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ABSTRACT

The importance of repetitions in music is well-known. In this pa-

per, we study music repetitions in the context of effective and effi-

cient automatic genre classification in large-scale music-databases.

We aim at enhancing the access and organization of pieces of mu-

sic in Digital Libraries by allowing automatic categorization of en-

tire collections by considering only their musical content. We han-

dover to the public a set of genre-specific patterns to support re-

search in musicology. The patterns can be used, for instance, to

explore and analyze the relations between musical genres.

There are many existing algorithms that could be used to iden-

tify and extract repeating patterns in symbolically encoded music.

In our case, the extracted patterns are used as representations of

the pieces of music on the underlying corpus and, consecutively,

to train and evaluate a classifier to automatically identify genres.

In this paper, we apply two very fast algorithms enabling us to ex-

periment on large and diverse corpora. Thus, we are able to find

patterns with strong discrimination power that can be used in var-

ious applications. We carried out experiments on a corpus contain-

ing over 40,000 MIDI files annotated with at least one genre. The

experiments suggest that our approach is scalable and capable of

dealing with real-world-size music collections.
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1 INTRODUCTION

Since repetitions play such an important role inmost of themusical

genres [10], in this paper we aim at automatically identify repeti-

tions that are intrinsic for a genre. We call a (melodic) sequence of

notes that repeats in a piece of music a pattern. A repetition of a
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pattern may be transposed by a constant pitch-shift, i.e., transpo-

sition invariance applies.

The detection of repeated patterns in music collections has been

studied in several areas of Music Information Retrieval (MIR). One

of the first MIR problems was to retrieve a piece of a music in a

music database based on a given note-sequence query-pattern [4,

7, 8, 15, 18–20] as summarized in [21].

Another conventional MIR task is the problem of automatic genre

classification [23]. Accurate genre identificationwould enable both

effective navigation in music collections and plausible music rec-

ommendations. In literature, one can find genre classification al-

gorithms both to audio and symbolic music data. In this paper, we

focus on symbolicmusic because of the straightforward processing

and robust, efficient and effective pattern detection algorithms.

Applied techniques for symbolic-music genre-classification

(SMGC) have been manifold. The classification has been based on

meta-level features, such as note duration and musical key distri-

butions, and on identifying repeated note patterns using different

features and representations; see e.g. [3]. To our knowledge, SMGC

experiments with the largest database to date was made by Li et al.

[9]. Their database contained 14,000 folk songs, but they did not

yield adequate performance results, such as the area under curve

(AUC) for the receiver operating characteristic (ROC)[25]. Further-

more, to our knowledge there has been no study considering multi-

ple labels on a corpus. In this paper, we use a very large corpus that

includes a high number of genres. For the experiments, we form

the database of those MIDI files that are annotated in the corpus

with at least one genre. The resulting set of patterns extracted by

our algorithms is not restricted to any specific genre or tradition.

The existence of specific repeating patterns intrinsic to a genre

is well-known. For instance, [13] studied the relation between Jazz

and Ragtime, evolving to a later work to identify repeating pat-

terns in a Ragtime corpus [6]. Evaluations of several algorithms

identifying patterns in a Folk music was given in [2], where mu-

sic was classified based on the compression given by the extracted

patterns.

In this paper, we apply two algorithms, SIA [11] and P2 [24],

originally developed to solve slightly different problems. They both

work with polyphonic music represented geometrically as points

in a Euclidean space. SIA was originally developed to discover re-

curring patterns, P2 to efficiently find occurrences of a query pat-

tern in a corpus. SIA and P2 run in O(n2 logn) and O(mn logm)

time, respectively, where n and m represent the number of notes

in the corpus and the number of notes in the query pattern.

Janssen et al. [5] give a review on pattern discovery in music

and discuss the challenges of the task. According to them, one of
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# dataset files with annotation total annotations

MASD 17785 24623

MAGD 23496 37237

top-MAGD 22535 34867

Table 1: Number of files with genre annotations in Lakh.

the main problems is that the experiments in the literature are car-

ried out with different datasets, which makes it practically impossi-

ble to compare the results. In this paper, we mitigate this problem

by using a public dataset that comprehends multiple genres and

styles.

We publish for the community all the extracted patterns in asso-

ciation with pieces of music they refer to, to contribute and facili-

tate further studies in musicology. This dataset allows performing

studies like Monson’s [12], but in a manner that scales up.

2 DATA

In this work, we use the Lakh dataset [17] of MIDI files that is

mapped to the Million Song Dataset (MSD) [1]. There are multi-

ple datasets with annotations of genres for the MSD. We chose 3

subsets of annotations presented by Schindler et al [22]. For each

subset in the Lakh dataset, Table 1 gives the number of files that

contain at least one annotation of genre (having mapped them to

MSD) and the total number of annotations.

