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ON LARGE EDDY SIMULATION AND VARIATIONAL

MULTISCALE METHODS IN THE NUMERICAL SIMULATION OF

TURBULENT INCOMPRESSIBLE FLOWS

Volker John, Saarbrücken

Abstract. Numerical simulation of turbulent flows is one of the great challenges in Com-
putational Fluid Dynamics (CFD). In general, Direct Numerical Simulation (DNS) is not
feasible due to limited computer resources (performance and memory), and the use of a tur-
bulence model becomes necessary. The paper will discuss several aspects of two approaches
of turbulent modeling—Large Eddy Simulation (LES) and Variational Multiscale (VMS)
models. Topics which will be addressed are the detailed derivation of these models, the
analysis of commutation errors in LES models as well as other results from mathematical
analysis.
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1. Introduction

This paper is based on lectures given at the 9th School on Mathematical Theory
in Fluid Mechanics held in Paseky (Czech Republic) in June 2005. It is intended

for students and researchers who like to get some basic ideas about the difficulties
in the simulation of turbulent incompressible flows, about some current approaches

of treating them and about some mathematical results connected with turbulent
flow simulation. Of course, the whole topic of turbulent flow simulation cannot be

treated in a single paper. Every year, a huge number of papers are published which
study the aspects of simulation of turbulent flows. The topics presented in this

paper are chosen with respect to the scientific interests of the author. A number of
monographs is available which present different approaches and provide more details
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on the topics presented here, e.g., Mohammadi and Pironneau [45], Lesieur [43],

Pope [48], Sagaut [51], the monograph [29] and Berselli, Iliescu and Layton [4].
The paper is organized as follows:
• Section 2. The basic equations for incompressible flows are introduced and
physical mechanisms of turbulent flows are explained shortly. These mechanisms
lead finally to an estimate of the size of the smallest flow structures in turbulent

flows. This estimate tells us that it is by far impossible to simulate the behavior
of all structures of a turbulent flow on present-day computers. Only some large

structures can be simulated and the influence of the small structures onto the
large ones has to be described in a different way—this is the central issue of

turbulence modeling.
• Section 3. The classical Large Eddy Simulation (LES), one of the currently most
popular approaches in turbulence modeling, is introduced. In this approach, the
large flow structures are defined by spatial averaging. The derivation of equa-

tions for these large flow structures is based on the assumption of commutation
of two operators. This assumption is violated in many situations and some

analytical results for commutation errors are presented. Finally, the modeling
of the Reynolds stress tensor, which is the central issue of the classical LES, is

discussed.
• Section 4. Variational Multiscale (VMS) methods, which define the large flow
structures by projection into subspaces, will be introduced. After explaining
their basic ideas, a concrete approach by a VMS method will be presented in

more detail.
• Section 5. Finally, some concluding remarks will be given.

2. Some physical characteristics of turbulent

incompressible flows

2.1. The model
Numerical simulation of turbulent incompressible flows is based on the model of

the dimensionless incompressible Navier-Stokes equations

∂u
∂t
− 2Re−1∇ · � (u) + (u · ∇)u +∇p = f in (0, T ]× Ω,(1)

∇ · u = 0 in (0, T ]× Ω,

u(0, ·) = u0 in Ω.

Here u is the velocity,
�
(u) = 1

2 (∇u + (∇u)T ) the velocity deformation tensor, p the
pressure, f represents body forces, Ω ⊂ � d , d ∈ {2, 3}, is a domain and T the end of
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a time interval. The Reynolds number Re is defined by

Re =
LU

ν
,

where L [m] is a characteristic length scale, U [m/s] is a characteristic velocity and
ν [m2/s] is the kinematic viscosity. If Ω is a bounded domain, (1) has to be equipped
with boundary conditions. The first equation in (1) describes the conservation of
linear momentum and the second equation the conservation of mass. The derivation

of the Navier-Stokes equations (1), based on these conservation principles, can be
found in many books on fluid mechanics or hydro-mechanics, e.g., [40], [48].

The Navier-Stokes equations possess one characteristic parameter—the Reynolds
number. Turbulent flows are characterized by a high Reynolds number. In applica-

tions, the range of the Reynolds number for flows of this type starts around several
thousand. Often it is even larger by some orders of magnitude. In the case of high

Reynolds numbers, the stabilizing forces in the momentum balance (the viscous term
2Re−1∇ · � (u)) are small compared to the destabilizing forces (the convective term
Du = ut + (u · ∇)u, where Du is the material derivative).
One may ask whether (1) is a correct model for describing turbulent flows. There

is not yet an ultimate answer to this question. In the derivation of the Navier-Stokes
equations, the following assumptions are made concerning the so-called Cauchy stress

tensor, [40]:
• it depends only on the first order spatial derivatives of u, where in [40] the
condition is stated that for this assumption the velocity should be not too large,

• it depends linearly on the first order spatial derivatives of u.
Flows which obey these assumptions are called Newtonian flows. A question is if

these assumptions are valid in the whole range of the Reynolds number or if it is

possible that Newtonian fluids behave in a non-Newtonian way for high Reynolds
numbers. Also from the mathematical point of view, the Navier-Stokes equations are

not yet fully understood. The uniqueness of an appropriately defined weak solution
or the existence of an appropriately defined classical solution are an open problem

in the (natural) three-dimensional case, [15], [53]. The solution of this problem
is currently one of the big challenges in mathematics, [10]. Might it be that this

unresolved problem has its origin in an incorrect model? However, the Navier-Stokes
equations (1) are currently the best model available for turbulent incompressible

flows.

2.2. The size of the smallest scales
There is no clear mathematical definition of what is “turbulence”. From the

mathematical point of view, turbulent flows occur at high Reynolds numbers. From
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the physical point of view, these flows are characterized by possessing flow structures

(eddies, scales) of very different sizes. Consider, e.g., a tornado. This tornado has
some very large flow structures (large eddies) but also millions of very small flow
structures. For a numerical simulation of turbulent flows, the question on the size of

the smallest eddies has to be answered. This size is denoted by λ.

Much of the physical turbulence theory, e.g., the determination of the size of the

smallest scales, is based on the concept of isotropic turbulence. A field u(t, x) is
called statistically stationary if all statistics of u(t, x) are invariant under a shift of
time. It is called statistically homogeneous if all statistics are invariant under a shift

of position. If the field is also statistically invariant under rotations and reflections of
the coordinate system, it is called (statistically) isotropic. Wind tunnel experiments
have been performed on (approximately) isotropic turbulence. However, isotropic
turbulence is in general an idealization.

Let Ω ⊂ � 3 . Richardson [49] gave a description of the physical mechanisms which

work in turbulent flows. Large eddies are unstable and break up into smaller ones.
Thereby energy is transferred to the smaller eddies. These eddies undergo a similar

process. This process is continued until the Reynolds number Re(l) = u(l)l/ν of the
eddies of size l is sufficiently small (of order one) so that the eddy motion is stable

and molecular viscosity is effective in dissipating the kinetic energy. This process is
called the energy cascade.

Denote by ε [m2/s3] the rate of dissipation of turbulent energy which is defined in
the following way. Consider u as a random variable and let 〈u〉 be the mean value
(expectation) of u. The difference u′ := u − 〈u〉 is called the fluctuation. The rate
of dissipation of turbulence energy is now defined by

ε := 2ν〈 � (u)′ :
�
(u′ )〉.

The detailed theoretical and experimental study of particular flows shows that

(2) ε ∼ U3

L

independently of Re.
In a fundamental paper, Kolmogorov [37] postulated three hypotheses about tur-

bulent flows:

1) At sufficiently high Reynolds numbers, the small scale turbulent motions are

isotropic.

