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Abstract—We examine the problem of bandwidth allocation
(BA) on flexible optical networks in the presence of traffic
demand uncertainty. We assume that the daily traffic demand is
given in the form of distributions describing the traffic demand
fluctuations within given time intervals. We wish to find a pre-
dictive BA (PBA) model that infers from these distributions the
bandwidth that best fits the future traffic demand fluctuations.
The problem is formulated as a Partially Observable Markov
Decision Process and is solved by means of Dynamic Program-
ming. The PBA model is compared to a number of benchmark
BA models that naturally arise after the assumption of traffic
demand uncertainty. For comparing all the BA models developed,
a conventional routing and spectrum allocation heuristic is used
adhering each time to the BA model followed. We show that
for a network operating at its capacity crunch, the PBA model
significantly outperforms the rest on the number of blocked
connections and unserved bandwidth. Most importantly, the PBA
model can be autonomously adapted upon significant traffic
demand variations by continuously training the model as real-
time traffic information arrives into the network.

I. INTRODUCTION

With the emergence of new types of applications and

services, the Internet traffic is exponentially growing [1]. Next

generation optical networks are expected to support both the

ever increasing traffic demand and the increased uncertainty in

predicting the sources of this traffic. Over the last few years,

and as the currently deployed optical networks are nearing a

capacity crunch, they have undergone significant changes.

Flexible optical networks are considered today as a promis-

ing solution for coping with the increasing demand, due to

their capability of efficiently utilizing the available spectrum

resources [2]. Flexible optical networks are based on band-

width variable transceivers (BVTs), a flexible grid, and net-

work nodes that can adapt to the actual traffic needs [2]. In this

type of networks, for establishing a connection, the Routing

and Spectrum Assignment (RSA) problem must be solved. The

routing (R) problem deals with finding a route for a source

and destination pair. The spectrum allocation (SA) problem

deals with allocating spectral resources to the routing path (the

spectrum slots are occupied symmetrically around the nominal

central frequency of the channel). The allocated spectrum must

meet the slot continuity and contiguity constraints [3], subject

to the constraint of no frequency overlap. Once a connection

is established the spectrum width can be dynamically adapted

(if feasible) in response to bandwidth variations. The RSA

problem for time-varying traffic has been studied in [4]-[7]

with the aim of best fitting the bandwidth requirements upon

demand variations. A survey regarding the methods developed

for the R problem can be found in [8], whereas regarding the

SA problem, a number of SA policies have been developed

that are in general categorized into fixed, semi-elastic, and

elastic [5], [8].

In the fixed SA policies [4], [5] the allocated spectrum and

the central frequency remain static for the entire lifetime of

a connection. These policies lead to a sub-optimal use of the

available resources as much of the allocated spectrum is most

of the time wasted. In the semi-elastic SA policies [4], [5] the

central frequency remains static but the allocated spectrum

width can be expanded/reduced according to the actual band-

width demand. The main difference with the fixed SA policies

is that the unutilized slots can now be used for subsequent

connection requests providing higher flexibility and better

resource utilization. In the elastic SA policies [4]-[7], [9]

both the allocated central frequency and the spectrum width

can change. The spectrum width can be expanded/reduced

according to the actual bandwidth demand and the central

frequency can be shifted [5], [6], [9], [10]. The elastic SA

policies offer better resource utilization but require the highest

computational complexity and complex algorithms in the Path

Computation Element for minimizing traffic interruptions if a

reallocation policy is followed [5], [8]. Further, control plane

extensions are still required for allowing dynamically adjusting

both the allocated spectrum and the central frequency.

Most SA policies are based on daily Internet traffic patterns

that can be known a priori due to the periodic behavior of

Internet traffic [5]-[7], [9]. The traffic patterns include infor-

mation regarding the estimated peak rate of each connection

request for each time interval (usually 24-hour patterns). The

estimated peak rates are used by the SA policy followed in

order to allocate just enough bandwidth for each connection.

For handling a situation where more bandwidth is eventually

requested than the estimated one, the estimated peak rate is

multiplied by a certain oversubscription ratio [4].

