
On large deviations of sums of independent

random variables

Zhishui Hu12, Valentin V. Petrov23 and John Robinson2∗

1Department of Statistics and Finance,

University of Science and Technology of China,

Hefei, Anhui 230026, China,
2School of Mathematics and Statistics, University of Sydney,

NSW 2006, Australia,
3Faculty of Mathematics and Mechanics, St. Petersburg University,

Stary Peterhof, St. Petersburg 198504, Russia

Extensions of some limit theorems are proved for tail probabilities
of sums of independent identically distributed random variables satisfy-
ing the one-sided or two-sided Cramér’s condition. The large deviation
x-region under consideration is broader than in the classical Cramér’s
theorem, and the estimate of the remainder is uniform with respect to
x. The corresponding asymptotic expansion with arbitrarily many sum-
mands is also obtained.

Running head On large deviations.

Keywords Limit theorems; sums of independent random variables;
large deviation; Cramér’s condition; asymptotic expansions.

Mathematics Subject Classification Primary 60F10; Secondary
60G50, 62E20.

1 Introduction and results

Let X1, X2, · · · be a sequence of independent random variables with a com-
mon distribution V (x), mean 0 and variance 1. Assume that the following
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one-sided Cramér’s condition is satisfied:

EehX1 < ∞ for 0 ≤ h < H and some H > 0. (1.1)

Introduce a sequence of conjugate i.i.d. random variables X1h, X2h, · · ·
with the d.f.

Vh(x) =
1

R(h)

∫ x

−∞
ehydV (y),

where 0 ≤ h < H and

R(h) =

∫ ∞

−∞
ehydV (y).

The distribution Vh(x) has the same set of the growth points as V (x). Put

EX1h = m(h), VarX1h = σ2(h), (1.2)

where 0 ≤ h < H. We have

m(h) =

∫ ∞

−∞
xdVh(x) =

1

R(h)

∫ ∞

−∞
xehxdV (x) =

R′(h)

R(h)
=

d log R(h)

dh
,

σ2(h) = E(X2
1h) − (EX1h)2 =

R′′(h)

R(h)
−

(R′(h)

R(h)

)2
=

dm(h)

dh
.

Denote by Fn(x) the d.f. of
∑n

k=1 Xk/
√

n. Then we have the following
theorem.

Theorem 1.1 Let X1, X2, · · · be a sequence of i.i.d. random variables with
mean 0, variance 1 and

EX4
1 < ∞. (1.3)

Suppose that conditions (1.1) and

lim sup
|t|→∞

|EeitX1 | < 1 (1.4)

are satisfied and let 0 < H ′ < H. Then

1 − Fn(x)

=
1√
2π

exp{n log R(h) − nhm(h)}M(hσ(h)
√

n)[1 + O(1/
√

n)] (1.5)
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holds uniformly in x in the area 0 < x ≤ m(H ′)
√

n. Here

M(y) = ey2/2

∫ ∞

y
e−t2/2dt

is the Mills ratio and h is the unique positive root of the equation m(h) =
x/

√
n.

Let us introduce a corollary to Theorem 1.1 that corresponds to the
two-sided Cramér’s condition:

EehX1 < ∞ for − H < h < H and some H > 0. (1.6)

Corollary 1.1 Let X1, X2, · · · be a sequence of i.i.d. random variables sat-
isfying conditions (1.4) and (1.6), and let EX1 = 0, EX2

1 = 1. If 0 < H ′ <
H, then relation (1.5) holds uniformly in x in the area 0 < x ≤ m(H ′)

√
n,

where m(h) is defined in (1.2), and h is the unique positive root of the equa-
tion m(h) = x/

√
n.

This result differs from the classical Cramér’s theorem on large devia-
tions (see, for example, Theorem 5.23 in Petrov(1995)), in particular, by a
stronger uniform estimate of the remainder; the remainder term in Cramér’s
theorem is O(x/

√
n), and the area is 1 < x = o(

√
n)(n → ∞) instead of the

broader one 0 < x ≤ m(H ′)
√

n.
Under the one-sided Cramér’s condition (1.1) a series of limit theorems

for probabilities of large deviations of sums of independent identically dis-
tributed random variables was proved for special x-regions in Petrov(1965),
where references on earlier works are given.

Contrary to condition (1.1), the two-sided Cramér’s condition (1.6) im-
plies the existence of moments of X1 of all orders. The one-sided condition
(1.1) imposes restrictions on the behavior of the distribution of the random
variable X1 only on the positive half-line.