2) In every turbulent flow at sufficiently high Reynolds number, the statistics of
the small scale motions have a universal form which is uniquely given by ν and ε.
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3) In every turbulent flow at sufficiently high Reynolds number, the statistics of

motions of scale l in the range L � l � λ have a universal form uniquely
determined by ε and independent of ν.

For describing the size of the smallest scales, the first and second hypotheses are of

importance.

Let ε and ν be given. Then there are unique length, velocity and time scales which
can be defined, the so-called Kolmogorov scales

(3) λ =
(ν3

ε

)1/4

[m], uλ = (εν)1/4 [m/s], tλ =
(ν
ε

)1/2

[s].

The Reynolds number of the eddies of size λ is

(4) Re(λ) =
λuλ

ν
= 1,

so that it is sufficiently small for the dissipation to be effective. In addition, using (3),
the rate of dissipation is given by

(5) ε = ν
u2

λ

λ2
= ν

1
t2λ
.

Hence

(6)
uλ

λ
=

1
tλ
.

The left-hand side is an approximation to the spatial derivative of the characteristic

velocity, which describes the change of the velocity gradient, since λ is small. For
the large eddies in turbulent flows, the velocity gradient increases with the Reynolds

number since the flow field varies rapidly in space and time. The last equation shows
that for the Kolmogorov scales, the velocity gradient is bounded uniformly with

respect to the Reynolds number. Hence, (4) and (6) characterize the Kolmogorov
scales as dissipative scales.

Now, we can estimate the size of the Kolmogorov scales. Using (2) and (3) gives

(7)
λ

L
∼

( ν3

L3U3

)1/4

= Re−3/4 ⇐⇒ λ ∼ Re−3/4.

2.3. The impact of the size of the Kolmogorov scales on numerical
simulations
A standard discretization of the Navier-Stokes equations (1), like the Galerkin

finite element method (FEM), seeks to simulate the behavior of all scales, including
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the Kolmogorov scales. Consider as an example the domain Ω = (0, 1)3 such that
L = 1, and a mesh of roughly 107 cubic mesh cells (≈ 2153). Assuming that the
mesh width is equal to the resolution of the discretization, as for low order finite
elements, then λ ≈ 1/215 since smaller scales cannot be represented on the given
mesh. Assuming additionally that equality holds in (2), it follows from (7) that
flows up to a Reynolds number of Re = 2154/3 ≈ 1290 can be simulated. This is far
less than the Reynolds number of turbulent flows in applications. Thus, numerical
simulation of a turbulent flow which is based directly on the Navier-Stokes equations,

the so-called Direct Numerical Simulation (DNS), is not feasible.
The small scales are important in the physics of turbulent flows. A numerical

scheme which simply neglects them, e.g., by introducing sufficient artificial viscosity,
computes a solution which is laminar and lacks important properties of the turbulent

solution, e.g., the mean velocity profiles of turbulent channel flows look considerably
different from the mean velocity profile of a laminar channel flow. Such a solution

is in general useless in applications. The way to treat the small scales which cannot
be resolved, consists in modeling their influence onto the resolved scales. In other

words, a turbulence model has to be applied.
There are various approaches to turbulence modeling which all have a number of

variants, e.g.:
• Reynolds averaged Navier-Stokes equations (RANS),
• turbulent viscosity models, e.g., the famous k − ε model [45],
• Lagrangian averaged Navier-Stokes equations (LANS),
• large eddy simulation (LES),
• variational multiscale models (VMS or VMS-LES).

In this paper, LES and VMS models will be considered in more detail.
�������
	��

2.1 (The smallest scales in two-dimensional flows). The smallest scales
in two-dimensional flows behave differently from (7). Kraichnan [38] showed that in

two dimensions λ = O(Re−1/2).
�������
	��

2.2 (Vortex stretching—a fundamental difference between two- and

three-dimensional flows at high Reynolds number). The vorticity is defined by ω =
∇ × u. Applying the curl operator to the Navier-Stokes equations (1) with f = 0
results in the following equation for the vorticity:

∂ω

∂t
−Re−1∇ · � (ω) + (u · ∇)ω − (ω · ∇)u = 0.

The viscous term is small for high Reynolds numbers and can be neglected. Thus

(8)
Dω

Dt
=
∂ω

∂t
+ (u · ∇)ω ≈ ω · ∇u.
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This is the equation of an infinitesimal line element of material. If ∇u acts so as to
stretch the line element then |ω| will be stretched, too. Thus, in turbulent three-
dimensional flows, vortex stretching occurs and this is an important feature of such
flows.

In two-dimensional flows, the right-hand side of (8) vanishes. Thus, vortex stretch-

ing cannot occur. Because of the absence of this mechanism, two-dimensional flows at
high Reynolds numbers are qualitatively different from three-dimensional turbulent

flows.
For this reason, one can share the point of view that in two dimensions there are

no turbulent flows. However, from the point of view of numerical mathematics it
is legitimate to check new methods for high Reynolds number flows also for two-

dimensional problems. If they fail, their success for three-dimensional flows, which
possess additional complicated features, is very unlikely. On the other hand, if they

are successful, it cannot be concluded without numerical studies that they will work
well in three dimensions, too.

Suggested readings for more details on the topics in this section are the mono-
graphs of Pope [48] and Davidson [8].

3. Classical Large Eddy Simulation (LES)

In this paper, standard notations for Lebesgue and Sobolev spaces are used,
e.g., see [1]. Spaces of vector-valued functions are denoted with the same symbol

as the corresponding space of scalar functions. The inner product in the Lebesgue
space L2(Ω) is denoted by

(u, v) =
∫

Ω

u(x)v(x) dx.

The Euclidean norm of a vector is denoted by ‖ · ‖2 and the Frobenius norm of a
matrix A ∈ � n×n is given by

‖A‖F = (A : A)1/2 =
( n∑

i,j=1

a2
ij

)1/2

.

3.1. The basic approach
The basic idea of (classical) LES consists in defining large scales by averaging in

space. This is done by convolution with an appropriate filter function g. The usual

way of defining filters in LES for domains in � d , d > 1, consists in using a tensor
product of one-dimensional filters.
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Assume that Ω = � d , d ∈ {2, 3}. The classical LES defines the large scale velocity
field and pressure (ū, p̄) by

(9) ū(y) =
1

δ(y)d

∫


d

g
(y − x
δ(y)

)
u(x) dx, p̄(y) =

1
δ(y)d

∫


d

g
(y − x
δ(y)

)
p(x) dx.

The parameter δ(y) is the filter width which describes what are the large eddies—
these are all eddies of size at least δ(y). The filter width might be also chosen
differently in different directions, like in (23), however, this results in a more compli-
cated general expressions for (ū, p̄) than (9). The small scales or fluctuations (u′, p′)
are defined by

(10) u′ = u− ū, p′ = p− p̄.

The task of the filter function is to filter out the small scales or, equivalently, to damp

out the high wave number components. LES has the goal to simulate the behavior
of (u, p̄) accurately.
The simulation of (ū, p̄) requires equations for these functions. These equations

have to be based on the Navier-Stokes equations (1). The usual approach to ob-

tain such equations in the (engineering) literature consists of three steps, e.g., see
Sagaut [51]:

1) Average the Navier-Stokes equations, i.e., the Navier-Stokes equations are con-
volved with the filter function. This gives, since convolution is a linear operator,

∂u
∂t
− 2Re−1∇ · � (u) +∇ · (uuT ) +∇p = f in (0, T ]× � d ,

∇ · u = 0 in (0, T ]× � d ,

ū(0, ·) = u0 in � d .

