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ABSTRACT 

Automatic feature extraction in latent fingerprints is a challenging problem due to poor quality of most latents, such as 

unclear ridge structures, overlapped lines and letters, and overlapped fingerprints. We proposed a latent fingerprint 

enhancement algorithm which requires manually marked region of interest (ROI) and singular points. The core of the 

proposed enhancement algorithm is a novel orientation field estimation algorithm, which fits orientation field model to 

coarse orientation field estimated from skeleton outputted by a commercial fingerprint SDK. Experimental results on 

NIST SD27 latent fingerprint database indicate that by incorporating the proposed enhancement algorithm, the matching 

accuracy of the commercial matcher was significantly improved. 
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1. INTRODUCTION 

Fingerprints have been routinely used as a method for person identification for more than a century. One of the 

irreplaceable functionality of fingerprint recognition is its capability to link partial prints found at crime scenes to 

suspects whose fingerprints are previously enrolled in a large database of rolled fingerprints. These partial prints, called 

latent fingerprints or simply latents, are lifted from surfaces of objects that are inadvertently touched or handled by a 

person. Lifting of latents involves a complicated process that can range from simply photographing the print to more 

complex dusting or chemical processing
[1]

. Compared to plain or rolled fingerprints (see Figure 1), which are captured 

by inking methods or livescan devices in an attended mode, latent fingerprints are smudgy and blurred, capture only a 

small finger area, and have large nonlinear distortion due to pressure variations. Due to their poor quality and small area, 

latents have a significantly smaller number of minutiae compared to rolled or plain prints (the average number of 

minutiae in NIST SD27
[9]

 database images is 21 for latents versus 106 for the corresponding rolled prints). 

 

       

      (a)                (b)    (c) 

Figure 1. Three types of fingerprint images. (a) Rolled, (b) plain and (c) latent fingerprints of the same finger (Latent #158) 

in NIST SD27. 
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Before the introduction of Automatic Fingerprint Identification systems (AFIS), latents were manually matched against 

full prints (rolled or plain) by latent examiners through a procedure now referred to as ACE-V, namely, analysis, 

comparison, evaluation and verification
[2]

. Unlike full print (rolled or plain) to full print matching, which is somewhat 

facilitated by fingerprint pattern class or type, manually matching a latent print against a large gallery is not feasible. 

Generally, latents are only matched against full prints of a small number of suspects who are identified from other means 

(e.g. gender, ethnicity, age, etc.). 

The emergence of Automated Fingerprint Identification Systems (AFIS) significantly improved the speed of fingerprint 

identification and made latent identification against a large fingerprint database feasible. After over thirty years of 

development, tremendous advances have been made in both the throughput and accuracy of full print to full print 

matching. The results of Fingerprint Vendor Technology Evaluation (FpVTE) in 2003
[3]

 showed that the most accurate 

commercial fingerprint matchers achieved an impressive rank-1 identification rate of more than 99.4% on a database of 

10,000 plain fingerprint images. The US-VISIT IDENT system can search fingerprints of a visitor to the United States 

against a watch list of millions of subjects in a few seconds
[4]

. However, this throughput and accuracy of fingerprint 

identification for rolled/plain prints has not yet been realized for latent identification. Due to the generally poor quality 

of latents, latent identification module in AFIS typically works in a semi-automatic mode for the sake of identification 

accuracy. A typical scenario is that an expert first manually marks features in a latent, launches AFIS search, and finally 

reviews the candidate list returned by AFIS to identify the true mate (if present). Extensive manual intervention is 

needed in both feature marking and review stages. In spite of this, latent matching accuracy is still not satisfactory. It 

was reported that the rank-1 identification rate of the FBI’s IAFIS is about 54% on a large database of more than 40 

million subjects
[5]

. In our recent work
[10]

, a rank-1 accuracy of 79.5% was obtained in matching 258 latents in NIST 

SD27 against 2,258 rolled prints. 