We use the same names from Schidler et al. work for the subsets

of annotations: The annotations were originally extracted from

the All Music Guide1, hence we call the subset containing genre

annotations MSD Allmusic Genre Dataset, orMAGD for short,

and the subset containing style annotationsMASD. The styles con-

tained in MASD are given in Table 3. The third subset, called top-

MAGD, is the subset ofMAGD that includes only the top 13 genres

shown in Table 2.

The difference between the datasets, as stated by the authors in

[22], is that MASD attempts to distinguish the songs into different

sub-genres.

3 PATTERNS EXTRACTED FROM MIDI FILES

We processed all the tracks of the MIDI files with SIA and P2 al-

gorithms, extracting patterns containing at least 3 notes (shorter

were consideredmusicallymeaningless). Moreover, we applied some

further filtering on the found patterns. For the SIA algorithm we

used the following filtering thresholds:

• Length: meaningful patterns must have at least 3 notes

• Compactness: the relative length of the patternwith respect

to the length of the whole piece of music

• Temporal density: the more notes in a given time frame the

higher the temporal density

The patterns passing the first threshold (length) were consid-

ered for the second filtering round where a combination of the two

remaining thresholds was used (compactness and temporal den-

sity). We conducted experiments on 4 combinations, as shown in

Table 4

1http://allmusic.com

Genre Number of songs

Pop/Rock 21024

Electronic 3460

Country 2410

R&B 2040

Jazz 1179

Latin 1410

International 1008

Rap 701

Vocal 698

New Age 496

Folk 200

Reggae 141

Blues 100

Total 34867

Table 2: Songs for a genre annotated in top-MAGD.

Style Number of songs

Big Band 362

Blues Contemporary 114

Country Traditional 2065

Dance 2017

Electronica 605

Experimental 733

Folk International 707

Gospel 405

Grunge Emo 302

Hip Hop Rap 801

Jazz Classic 496

Metal Alternative 978

Metal Death 214

Metal Heavy 282

Pop Contemporary 4291

Pop Indie 1147

Pop Latin 838

Punk 113

Reggae 127

RnB Soul 544

Rock Alternative 700

Rock College 977

Rock Contemporary 2890

Rock Hard 2096

Rock Neo Psychedelia 519

Total 24623

Table 3: Songs for a style annotated in MASD.

As algorithm P2 searches for occurrences of a given query se-

quence within a piece of music, we first segmented each piece in

the database in subsectionswith different lengths and overlaps and,

then, used these subsections as query sequences for P2. For each

occurrence found, P2 returns a similarity value (between 0 and 1).
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Name Compactness Temporal Density

Sia − 1 0.7 0.05

Sia − 2 0.4 0.05

Sia − 3 0.4 0.25

Sia − 4 0.7 0.25

Table 4: Threshold combinations used for the SIA algorithm

to filter the patterns.

Name Length (notes) Offset (notes) Similarity

P2 − 3 3 2 0.9

P2 − 4 4 2 0.9

P2 − 5 5 3 0.5

P2 − 8 8 3 0.5

P2 − 10 10 3 0.5

P2 − 15 15 3 0.5

Table 5: Considered threshold combinations for the P2 algo-

rithm to filter the patterns.

In Table 5, we show the thresholds used for the following 3 param-

eters:

• Length: number note events

• Offset: the number of intervening elements allowed

• Similarity: given by P2

For both algorithms the thresholds were selected based on pre-

liminary tests on a smaller music corpus. To decide which thresh-

olds combinations were to be used, we looked at the number of

returned patterns: too restrictive values does not return patterns

and too permissive thresholds return too many patterns.

To our knowledge, there is no large-scale public-dataset of pat-

terns for multiple genres. Therefore, we evaluate the goodness of

the extracted patterns indirectly by measuring the capability of

the algorithms in performing genre or style classification for the

pieces of music. Should the used configuration give a good classi-

fication, the extracted patterns capture important information on

the genre/style of the considered piece of music.

3.1 Converting note patterns into common

representation

In MIDI files, the temporal resolution is indicated in the header.

This is known as ticks per quarter note (TPQN). The higher the

TPQN, the higher the resolution.

In order to be able to compare the extracted patterns across all

the MIDI files, we need to convert them to a common representa-

tion. To this end, we used the information of TPQN on each file and

converted them to a common resolution. For the common TPQN,

we used a low value (six) to make sure that sequences with small

differences fall in the same representation.

Initially, we extracted the patterns in the MIDI files and repre-

sented them as sequences of tuples (position|tone), where the

position is the temporal indicator of the corresponding note and

tone the pitch of the note. For instance, a pattern

(0|0) (545|3) (682|10) (818|12)

was converted to common TPQN (originally ticks per quarter note

was 480):

(0|0)(6|3)(8|10)(10|12)

3.2 Classification of genre with extracted

patterns

Measuring the genre / style classification performance in the case

of multiple labels for a piece of music is not an easy task. To this

end, we follow the approach by [14], whomeasured the area under

the ROC curve (AUC ROC). We also consider some extra measures

complementing AUC, that is, the F1 measure and the averaged ac-

curacy of each class.