Here, the identity (u · ∇)u = ∇ · (uuT ) has been used.
2) Now, it is assumed that one can simply interchange the convolution operator

and all differentiation operators. This results in the so–called space averaged
Navier-Stokes equations

∂ū
∂t
− 2Re−1∇ · � (ū) +∇ · (ū uT ) +∇ · R(u,u) +∇p̄ = f in (0, T ]× � d ,(11)

∇ · ū = 0 in (0, T ]× � d ,

ū(0, ·) = u0 in � d

with the Reynolds stress tensor

(12) R(u,u) = uuT − ū ūT .
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The assumption in this step is valid for the partial derivative with respect to

time. With respect to the spatial derivatives, it is valid only in special cases,
e.g., if Ω = � d . This assumption is wrong in general. A so-called commutation
error will be committed if (11) is used in such situations. Commutation errors

will be studied in more detail in Section 3.2.

3) Using the decomposition (10) and the linearity of the convolution, the Reynolds
stress tensor can be written in the form

(13) R(u,u) = ū ūT + ū u′T + u′ ūT + u′ u′T − ū ūT .

At this point, a model of the influence of the small scales u′ onto the large
scales (ū, p̄) is needed since there is no mathematical way to get rid of u′. The
development of appropriate models is the main issue in LES. This topic will be
addressed in Section 3.3.

3.2. Commutation errors
In the study of the commutation of convolution and spatial differentiation opera-

tors, one has to distinguish two situations. The former is that the filter g possesses

unbounded support and the latter is the case of g having compact support. Both
cases have been addressed in literature.

The presence of commutation errors in the derivation of the space averaged Navier-

Stokes equations has been known for a long time. It was (and by many people still
is) believed that these errors are negligible or of higher order. In practice, they
are simply ignored. However, new analytical results and numerical studies show

that there are commutation errors, in particular, near the boundary of a bounded
domain Ω, which are of great importance.

3.2.1. Filters with unbounded support. The most popular filter with this
property is the Gaussian filter

(14) gδ(x) =
( γ

δ2π

)d/2

exp
(
− γ

δ2
‖x‖22

)

with γ = 6, see Fig. 1. In this section, δ > 0 is assumed to be a constant.
The application of the Gaussian filter to the Navier-Stokes equations in the first

step of the general approach requires that all functions are defined in � d so that the

integrals in (9) are well defined. We will study the commutation error in the case that
Ω ⊂ � d is a bounded domain. This is the most common situation in applications.

The Navier-Stokes equations will be equipped with homogeneous Dirichlet boundary
conditions u = 0 on ∂Ω. In addition, we assume that ∂Ω is a Lipschitz boundary. In

329



−2 −1 0 1 2

0

1

2

3
δ = 1  
δ = 0.5

Figure 1. The Gaussian filter in one dimension for different δ, γ = 6.

particular, ∂Ω has a finite (d− 1)-dimensional measure. The solution of the Navier-
Stokes equations (1) is assumed to exist uniquely and to possess the regularity

u ∈ H2(Ω) ∩H1
0 (Ω), p ∈ H1(Ω) ∩ L2

0(Ω) for a.e. t ∈ [0, T ],

u ∈ H1((0, T )) for a.e. x ∈ Ω.

The regularity with respect to time is not of importance for the commutation error

since LES uses spatial averaging and not time averaging. The regularity with respect
to space is a standard assumption for the steady state Navier-Stokes equations.

Before the Navier-Stokes equations can be convolved, all functions have to be

extended off Ω so that two requirements are fulfilled:

• the extensions have to be computable, since they are needed to compute (ū, p)
also in Ω,

• the extended functions should satisfy the Navier-Stokes equations.
Because of the homogeneous Dirichlet boundary conditions, the trivial extension

u ≡ 0 in � d \ Ω is natural. Also the pressure p will be extended trivially. The
regularity of the extended functions is as follows:

u ∈ H1
0 ( � d), p ∈ L2

0( � d ) for a.e. t ∈ [0, T ],(15)

u ∈ H1((0, T )) for a.e. x ∈ � d .

Now, f has to be extended so that the second requirement is fulfilled. The insertion
of the extended velocity and pressure into the left-hand side of the Navier-Stokes
equations requires to define ∇ · � (u) and ∇p in the sense of distributions. Let
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ϕ ∈ C∞0 ( � d). Since p ≡ 0 on � d \ Ω for all times, we get

(∇p)(ϕ)(t) := −
∫


d

p(t,x)∇ϕ(x) dx(16)

=
∫

Ω

ϕ(x)∇p(t,x) dx−
∫

∂Ω

ϕ(s)p(t, s)n∂Ω(s) ds.

In the same way, one obtains

∇ · � (u)(ϕ)(t) := −
∫


d

�
(u)(t,x)∇ϕ(x) dx(17)

=
∫

Ω

ϕ(x)∇ · � (u)(t,x) dx−
∫

∂Ω

ϕ(s)
�
(u)(t, s)n∂Ω (s) ds.

Both distributions have compact support. From (16) and (17), it follows that the

extended functions (u, p) fulfil the distributional form of the momentum equation

(ut − 2Re−1∇ · � (u) +∇ · (uuT ) +∇p)(ϕ)(t)(18)

= f(ϕ)(t) +
∫

∂Ω

�
(u, p)(t, s)n∂Ω(s)ϕ(s) ds,

where �
(u, p) = 2Re−1 � (u) − p �

is the stress tensor.
Equation (18) can be convolved and convolution and differentiation commute, [22],

[50]. One obtains the space averaged momentum equation

ūt − 2Re−1∇ · � (u) +∇ · (uuT ) +∇p̄

= f +
∫

∂Ω

g(x− s)
�
(u, p)(t, s)n∂Ω(s) ds in (0, T ]× � d ,

for details of the derivation see [9], [29]. In contrast to the naive approach which
leads to (11), there is the additional term

(19)
∫

∂Ω

g(x− s)
�
(u, p)(t, s)n∂Ω(s) ds

on the right-hand side of the momentum equation. This term describes exactly
the commutation error. There is no commutation error in the mass equation. The

quantity S(u, p)(t, s)n∂Ω(s) is the normal stress on the boundary. From the regularity
assumptions (15) on (u, p), we have that for almost every t ∈ [0, T ],

�
(u, p)n∂Ω ∈ Lq(∂Ω)

with 1 6 q <∞ if d = 2 and 1 6 q 6 4 if d = 3, e.g., see [14].
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The regularity of the commutation error (19) makes the study of expressions of

the form

(20)
∫

∂Ω

gδ(x− s)ψ(s) ds

with ψ ∈ Lq (∂Ω), 1 6 q 6 ∞, necessary. It can be shown that (20) belongs to
Lp( � d ), 1 6 p 6 ∞, see [9], [29]. One important result about the asymptotic
behavior of (20) is the following theorem.

Theorem 3.1. Let ψ ∈ Lp(∂Ω), 1 6 p 6∞. A necessary and sufficient condition
for

(21) lim
δ→0

∥∥∥∥
∫

∂Ω

gδ(x− s)ψ(s) ds
∥∥∥∥

Lp(


d)

= 0,

1 6 p 6∞, is that ψ vanishes almost everywhere on ∂Ω.
��	������

. It is obvious that the condition is sufficient.

Let (21) hold and let p−1 + q−1 = 1. From Hölder’s inequality, we obtain for an
arbitrary function ϕ ∈ C∞0 ( � d )

lim
δ→0

∣∣∣∣
∫


d

ϕ(x)
( ∫

∂Ω

gδ(x− s)ψ(s) ds
)

dx
∣∣∣∣(22)

6 lim
δ→0
‖ϕ‖Lq(


d)

∥∥∥∥
∫

∂Ω

gδ(x− s)ψ(s) ds
∥∥∥∥

Lp(


d)

= 0.

By Fubini’s theorem, the symmetry of the Gaussian filter, g(x) = g(−x), and a well
known property of limits of convolutions, e.g., see Folland [13, Theorem 0.13], we
have

lim
δ→0

∫


d

ϕ(x)
(∫

∂Ω

gδ(x− s)ψ(s) ds
)

dx = lim
δ→0

∫

∂Ω

ψ(s)
(∫


d

gδ(x− s)ϕ(x) dx
)

ds

=
∫

∂Ω

ψ(s)ϕ(s) ds.