In the long run, “Lights-Out”
1

[6]

 latent identification capability is desirable. Consider the following two scenarios: (i) a 

patrol officer wants to check fingerprints of a suspect against latent fingerprints from unsolved cases; (ii) a crime scene 

specialist hopes to identify latents lifted at a crime scene in the field. In both these cases, it would be desirable to get a 

quick (real time) response to the query. To understand and advance the state of the art in automatic latent feature 

extraction and matching, NIST has been conducting a multi-phase project on Evaluation of Latent Fingerprint 

Technologies (ELFT) . The rank-1 accuracy of the most accurate system in ELFT Phase I was ~80% in matching 100 

latents against 10,000 rolled prints
[7]

. Much higher accuracies were reported in ELFT Phase II organized shortly after 

Phase I. The rank-1 accuracy of the most accurate system in Phase II is 97.2% in matching 835 latents against a galley of 

100,000 rolled prints
[8]

. Unfortunately, Phase I and Phase II accuracies cannot be compared because different databases 

were used in the two evaluations. Further, the Phase II accuracy does not reflect the performance in field applications, 

since the latents used in Phase II are of very good quality. Figure 2 shows three latents of different quality in NIST 

SD27. 

 

        

            (a) Latent #59         (b) Latent #111            (c) Latent #287 

Figure 2. Latent fingerprints of three different quality levels in NIST SD27. (a) Good, (b) Bad, and (c) Ugly. 

                                                 
1 In a “Lights-Out” fingerprint identification system, manual feature marking is not required and only one mated fingerprint or no 

mate is returned by the system. 



 

 
 

 

It is our opinion that research efforts in latent fingerprint identification should be focused on reducing the necessary 

manual input while at the same time preserving the matching accuracy, rather than on completely eliminating manual 

input. This opinion is supported by the following facts: (i) latent matching accuracy is still the major concern of law 

enforcement agencies, (ii) currently manual latent feature marking is very labor extensive, and (iii) state of the art 

“Lights-Out” latent identification systems cannot yet offer satisfactory accuracy for most latents of casework quality.  

In current practice, latent examiners are required to mark minutiae and optionally singular points (core/delta)
[11]

. 

Marking these features is generally less time-consuming and requires less expertise than marking minutiae, which are 

required by the current practice. In this paper, we assume that the manually marked features are Region of Interest (ROI) 

and singular points. Therefore, this procedure will not only improve the throughput of latent identification system, but 

reduce the cost as well, since human expertise and time are expensive. We proposed an orientation field estimation 

algorithm, which takes skeleton images generated by a commercial fingerprint SDK, Neurotechnology VeriFinger
[12]

, 

and manually marked singular points as input. Gabor filters were used to enhance latent images. To test the proposed 

enhancement algorithm, we combined it with VeriFinger matcher and conducted experiments on a public domain 

fingerprint database, NIST SD27.  

 

2. LATENT FINGERPRINT ENHANCEMENT 

2.1 Overview 

The purpose of an enhancement algorithm is to improve the clarity of the ridge structures and therefore make the 

subsequent processing, such as minutiae extraction and matching algorithm, insensitive to the quality of fingerprint 

images. Fingerprint enhancement is especially important to latent images, due to their poor quality. Local ridge pattern 

in fingerprints can be approximated well by a 2D sinusoid wave. Based on this fact, 2D Gabor filters
[15]

 have been 

successfully used for fingerprint enhancement. Gabor filters consist of two important parameters: local ridge orientation 

and frequency. With proper choice of these parameters, Gabor filtering can connect broken ridges and separate joined 

ridges. However, when the parameters are incorrect, true ridges may be weakened and spurious ridges may be 

strengthened after filtering. Hence, a reliable estimation of local ridge orientation and frequency is very important to 

fingerprint enhancement. Compared to frequency, ridge orientation is even more important, as the range of possible 

ridge frequency values is small for adult fingerprints and ridge frequency is often estimated after ridge orientation is 

known
[15]

. For this reason, in this paper, we focus on the estimation of orientation field in latent images. 

Due to its importance, orientation field estimation is a popular topic in fingerprint recognition literature. Most orientation 

field estimation algorithms
[14][15]

 consist of two steps: initial estimation using a gradient-based method followed by 

regularization. The regularization may be done by a simple weighted averaging filter or more complicated model-based 

methods
[15]

. To make regularization effective, it is better to use only reliable initial estimate or to give it larger weight. 

