
On Layout Randomization

for Arrays and Functions

Mart́ın Abadi1,2 and Jérémy Planul3

1 Microsoft Research Silicon Valley
2 University of California, Santa Cruz

3 Stanford University

Abstract. Low-level attacks often rely on guessing absolute or relative
memory addresses. Layout randomization aims to thwart such attacks.
In this paper, we study layout randomization in a setting in which ar-
rays and functions can be stored in memory. Our results relate layout
randomization to language-level protection mechanisms, namely to the
use of abstract locations (rather than integer addresses). They apply, in
particular, when each abstract location can hold an entire array which,
concretely, compilation implements with a memory buffer at a random
base address.

1 Introduction

Many attacks on software systems rely on predicting the absolute or relative lo-
cations of particular pieces of data in memory. For instance, in a system without
proper bounds checking, if an attacker has access to one buffer b in the heap and
can guess that an immediately contiguous buffer b′ contains some sensitive data,
then the attacker may try to tamper with the data in b′ by overflowing b. The
data in b′ might for example be an authentication flag that indicates whether the
attacker has been properly authenticated, and then the tampering may toggle
it from false to true (e.g., [4]). The data in b′ might also be a function (or a
function pointer), and then the tampering may replace it so that code of the
attacker’s choice is executed later, when control is transferred to b′.

Layout randomization aims to thwart attacks that guess locations in this
manner (e.g., [5, 6, 13]). Basically, layout randomization consists in placing data
in memory at random addresses, which may for example be chosen at load time,
and which will vary from system to system.

In practice, layout randomization is often an imperfect mitigation (e.g., [16]).
In particular, for performance or compatibility reasons, only parts of the memory
layout are randomized, typically at a fairly coarse granularity. Moreover, infor-
mation about the layout sometimes leaks to attackers through various channels.
Finally, layout randomization can prove ineffective against attacks that target
large regions of memory, such as heap-spraying attacks.

Despite these limitations, layout randomization is widely used in systems,
and it has been beneficial. Furthermore, layout randomization resembles other

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 167–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

168 M. Abadi and J. Planul

attractive forms of randomization [8] (such as in-place code randomization [12])
and also cryptographic protection (via the analogy between locations and en-
cryption keys). Therefore, we believe that there is value in trying to understand
its power, to characterize it precisely, and to compare it to other protection
techniques.

In this spirit, recent research [3, 9, 15] relates layout randomization to the
use of language-level protection mechanisms. In the present paper we aim to
contribute to this line of work. Specifically, we treat layout randomization in a
setting in which arrays and functions can be stored in memory—so overflows
on arrays can affect other arrays and modify functions, much as in the example
above.

We consider a high-level language with an abstract notion of location and
a lower-level language with integer memory addresses. Both languages support
functions and arrays. In the high-level language, a location can hold an entire
array, while in the lower-level language array elements are stored at consecutive
addresses in memory. We also consider a translation from the former language to
the latter one that maps locations to randomly chosen base addresses for memory
buffers. The choice is random but not necessarily uniform. For instance, all base
addresses may be chosen to satisfy alignment constraints. On the other hand,
the randomization is not done at the finer granularity of individual array entries,
nor is the layout within arrays randomized; although conceptually tractable, such
variants could have a disastrous impact on performance.

Our translation also embodies two additional precautions that complement
layout randomization:

– Even with a random memory layout, it is possible that two buffers are con-
tiguous in memory. Much as in some practical systems (e.g. [10, 17]), we can
eliminate this possibility entirely by imposing the introduction of “guard re-
gions” between buffers. Such guard regions contribute to the security guar-
antees that we establish.

– In the high-level language, an assignment such as l := M completely over-
writes the value in l. Therefore, in the low-level language, it is important
that a corresponding assignment do not leave any observable traces of that
value, even if M is shorter. We introduce a dynamic check to treat this point;
other solutions (e.g., with special padding) may be viable.

We study the correctness and security of the translation. Viewing attackers as
contexts, we prove that low-level contexts (with integer addresses) correspond to
high-level contexts (with abstract locations), thus showing that the translation
does not enable any new attacks [1]. We also prove that the translation pre-
serves security properties that can be expressed as program equivalences. Both
of these results are probabilistic, with probabilities that approach 1 for suitable
distributions on memory layouts.

In the next section, Section 2, we discuss some small examples, informally. We
define the high-level language and the low-level language in Sections 3 and 4, re-
spectively. In Section 5, we consider probability distributions on memory layouts.
In Section 6, we define and study the translation. Throughout, our approach is

On Layout Randomization for Arrays and Functions 169

often analogous to that of Abadi and Plotkin [3]. We discuss this and other re-
lated work in Section 7, and then we conclude with brief comments on further
work. Because of space constraints, we leave auxiliary results and proofs to an
online version of this paper [2].

2 Examples

As a small introductory example, we consider the following program, which (to
first approximation) we can express in both the high-level language and the
low-level language defined below:

λx. l1 := M ;
l2 := x;
N

This program inputs a value x, executesM and stores the result in the location l1,
then stores x in the location l2, and finally executes N . For instance, M might
be an array with two locations, the first location could hold a function f and
the second an integer n, and N could apply f to the input x and to n after
extracting f and n from l1 and x from l2. In that case, the program would be:

λx. l1 := [f ;n];
l2 := x;
(1 ith !l1)(!l2)(2 ith !l1)

Here, [f ;n] forms an array with two elements; !l1 and !l2 return the contents
of l1 and l2, respectively; and 1 ith and 2 ith extract the first and the second
elements of an array, respectively.