From (22) it follows now that

0 =
∣∣∣∣
∫

∂Ω

ψ(s)ϕ(s) ds
∣∣∣∣

for every ϕ ∈ C∞0 ( � d ). This is true if and only if ψ vanishes almost everywhere
on ∂Ω. �
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The statement of the theorem tells us that the commutation error vanishes in

Lp( � d ) if and only if the normal stress on the boundary is zero for all times. This is
exactly the case if there is no interaction between the turbulent flow and the bound-
ary. This situation is very unlikely in applications! Another consequence concerns

discretizations which are based on the strong formulation of the underlying equation,
like finite difference methods. For such discretizations, the effect of neglecting a term

in the equation can be measured in the norm of a Lebesgue space. Thus, for such
discretizations, it cannot be expected that the commutation error (19) vanishes as

δ → 0.
Other discretizations, like finite element methods, are based on a weak or varia-

tional formulation of the underlying equation. The effect of neglecting a term of the
weak formulation can be measured in a weaker norm, e.g., in the H−1(Ω) norm. It is
shown in [9], [29] that the commutation error (20) tends to zero in H−1(Ω) as δ → 0
with the order of convergence of 1/2. This order is probably not optimal.

3.2.2. Filters with compact support. The most popular filter in this class is
the box filter given in its normalized form by

g(x) =

{
1 x ∈ [−1/2, 1/2],

0 else.

With this filter, the space averaged velocity is defined by

(23) ū(y) =
1

8δ1(y)δ2(y)δ3(y)

∫ y1+δ1(y)

y1−δ1(y)

∫ y2+δ2(y)

y2−δ2(y)

∫ y3+δ3(y)

y3−δ3(y)

u(x) dx.

The appealing advantage of this type of filter is that the filter widths in the different
directions δ1(y), δ2(y), δ3(y) can be chosen such that the domain of integration is
always contained in Ω. However, approaching the boundary, the filter width has to
tend to zero, at least in one direction. Thus, the filter width is not constant and for

this reason a commutation error arises.

The commutation error due to a non-constant filter width in the box filter can be

studied already in one dimension, [3]. Straightforward calculations give the following
formula for the commutation error in this case:

Ec(y) :=
d
dy
ū(y)− du

dy
(y)(24)

=
δ′(y)
δ(y)

(
1

2δ(y)

∫ y+δ(y)

y−δ(y)

xu′(x) dx− y

2δ(y)

∫ y+δ(y)

y−δ(y)

u′(x) dx
)
.
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The evaluation of this error requires the knowledge of u, which stands for one com-

ponent of the velocity or for the pressure. However, in turbulent flows, an analytical
expression for the solution of the Navier-Stokes equations is not available.
The commutation error is of interest in particular at the boundary. There are

empirical laws of the average form of the boundary layer which can be substituted
into (24) providing in this way information on the average commutation error. Con-

sider, e.g., the 1/αth power law

u(y) =




U∞

(y
η

)1/α

, 0 6 y 6 η,

U∞, η < y,

where U∞ is the free stream velocity, α > 1 and η is the boundary layer thickness,
see [52]. Often, α = 7 is used.
We are interested in the behavior inside the boundary layer, i.e. 0 < y < η.

Approaching the boundary, it is required that the filter width tends to zero. The

choice δ(y) = O(yq), q > 1, satisfies this condition. Then, the commutation error (24)
can be evaluated and a series expansion leads to the estimate

|Ec(y)| 6 Cy2q+1/α−3

for y sufficiently close to the boundary. Thus, the requirement for the convergence
of the commutation error in a neighborhood of the boundary is q > 1

2 (3 − 1/α).
Numerical tests, [3], show that this estimate is sharp.

The convergence of the commutation error in the case that the mean flow obeys
the 1/αth power law at the wall is only guaranteed if the filter width tends to zero
sufficiently fast near the boundary. Since in computations the filter width has to be
larger than the mesh width, this implies that the mesh has to be very fine at the wall.

In practice, the convergence of the commutation error requires that the boundary
layer must be resolved in the numerical simulation.

A similar result is obtained if the flow has singularities at the boundary, e.g., at
a reentrant corner. Also in this situation, convergence of the commutation error

requires that the filter width δ(y) must be sufficiently small near the singularity so
that in practice a resolution of the flow field at the singularity becomes necessary.

In LES modeling, the question arises of what is more important: to model the
Reynolds stress tensor (12) or the commutation error. In this comparison, one has

to consider the divergence of the Reynolds stress tensor since this term has to be
modeled in the space averaged Navier-Stokes equations (11). This question was

investigated in [55] while the focus of this paper is on turbulent flows which are well
separated from solid bounding walls. Assuming existence and convergence of the
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Taylor series expansion of the velocity u, it is shown that for nth order filters (the first
non-vanishing moment of the filter function is the nth moment) the commutation
error and the divergence of the Reynolds stress tensor are asymptotically of the
same order. Numerical studies of a turbulent mixing layer flow show, however,

that for the box filter (second order filter) the contribution of the divergence of the
Reynolds stress tensor is by one order of magnitude larger than the contribution of

the commutation error if the filter width varies slowly. This indicates that the pre-
factors of the leading order term in the expansion of the commutation error and the

divergence of the Reynolds stress tensor are of considerably different sizes. A sharp
variation of the filter width increases the size of the commutation error considerably.

It is concluded that in this case a modeling of this error should be done. Two models
for the commutation error are proposed in [55] and tested on a turbulent mixing

layer flow.
In [5], the asymptotic behavior of commutation errors, originating from the appli-

cation of the non-uniform box filter, and the divergence of the Reynolds stress tensor
are studied at solid boundaries for the turbulent channel flow. In the analysis, the

unknown flow field is modeled by a couple of wall laws (Reichardt law and 1/αth
power law) for the mean velocity profile, and highly oscillating functions model the

turbulent fluctuations. The asymptotics which are derived show that near the wall,
the commutation errors are at least as important as the divergence of the Reynolds

stress tensor.

3.3. Modeling the Reynolds stress tensor
The modeling of the Reynolds stress tensor R(u,u) given in (12) is the main issue

in classical LES.

3.3.1. Eddy viscosity models. The simplest form of an eddy viscosity model
is

(25) R(u,u)− tr(R(u,u))
3

� = −νT
�
(ū),

where νT is called the turbulent viscosity and tr(R(u,u)) is the trace of R(u,u).
Model (25) is called the Reynolds closure or Boussinesq hypothesis, see, e.g., [45].
The second term on the left-hand side is usually added to the pressure, defining a

new pressure, which is for simplicity of notation also denoted by p̄,

p̄ := p̄+
tr(R(u,u))

3
.

The simplest LES model which is based on (25) is the Smagorinsky model. Let
Lint be the so-called integral length scale of the eddies containing energy (the large
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eddies) and Uint the corresponding characteristic velocity. From (2) it follows that

(26) ε ∼ U3
int

Lint
.

The smallest resolved scales, which are of size δ, are still much larger than the
Kolmogorov scales. Thus, the filter width δ and the corresponding velocity Uδ of

these scales can be also used as characteristic length and velocity, respectively. Hence,
we have

(27) ε ∼ U3
δ

δ
.

From (26) and (27) it follows that

(28) Uδ ∼ Uint

( δ

Lint

)1/3

.

The eddy viscosity model captures the dissipation of the eddies of size δ. Similarly
to the derivation of (5) for the Kolmogorov scales, one obtains

(29) ε ∼ νT
U2

δ

δ2
.

Inserting (27) and (28) into (29) gives

νT ∼ Uδδ ∼ UintL
−1/3
int δ4/3.