Our next theorem is an improvement of Theorem 5 in Petrov(1965). In
this theorem, we replace the condition (1.4) by the condition that X1 is
nonlattice.

Theorem 1.2 Let X1, X2, · · · be a sequence of i.i.d. nonlattice random
variables with mean 0, variance 1 and E|X1|3 < ∞. Suppose that condition
(1.1) is satisfied and let 0 < H ′ < H. Then

1 − Fn(x)

=
1√
2π

exp{n log R(h) − nhm(h)}M(hσ(h)
√

n)[1 + o(1)] (1.7)
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holds uniformly in 0 < x ≤ m(H ′)
√

n, where M(·) is defined in Theorem
1.1 and h is the unique positive root of the equation m(h) = x/

√
n.

From Theorem 1.2, we can get the following corollary directly. This
corollary is also shown in Theorem A of Höglund (1979).

Corollary 1.2 Let X1, X2, · · · be a sequence of i.i.d. nonlattice random
variables satisfying condition (1.6), and let EX1 = 0, EX2

1 = 1. If 0 < H ′ <
H, then relation (1.7) holds uniformly in x in the area 0 < x ≤ m(H ′)

√
n,

where h is the unique positive root of the equation m(h) = x/
√

n.

Remark 1. Since EX1 = 0, EX2
1 = 1, we have m(0) = 0 and σ2(0) = 1.

Under the condition (1.4), X1 is nonlattice and so is X1h. Thus σ2(h) =
Var(X1h) > 0. This together with the fact σ2(h) = m′(h) implies m(h) is
strictly increasing. So m(h) > 0 for all 0 < h < H and the root of the
equation m(h) = x/

√
n is unique for 0 < x ≤ m(H ′)

√
n. More information

about the behavior of m(h) can be found in Petrov(1965).

Let γν(h) be the cumulant of order ν of the random variable X∗
1h =

(X1h − m(h))/σ(h), i.e.

γν(h) =
1

iν
dν

dtν
lnEeitX∗

1h

∣

∣

∣

t=0
.

In particular, γ1(h) = 0, γ2(h) = 1, γ3(h) = E(X∗
1h)3, if E|X1|3 < ∞ and

condition (1.1) is satisfied. Define the so-called Esscher functions: for λ > 0,
put

Bk(λ) =
λ√
2π

∫ ∞

0
exp(−λx − x2/2)Hk(x) dx, k = 0, 1, · · · ,

where Hk(x) is the Chebyshev-Hermite polynomial of degree k. In particu-
lar,

B0(λ) = (2π)−1/2λM(λ),

B1(λ) = −λ(B0(λ) − (2π)−1/2),

B2(λ) = λ2(B0(λ) − (2π)−1/2).

For more about the Esscher functions, see, for instance, Section 2.1 of
Jensen(1995). We have the following extension of Theorem 1.1.
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Theorem 1.3 Let 0 < H ′ < H and let k ≥ 3 be an integer. Suppose that
E|X1|k+1 < ∞. Then under the conditions of Theorem 1.1,

1 − Fn(x) = exp{n log R(h) − nhm(h)}
{B0(

√
nhσ(h))√

nhσ(h)

+
k−2
∑

ν=1

∑

n−ν/2
ν

∏

m=1

1

km!

(

γm+2(h)

(m + 2)!

)km Bν+2s(
√

nhσ(h))√
nhσ(h)

+ O(n−(k−1)/2)
}

(1.8)

holds uniformly in x in the area 0 < x ≤ m(H ′)
√

n, where h is the unique
positive root of the equation m(h) = x/

√
n, the inner summation is extended

over all non-negative integer solutions (k1, k2, · · · , kν) of the equation k1 +
2k2 + · · · + νkν = ν and s = k1 + k2 + · · · + kν .

Relation (1.8) is an extension of (2.2.6) in Jensen(1995), where the den-
sity function of X1 is required.

This paper is organized as follows. A smoothness condition on the con-
jugate variables is studied in Section 2. Proofs of theorems and corollaries
in Section 1 are offered in Section 3. Throughout the paper we shall use
A, A1, A2, ... to denote absolute positive constants whose values may differ
at each occurrence.

2 Smoothness for conjugate random variables

Results on large deviations frequently use a smoothness condition on the
conjugate variables. We will show that it is enough to assume the usual
C-condition of Cramér.