In the high-level language, we view l1 and l2 as two independent, abstract
locations, so (under call-by-value semantics) we would expect that this code
would behave just like the result of in-lining f , n, and x, namely:

λx. l1 := [f ;n];
l2 := x;
f(x)(n)

In the low-level language, on the other hand, the locations are integer addresses
in memory, so we need to worry about buffer overflows and similar errors. In
particular, when the value of x is too large to fit into the space allocated for l2,
the input may cause an error. If the error is not caught, it is possible that some
of the value of x will clobber the contents of memory including l1, and then
(1 ith !l1)(!l2)(2 ith !l1) may not behave like f(x)(n). In that case, an attacker
that chooses the value of x may well be able to execute a function of their choice
instead of f .

Layout randomization can however ensure that an overflow on l2 will clob-
ber the contents of l1 only with a small probability, thus countering the attack.
Thus, layout randomization can imply that properties that hold when l1 and l2

170 M. Abadi and J. Planul

are two independent, abstract locations continue to hold when they are mapped
to concrete memory addresses. Our theorems capture this preservation of prop-
erties. The properties could easily fail if instead l1 and l2 were mapped to fixed,
contiguous memory addresses, and if bounds checking was not done properly, as
the attack above indicates.

Some of the same themes appear in many other examples. For instance, con-
sider a piece of code where the location l1 holds a flag that indicates whether
some security check has been completed satisfactorily. For instance, l1 could hold
an authentication flag, as mentioned at the start of the Introduction, and much
as in the code of an SSH implementation that Chen et al. attacked [4]. The flag
is initially false. After some input x is stored in another location l2, the security
checks are performed, and the flag is set to true if the checks are successful.
Later, various sensitive operations may be permitted if the flag is true.

λx. l1 := false;
l2 := x;
if some checks then l1 := true;
. . .
if !l1 then do some sensitive operation

The security of this code depends on the integrity of the contents of l1. Layout
randomization can protect this integrity, thwarting direct writes to l1 by attack-
ers who would try to guess its absolute address in memory and also writes via
overflows on l2 and other locations. Our results account for this application of
layout randomization.

In the examples above, we are primarily concerned about an adversary that
may provide a dangerous input, but which need not modify locations such as l1
and l2 directly. In general, however, we are also interested in adversaries that
have direct access to some locations, which we call public locations. We refer
to other locations as private locations. At the high level, we restrict adversaries
so that they cannot refer to private locations; at the low level, we study the
protection of the private locations via layout randomization. For instance, letting
l be a private location and l′ a public location, we may consider the following
program:

λf. l := 0; l′ := 0; f(1)

At the high level, if an adversary provides an input function f , this function may
read or write l′, but it cannot read or write l since l is private. Therefore, when
f(1) terminates, l should hold the value 0. So, with respect to such adversaries,
the program is equivalent to:

λf. l′ := 0; f(1)

At the low level, l will be mapped to an integer memory address. If this mapping
is predictable, then the adversary may be able to read or write l, either via an
absolute address or via a relative address with an offset from l′. With proper
layout randomization, on the other hand, l will be mapped to a random address,

On Layout Randomization for Arrays and Functions 171

and the offset between l and l′ will be random as well, so the adversary will not
be able to find and to access l, with high probability. Therefore, the program
equivalence will be preserved, at least in a probabilistic sense.

Furthermore, adversaries may do more than provide a single input. They may
be contexts that interact with the systems that we wish to protect, for example
invoking them multiple times with different inputs, and accessing public locations
before and after those invocations. Our approach addresses such interactions.

3 The High-Level Language

In this section, we define our high-level language. In this language, memory
locations are symbolic names, and the semantics uses an abstract store to link
locations to values.

3.1 Syntax and Informal Semantics

The high-level language is a call-by-value λ-calculus with natural numbers, ar-
rays, and location-labeled dereference and assignment operations. For general
background on the λ-calculus, see [11, 14].

The terms of our language are defined by:

M ::= x | c | [M ; . . . ;M] | λx.M | MM
c ::= ∗ | n | + |=nat | . . .

| ith | length
| !loclloc | lloc :=loc

where M and N range over terms, c ranges over a set of constants, and l ranges
over a finite set Loc of locations. The terms include variables, constants, ar-
rays, abstractions, and applications. The constants include ∗ (the “unit” value);
the usual arithmetic constants, operations, and relations (such as the numer-
als n, addition +, and equality =nat); array access ith and length measurement
length ; and constants for accessing locations !loclloc and lloc :=loc.

We adopt standard notions of free and bound variables, of closed terms, and
of the capture-avoiding substitution M [N/x] of a term N for all free occurrences
of a variable x in a term M . We also adopt standard infix notations, for example
sometimes writing M ithN instead of ith M N .

Intuitively, !loclloc outputs the contents of location l and lloc :=loc writes its
argument in location l. Each location can hold arrays of a given length, and
writing produces an error if the argument is not an array of the appropriate
length. So, for simplicity, we do not allow storing integers and functions directly
into memory, but we do allow storing one-element arrays that contain integers
and functions, and in examples we may for instance write lloc :=loc 0 as an ab-
breviation for lloc :=loc [0]. We allow nested arrays (such as [[M ;N]]) but con-
sider only the top level for calculating lengths, and do not differentiate “short”
vs. “long” elements in an array (so for example [0], [λx. x(x7)], and [[M ;N]] all
have length 1). A more elaborate definition could be introduced, and would make
sense provided corresponding adjustments are made in the compilation function
(see Section 6).

172 M. Abadi and J. Planul

The subscript in !loclloc and lloc :=loc is intended to differentiate these con-
stants from the syntax of the low-level language of Section 4. We omit the sub-
scripts sometimes, when they are clear from context or when we wish to discuss
both the high-level and the low-level language, as in the examples of Section 2.

Note that lloc is not itself a term in this language, so locations are not first-
class values. This restriction constitutes a simplification (see [3, Section 2]), and
contributes to the gap between the high-level language and the low-level language
of the next section (in which addresses are first-class values). On the other hand,
functions for reading and writing locations can be passed as arguments, returned
as results, and stored in memory, so encodings of locations as first-class values
are straightforward.