Now, the assumption

Uint ∼ Lint‖
�
(ū)‖F

is used. One gets, by replacing the similarity sign with a factor,

νT = cL
2/3
int δ

4/3‖ � (u)‖F .

The integral length scale Lint is hard to determine. For this reason, one uses the
approximation Lint ∼ δ and gets finally the Smagorinsky model

(30) νT = cSδ
2‖ � (ū)‖F ,

where cS is a user-chosen constant. The Smagorinsky model is quite popular because
of its simplicity. However, it has some well known drawbacks and computes often

inaccurate results, e.g., see [57], [51]. The great difficulty in the application of the
Smagorinsky model consists in a good choice of the constant cS . It is even very
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likely that one has to choose different constants in different flow regions and at

different times to obtain good simulations. Note the Smagorinsky model does in
general not vanish in situation where a turbulence model is not needed, e.g., for
laminar flows. Generally, numerical simulations with the Smagorinsky model lead to

over-diffusive results. From the mathematical point of view, the Smagorinsky model
is well understood. Ladyzhenskaya [39] could prove the existence and uniqueness

of an appropriately defined weak solution in two and three dimensions applying
the Galerkin method. The main analytical tool is the proof of monotonicity of

the non-linear viscous term which is introduced by the Smagorinsky model. The
analysis of the Smagorinsky model with variable but positive cS(t,x) can be found
in Świerczewska [54]. In [34], one can find finite element error estimates for the
Smagorinsky model.

The most popular variant of the Smagorinsky model is the dynamic subgrid scale
(SGS) model by Germano et al. [17] and Lilly [44]. In this model, cS is a function

in space and time, cS = cS(t,x), which is computed a posteriori.
The dynamic subgrid scale model starts with introducing a second filter, the so-

called test filter denoted by an arrow, with
↔
δ > δ. Then, the space averaged

Navier-Stokes equations (11) are filtered once more with the test filter. Assuming

that differentiation and filtering commute yields

↔̄u t − 2Re−1∇ · � (↔u )
+∇ ·

(←−→
ū ūT

)
+∇ ·←−−−→R(u,u) +∇↔̄p =

↔
f in (0, T ]× Ω,

∇ · ↔̄u = 0 in [0, T ]× Ω.

A direct calculation gives

(31) K −←−−−→R(u,u) =
←−→
ū ūT − ↔̄u↔u T

with K =
←−→
uuT − ↔̄u↔u T

. Inserting the ansatz

R(u,u)(t,x) − tr(R(u,u))
3

� = − cS(t,x)δ2‖ � (ū)‖F
�
(ū),

K(t,x) − tr(K)
3

� = − cS(t,x)↔δ 2‖ � (↔̄u )‖F
�
(↔̄u )

into (31), one obtains

0 = −
←−→
u ūT + ↔̄u↔u T

+
1
3

(
tr(K)−←−−−−−−→tr(R(u,u))

)
�(32)

+
←−−−−−−−−−−−−−−−−−→
(cS(t,x)δ2

∥∥ � (
ū
)∥∥

F

� (
ū)

)
− cS(t,x)↔δ 2∥∥ � (↔u

)∥∥
F

� (↔̄u
)
.
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The linearity of the filter, the linearity of the trace operator and (31) yield

(33) tr(K) −←−−−−−−→tr(R(u,u)) = tr
(
K −←−−−→R(u,u)

)
= tr

(←−→
ū ūT −↔u ↔̄u T

)
.

In order to derive equations for cS(t,x), the approximation

(34)
←−−−−−−−−−−−−−−−−−→
(cS(t,x)δ2‖D(ū)‖F

�
(ū)) ≈ cS(t,x)δ2

←−−−−−−−−−→
(‖ � (ū)‖F

�
(u))

is used. If cS depends only on t but not on x, one has an equality instead of an
approximation. Inserting (34) and (33) into (32) gives

0 ≈ −
←−→
ū ūT +↔u ↔̄u T +

1
3

tr
(←−→
ū ūT −↔u ↔̄u T

)
�(35)

+ cS(t,x)
(
δ2
←−−−−−−−−−→
(‖ � (ū)‖F

�
(ū))−↔δ 2∥∥ � (↔u )∥∥

F

� (↔̄u ))

=: � + cS(t,x) � .

Equations for cS(t,x) are obtained by replacing the approximation sign in (35) with
the equal sign. Then, there are 1

2d(d + 1) equations to determine a single constant
for given t and x. Because of the divergence constraint, the traces of the deformation
tensors vanish, so that only 1

2d(d+1)−1 equations are linearly independent. Lilly [44]
proposed to determine the parameter cS(t,x) by the least squares method, i.e. to
find cS(t,x) such that ‖ � + cS(t,x) � ‖2F is minimized. A direct calculation gives

cS(t,x) =
� : �
� : � (t,x).

In practical computations, the test filter can be applied by solving the space aver-

aged Navier-Stokes equations on a coarse grid. In the case of uniformly refined grids,
the use of the next grid coarser than the current one results in

↔
δ = 2δ.

The practical use of this approach shows that one has to smooth (average) cS(t,x)
in space and time to obtain stable simulations. Otherwise, large negative values

can be computed for cS(t,x) which lead to a blow up of the simulations. The
choice of smoothing strategies is done heuristically and requires a lot of experience.

Altogether, the dynamic SGS model is considered currently to be the best performing
classical LES model.

3.3.2. Methods which are based on the approximation of the Fourier
transform of the filter. Let δ be a positive constant. The starting point of these
models is the decomposition (13) of the Reynolds stress tensor. To each term on the
right-hand side, save the last one, the following procedure is applied:
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1. computing the Fourier transform F(·),
2. replacing F(u′) by a function of F(ū) if necessary,
3. approximating the Fourier transform of the Gaussian filter by an appropriate
simpler function,

4. neglecting all terms which are formally of order δ4 or higher,
5. computing the inverse Fourier transform.

The crucial step is the third one. There are two proposals in literature concerning
this approximation.

The most important task of the filter function, to damp out the high wave number
components, will be reflected by the property that the Fourier transform of the filter

function (almost) vanishes for high wave numbers, see Figs. 2 and 3 for the Gaussian
filter.

The five steps are now considered in detail. A straightforward computation gives
for the first step

F
(
ū ūT

)
= F(gδ)F(ū uT ),(36)

F
(
ūu′T

)
= F(gδ)

(
F(ū) ∗ F(u′)T

)
,

F
(
u′ūT

)
= F(gδ)

(
F(u′) ∗ F(ū)T )

,

F
(
u′u′T

)
= F(gδ)

(
F(u′) ∗ F(u′)T

)
.

To perform the second step, we have to assume that the Fourier transform of the

filter is never equal to zero. This is fulfilled, e.g., by the Gaussian filter. Using the
decomposition (10), one obtains

F(u′) =
( 1
F(gδ)

− 1
)
F(ū).

Inserting this into (36) gives

F
(
ūu′T

)
= F(gδ)

(
F(ū) ∗

( 1
F(gδ)

− 1
)
F(u)T

)
,

F
(
u′ūT

)
= F(gδ)

(( 1
F(gδ)

− 1
)
F(u) ∗ F(ū)T

)
,

F
(
u′u′T

)
= F(gδ)

(( 1
F(gδ)

− 1
)
F(u) ∗

( 1
F(gδ)

− 1
)
F(ū)T

)
.

In the third step, F(gδ) and 1/F(gδ) have to be approximated by simpler functions.
In [42], [6], [2], the use of a second order Taylor polynomial is proposed, see Fig. 2,

F(gδ)(δ,y) = 1− ‖y‖
2
2

4γ
δ2 +O(δ4),

1
F(gδ)

(δ,y) = 1 +
‖y‖22
4γ

δ2 +O(δ4).
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Figure 2. F(gδ) and 1/F(gδ) with their polynomial approximations, Gaussian filter with
γ = 6, δ = 1.