Theorem 2.1 Let X be a random variable with distribution function V (x)
such that for 0 ≤ h < H,

R(h) = EehX =

∫ ∞

−∞
ehxdV (x) < ∞. (2.1)

For any 0 < c < C ≤ ∞, if

sup
c≤|t|<C

|EeitX | < 1, (2.2)

then, for any positive H ′ < H,

sup
0≤h≤H′

sup
c≤|t|<C

|Ee(h+it)X/EehX | < 1. (2.3)
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Theorem 2.1 can be obtained by using a method similar to that in the
proof of Lemma 7.3 in Zhou and Jing (2006). Here we give another proof
which discloses the inner relationship between X and the corresponding
conjugate random variable. The proof will depend on the following lemma
which is closely modelled on a result of Weber and Kokic (1997).

Lemma 2.1 Let X be a random variable with distribution function V (x).
For any 0 < c < C ≤ ∞, the following are equivalent:

(i) there exist ε > 0 and δ > 0 such that for all real y and all t satisfying
c ≤ |t| < C, the set

A(y, t, ε) = {x : |xt − y − 2kπ| > ε, for all integers k}

has P (X ∈ A(y, t, ε)) > δ;

(ii) supc≤|t|<C |EeitX | < 1.

Proof. We first show that (i) implies (ii). Without loss of generality take
ε < π/2 and assume that (i) holds. Given any t with c ≤ |t| < C, choose,
for any x, integers k(t, x) such that z(t, x) = xt − 2πk(t, x) ∈ [0, 2π). Then
for all y ∈ [0, 2π) and all t from the area c ≤ |t| < C,

P (d(z(t, X) − y) > ε) > δ,

where d(z) = min{|z|, |z + 2π|, |z − 2π|}. So

EeitX =

∫ ∞

−∞
ei(z(t,x)−y)dV (x)

=

∫ ∞

−∞
cos(z(t, x) − y)dV (x) + i

∫ ∞

−∞
sin(z(t, x) − y)dV (x). (2.4)

Choose y = y(t) ∈ [0, 2π) such that

sin(y(t))

cos(y(t))
=

E sin z(t, X)

E cos z(t, X)
,

then E sin(z(t, X) − y(t)) = 0. Now for all t with c ≤ |t| < C,

E cos(z(t, X) − y(t))

≤ P (d(z(t, X) − y(t)) ≤ ε) + P (d(z(t, X) − y(t)) > ε) cos ε

= 1 − (1 − cos ε)P (d(z(t, X) − y(t)) > ε)

≤ 1 − δ(1 − cos ε). (2.5)
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Next, we choose ỹ(t) ∈ [0, 2π) such that |ỹ(t)− y(t)| = π. Similarly to (2.5),
we have

−E cos(z(t, X) − y(t)) = E cos(z(t, X) − ỹ(t)) ≤ 1 − δ(1 − cos ε). (2.6)

Hence by (2.4), (2.5) and (2.6),

sup
c≤|t|<C

|EeitX | ≤ 1 − δ(1 − cos ε)

and (ii) follows.
Now we will show (ii) implies (i) by showing that complement of (i)

implies that for any η > 0,

sup
c≤|t|<C

|EeitX | > 1 − η.

The complement of (i) may be stated as follows: for all ε > 0 and δ > 0,
there exist y = y(ε, δ) and t = t(ε, δ) with c ≤ |t| < C such that the set

Ac(y, t, ε) = {x : |xt − y − 2kπ| ≤ ε for some integer k}

has

P (X ∈ Ac(y, t, ε)) ≥ 1 − δ. (2.7)

Write

EeitX = eiy

∫

Ac(y,t,ε)
dV (x) +

∫

Ac(y,t,ε)
(eitx − ei(y+2πk(t,x))) dV (x)

+

∫

A(y,t,ε)
eitxdV (x)

:= J1 + J2 + J3.

Then

|EeitX | ≥ |J1| − |J2| − |J3|. (2.8)

Using (2.7) and the inequality |eiz − 1| ≤ |z|, we have

|J1| ≥ 1 − δ, |J3| ≤ δ, (2.9)

and

|J2| ≤
∣

∣

∣

∫

Ac(y,t,ε)
(ei(tx−y−2πk(t,x)) − 1) dV (x)

∣

∣

∣
≤ ε. (2.10)
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So it follows from (2.8)-(2.10) that

|EeitX | ≥ 1 − 2δ − ε > 1 − η,

by choosing δ > 0 and ε > 0 such that 2δ + ε < η.
The proof of Lemma 2.1 is complete. ¤

Proof of Theorem 2.1. We prove Theorem 2.1 by showing that the com-
plement of (2.3) implies that

sup
c≤|t|<C

|EeitX | = 1. (2.11)

The complement of (2.3) is: there exists H ′ with 0 < H ′ < H such that

sup
0≤h≤H′

sup
c≤|t|<C

|Ee(h+it)X/EehX | = 1.