Various other standard abbreviations and encodings are convenient. These
include encodings of booleans and other datatypes, and recursive function defini-
tions, as usual in untyped call-by-value lambda calculus. Using these, we can pro-
gram control constructs, including loops of the form for i = 1 to e do e′ done.
We sometimes write skip for ∗, and M ;N for letx beM inN (where x is not
free in N). We also use raise erroras syntactic sugar for an error-raising term,
for instance j k where j and k are integers.

For simplicity, this language does not support dynamic allocation, which could
perhaps be handled as in the work of Jagadeesan et al. [9], at least in the bounded
form that they consider. Treating more general memory-management and scop-
ing facilities remains a challenging subject for further research.

3.2 Values

We designate a subset of the expression of the programming language as values:

V ::= d | e | [V ; . . . ;V] | λx.M
d ::= ∗ | n | + |=nat | . . .

| ith | length
| lloc :=loc

e ::= n + | n =nat | . . .
| n ith

Values can be thought of as (syntax for) completed computations. We include
all constants in the set of values, except for the constants for reading locations.
We also include partially evaluated binary operators. We write HV for the set
of values of the high-level language.

Values of the form [V1; . . . ;Vn] are array values. We define their length by:
|[V1; . . . ;Vn]| = n.

3.3 Memory Model

The semantics of the high-level language is based on a simple model of memory.
We assume a fixed mapping sig :Loc → N that, intuitively, gives the length of

each location. We call such a mapping a signature.

On Layout Randomization for Arrays and Functions 173

A store is a mapping s : Loc → HV that sends locations to values of the
high-level language, such that s(l) is an array value and |s(l)| = sig(l) for every
l ∈ Loc.

In order to consider security properties, we assume that the set of locations
Loc is the disjoint union of two sets, PubLoc and PriLoc, of public and private
locations. As explained in Section 2 and in Section 6.3, below, we model attackers
as programs that have direct access to public locations (but not, by default, to
private locations).

3.4 Operational Semantics

We define a small-step operational semantics of the high-level language in the
style of Felleisen and Friedman [7].

Redexes include terms of the forms:

(λx.M)V V ith [V ; . . . ;V] length [V ; . . . ;V]

!loclloc lloc :=loc V

and other redexes that involve the various arithmetic constants, operations, and
relations, such as 0 =nat 0. Redexes also include “ill-typed” constructions, such
as the application 00; these redexes will raise errors. (For brevity, we do not
list all these ill-typed constructions.) We define a reduction relation R → M
between redexes and terms, and an error property R ↓error on redexes:

(λx.M)V → M [V/x]

i ith [V1; . . . ;Vn] → Vi length [V1; . . . ;Vn] → n

i ith [V1; . . . ;Vn] ↓error for i = 0 and i > n

. . .

where the ellipses indicate missing arithmetic and error transitions, such as:

0 =nat 0 → true 0 + 1 → 1 00 ↓error
We define evaluation contexts by:

E ::= [−] | [V ; . . . ;V ;E; . . . ;M] | EM | V E

We write E[M] for the term obtained by replacing the “hole” [−] in an evaluation
context E with the term M . For every term M , either M is a value, or M can
be analyzed uniquely in the form E[R], with R a redex.

A configuration is a pair (s,M) with s a store and M a term. The small-step
semantics consists of a transition relation and two error properties on configu-
rations:

(s,M) → (s′,M ′) (s,M) ↓error (s,M) ↓lerror
The error property (s,M) ↓lerror distinguishes buffer-overflow errors, to which we
give a specific treatment below.

174 M. Abadi and J. Planul

For redexes, we set:

(s, !loclloc) → (s, V) (if s(l) = V)
(s, lloc :=loc V) → (s[l �→ V], skip) (if |V | = sig(l))
(s, lloc :=loc V) ↓error (if |V | < sig(l))
(s, lloc :=loc V) ↓lerror (if |V | > sig(l))

and:
R → M ′

(s,R) → (s,M ′)
R ↓error

(s,R) ↓error
The general case follows via three rules:

(s,R) → (s′,M ′)
(s, E[R]) → (s′, E[M ′])

(s,R) ↓error
(s, E[R]) ↓error

(s,R) ↓lerror
(s, E[R]) ↓lerror

We can also define a corresponding big-step semantics by:

(s,M) ⇒ (s′, V) ⇐⇒ (s,M) →∗ (s′, V)
(s,M) ⇓error ⇐⇒ ∃s′,M ′. (s,M) →∗ (s′,M ′) ↓error
(s,M) ⇓l

error ⇐⇒ ∃s′,M ′. (s,M) →∗ (s′,M ′) ↓lerror
(s,M) ⇑ ⇐⇒ ∀n. ∃s′,M ′. (s,M) →n (s′,M ′)

These relations and properties are mutually exclusive. The relation (s,M) ⇒
(s′, V) holds if M evaluates to the value V with final store s′ when the initial
store is s; the property (s,M) ⇓l

error holds if the term M causes a buffer-overflow
error on location l when the initial store is s, and (s,M) ⇓error holds if M results
in a different error; the property (s,M) ⇑ holds if M diverges when the initial
store is s.

4 The Low-Level Language

Our low-level language, which we define in this section, mainly differs from the
high-level language in employing integer addresses.

4.1 Syntax and Informal Semantics

The syntax of the low-level language is a variant of that of the high-level language
in which we replace high-level constants for accessing locations by distinguished
locations and memory-access constants:

M ::= x | c | [M ; . . . ;M] | λx.M | MM
c ::= ∗ | n | + |=nat | . . .

| ith | length
| lnat | !nat | :=nat

where l ranges over the finite set Loc of locations.