As shown in Tables 2 and 3, the genres in topMAGD dataset are

muchmore imbalanced than the styles in MASD dataset. This chal-

lenge mimics nicely the ones found in a real world applications.

For the classification, we create a matrix where the columns cor-

respond to the extracted patterns and the rows to the pieces of mu-

sic in our database. Each cell of the matrix counts the occurrences

of the respective pattern within the corresponding piece of music.

The resulting matrix is subsequently given as input to the classifi-

cation algorithm for which we use logistic regression and weights

of the classes that are automatically balanced by the algorithm.We

use the scikit-learn implementation [16] for this task. In order to

avoid overfitting we use a 5-fold cross-validation.

For each possible configuration, we repeat independently the

same classification process for the annotations with the topMAGD

dataset and the MASD dataset. As it can be seen in Table 6, in

the AUC ROC columns of each dataset P2 − 5 gives the best per-

formance for the task. This setting outperforms also the accuracy

reported by the authors of the dataset [22]. They used the same

dataset but different features and classifiers.

When observing the two algorithms individually, there is no re-

markable difference in the performance between the different con-

figurations for the SIA algorithm, but changing the configuration

of P2 would have a rather notable difference in the performance.

This might suggest that the patterns extracted by different settings

of SIA are more homogeneous than the ones extracted by different

settings of P2.

4 CONCLUSIONS AND FUTUREWORK

Weharnessed two algorithms, originally designed to different tasks,

SIA and P2, for detecting patterns that allow us to automatically

identify genre for a collection of MIDI songs. In our experiments,

P2 gave the best patterns for the genre / style classification task.

Iterating P2 over all possible substrings of the underlying dataset

generates the patternsmore efficiently, giving a remarkable speedup

to the process. Nevertheless, their results for the two tasks were

surprisingly different in finding the set of patterns that describe

well-enough the considered genres. In doing that, we noticed that

P2 gives a better performance than SIA.

One could experiment also on applying other similarity algo-

rithms, such as dynamic time warping, for the pattern detection
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topMAGD MASD

Name AUC ROC F1 measure Accuracy AUC ROC F1 measure Accuracy #patterns

Sia − 1 0.749 (0.014) 0.628 (0.003) 0.484 (0.005) 0.761 (0.004) 0.455 (0.003) 0.342 (0.009) 130394

Sia − 2 0.753 (0.014) 0.637 (0.003) 0.500 (0.006) 0.760 (0.004) 0.464 (0.003) 0.358 (0.009) 236586

Sia − 3 0.750 (0.014) 0.624 (0.004) 0.463 (0.006) 0.757 (0.005) 0.443 (0.004) 0.321 (0.007) 81547

Sia − 4 0.745 (0.013) 0.618 (0.004) 0.447 (0.009) 0.755 (0.005) 0.431 (0.004) 0.298 (0.007) 54890

P2 − 3 0.740 (0.007) 0.636 (0.005) 0.547 (0.008) 0.738 (0.013) 0.451 (0.004) 0.318 (0.007) 1002232

P2 − 4 0.769 (0.005) 0.662 ( 0.007) 0.620 (0.008) 0.771 (0.009) 0.468 (0.007) 0.316 (0.008) 2083114

P2 − 5 0.816 (0.005) 0.649 (0.005) 0.641 (0.005) 0.815 (0.009) 0.431 (0.010) 0.270 (0.006) 2763773

P2 − 8 0.805 (0.003) 0.626 (0.006) 0.632 (0.005) 0.809 (0.005) 0.374 (0.009) 0.226 (0.007) 3560508

P2 − 10 0.785 (0.002) 0.619 (0.006) 0.629 (0.006) 0.793 (0.005) 0.355 (0.009) 0.211 (0.005) 3693755

P2 − 15 0.750 (0.003) 0.613 (0.008) 0.626 (0.007) 0.757 (0.005) 0.334 (0.008) 0.196 (0.006) 2671666

Table 6: SIA and P2 on genre classification using patterns on top-MAGD and MASD datasets. The performance measured with

AUC-ROC, F1-score and Accuracy. The column #patterns indicates the total number of distinct patterns identified.

tasks and find that a combination of the algorithms would give

the best classification result. In such a case, however, it would be

beneficial to apply some unsupervised learning method. Moreover,

it would be interesting to apply unsupervised learning for cluster-

ing the patterns in order to analyze the relations between distinct

genres or between artists.

We encourage further research on this and closely related top-

ics by setting all our code and all the extracted patterns publicly

available 2.

Our future plans include building an interface to explore and

query the extracted patterns and the relations that were relevant

in identifying the genres. With such an interface, it would be easier

for musicologists to further explore and analyze the results of this

study, for instance.
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