However, very limited information is available at this stage to estimate the reliability of initial estimate. To overcome 

this limitation, we estimate a coarse orientation field from skeleton image generated by a commercial SDK. This coarse 

 

 
Figure 3. Flowchart of the proposed latent enhancement algorithm. 



 

 
 

 

orientation field is further regularized by fitting an orientation field model to it. The flowchart of the proposed latent 

enhancement algorithm is shown in Figure 3. In the following subsections, we first explain manual input and then 

describe the coarse estimation and regularization of orientation field. 

 

2.2 Manual Input 

Level-1 fingerprint features include ridge orientation field and singular points. Ridge orientation field can be marked at 

block level (usually the size of block is 16 by 16 pixels). A possible scenario for manual orientation field marking is that 

the gradients of the local blocks give initial estimate of the orientation field and examiners can then make a correction in 

the blocks with wrong orientation field. However, latent fingerprints are largely corrupted by complex background noise 

and the ridge structures are not clearly visible to human eye. Therefore, manual orientation field marking requires a high 

level of attention by the examiners. 

Compared to orientation field marking, singular points are easy for examiners to mark manually since the number of 

singularities is small (at most four in a fingerprint) and their locations are easy to identify. Based on a thorough 

investigation of fingerprints, we could find two constraints on singularities in the fingerprints: (i) the numbers of cores 

and deltas in a finger are the same, and (ii) the total number of singular points in a fingerprint is zero, two or four. For 

example, loop and tented arch type of fingerprints have one core and one delta; double-loop and whorl type of 

fingerprints have two cores and two deltas; arch type of fingerprints has no singularity. 

We assume that latent examiners can provide the following information to automatic fingerprint matcher: (i) latent 

fingerprint region in the image or the region of interest (ROI) and (ii) singular points. When latent examiners manually 

mark the singular points, we assume that they follow two rules: 

• If the latent does not contain singular points, no singular points are marked. In other words, we treat a latent as 

plain arch unless contradictory information is present.  

• If the number of real singular points in the ROI is odd, paired singular points outside of the ROI, which is called 

virtual singular points, are marked with the best guess in order to satisfy the constraints on singularity (i.e. the 

number of cores and deltas are the same and the total number of singular points is one of 0, 2, and 4). 

See Figure 4 for three examples that contain no singular points, only real singular points, and both real and virtual 

singular points, respectively. 

 

 

         (a) Latent #10    (b) Latent #4              (c) Latent #12 

Figure 4. Singular points of the latent fingerprints. (a) No singular points, (b) only real singular points, and (c) both real and 

virtual singular points. Circles denote cores and triangles denote deltas. 

 



 

 
 

 

 

                (a) Latent # 41               (b) Latent # 60 

Figure 5. Coarse orientation field estimation. Left images: green lines are reliable (coherent) orientation field and red lines 

are unreliable orientation field. Right images: green lines are reliable orientation field and red lines are interpolated 

orientation field from reliable blocks. 

 

2.3 Coarse Estimation of Orientation Field 

In general, latent fingerprints are corrupted by complex background noise or have unclear ridge structures. Instead of 

estimating the coarse orientation field directly from the image, we utilize skeleton provided by a commercial software, 

and then correct wrong ridge orientations in the noisy areas. 

The orientation field can be represented in complex plane with doubled angle:  

 𝑈𝑈(𝑥𝑥,𝑦𝑦) = cos�2𝜃𝜃(𝑥𝑥, 𝑦𝑦)� + 𝑗𝑗sin(2𝜃𝜃(𝑥𝑥,𝑦𝑦)), (1) 

where ( , )x yθ  is the orientation field from the skeleton and ( , )U x y  is a representation of the angle in complex domain. 

Reliable blocks where the orientation fields are coherent with surrounding blocks are distinguished from the initial 

orientation field. The orientation field in unreliable blocks is estimated by interpolating the orientation field in reliable 

blocks. Real and imaginary part of ( , )U x y  in unreliable blocks are independently estimated from those in reliable 

blocks, and then converted to the angles. Figure 5 shows the orientation field from the skeleton and the corrected 

orientation field in unreliable blocks. 