On Layout Randomization for Arrays and Functions 175

Informally, the constant lnat evaluates to the index of location l; it returns an
integer. The constant !nat, when applied to an integer n, reads the contents of
memory at address n. The constant :=nat, when applied to a first argument and
an integer n, writes the first argument at address n. (So, with infix notation, we
write N := M for := M N .)

Because each constant lnat is a first-class, legal expression on its own, we can
write programs that pass these constants and that store them in memory, such
as lnat :=nat l′nat. Moreover, !nat and :=nat are legal expressions even when they
are not applied to location constants (unlike the corresponding notations in the
high-level language). Thus, we can write not only !natlnat and lnat :=nat 0, but
also for example !natx, !nat(x + 1), (x+ 1) :=nat 8, or (x + lnat) :=nat (x+ l′nat),
where l is a location and x is a variable. As these small examples illustrate,
addresses can be the result of integer computations, on variables and constants
(including location constants). This flexibility could allow an attacker to try to
access memory at a computed offset from a known location, for instance.

We assume that each address in memory is either used to hold a value or
unused, and assume that access to an unused address results in an immedi-
ate fatal error. These assumptions are as in the “fatal-error model” of Abadi
and Plotkin [3]. It should be possible to adapt our work to the alternative
“recoverable-error model”.

Both the high-level language and the low-level language allow storing a pro-
gram in memory, retrieving it, then invoking it. In particular, an attacker may
be able to inject code into memory via a direct assignment. On the other hand,
neither language allows computing on the code of programs, nor confusing nat-
ural numbers with programs. In this respect, the low-level language remains
fairly high-level. For example, in the low-level language, after the assignment
lnat :=nat (λx. !natl

′
nat), an attacker that can read the contents of lnat would be

able to execute (λx. !natl
′
nat), but not extract l

′
nat from it, nor the syntax tree of

(λx. !natl
′
nat). It seems unlikely that one could obtain strong guarantee without

some such restrictions.

4.2 Values

As in the high-level language, we designate a subset of the expression of the
programming language as values. In particular, we take !nat and :=nat to be
values:

V ::= d | e | [V ; . . . ;V] | λx.M
d ::= ∗ | n | + |=nat | . . .

| ith | length
| !nat | :=nat

e ::= n + | n =nat | . . .
| n ith

| :=nat V

We write LV for the set of values of the low-level language.

176 M. Abadi and J. Planul

4.3 Memory Model

Concretely, we let a memory be a mapping m :Mem → (LV+ {ε}), where:
– Mem is the set 0, . . . , κ of memory addresses, for a given κ ≥ 0,
– we assume that |∑l∈Loc sig(l)| ≤ κ+ 1,
– LV+ {ε} is the disjoint union of LV and {ε}, and
– m(a) = ε indicates that a is an unused address of m.

Since the low-level language contains location constants, its semantics depends
on how these are laid out in memory. A memory layout is an injective mapping
w : Loc ↪→ Mem. Such a memory layout connects the abstract and the concrete
memory models. A location that stores an array in the abstract model corre-
sponds to a range of memory addresses in the concrete model. For a location
l, that range starts at address w(l) and includes sig(l) consecutive address. We
restrict attention to those memory layouts that do not cause range overflows or
overlaps, that is, such that there exist no l1 ∈ Loc such that w(l1) ≤ κ < w(l1)+
sig(l1)− 1, and no distinct l1, l2 ∈ Loc such that w(l1) ≤ w(l2) < w(l1)+ sig(l1).
We let Ran(w) be the set {a ∈ Mem | ∃l. w(l) ≤ a < w(l) + sig(l)}.

A public layout wp : PubLoc ↪→ Mem maps public locations to addresses. We
assume that one public layout is fixed throughout, and we consider only those
memory layouts that extend it.

We also define stores for the low-level language; we call them low-level stores
to distinguish them from those of the high-level language, to which they are
directly analogous. Thus, a low-level store is a mapping s :Loc → LV that sends
locations to values of the low-level language, such that s(l) is an array value
and |s(l)| = sig(l) for every l ∈ Loc. For every low-level store s and memory
layout w, there is a corresponding memory mem(s, w) defined by:

mem(s, w)(a) =

{
s(l).(i) if there exists i ∈ 1..sig(l) such that w(l) + i− 1 = a
ε otherwise (a /∈ Ran(w))

where s(l).(i) is the ith element of the array value s(l). The mapping s �→
mem(s, w) is 1-1, from low-level stores to memories, but not onto. We say that
m has the form mem(s, w) if it equals mem(s, w) for some w. We abbreviate
mem(s, w) to sw.

4.4 Operational Semantics

The operational semantics resembles that of the high-level language in its treat-
ment of functions and numbers. In particular, the redexes and the reduction
relation between redexes and terms are both much as in the high-level language,
but with

lnat (for l ∈ Loc) !natV V :=nat V

as redexes. Evaluation contexts are as in the high-level language.

On Layout Randomization for Arrays and Functions 177

A configuration is a pair (m,M) of a memory m and a term M . The semantics
consists of a transition relation and two error properties on configurations, all
relative to the memory layout chosen:

w |= (m,M) → (m′,M ′)

w |= (m,M) ↓error w |= (m,M) ↓aerror

The error property w |= (m,M) ↓aerror distinguishes accesses to out-of-range or
unused addresses; in particular, if w |= (m,M) ↓aerror and m has the form sw,
then a /∈ Ran(wp).