The resulting model is called the gradient model or the Taylor LES model. Direct

calculations give

F
(
ū ūT

)
= F(ū ūT ) +

δ2

4γ
F(∆(u ūT )) +Oformal(δ4),

F
(
ū u′T

)
= − δ2

4γ
F

(
ū∆(ū)T

)
+Oformal(δ4),

F
(
u′ ūT

)
= − δ2

4γ
F

(
∆(ū)ūT

)
+Oformal(δ4),

F
(
u′u′T

)
= Oformal(δ4).

The notation Oformal(δ4) means that there are expressions of the form δ4 multiplied
with functions which involve ū which in turn depends also on δ.
In the fourth step, all terms which are formally of the fourth order in δ are ne-

glected. Then, the inverse Fourier transform in Step 5 can be performed easily.

Collecting terms gives finally

(37) R(u,u) ≈ δ2

2γ
∇ū∇ūT .

It can be observed that the polynomial approximation of F(gδ) is a good approx-
imation only for small wave numbers while it is completely wrong for high wave
numbers. This means that the most important property of the Gaussian filter func-

tion is not preserved by its Taylor polynomial approximation!
Based on this observation, Galdi and Layton [16] proposed to use a rational ap-

proximation of the exponential

eax =
1

1 + ax
+O(a2x2).
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Applying this subdiagonal Padé approximation to F(gδ) gives

(38) F(gδ)(δ,y) =
1

1 +
‖y‖22
4γ

δ2
+O(δ4)

and transforming this formula to 1/F(gδ) yields

(39)
1

F(gδ)
(δ,y) = 1 +

‖y‖22
4γ

δ2 +Oformal(δ4).

The last term in (39) is actually O(δ4)/F(gδ) so that it is only formally of the fourth
order. The rational approximations of F(gδ) and 1/F(gδ) are obtained by neglecting
all (formal) fourth order terms in (38) and (39). The behavior of F(gδ) for high wave
numbers is much better approximated by the rational function than by the Taylor
polynomial, see Fig. 3 for a one-dimensional sketch. The approximation of 1/F(gδ)
is the same as in the polynomial case. The resulting LES model is called the rational
LES model.
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Figure 3. F(gδ) with its second order rational approximation, γ = 6, δ = 1.

Straightforward calculations with the rational approximation give

ū ūT =
(
I − δ2

4γ
∆

)−1(
ū ūT

)
+Oformal(δ4),

ū u′T = − δ2

4γ

(
I − δ2

4γ
∆

)−1(
ū∆(ū)T

)
+Oformal(δ4),

u′ūT = − δ2

4γ

(
I − δ2

4γ
∆

)−1(
∆(ū)ūT

)
+Oformal(δ4),

u′u′T = Oformal(δ4).
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Neglecting all Oformal(δ4) terms, applying the inverse Fourier transform and col-
lecting terms leads finally to

(40) R(u,u) ≈ δ2

2γ

(
I − δ2

4γ
∆

)−1

∇ū∇uT .

In both the Taylor LES model and the rational LES model, the so-called subgrid
scale term u′u′T is modeled by zero. However, this term is considered to possess great
influence on the formation of turbulence. In addition, it turns out in computations
that the model zero is insufficient because one obtains in general a blow up of the

simulation in finite time, [27], [29]. Proposals for modeling u′u′T are of the form
−∇ · (νT

�
(ū)) where νT might be the Smagorinsky model (30). Another proposal

for νT is due to Iliescu and Layton [28]:

(41) νT = cSδ
∥∥∥ū−

(
I − δ2

4γ
∆

)−1

u
∥∥∥

2
.

In the classical LES approach, it is not possible to derive equations for (ū, p̄) only
from the Navier-Stokes equations since a modeling process is also necessary. Thus,
the quantities which will be computed using these models will not be (ū, p̄) but,
hopefully good, approximations to (u, p̄). To have a clear distinction between the
large scale quantities (ū, p̄) and their approximations, we will denote the solution
obtained by the LES models by (w, r).
The final LES model based on the approximation of the Fourier transform of the

filter function has the form

wt −∇ ·
(
(2Re−1 + νT )

�
(w)

)
+ (w · ∇)w +∇r +∇ · δ

2

2γ
(
A(∇w∇wT )

)
= f(42)

in (0, T ]× Ω,

∇ ·w = 0 in [0, T ]× Ω,

w(0, ·) = w0 in Ω,

where the operator A depends on the approximation of the Fourier transform of the

Gaussian filter:
• A = I for the Taylor LES model (37),

• A = (I − (δ2/(4γ))∆)−1 for the rational LES model (40).
For the turbulent viscosity νT , the following choices have been presented:

• νT is the Smagorinsky model (30),
• νT is the Iliescu-Layton model (41).

All derivations so far are performed in � d . If the problem is given in a bounded
domain, (42) is simply restricted to the domain. However, then the question of
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boundary conditions for (w, r) ≈ (ū, p̄) arises. In the rational LES model (40), one
needs also boundary conditions for solving the auxiliary problem

− δ
2

4γ
∆ � + � = ∇w∇wT .

Appropriate boundary conditions for the approximation of the large scales (w, r)
are an open problem. A review of approaches for the treatment of boundaries in LES
is given in [47]. There are essentially two approaches:

• impose some form of law-of-the-wall,
• solve numerically a set of simplified equations in the boundary layer region; this
is called zonal approach.

The former approach considers the layer on the boundary in a Reynolds averaged

sense to impose some wall law. This is justified if the sample of near-wall eddies
in a grid cell is sufficiently large. Then, the boundary layer can be assumed to be

governed by the RANS equations. For this assumption to hold, the grid size must
be very large compared to the Reynolds number. This might be one reason why

wall-layer models tend to be more accurate for very high Reynolds numbers.
Zonal approaches are based on the explicit solution of a different set of equations

near the boundary. The Two-Layer-Model (TLM) uses two separate grids, a coarse
one in the core of the flow and a fine one (refined only in wall-normal direction) on the

boundary. On the fine grid, two one-dimensional problems are solved. The so-called
Detached Eddy Simulation (DES) uses only one grid. However, RANS equations are
solved in the attached boundary layer. The RANS simulations are coupled with LES

away from the boundary, see [46] for numerical studies with DES for turbulent chan-
nel flows.

The current situation can be summarized as follows:
• Simple models work fairly well on simple problems.
• In more complex configurations, the zonal models give reasonable results. How-
ever, there is still much need for improvement.

• No extensive numerical comparisons in complex geometries are available.
For the Smagorinsky model (30) and homogeneous Dirichlet boundary conditions

at smooth boundaries, a damping of the constant cS in a vicinity of the wall is usually
applied, the so-called van Driest damping [56], see also [48].

Concerning the auxiliary problem, in [16] it is proposed to use homogeneous Neu-
mann boundary conditions.

3.3.3. Some remarks. There is a huge amount of publications presenting numer-
ical simulations with the Smagorinsky model or the dynamic SGS model, e.g., see [48],
[51]. The gradient LES model fails in the form which is presented here. A very fast
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blow-up can be observed in simulations, e.g., see [27], [29]. There are modifications

of this model which work better. Computations with the rational LES model can be
found in [11], [12], [27], [29], [30].

The mathematical analysis of LES models seems to be possible and first results
have been already obtained by Guermond et al. [21]. In their paper, two criteria for a

rigorous mathematical theory of LES models are proposed: the model should act as a
regularization of the Navier-Stokes equations, which leads to a unique weak solution,

and it should select a physically relevant solution. It is shown that these criteria
are fulfilled by a number of models, e.g., the Navier-Stokes equations with Leray

regularization, the Navier-Stokes-alpha model and the Smagorinsky LES model. For
models which do not fulfil one of these criteria, e.g., spectral eddy viscosity models,

modifications are proposed in [21] such that the new models fulfil both.

