact sets 4,, ¢ € Ty, are
non-empty, and hence () ;er, 4; # &. The latter is equivalent to

a = inf sup g(t, u).
uel s¢ Ty

Since by the definition of To, o = sup,ep\ 7, g(2, u), u € U, (A.14) is proved. ]

Proof of Theorem A.1. We need to prove that, for an arbitrary sequence f5,, n =1, of
generalized decisions,

lim B,(B,) = B*. (A.15)

n—oQo
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The argument is similar to that in the proof of Theorem 3.1. Let fy(r), 6 € ©, be some non-

negative bounded functions continuous in » € &. Fix a non-empty A € _Z(®). We have, by
the definition of Z, A (see (2.14)),

lim supE (,ﬁ (fo) = hm supE Aﬁ (fO)L, o.n

n—oo A
1/n
= lim |— n/\Zﬂ 27N
fim | 3
= hm E, / supﬁ (f9)Zypn
= lim E!/\ul(Z, ), (A.16)
where
uy(za) = inf sup b'/"(f 1)z, zn = (20, 0 € A) € RY. (A.17)
beB(Y) peA
Note that the u,(zp), n =1, 2, ..., are upper semi-continuous (recall that A is finite) and

hence measurable so that the expectations on the rightmost side of (A.16) are well defined.
Let us introduce

u(zp) = mf/) sup b(f9)zo, zp € R, (A.18)
and prove that
lim w,Gza(m) = u(zp),  za € RY, (A.19)

for each sequence zp(n) — za.
Let b, € B(¥) be such that

lim u,(zA(n)) = lim sup bY"(f1)zo(n). (A.20)

n—oo n—oo @

By Lemma A.l and since A is finite, there exists b € B;(Z) such that b(fp) is an
accumulation point of {b}/ "(fg), n=1} for all 0 A. Therefore, we have, for a
subsequence (n'),

lim DTy = b(fe), O €A,
hm sup b, 1w (f2)zp(n') = lim sup bl/"(fg)ZQ(n)
n—oo A

Since A is finite and zx(n') — zA, we conclude that

lim sup bY/"(f)zg(n) = sup b(fo)zo
veh

n—oo feA

which, in view of (A.20) and (A.18), proves (A.19).
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By (A.19) and the LD convergence of {Z(Z,a|Pun), n =1} to V5, we have (see
Varadhan 1984; Chaganty 1993; Puhalskii (1995)

lim E}/{u(Zyn) = sup u(zpA)Va(za). (A.21)

n—00 ZAERA
Since by (A.18) u € 7, property (ii) of Vg in Lemma 2.4 yields

sup u(za)Va(za) = sup u(waze)Ve(ze)-
zpeRY z0€R?

Relations (A.16) and (A.21) imply then that

lim supE)/;B.(f#) = sup u(azo)Vo(zo),

n—oo feA z@eR‘f
so, by the definition of the function u in (A.18),

lim supE o Ba(f3) = sup 1nf sup b(f9)zoVe(ze)-

n—o0 Qe ng[R €B(¥
Hence, since A € .Z(0©) and f,(f) are increasing in f from % (&), it follows that

lim supE eﬂ (Wg)= sup sup inf supb(fy)zeVe(ze),
n—00 0O 20€R® A€ A(©) PEBIY) geA
fo€Cw
where Cy = {fo = (f5, 0 €O) € 7 (X)®: fo < Wy, 0 € ®}. Thus, (A.15) and the
theorem would follow if, for every zg = (z¢, 6 € ©®) € R,

sup inf sup b(fy)ze = mf sup b(Wy)zp. (A.22)
A€ %(©) bEBID) gen €BI(Y) gco
Jo€Cw

Fixing zg, introduce, for A € #4(®), fo € Z (Z)°, b € B|(Y),
g((A, fe), b) = sup b(fo)ze-
OeA
We check that g((A, fe), b) satisfies the conditions of Lemma A.3. Endow the set
2(0) X Cy with the natural order: (A, fo) < (A’, fo)if AC A’ and fy < fp, 0 € O. Itis
easily seen that . Z(®) X Cy is a directed set and g((A, fe), b) is increasing in (A, fg) for
each b. Also, since A is finite, the definition of the topology on B(Z) implies that

g((A, fe), b) is continuous in b for each (A, fg). Therefore, since B{(Z/) is compact by
Lemma A.2, g((A, fe), b) is level-compact in b. Thus, by Lemma A.3,

sup inf g((A, fe), b) = inf sup g((A, fe), b).
(A, fo)e A®)X Cy bEBI(Y) beBiI(Y) (A, fo)e A®)X Cy

Recalling the definition of g and using the fact that by (A.12),
b(Wo) = sup {b(fo): fo < Wo, fo € T (D)}, €O,
we obtain (A.22). O
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It is interesting to relate Theorem A.1 with Theorem 3.1. Let us associate with each
re€ 2 an element b, of Bj(¥) defined by

b,(f) = f(r), [ €T (D). (A.23)

Then b,, € %, when p, € .%,. Therefore, in view of extension (A.12) and definitions (3.1)
and (A.13), B,(b,,) < Ru(ps), so

lim inf R,(p,) = lim inf B,(b,,) = lim inf B,(B,).

n—00 Pn€Fon n—00 Pn€Fn n—o0 Bn€Ln

Similarly, R* = B* so that Theorem 3.1 follows from Theorem A.l if B* = R*. The next
lemma establishes conditions for the latter.