 

2.4 Regularization of Orientation Field 

A zero-pole model
[13]

 describes an ideal orientation field of the fingerprint by singular points. A rational polynomial 

function in complex plane determines the ridge orientation at a point z x jy= +  by: 

 21 ( )
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1 2
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mc c cP z z z z z z z= − − − , 

1 2
( ) ( )( ) ( )

md d dQ z z z z z z z= − − − , 1{ }
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id i mz ≤ ≤  are the 

locations of the cores and deltas, and θ∞  is the orientation field at infinity. This zero-pole model requires a complete set 

of singular points of a fingerprint. We need to estimateθ∞  when the fingerprint is rotated in the image. 

An inherent limitation of the zero-pole model is that this model can not represent arch type of fingerprints which does 

not have any singular points. In addition, since the orientation field estimated by this model depends only on the 

locations of singular points, this model can not reflect local ridge orientation of the real fingerprints in detail. 

Zhou and Gu
[14]

 extend zero-pole model to represent local ridge orientation by combining it with a polynomial function. 

The zero-pole model is used to represent the global orientation field due to known singular points and the polynomial 

function represents ridge details. However, the fingerprint impressions are usually a part of the actual fingerprint unless 



 

 
 

 

the fingerprint is scanned by ‘nail-to-nail’ method. Therefore, the zero-pole model using only known singular points in 

the image cannot take into account all the effects of all the singularities to the orientation field. As a result, the 

polynomial function should be of high order to describe large curvature of the orientation field. 

In our model, the global orientation field consists of two parts: (i) the orientation field due to all the singular points, 

including real singular points in the ROI as well as virtual singular points, ( , )x yψ , and (ii) polynomial model for ridge 

details which reflects fingerprint rotation and skin distortion, ( , )x yδ . ( , )x yψ  depends on types and spatial distribution 

of singular points. Figure 6 shows the orientation field by singular points. 

The orientation field model, ( , )x yφ , can be written as: 

 ( , ) ( , ) ( , )x y x y x yφ ψ δ= + , (3) 

where ( , )x yψ  is the orientation field from all possible singular points and ( , )x yδ  is the polynomial model. ( , )x yδ  is 

estimated by minimizing 
2

( , )
( ( , ) ( , )) ( , )

x y R
x y x y x yθ ψ δ

∈
− −∑  using least-squares estimation, where ( , )x yθ  is the 

coarse orientation field estimated from the image and R  denotes the ROI. In our model, we used a second order 

polynomial function for ( , )x yδ , which is the minimal order of the polynomial function to represent curves. The 

polynomial function with low order only needs to estimate a few parameters. In particular, when the order of polynomial 

function is 2, the number of parameters to be estimated is 6 (since 
2 2

0 1 2 3 4 5( , )x y a a x a y a x a xy a yδ = + + + + + ). In 

addition, it is robust to complex noise present in the latent images. Figure 7 shows the orientation field estimation of the 

latent fingerprint using the proposed method. 

 

Figure 6. Orientation field from singular points. (a) No real singular point is present, (b) a real delta and its corresponding 

virtual core are marked, and (c) two real cores, one real delta and the corresponding virtual delta are marked. 

 

 

(a)                 (b)     (c)          (d) 

Figure 7. Orientation field estimation. (a) Input image (Latent #57), (b) orientation field from skeleton, (c) orientation field 

corrected (green: reliable orientation field, red: estimated orientation field from reliable blocks), (d) orientation field 

regularized by the proposed model. 



 

 
 

 

3. EXPERIMENTAL RESULTS 

3.1 Database 

The experiments were conducted on NIST SD27 database
[9] 

which contains 258 latent fingerprints and their 

corresponding rolled prints at 500 ppi. This is the only public domain database available containing mated latent and 

rolled prints. These 258 latent prints were classified by latent examiners into three classes based on their quality, namely: 

Good, Bad and Ugly. There are 88 “Good”, 85 “Bad” and 85 “Ugly” latent images in the database.  