In the academic CFD community, LES is considered to be currently among the

best performing turbulence models, in particular the dynamic subgrid scale model.
However, in industrial applications, LES is often still considered to be too expensive

(the computing times are too long) and simpler turbulence models are used.

Advanced LES models have to solve at least two great problems inherited in the
classical LES approach:

• modeling of the commutation errors which are committed in the derivation of
the space averaged Navier-Stokes equations, in particular if the domain Ω is
bounded,

• solving the problem of appropriate boundary conditions for the approximation
of the large scales (w, r).

4. Variational Multiscale (VMS) Methods

Similarly to classical LES methods, VMS methods seek to simulate only large flow

structures. Therefore, these methods are also called VMS-LES methods. However,
the large scales in a VMS method are defined in a different way than in a classical

LES method.

4.1. The basic approach

The difficulties of the classical LES originate in the definition of the large scales

by spatial averaging. As an alternative, VMS methods consider large scales which
are defined by projection into appropriate spaces. First ideas of projection based

methods, also for problems different from the Navier-Stokes equations, can be found
in Hughes [24], Guermond [20] and Hughes et al. [23].
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Consider the Navier-Stokes equations (1), equipped for simplicity with homoge-

neous Dirichlet boundary conditions, and a decomposition of the flow into three
scales, following [7]:

• the large scales (ū, p̄),
• the resolved small scales (ũ, p̃),
• the unresolved small scales (û, p̂),

with u = ū + ũ + û and p = p̄+ p̃+ p̂.

The starting point of a VMS method is the variational formulation of the Navier-

Stokes equations. Let V = (H1
0 (Ω))d be equipped with the norm ‖v‖V = ‖∇v‖L2

and let Q = L2
0(Ω). A variational formulation of (1) reads as follows: Find u :

[0, T ]→ V , p : (0, T ]→ Q satisfying for all (v, q) ∈ V ×Q

(43) (ut,v) + (2Re−1 � (u),
�

(v)) + b(u,u,v)− (p,∇ · v) + (q,∇ · u) = (f ,v)

and u(0,x) = u0(x) ∈ V , where b(u,v,w) = ((u · ∇)v,w). Writing (43) in short
form

A(u; (u, p), (v, q)) = F (v)

and decomposing the test functions also into three scales, the variational form of the
Navier-Stokes equations can be written as a coupled system: Find u = ū + ũ + û :
[0, T ]→ V , p = p̄+ p̃+ p̂ : (0, T ]→ Q satisfying for all (v, q) ∈ V ×Q

A(u; (ū, p̄), (v, q̄)) +A(u; (ũ, p̃), (v, q̄)) +A(u; (û, p̂), (v, q̄)) = F (v),

A(u; (ū, p̄), (ṽ, q̃)) +A(u; (ũ, p̃), (ṽ, q̃)) +A(u; (û, p̂), (ṽ, q̃)) = F (ṽ),

A(u; (ū, p̄), (v̂, q̂)) +A(u; (ũ, p̃), (v̂, q̂)) +A(u; (û, p̂), (v̂, q̂)) = F (v̂).

Here, linearity of the variational problem with respect to the test function has been
used. Now, the basic ideas and assumptions of a VMS method are as follows:

• the equation with the test function from the unresolved scales is neglected,
• it is assumed that the unresolved scales do not influence the large scales directly,
i.e. A(u; (û, p̂), (v, q̄)) = 0,

• the influence of the unresolved scales onto the small resolved scales is modeled:

A(u; (û, p̂), (ṽ, q̃)) ≈ B(u; (ū, p̄), (ũ, p̃), (ṽ, q̃)).

The choice of the model B(u; (u, p̄), (ũ, p̃), (ṽ, q̃)) has to be guided by physical ideas
in turbulence modeling, e.g., eddy viscosity models of Smagorinsky type (30) are

often used. From the numerical point of view, the model B(u; (ū, p̄), (ũ, p̃), (ṽ, q̃))
introduces additional viscosity which acts as stabilization.

345



Let V , Q̄ be spaces representing the large scales and Ṽ , Q̃ spaces for the re-

solved small scales. A VMS method reads as a coupled system of the form: Find
(u, ũ, p̄, p̃) ∈ V × Ṽ × Q̄× Q̃ such that

A(ū + ũ; (ū, p̄), (v, q̄)) +A(ū + ũ; (ũ, p̃), (v, q̄)) = F (v),(44)

A(ū + ũ; (ū, p̄), (ṽ, q̃)) +A(ū + ũ; (ũ, p̃), (ṽ, q̃))

+B(ū + ũ; (ū, p̄), (ũ, p̃), (ṽ, q̃)) = F (ṽ)

for or all (v, ṽ, q̄, q̃) ∈ V × Ṽ × Q̄ × Q̃. Note that a characteristic feature of a
VMS method is that the model for the influence of the unresolved small scales acts

directly only on the resolved small scales. Since the resolved small scales and the
large scales are coupled in (44), the model B(u; (ū, p̄), (ũ, p̃), (ṽ, q̃)) influences the
large scales indirectly. This is in contrast to classical LES models, where the model
acts directly on all resolved scales.

To specify a concrete VMS method, one has to define spaces V , Ṽ , Q̄, Q̃ and a
model B(ū + ũ; (u, p̄), (ũ, p̃), (ṽ, q̃)).
As concerns B(ū + ũ; (u, p̄), (ũ, p̃), (ṽ, q̃)), in general the Smagorinsky model (30)

or variations of it have been used in literature, see [25], [26], [18], [19], [31].

Concerning finite element methods for discretizing (44), there are at least two prin-
cipally different approaches. In Gravemeier et al. [18], [19], standard finite element

spaces were used for the large scales V × Q̄. The finite element spaces Ṽ × Q̃ need
to have higher resolution since they should represent small scales. Their approach
consists in using mesh cell bubble functions for Ṽ × Q̃, e.g., standard bubbles or

residual free bubbles. Therefore, this approach is called the bubble-VMS method.
The bubble functions vanish on the faces of the mesh cells, which induces that the re-

solved small scales cannot cross mesh cell boundaries. This property does not reflect
their physical behavior and has given rise to criticism. However, there are no studies

available about the impact of this property in numerical simulations. The second
way for choosing the spaces consists in using a common standard finite element space

for all resolved scales and an additional large scale space. A method of this type was
introduced in [31] and will be presented in more detail in Section 4.2.

Numerical studies of VMS methods coupled with spectral methods can be found
in [25], [26]. Finite element bubble-VMS methods were used, e.g., in [18], [19] and

the coarse space projection-based VMS method in [31].
The principle goal of a VMS method and the dynamic subgrid scale method pre-

sented in Section 3.3.1 is similar. Based on the experience that the use of the
Smagorinsky model (30) with a fixed constant cS as turbulence model introduces

too much diffusion, one tries to reduce the influence of this model where its applica-
tion is not necessary. In the dynamic subgrid scale method, this reduction is done
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by using a function cS(t,x) and adjusting this function appropriately. In a VMS
method, the reduction is performed by choosing an appropriate small scale space to
which the direct influence of the Smagorinsky model is restricted.