So there exists h0 with 0 ≤ h0 ≤ H ′ such that

sup
c≤|t|<C

|Ee(h0+it)X/Eeh0X | = 1. (2.12)

Let

Vh0(x) =
1

R(h0)

∫ x

−∞
eh0udV (u)

and let Xh0 be the conjugate r.v. with distribution function Vh0(x). Then
it follows from (2.12) and Lemma 2.1 that for all ε > 0 and δ > 0, there
exist y and t with c ≤ |t| < C such that

P (Xh0 ∈ A(y, t, ε)) ≤ δ,

where A(y, t, ε) is defined in Lemma 2.1. For any δ′ > 0, choose B > 0 such
that P (|X| ≥ B) < δ′/2. Then

P (X ∈ A(y, t, ε)) ≤ P (X ∈ A(y, t, ε) ∩ (−B, B)) + δ′/2

= R(h0)

∫

A(y,t,ε)∩(−B,B)
e−h0xdVh0(x) + δ′/2

≤ R(h0)e
|h0|BP (Xh0 ∈ A(y, t, ε)) + δ′/2

≤ R(h0)e
|h0|Bδ + δ′/2 < δ′,
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by choice of δ < δ′e−|h0|B/(2R(h0)). So we have shown that the complement
of (i) holds for X: for all ε > 0 and δ′ > 0, there exist y and t with c ≤ |t| < C
such that

P (X ∈ A(y, t, ε)) < δ′.

This, from Lemma 2.1, implies (2.11).
The proof of Theorem 2.1 is complete. ¤

3 Proof of results

Proof of Theorem 1.1. From Remark 1, we know that σ2(h) > 0 for
0 ≤ h < H. Since σ2(h) is continuous on [0, H) and σ2(0) = 1, there exist
positive constants c1 and c2, not depending on h, such that

c1 ≤ σ2(h) ≤ c2 for 0 ≤ h ≤ H ′. (3.1)

Also from Remark 1, the equation

m(h) = x/
√

n (3.2)

has a unique positive root h ∈ (0, H ′] for any positive x ≤ m(H ′)
√

n.
Conditions (1.1) and (1.3) imply that

sup
0≤h≤H′

E|X1h|p < ∞, 0 < p ≤ 4. (3.3)

Indeed, for 0 < p ≤ 4,

sup
0≤h≤H′

E|X1h|p = sup
0≤h≤H′

∫ ∞

−∞
|x|pehxdV (x)

≤
∫ 0

−∞
|x|pdV (x) + sup

0≤h≤H′

{

∫ c3

0
+

∫ ∞

c3

}

xpehxdV (x)

≤ E|X1|p + cp
3e

c3H′

+

∫ ∞

c3

eδxdV (x) < ∞

if H ′ < δ < H and c3 is a positive constant, not depending on h, such that
xpeH′x ≤ eδx for x ≥ c3.

Define by Fnh(x) the d.f. of
∑n

k=1 X∗
kh/

√
n, where X∗

kn = (Xkh −
m(h))/σ(h). By the same argument as that in the proof of Theorem 5.23 in
Petrov(1995), we have

1 − Fn(x) = eΛn(h)

∫ ∞

0
e−

√
nhσ(h)ydFnh(y), (3.4)
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where Λn(h) = n log R(h)−nhm(h) and h is the unique positive root of the
equation (3.2). By a theorem of Osipov (see, for example, Theorem 1 of
Chapter 6 in Petrov (1975) or Theorem 5.18 in Petrov (1995)), we have

Fnh(y) = Φ(y) +
P1(y)√

n
+ Qn(y) (3.5)

where

P1(y) = (1/(6
√

2π))(1 − y2)e−y2/2E(X∗
1h)3,

|Qn(y)| ≤ A
{

n−1/2(1 + |y|)−3E|X∗
1h|3I(|X∗

1h| ≥
√

n(1 + |y|))

+n−1(1 + |y|)−4E|X∗
1h|4I(|X∗

1h| <
√

n(1 + |y|))
+n6(1 + |y|)−4

(

sup
|t|≥T (h)

|EeitX∗

1h | + 1/(2n)
)n}

(3.6)

for all y and n, where T (h) = 1/(12E|X∗
1h|3).