Lemma A4. If the loss functions Wy are such that
Wy = sup {fo: fo < Wy, fo € € (¥), fy are level-compact}, 0c0,
then R* = B*.

Remark A.4. The conditions of the lemma hold when the Wy are level-compact and & is
locally compact (cf. Strasser 1985, Theorem 6.4). So, if & is locally compact, Theorem A.1
implies Theorem 3.1.

The proof is preceded by two lemmas. We first derive an analogue of the partition of the
unity (cf. Strasser 1985, Lemma 6.6).

Lemma A.5. Let f1, ..., fr € T (¥). For every €>0, there exist hy, ..., hy, € ¢ (Z)
with the following properties:

() maxi<j<m hi(r) =1, re &;

(if) maxi<;<k |fi(r1) — fi(r2)| < & for all v\ and ry such that hj(r)>0 and hj(r;)>0
for some j=1,..., m.

Proof. The argument is similar to that in Strasser (1985). Assume, first, that £k =1 and
sup,ew f1(r) = 1. Choose m such that 3/m < ¢ and define, for x = 0,

g =x—(G-2)"AG+1-0" AL, 1<j<m.
Let
hi(r) = gi(mf1(r)), I<jsmre.

It is readily seen, since gj(x)=1 when j—Ilsx<; and 0= fi(r) <1, that
maxi<j<m hi(r) =1, r€ 7.

Next, since, given j =1, ..., m, we have gj(x) =0 when x ¢ [(j —2)*, j + 1], it follows
that if A;(r1)>0 and hi(r) >0, then |mfi(r)— mfi(rn)| <3, ie., [fi(rn)— fi(r)] <
3/m < ¢ as required.

Now, if sup,co fi(r) = a>0, then the %; chosen as above for fi/a and &/a satisfy (i)
and (ii).
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Finally, if k> 1, choose, for each i =1, ..., k, functions %
and (ii). Then the functions

ij» 1 < j < m;, that satisfy (i)

,,,,,

meet the requirement with m = m; ... my. ]

Denote by T the set of non-negative (upper semi-continuous) functions of finite support
(t(r), r € &) such that sup,co t(r) = 1. Define B,(Z) as the set of those b € B{(¥) that
can be represented as b(f) = sup,ecw f(NH(r), f € Z (¥), for some (Hr), r € &) € T1.
The next lemma parallels Strasser (1985, Theorem 42.5).

Lemma A.6. The set By(Y) is dense in B{(¥) for the weak topology.

Proof. We proceed as in the proof of Strasser (1985, Theorem 42.5). Fix b € B|(¥) and
iy ooo, fx € Z(Z). We have to check that for any & > 0 there exists b € By(Z) such that
Ib(f;) — b(f)| <& 1 <i<k

Let functions #4;, 1 < j =< m, be as in Lemma A.5. Obviously we can assume that they
are not identically equal to 0. For each j =1, ..., m, choose 7; such that /;(r;) > 0. By the
definition of the #4;, we have that, on the one hand,

| fi(r)hi(r) — fi(rp)hi(r)| < e, Il<siskreo,
and, on the other hand,
fil) = max [k, 1<i<kred.
sjsm

Hence,
|fi(r) — max fi(rphi(r)| < max |fi("hi(r) — fi(rp)hi(r)| < &, Il<iskrev.
=sj=m =sj=m
Properties (1), (3) and (4) of B(¥) then yield
|b(f) — b(lmax Si(rph)| < e, 1<i<k (A.24)
sjsm
Now, since b € Bj(Z) and by property (3) again,
b(lmax fi(rph) = max Ji(#)b(hy), I<i<k (A.25)
sj<m sjs<m
Define
(r) = maxy.,,—,, b(hy), if r= 7 forsome j=1, ..., m,
0, otherwise,
and let

b(f) = sup f(NK(r),  f€T (D).

rey
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By properties (1) and (5) of B{(Z) and the choice of #;,
sup #(r) = max b(h;) = b( max hj) = b(1) =1,
res Isjsm : Isjsm -
so (#r)) € T1. ~ ~
Also, by the definitions of #(r) and b, the right-hand side of (A.25) equals b(f;), and
(A.25) and (A.24) yield the result. Il

Proof of Lemma A.4. Since R* = B*, we prove the opposite inequality. Let fp, 6 € ©,
belong to %, (¥), be level-compact and be less than or equal to Wy, 6 € ©. By the
definition of B*,

B* = sup inf supb(fy)zeVe(ze), A € #4(0O). (A.26)

Z@ER? beB(Y) N
By Lemma A.6 and the definition of B,(¥), for zg € R?, A € 24(0),

inf sup b 0)Z9 = inf  sup b 0)Zo
heBl(g)ge}z (f) bEBz(’/)ge/Iz (f)

= inf supsup #(r)fe(r)zo
(H(METt e geA

= inf sup fu(7)zg.
USAIN

Since the fy are level-compact, an application of Lemma A.3 shows, in analogy with the end

of the proof of Theorem A.l, that the supremum of the latter quantity over the fy and

A € .4(©) equals inf . suppce Wo(r)ze, which by (A.26) proves that B* = R*. O
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