4.2. A coarse space projection-based VMS method
Let V h, Qh be finite element spaces for the velocity and pressure which fulfil the

inf-sup stability condition, i.e., there is a positive constant C independent of the
mesh size parameter h such that

(45) inf
qh∈Qh

sup
vh∈V h

(∇ · vh, qh)
‖∇vh‖L2‖qh‖L2

> C,

let LH be a finite dimensional space of symmetric d × d tensor-valued functions
defined on Ω and let νadd(V, x) be a non-negative function. Then the semi-discrete
coarse space projection-based VMS method (continuous in time) is defined as follows:
Find uh : [0, T ]→ V h, ph : (0, T ]→ Qh and � H : [0, T ]→ LH satisfying

A(uh; (uh, ph), (vh, qh)) + (νadd((uh, ph), h)(
�
(uh )− � H ),

�
(vh)) = F (vh)(46)

for all (vh, qh) ∈ V h ×Qh,

(
�
(uh )− � H , � H ) = 0 for all � H ∈ LH .

Methods of this kind have been studied in, e.g., [41], [35], [31], [32], [36], [33].
One has to choose two parameters: the additional viscosity νadd((uh, ph), h) and the
space LH .

Concerning νadd((uh, ph), h), all numerical studies with the method (46) have
used the Smagorinsky model (30). A finite element error analysis of (46) for

νadd((uh, ph), h) = νadd(h) can be found in [32].
The other parameter in (46) is the space of symmetric tensors LH . The second

equation in (46) states that the tensor � H is just the L2(Ω)-projection of
�
(uh )

into LH : � H = PLH

�
(uh ). With this notation, one can reformulate (46) as follows:

Find uh : [0, T ]→ V h, ph : (0, T ]→ Qh satisfying

A(uh; (uh, ph), (vh, qh))(47)

+ (νadd((uh, ph), h)(I − PLH )
�
(uh ),

�
(vh )) = F (vh)

for all (vh, qh) ∈ V h ×Qh.

In (46), LH plays the role of a large scale space such that (I − PLH )
�
(uh ) rep-

resents (resolved) small scales of
�
(uh ). To avoid a negative additional viscosity, it

is required that LH ⊂ { � (vh ) : vh ∈ V h}. In the extreme case when both spaces
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coincide, the second term on the left-hand side of (47) vanishes and the Galerkin fi-

nite element discretization of the Navier-Stokes equations is recovered. If LH = { � },
one obtains an artificial viscosity stabilization of the Navier-Stokes equations with
a possible non-linear artificial viscosity. If νadd((uh, ph), h) is the Smagorinsky eddy
viscosity model (30), the Smagorinsky LES model is recovered. Since LH represents
large scales, it must be in some sense a coarse finite element space. There are es-

sentially two possibilities. If V h is a higher order finite element space, LH can be
defined as a low order finite element space on the same grid as V h. This approach is

studied in [31]. The second possibility, in particular if V h is a low order discretiza-
tion, consists in defining LH on a coarser grid, see [33] for a study of this approach

in the case of convection-dominated convection-diffusion equations.
Method (46) can be transformed to the standard form (44) of a VMS method,

see also [31]. For this purpose, the three-level partitioning given above has to be
described by appropriately chosen function spaces. Clearly, the continuous pair of

spaces (V,Q) contains all scales. The finite element spaces (V h, Qh) contain the
large and the resolved small scales. Let V H ⊂ (H1(Ω))d be a discrete space such that

LH =
�
(V H). The space V H should be coarser than V h. But in the definition of V H ,

no boundary conditions, like no-slip conditions, are incorporated. Thus, in general

V H 6⊂ V h. The pair of spaces for the large scales is given by (V H , QH) where QH is
chosen such that an inf-sup condition of type (45) is fulfilled for (V H , QH). The large
scales PHu of the velocity are defined by an elliptic projection into V H and the large
scales PHp of the pressure by the L2-projection into QH ; PH : (V,Q)→ (V H , QH);

( �
(u − PHu),

�
(vH)

)
= 0 ∀vH ∈ V H ,(48)

(u− PHu, 1) = 0,

(p− PHp, q
H) = 0 ∀ qH ∈ QH .

With this definition, a commutation property of the definition of the large scales (by

projection) and differentiation can be proved.

Lemma 4.1. Let v ∈ V , LH =
�
(V H) and denote by PLH

�
(v) the L2-projection

of
�
(v) into LH defined in the second equation of (46). Then

(49) PLH

�
(v) =

�
(PH v) ∀v ∈ V.

��	������
. From LH =

�
(V H) and PLH

�
(v) ∈ LH it follows that there is a

wH ∈ V H such that PLH

�
(v) =

�
(wH ). Using the second equation of (46) gives

(50) (
�
(v −wH), � H ) = 0 ∀ � H ∈ LH .
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On the other hand, since LH =
�
(V H), (48) is equivalent to

(51) (
�
(v − PHv), � H ) = 0 ∀ � H ∈ LH .

The statement of the lemma follows now directly from (50) and (51) since the elliptic
projection is unique. �

Let now νadd be a constant. A straightforward calculation shows that

(
νadd(I − PLH )

�
(uh ),

�
(vh )

)
=

(
νadd(I − PLH )

�
(uh ), (I − PLH )

�
(vh )

)
.

Thus, (46) can be reformulated as follows: Find uh : [0, T ] → V h, ph : (0, T ] → Qh

satisfying

A(uh; (uh, ph), (vh, qh)) +
(
νadd(I − PLH )

�
(uh ), (I − PLH )

�
(vh )

)
(52)

= F (vh) ∀ (vh, qh) ∈ V h ×Qh.

Decompose V h = V H + Ṽ h, Qh = QH + Q̃h with Ṽ h = (I − PH)V h. It follows
from (49) that

(I − PLH )
�
(vh ) =

�
(vh − PHvh) =

� (
(I − PH)vh

)
=
�
(ṽh ).

The decompositions uh = ūH + ũh, ph = p̄H + p̃H , vh = vH + ṽh and qh = q̄H + q̃H

are inserted into (52) together with using the linearity of A (·; ·, ·) with respect to
the second and third component. Writing the arising equation formally as a coupled

system gives

A
(
ūH + ũh; (ūH , p̄H), (vH , q̄H)

)
(53)

+A
(
ūH + ũh; (ũh, p̃h), (vH , q̄H)

)
= F (vH)

for all test functions (vH , q̄H) ∈ V H ×QH and

A
(
ūH + ũh; (uH , p̄H), (ṽh, q̃h)

)
+A

(
ūH + ũh; (ũh, p̃h), (ṽh, q̃h)

)
(54)

+
(
νadd

�
(ũh ),

�
(ṽh )

)
= F (ṽh)

for all test functions from Ṽ h× Q̃h. The coupled system (53), (54) possesses exactly

the form (44). The unresolved scales are modeled only in the small scale equation (54)
with the model

B
(
uh; (ūH , p̄H), (ũh, p̃h), (ṽh, q̃h)

)
=

(
νadd

�
(ũh ),

�
(ṽh )

)

and this model influences the large scales solely indirectly by the coupling of (53)

and (54).
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5. Concluding remarks

The reliable and fast numerical simulation of turbulent flows is still a big challenge

in applications. Simulations in industrial applications use in general traditional ap-
proaches like Reynolds averaged Navier-Stokes equations (RANS) or k-ε-type models.

LES, which is currently the most popular way of turbulence modeling in the sci-
entific CFD community, is still considered to be too expensive. This situation can

be changed only if more efficient algorithms for LES simulations are developed. This
includes, in particular, adaptive discretizations (in time and space) and fast solvers

(multigrid-based). Also, the use of parallel computers, which are easily available
nowadays, offers an opportunity to increase the efficiency of LES simulations consid-
erably.

The development of VMS methods is yet at the beginning. This approach still
has to be studied for benchmark problems available and to be compared to other

turbulence modeling approaches. There is a large potential of improvement in the
nowadays used VMS methods if it becomes possible to define the additional space

(coarse or fine, depending on the realization) and the additional viscosity adaptively
using a posteriori information.

There are many open mathematical problems concerning turbulence models. Some
of them are the existence and uniqueness of solutions, e.g., for the rational LES model,

and the error analysis for fully (in time and space) discretized models.
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