For redexes, the transition relation and error properties are given by the rules:

R → M ′

w |= (m,R) → (m,M ′)
R ↓error

w |= (m,R) ↓error

together with:

w |= (m, lnat) → (m,w(l)) (for l ∈ Loc)

and:

w |= (m, !nata) → (m,V) (if a ∈ Mem and m(a) = V)
w |= (m, !nata) ↓aerror (if a /∈ Mem or m(a) = ε)
w |= (m, a :=nat V) → (m[a �→ V], skip) (if a ∈ Mem and m(a) �= ε)
w |= (m, a :=nat V) ↓aerror (if a /∈ Mem or m(a) = ε)

The general case follows by the rules:

w |= (m,R) → (m′,M ′)
w |= (m,E[R]) → (m′, E[M ′])

and:

w |= (m,R) ↓error
w |= (m,E[R]) ↓error

w |= (m,R) ↓aerror
w |= (m,E[R]) ↓aerror

Much as in the high-level language, too, this small-step semantics induces a
big-step semantics:

w |= (m,M) ⇒ (m′, V) ⇐⇒ w |= (m,M) →∗ (m′, V)

w |= (m,M) ⇓error ⇐⇒ ∃m′,M ′.w |= (m,M) →∗ (m′,M ′) ↓error
w |= (m,M) ⇓a

error ⇐⇒ ∃m′,M ′.w |= (m,M) →∗ (m′,M ′) ↓aerror
w |= (m,M) ⇑ ⇐⇒ ∀n. ∃m′,M ′. w |= (m,M) →n (m′,M ′)

These relations and properties are mutually exclusive.

178 M. Abadi and J. Planul

5 Layout Distributions

The effectiveness of layout randomization requires the use of unpredictable lay-
outs. In this section, we define distributions on layouts, and introduce several
quantities that below we employ in quantitative security bounds.

Let d be a probability distribution over the layouts that extend wp. When
ϕ(w) is a statement, we write Pd(ϕ(w)) for the probability that it holds with
respect to the distribution d. For example, ϕ(w) might be the assertion that, with
the layout w, an execution that starts from a particular low-level configuration
(m,M) will produce an error. In that case, Pd(ϕ(w)) is the probability that such
an execution will produce an error for a random layout chosen according to d.

For any n ∈ N, we write w#n as an abbreviation for n �∈ (Ran(w)\Ran(wp)).
Informally, when we think of n as an address that an attacker is guessing (not
out of the memory bounds, and not at public locations, since the attacker knows
those), w#n means that the attacker does not guess the address of a private
location. Then Pd(w#n) is the corresponding probability, for w chosen according
to d. Furthermore, we define:

δd = min{Pd(w#n) | n ∈ Mem \Ran(wp)}
For example, suppose that l is the only private location and that sig(l) = 1. If
layouts chosen according to d always map l to the integer 5, then δd = 0, simply
because Pd(w#5) = 0. Obviously, such layouts enable an attacker to access the
contents of l, trivially, via the address 5. On the other hand, if layouts chosen
according to d map l to each of Mem \Ran(wp) with uniform probability, then
δd = 1− (1/|Mem \Ran(wp)|).

As these examples illustrate, a small value for δd indicates a lack of security.
Therefore, we consider lower bounds on δd for certain choices of d. These lower
bounds approach 1 as the size of memory grows, thus indicating that attacker
guesses should succeed with vanishing probability in the limit.

In particular, a system may map all public locations to contiguous addresses
starting at address 0, and all private locations to contiguous addresses start-
ing at some random base address in the remaining space. There are |Mem| −∑

l∈Loc sig(l) + 1 possible positions for the base address. Moreover, any address
is the image of a private location with at most

∑
l∈PriLoc sig(l) of those possible

positions. Hence, for this simple distribution, we can show that:

δd ≥ 1−
∑

l∈PriLoc sig(l)

|Mem| −∑
l∈Loc sig(l) + 1

assuming
∑

l∈Loc sig(l) ≤ |Mem|. Even with such a coarse scheme, δd approaches
1 as |Mem| grows. For example, if there is no public location, the private locations
have total length 232 (which represents a reasonable volume to hold in an actual
memory), and the size of memory is 264 (as in a large virtual address space),
then this bound is δd ≥ (1− (232/(264 − 232 + 1))), roughly (1− 2−32).

Much more sophisticated arrangements are possible, in particular ones that
map each private location independently. Overall, it is fairly easy to pick dis-
tributions on layouts that ensure that δd approaches 1. Basically, with such

On Layout Randomization for Arrays and Functions 179

distributions, when an attacker looks for private locations in a large enough
memory, getting only one try, the attacker is almost certain to miss provided the
memory is large enough.

Similarly, for any l ∈ Loc, we write w#l as an abbreviation for w(l) + sig(l) �∈
Ran(w). Thus, w#l holds precisely when the end of the array located in l is not
contiguous to any other location in use. When this property holds, direct buffer
overflows from l will raise an error in the implementation, even without proper
bounds checking. We define:

�d = min{Pd(w#l) | l ∈ Loc}
As for δd, we would like �d to be large. Fortunately, assuming that memory is
large enough, we can easily focus attention on layouts w such that w#l for all l,
so �d = 1. In such layouts, all arrays are separated by unused locations. These
unused locations are analogous to the “guard zones” or “guard regions” that
appear in practical systems (e.g. [10, 17]).

Moreover, the wishes for δd that approaches 1 and for �d = 1 are compatible.
For instance, a systemmay keep all public memory together starting at address 0,
and private memory together at some random base address in the remaining
space, but separate any two arrays with one unused location.

Our results hold for any probability distribution d. For the rest of the paper,
we fix a choice of d, and write P(ϕ(w)), δ, and � as abbreviations for Pd(ϕ(w)),
δd, and �d, respectively.

6 Compilation and Its Properties

In this section we define the translation discussed in the introduction. We then
prove its correctness and its security.

6.1 The Translation

We translate terms M of the high-level language to terms M↓ of the low-level
language. Crucially, this translation maps abstract locations to their low-level
counterparts. Since these are interpreted relatively to a memory layout, and
since this memory layout is chosen according to a probability distribution, the
translation embodies layout randomization.