 

3.2 Matching Performance 

We conducted experiments by matching 258 latents against 258 rolled prints for four types of manual input (in the 

increasing order of labor): 

• Manually marked ROI. Minutiae are automatically extracted in the ROI using VeriFinger SDK 4.2
[12]

. 

• Manually marked ROI and singular points. Orientation field is first estimated using the proposed algorithm; 

fingerprint is then enhanced using Gabor filtering and minutiae are automatically extracted in the enhanced 

image using VeriFinger SDK. This is the scenario which the proposed enhancement algorithm is designed for. 

• Manually marked ROI and orientation field. The orientation field is directly used in Gabor filtering and 

minutiae are then automatically extracted in the enhanced image using VeriFinger SDK. 

• Manually marked minutiae are directly used by VeriFinger matcher.  

 

 

      (a) All latents     (b) “Good” latents 

 

                    (c) “Bad” latents     (d) “Ugly” latents 

Figure 8. CMC curves of latent matching in four scenarios. 258 latents were matched to 258 rolled prints in NIST SD27. (a) 

All, (b) good, (c) bad, (d) ugly latents. 



 

 
 

 

The Cumulative Match Characteristic (CMC) curves of these four types of input are shown in Figure 8(a). As expected, 

the matching accuracy is consistent with the labor of manual input. The highest accuracy is obtained when minutiae are 

manually marked and the worst accuracy is obtained when only ROI is provided. The effectiveness of the proposed 

enhancement algorithm is validated by the fact that matching accuracy is improved due to manually marked singular 

points. But, the higher accuracy of using manually marked orientation field indicates that the proposed orientation field 

estimation algorithm needs to be improved. 

Figure 8 (b-d) show CMC curves of four types of input for good, bad and ugly latents, respectively. We observed that 

• The proposed enhancement algorithm leads to improved matching accuracy for all three categories. 

• For bad quality latents, image enhancement with ground truth orientation field achieved almost the same 

performance as ground truth minutiae. 

The examples in clearly show the effect of the proposed enhancement algorithm. Due to the enhancement algorithm, 

more ridges can be correctly extracted in poor quality area. 

 

(a) Latent #32 

 

(b) Latent #164 

 

(c) Latent #227 

Figure 9. Skeleton images without and with the proposed enhancement. Left: latent fingerprint, center: skeleton without 

enhancement, and right: skeleton with enhancement. (a) Good latent (matching score was improved from 4 to 67), (b) 

bad latent (from 4 to 95), and (c) ugly latent (from 0 to 23). 



 

 
 

 

4. CONCLUSIONS AND FUTURE DIRECTIONS 

Increasing deployment of fingerprint recognition systems in civilian and governmental applications has resulted in more 

and more fingerprints being collected from citizens who were  not required to pass fingerprint check in the past, such as 

an applications for certain jobs, international border crossing at a port of entry, and a suspect stopped by a patrol officer, 

etc. Matching these new fingerprints to latents of unsolved cases has the potential of solving more “cold cases”. This 

practice makes shortening the response time of latent identification an urgent issue. While fully automatic latent 

identification is desirable in the long term, a more practical goal in the interim is to reduce manual input while 

preserving the matching accuracy. 

In this paper, we proposed a latent fingerprint enhancement algorithm which only requires manually marked ROI and 

singular points. The core of the proposed enhancement algorithm is an orientation field estimation algorithm, which fits 

an orientation field model to the coarse orientation field estimated from skeleton provided by a commercial fingerprint 

SDK. Experimental results on NIST SD27 indicate that using singular points is beneficial to minutiae extraction, leading 

to improved matching accuracy. 

We plan to extend the current work along two directions.  

• Define more effective manual inputs. For some latents, singular points may not be the most effective input. For 

example, the singular region may be of good quality, or the latents may not contain singular points. In these 

cases, inputting a curve indicating the ridge flow in some critical regions (such as regions with overlapped lines 

or letters) may be more effective for estimating the orientation field. 

• Reduce manual input even further. Currently, region of interest (ROI) is specified by a polygon that requires 

inputting all the vertices. A more efficient input method for specifying ROI is that the user inputs a circular 

region, which roughly covers the ROI, and then the algorithm automatically locates the accurate boundary of 

the ROI. 
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