By (3.1) and (3.3), we have 1/(12σ(h)E|X∗
1h|3) ≥ c for 0 < h ≤ H ′,

where c is a positive constant not depending on h. Thus in the last summand
on the right side of (3.6) we can replace X∗

1h by X1h and the area |t| ≥ T (h)
by the area |t| ≥ c.

It follows from (3.4) and (3.6) that

1 − Fn(x) = eΛn(h)
(

I1 + I2 + I3

)

, (3.7)

where

I1 =
1√
2π

∫ ∞

0
e−

√
nhσ(h)y−y2/2 dy,

I2 =
1√
n

∫ ∞

0
e−

√
nhσ(h)y dP1(y),

I3 =

∫ ∞

0
e−

√
nhσ(h)y dQn(y).

Since for
√

nhσ(h) ≥ 1,

hσ(h)
√

nI1 =
1√
2π

∫ ∞

0
e−y−y2/(2nh2σ2(h))dy ≥ 1√

2π

∫ ∞

0
e−y−y2/2dy > 0,

and for 0 <
√

nhσ(h) < 1,

I1 ≥ 1√
2π

∫ ∞

0
e−y−y2/2dy > 0,
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we have

I1 =
1√
2π

M(hσ(h)
√

n) ≥ A1

1 +
√

nhσ(h)
. (3.8)

Note that

6
√

2πnI2 = E(X∗
1h)3

∫ ∞

0
(y3 − 3y)e−

√
nhσ(h)y−y2/2dy

= E(X∗
1h)3B3(

√
nhσ(h))/(

√
nhσ(h)),

where

B3(λ) = (λ/
√

2π)

∫ ∞

0
(y3 − 3y)e−λy−y2/2dy.

Therefore

∣

∣B3(λ)/λ
∣

∣ ≤
∫ ∞

0
(y3 + 3y)e−y2/2dy < ∞, for λ > 0.

Note that B3(λ) = O(λ−1) as λ → +∞ (see, for instance, Lemma 2.1.2 of
Jensen(1995)). Thus |B3(λ)/λ| ≤ A2/(1 + λ) holds uniformly for λ > 0.
Then it follows from (3.3) that

|I2| = O

(

1√
n(1 +

√
nhσ(h))

)

(3.9)

uniformly in x in the area 0 < h ≤ H ′.
It remains to estimate I3. By (3.6) and the argument below (3.6), we

have

I3 = −Qn(0) −
∫ ∞

0
Qn(y)de−

√
nhσ(h)y, (3.10)

with

|Qn(y)| ≤ A
{

E|X∗
1h|4n−1 + n6

(

sup
|t|≥c

|EeitX1h | + 1/(2n)
)n}

, (3.11)

for all y, n and 0 < h ≤ H ′.
Condition (1.4) implies that sup|t|≥c |EeitX1 | < 1 (see, for instance, p14

in Petrov (1995)). Thus by Theorem 2.1, we have

sup
0<h≤H′

sup
|t|≥c

|EeitX1h | < 1. (3.12)
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This, together with (3.3), (3.10) and (3.11), implies that

I3 = O(1/n) (3.13)

uniformly in x in the area 0 < h ≤ H ′.
It follows from (3.7) that

1 − Fn(x) = eΛn(h)I1

(

1 +
1

I1
(I2 + I3)

)

.

By (3.1), (3.8)-(3.9) and (3.13), we have

I2/I1 = O(n−1/2), I3/I1 = O(hn−1/2)

uniformly in x in the area 0 < x ≤ m(H ′)
√

n. Since for any positive
x ≤ m(H ′)

√
n, the equation m(h) = x/

√
n has the unique positive root

h ≤ H ′, we have I3/I1 = O(n−1/2). Therefore

1 − Fn(x)

=
1√
2π

exp{n log R(h) − nhm(h)}M(hσ(h)
√

n)[1 + O(1/
√

n)]

uniformly in x in the area 0 < x ≤ m(H ′)
√

n. ¤

Proof of Corollary 1.1. This follows immediately from Theorem 1.1. ¤

Proof of Theorem 1.2. Similarly to the proof of (3.3), we obtain

sup
0≤h≤H′

E|X1h|p < ∞, 0 < p ≤ 3. (3.14)