The translation is trivial for all constructs of the high-level language with the
exception of the constants !loclloc and lloc :=loc, which we compile as follows:

(!loclloc)
↓ = [!natlnat; !natlnat + 1; . . . ; !natlnat + sig(l)− 1]

(lloc :=loc)
↓ = λx. for i = 1 to lengthx do lnat + i− 1 :=nat i ithx; done;

if i < sig(l) then raise error

Both (!loclloc)
↓ and (lloc :=loc)

↓ employ the signature sig(l). In the case of
(!loclloc)

↓, this signature indicates how much to read from memory. In the case
of (lloc :=loc)

↓, it serves to ensure that what is being written to memory is

180 M. Abadi and J. Planul

not too short. Alternatively, as suggested in the Introduction, we could add
distinguished padding values to fill the space available.

However, (lloc :=loc)
↓ does not check whether its argument (the data being

written to memory) is too long. This absence of bounds checking leads to the
possibility of buffer overflows. Although the absence of bounds checking is de-
liberate in this definition, it models common mistakes (poor design decisions
or implementation blunders). In general, without layout randomization or other
mitigations, such mistakes could jeopardize security. Nevertheless, our security
results (presented below) apply despite these buffer overflows. (Note that, in ad-
dition to the buffer overflows that the translation may introduce, contexts may
attempt other problematic operations, such as accessing memory at an offset
from a known location, as in (lnat + 256) :=nat 0; our results still apply.)

Since high-level stores may contain functions, and those may contain occur-
rences of the constructs !loclloc and lloc :=loc, we extend the translation so that
it maps each high-level store s to a low-level store s↓. We define s↓ by setting,
for every l ∈ Loc,

s↓(l) = s(l)↓

Given a layout w, we can then obtain a memory s↓w.

6.2 Correctness

The translation is correct in the sense that M↓ simulates M , under the corre-
sponding big-step semantics:

Proposition 1. Suppose that M is a term of the high-level language, and w a
layout. Then:

1. If (s,M) ⇒ (s′, V) then, w |= (s↓w,M
↓) ⇒ (s′↓w , V

↓).
2. If (s,M) ⇓error then w |= (s↓w,M↓) ⇓error.

3. If (s,M) ⇓l
error then, if w(l) + sig(l) /∈ Ran(w), w |= (s↓w,M

↓) ⇓w(l)+sig(l)
error .

4. If (s,M) ⇑ then w |= (s↓w,M
↓) ⇑.

Fixing a distribution on layouts, we can derive a probabilistic statement from
Proposition 1:

Proposition 2. Suppose that M is a term of the high-level language. Then:

1. If (s,M) ⇒ (s′, V), then, for every w, w |= (s↓w,M↓) ⇒ (s′↓w , V ↓).
2. If (s,M) ⇓error then, for every w, w |= (s↓w,M

↓) ⇓error.

3. If (s,M) ⇓l
error then P(w |= (s↓w,M

↓) ⇓w(l)+sig(l)
error) ≥ �.

4. If (s,M) ⇑ then, for every w, w |= (s↓w,M↓) ⇑.
Further, we can restate the correctness of compilation in terms of a coarse

notion of evaluation. For any store s and term M of the high-level language, we
define Eval(M, s) by:

Eval(M, s) =

⎧
⎨

⎩

� if (s,M) ⇒ (s′, V) for some (s′, V)
E if (s,M) ⇓u

error

Ω if (s,M) ⇑

On Layout Randomization for Arrays and Functions 181

Here, (s,M) ⇓u
error means that (s,M) ⇓error or (s,M) ⇓l

error for some l, and
�, E, and Ω are tokens that indicate normal termination, error, and divergence,
respectively. Similarly, for any low-level term M , memory m, and layout w, we
define Evalw(M,m) by:

Evalw(M,m) =

⎧
⎨

⎩

� if w |= (m,M) ⇒ (m′, V) for some (m′, V)
E if w |= (m,M) ⇓u

error

Ω if w |= (m,M) ⇑

where w |= (m,A) ⇓u
error means that w |= (m,A) ⇓error or w |= (m,A) ⇓a

error for
some a. We obtain:

Proposition 3. Let M be a high-level term and s a high-level store. Then:

P(Eval(M, s) = Evalw(M
↓, s↓w)) ≥ �

This statement is simpler and weaker than those above. It expresses that eval-
uating M from a store s and M↓ from a corresponding memory s↓w lead to the
same outcome with probability at least �. Here, an outcome is, coarsely, normal
termination, error, or divergence. Note that the probability does not depend
on δ; since (as explained in Section 5) we can often take � = 1, we can then have
that evaluating M from a store s and M↓ from a corresponding memory s↓w lead
to the same outcome with probability 1.

6.3 Security: Mapping Contexts

Although we cannot hope to establish that every program of the high-level lan-
guage is secure in some absolute sense, we would like to argue that compiling
a program from the high-level language to the low-level language does not in-
troduce vulnerabilities. In other words, we regard programs of the high-level
language as security specifications, and expect that the corresponding programs
of the low-level language conform to those specifications.

Our notion of security relies on the distinction between public and private
locations (much as in [3]). As stated in Section 3, we assume that the set of
locations Loc is the disjoint union of two sets, PubLoc and PriLoc, of public and
private locations. We then say that a high-level (respectively low-level) term is
public if all its occurrences of !loclloc and lloc :=loc (respectively lnat) are with
l ∈ PubLoc. We model attackers as public contexts, that is, as programs of our
languages that interact with the programs that we aim to protect, and that have
direct access to public locations.

Contexts (both public contexts and general contexts) have different capabili-
ties in each language. In particular, in the high-level language, contexts can refer
to abstract locations, while in the low-level language contexts can use integer ad-
dresses, and this might permit exploits that rely on guessing integer addresses,
perhaps using offset calculations. So, if the contexts of the low-level language
were much more expressive than those of the high-level language, security might

182 M. Abadi and J. Planul

be jeopardized. We aim to show that, in fact, the extra flexibility of the low-level
language does not affect security, at least with high probability.

Therefore, we show that a low-level term M↓ is as secure as its high-level
counterpart M by arguing that the behavior M↓ in each public context C of
the low-level language corresponds to the behavior of M in some correspond-
ing public context C↑ of the high-level language. Since we model attackers as
public contexts, this result indicates that, for every low-level attack, there is a
corresponding high-level attack with the same effect.

In order to relate behaviors at the two levels, we introduce pure stores. A
store is pure if it contains no location, assignment, or dereference. Therefore,
every pure store is both a high-level and a low-level public store. For simplicity,
in what follows, we consider only pure initial stores.

We obtain the following theorem:

Theorem 1. Suppose that M is a high-level term and C is a public low-level
term. Then CM↓ is a public low-level term, and there exists a public high-level
term C↑ such that one of the following three mutually exclusive statements holds
for any pure store s:

– there exist s′, s′′, V ′, and V ′′ such that, for all w, w |= (sw, CM↓) ⇒ (s′w, V
′)

and (s, C↑M) ⇒ (s′′, V ′′),
– P(w |= (sw, CM↓) ⇓u

error) ≥ min(δ, �) and (s, C↑M) ⇓u
error, or

– for all w, w |= (sw, CM↓) ⇑ and (s, C↑M) ⇑.
The probability bound as a function of δ and � arises, basically, because a non-
public, low-level memory access is made independently of the layout.

Using the coarse evaluation function again, we derive a weaker but simpler
statement:

Corollary 1. Suppose that M is a high-level term and C is a public low-level
term. Then there exists a public high-level term C↑ such that, for any pure
store s, we have:

P(Eval(C↑M, s) = Evalw(CM↓, sw)) ≥ min(δ, �)

Intuitively, for every attack (represented by C) on M↓ there is a correspond-
ing attack (represented by C↑) on M that leads to the same outcome (normal
termination, error, or divergence).

6.4 Security: Preservation of Equivalences

We introduce a relation≈h,p of public (contextual) operational equivalence for the
high-level language, and a relation ≈l,p of public (contextual) operational partial
equivalence for the low-level language. These two relations refine the correspond-
ing standard relations of operational equivalence. Much as in other settings, they
can be used for capturing security properties, such as those discussed informally
in Section 2. Therefore, we aim to show that compilation preserves equivalences,
at least in a probabilistic sense.

On Layout Randomization for Arrays and Functions 183

We define ≈h,p by setting, for any two high-level terms M0 and N0:

M0 ∼h,p N0 ⇐⇒ ∀pure s.Eval(M0, s) = Eval(N0, s)

and then, for any two high-level terms M and N :

M ≈h,p N ⇐⇒ ∀public high-level C.CM ∼h,p CN

Thus, M0 ∼h,p N0 means that M0 and N0 yield the same outcome from all pure
high-level stores, and M ≈h,p N means the same in an arbitrary public context.

Although Eval produces only a coarse outcome, and although the definition
of ∼h,p focuses on pure stores, the quantification over all public contexts leads
to fine distinctions between terms. For instance, when n and n′ are two different
numbers, we have n ∼h,p n′, but we do not have n ≈h,p n′, simply because a
context C may compare its argument to n, terminate if the comparison succeeds,
and diverge otherwise. Similarly, we do not have (lloc :=loc n) ≈h,p (lloc :=loc n

′)
if l is a public location, because a context C may read from lloc, compare the
result to n, terminate if the comparison succeeds, and diverge otherwise. On the
other hand, the equivalence (l′loc :=loc n) ≈h,p (l′loc :=loc n

′) does hold when l′

is a private location, and captures a secrecy property.
Note that this equivalence would not hold if we had quantified over arbi-

trary stores rather than pure stores in the definition of M0 ∼h,p N0. Let s be
a store that maps the public location l to the function λx. !locl

′
loc. Let C be a

context that consumes an argument, reads from lloc, applies its contents to ∗,
compares the result to n, terminates if the comparison succeeds, and diverges
otherwise. Then Eval(C(l′loc :=loc n), s) and Eval(C(l′loc :=loc n

′), s) yield dif-
ferent outcomes (� and Ω, respectively).

As this small example illustrates, the quantification over pure stores (rather
than arbitrary stores) in the definition of M0 ∼h,p N0 is crucial because stores
may contain functions. In particular, in an arbitrary store, a public location l
could contain functions that, when invoked, read or write private locations; a
context could then read from l and use those functions to access private loca-
tions. Thus, assuming that there is at least one public location l, removing the
restriction to pure stores would effectively erase the distinction between public
and private locations, and would yield a standard relation of contextual equiva-
lence.

Analogously, for the low-level language, for any M0 and N0, we say that
M0 ∼l,p N0 holds if and only if, for every pure store s, at least one of the
following three possibilities holds:

– there exist s′, s′′, V ′, and V ′′ such that, for all w, w |= (sw,M0) ⇒ (s′w, V
′)

and w |= (sw, N0) ⇒ (s′′w, V
′′),

– P(w |= (sw,M0) ⇓u
error) ≥ min(δ, �) and P(w |= (sw, N0) ⇓u

error) ≥ min(δ, �),
or

– for all w, w |= (sw,M0) ⇑ and w |= (sw, N0) ⇑.
This relation is a partial equivalence; as in [3], reflexivity may fail (because
terms that branch on the concrete addresses of private locations do not behave

184 M. Abadi and J. Planul

identically for all layouts). If δ > 0 and � > 0 then the three possibilities are
mutually exclusive; also, if the first of them holds, then s′, s′′, V ′, and V ′′ are
uniquely determined. Further, for any two low-level terms M and N , we set:

M ≈l,p N ⇐⇒ ∀public low-level C.CM ∼l,p CN

The following theorem shows that compilation preserves and reflects equiva-
lences:

Theorem 2. Let M and N be high-level terms. If M ≈h,p N , then M↓ ≈l,p N↓.
The converse holds as well if δ > 0 and � > 0.