Following the mainstream of the proof of Theorem 1.1, we only need to show
that

Fnh(y) − Φ(y) − P1(y)√
n

= o
( 1√

n

)

holds uniformly for all y and 0 < h ≤ H ′, where P1(y) is defined below
(3.5). This follows from the proof of Theorem 1 and 2 of §42 in Gnedenko
and Kolmogorov (1968) with some modification, by using (3.1), (3.14) and
Theorem 2.1. ¤

Proof of Corollary 1.2. This follows immediately from Theorem 1.2. ¤
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Proof of Theorem 1.3. Let Hm(y) be the Chebyshev-Hermite polynomial
of degree m defined by the equality

Hm(y) = (−1)mey2/2 dm

dym
e−y2/2,

and let

Pν(y) = − 1√
2π

e−y2/2
∑

Hν+2s−1(y)
ν

∏

m=1

1

km!

(

γm+2(h)

(m + 2)!

)km

(3.15)

where the summation is extended over all non-negative integer solutions
(k1, k2, · · · , kν) of the equation k1 + 2k2 + · · · + νkν = ν and s = k1 + k2 +
· · · + kν .

Similarly to the proof of (3.3),

sup
0≤h≤H′

E|X1h|p < ∞, 0 < p ≤ k + 1.

Using a theorem of Osipov (see, for example, Theorem 1 of Chapter 6
in Petrov (1975) or Theorem 5.18 in Petrov (1995)), we have

Fnh(y) = Φ(y) +
k−2
∑

ν=1

Pν(y)n−ν/2 + Qn(y),

where

|Qn(y)| ≤ c(k)
{

n−(k−2)/2(1 + |y|)−kE|X∗
1h|kI(|X∗

1h| ≥
√

n(1 + |y|))

+n−(k−1)/2(1 + |y|)−(k+1)E|X∗
1h|k+1I(|X∗

1h| <
√

n(1 + |y|))
+nk(k+1)/2(1 + |y|)−(k+1)

(

sup
|t|≥T (h)

|EeitX∗

1h | + 1/(2n)
)n}

for all y and n, where T (h) = 1/(12E|X∗
1h|3) and c(k) is a positive constant

depending only on k. By the argument below (3.6) and a simple calculation,
we have

|Qn(y)| ≤ c(k)
{

n− k−1
2 E|X∗

1h|k+1 + n
k(k+1)

2

(

sup
|t|≥c

|EeitX∗

1h | + 1

2n

)n}

.

Similarly to the proof of (3.7), we have

1 − Fn(x) = eΛn(h)
(

L1 +
k−2
∑

ν=1

L2νn
−ν/2 + L3

)

, (3.16)
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where Λn(h) = n log R(h) − nhm(h) and

L1 =
1√
2π

∫ ∞

0
e−

√
nhσ(h)y−y2/2dy,

L2ν =

∫ ∞

0
e−

√
nhσ(h)ydPν(y), ν = 1, · · · , k − 2,

L3 =

∫ ∞

0
e−

√
nhσ(h)ydQn(y).

Using Lemma 2.1.1 in Jensen(1995) and noting that

d(Hν−1(y)e−y2/2)/dy = −Hν(y)e−y2/2, ν ≥ 1,

we have

L1 = B0(
√

nhσ(h))/(
√

nhσ(h)), (3.17)

and

L2ν = − 1√
2π

∑

ν
∏

m=1

1

km!

(

γm+2(h)

(m + 2)!

)km

×
∫ ∞

0
exp(−

√
nhσ(h)y)d(Hν+2s−1(y)e−y2/2)

=
1√
2π

∑

ν
∏

m=1

1

km!

(

γm+2(h)

(m + 2)!

)km
∫ ∞

0
Hν+2s(y)e−

√
nhσ(h)y−y2/2dy

=
∑

ν
∏

m=1

1

km!

(

γm+2(h)

(m + 2)!

)km Bν+2s(
√

nhσ(h))√
nhσ(h)

, (3.18)

where the summations have the same meaning as that in (3.15). Similarly
to the proof of (3.13), we have

L3 = O(n−(k−1)/2) (3.19)

uniformly in x in the area 0 < h ≤ H ′. Then (1.8) follows from (3.16)-(3.19).
The proof of Theorem 1.3 is complete. ¤
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