7 Related and Further Work

The pioneering work of Pucella and Schneider treats a small C-like language
with arrays, and relates obfuscation and type systems [15]. Their theorems focus
on integrity properties, and do not explicitly mention probabilities. As explained
by Abadi and Plotkin, those theorems basically pertain to protection from a po-
tentially dangerous input, while we consider more general attackers, represented
by arbitrary contexts, and also treat program equivalences that can express in-
tegrity and secrecy properties.

Our approach is most similar to that of Abadi and Plotkin (specifically, in
their “fatal error” model) [3], though with several substantial differences. In par-
ticular, we treat a dynamically typed language (rather than a statically typed
language), which gives us additional flexibility in the typing of memory. Fur-
thermore, we allow arrays and functions to be stored in memory (rather than
just integers). This extension enables the formulation of examples suggested by
practical attacks. It also entails a number of complications and opportunities,
such as the compilation of array operations, the quantification over pure stores
in defining equivalences, and the consideration of guard regions.

The choice of an untyped language and the possibility of storing functions in
memory appear also in the work of Jagadeesan et al. [9]. Their programming
languages include not only functions but also continuations, a bounded form of
local state, and some novel, non-standard constructs. In particular, they do not
view addresses as integers even in low-level systems, but pointer arithmetic is
available via encodings. On the other hand, the languages do not include arrays,
nor the resulting concerns about overflows that appear prominently in this paper.

Despite these distinctions, all these works aim to contribute to the under-
standing of randomization in the context of programming languages and their
implementations. There remain opportunities for research towards this goal. In
particular, further work may treat additional constructs and models of compu-
tation, such as concurrency. It may also consider combinations of layout ran-
domization with other techniques. Our use of guard regions, in this paper, is a
small step in that direction. Other relevant techniques include stack canaries for
protecting return addresses and various inline reference monitors that aim to
guarantee control-flow integrity. All these techniques may be used in concert in
practical systems; a principled study may be able to shed light on their synergies
and overlaps.

On Layout Randomization for Arrays and Functions 185

Acknowledgments. We are grateful to Úlfar Erlingsson and to Gordon Plotkin
for discussions on this work. Jérémy Planul’s work is supported by DARPA
PROCEED.

References

1. Abadi, M.: Protection in Programming-Language Translations. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 868–883. Springer,
Heidelberg (1998)

2. Abadi, M., Planul, J.: On layout randomization for arrays and functions (2013),
Long version of this paper, at
http://www.msr-inria.inria.fr/~jplanul/libraries-long.pdf

3. Abadi, M., Plotkin, G.D.: On protection by layout randomization. ACM Transac-
tions on Information and System Security 15(2), 8:1–8:29 (2012)

4. Chen, S., Sezer, E.C., Xu, J., Gauriar, P., Iyer, R.K.: Non-control-data attacks are
realistic threats. In: Proceedings of the Usenix Security Symposium, pp. 177–192
(2005)

5. Druschel, P., Peterson, L.L.: High-performance cross-domain data transfer. Techni-
cal Report TR 92-11, Department of Computer Science, The University of Arizona
(March 1992)

6. Erlingsson, Ú.: Low-Level Software Security: Attacks and Defenses. In: Aldini, A.,
Gorrieri, R. (eds.) FOSAD 2007. LNCS, vol. 4677, pp. 92–134. Springer, Heidelberg
(2007)

7. Felleisen, M., Friedman, D.P.: Control operators, the secd-machine, and the
lambda-calculus. In: 3rd Working Conference on the Formal Description of Pro-
gramming Concepts, pp. 193–219 (1986)

8. Forrest, S., Somayaji, A., Ackley, D.H.: Building diverse computer systems. In: 6th
Workshop on Hot Topics in Operating Systems, pp. 67–72 (1997)

9. Jagadeesan, R., Pitcher, C., Rathke, J., Riely, J.: Local memory via layout ran-
domization. In: Proceedings of the 24th IEEE Computer Security Foundations
Symposium, pp. 161–174 (2011)

10. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: Proceed-
ings of the 15th USENIX Security Symposium, pp. 209–224 (2006)

11. Mitchell, J.: Foundations for Programming Languages. MIT Press (1996)
12. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: Hindering

return-oriented programming using in-place code randomization. In: IEEE Sym-
posium on Security and Privacy, pp. 601–615 (2012)

13. PaX Project. The PaX project (2004), http://pax.grsecurity.net/
14. Pierce, B.: Types and Programming Languages. MIT Press (2002)
15. Pucella, R., Schneider, F.B.: Independence from obfuscation: A semantic frame-

work for diversity. Journal of Computer Security 18(5), 701–749 (2010)
16. Sotirov, A., Dowd, M.: Bypassing browser memory protections: Setting back

browser security by 10 years (2008),
https://www.blackhat.com/presentations/bh-usa-08/

Sotirov Dowd/bh08-sotirov-dowd.pdf

17. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. In: Proceedings of the Fourteenth ACM Symposium on Operating Sys-
tems Principles, pp. 203–216 (1993)

http://www.msr-inria.inria.fr/~jplanul/libraries-long.pdf
http://pax.grsecurity.net/
https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf
https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf

	On Layout Randomization for Arrays and Functions
	Introduction
	Examples
	The High-Level Language
	Syntax and Informal Semantics
	Values
	Memory Model
	Operational Semantics

	The Low-Level Language
	Syntax and Informal Semantics
	Values
	Memory Model
	Operational Semantics

	Layout Distributions
	Compilation and Its Properties
	The Translation
	Correctness
	Security: Mapping Contexts
	Security: Preservation of Equivalences

	Related and Further Work
	References