Motivated by the fact that the Internet traffic demand has

been shown to follow the log-normal distribution [11], in this

work, instead of assuming that the daily traffic patterns are

given in the form of estimated peak rates, we assume that

they are given in the form of distributions describing the traffic
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demand uncertainty (the mean and variance of the log-normal

distribution are given). In this work, the assumption throughout

is that the distribution describes the aggregate traffic resulting

from multiple users. We wish to infer from these distributions

a predictive bandwidth allocation (PBA) model that best fits

the future bandwidth demands. In particular, we wish to

find a bandwidth allocation (BA) model that is capable of

predicting the number of spectrum slots that will best fit

the traffic demand fluctuations of the next time interval. We

have formulated the problem as a Partially Observable Markov

Decision Process (POMDP) as POMDPs have been proven to

be very effective for addressing planning domain problems

with uncertainty [12]-[14]. For finding the PBA model, the

POMDP is solved by means of dynamic programming. Note

that the approach used for training the PBA model does not

need to know the underlying traffic demand distributions. It

can utilize real-time information for continuously adjusting

the model upon variations on the traffic demand. The train-

ing procedure can be performed continuously offline, given

that enough traffic information is available. Large amounts

of traffic information can be easily collected by monitoring

the traffic demand fluctuations within short time intervals.

Nevertheless, given the fact that we do not have available real

traffic information, in this work, we made the assumption that

the traffic demand distributions are known. These distributions

are used as traffic demand data generators for training and

evaluating the effectiveness of the proposed PBA model.

We assume a network that is elastically reconfigured at the

beginning of each time interval (24 hourly intervals). For each

network reconfiguration, an RSA heuristic is executed offline.

The SA must adhere to the BA model followed. A connection

is blocked if a feasible route and SA cannot be found. Between

network reconfigurations, the bandwidth for the established

connections is semi-elastically expanded/reduced according to

the fluctuations of the actual traffic demand. If the allocated

bandwidth is higher or equal to the requested one, then the

connection bandwidth is semi-elastically expanded/reduced or

it remains unchanged. If the allocated bandwidth is less than

the requested one, then some of the requested bandwidth

remains unserved.

The PBA model is evaluated and compared to a number of

benchmark BA models that naturally arise from the assumption

of traffic demand uncertainty. Specifically, the PBA is com-

pared to the Highest BA (HBA), to the Maximum Probability

BA (MPBA), and to the Expected BA (EBA) models on a

network that is operating at its capacity crunch.We show that

the PBA model significantly outperforms the rest regarding

the unserved bandwidth.

II. BANDWIDTH ALLOCATION MODELS

We assume that the traffic demand is log-normally dis-

tributed [11] and that traffic demand information is available

for a 24-hour period and for N source-destination pairs

(connections). In particular, we assume that each connection

is described by a set of traffic demand distributions, with each

distribution describing the traffic demand fluctuations within

a single time interval. In general, the log-normal distribution

is asymmetrically distributed around its mean value and is

suitable for describing data with heavy-tails and skewness.

The traffic demand fluctuations for each time interval

{t}24t=1 and for each connection {n}Nn=1 are described by

Ztn ∼ LN(µtn, σ
2
tn). We assume that ztn ∈ (0, B) and

that B < B′, where ztn ∈ Ztn, B is equal to the feasible

rate of the BVTs, and B′ is equal to the total link capacity

(all network links occupy B′ spectrum slots). For making

the learning procedure of the PBA model computationally

tractable, we have discretized the distributions according to

specific rate intervals. Specifically, we have divided B into

a intervals in such a way that the ath interval is given by

Ba = [(a− 1)k, ak], where (a− 1)k is the minimum rate of

Ba, ak is the maximum rate of Ba, and a = 1, 2, .., B
k

. Then

we evaluated for each time interval t, for each connection n,

and for each Ba, the probabilities patn = P [ztn ∈ Ba], where

patn is the probability of connection n requesting at t a number

of spectrum slots between (a − 1)k and ak. Since the traffic

demand distributions are in this work randomly generated and

may not be perfectly fitted to the tunability capabilities of the

BVTs assumed, we have also evaluated p0tn = P [ztn > B] to

handle the distributions that generate rates above the feasible

rate of the BVTs. By doing so, we managed to generate a valid

discrete probability distribution. Without loss of generality, we

assume that B0 = 0 with probability p0tn.

For a network that is already configured and operating at

t′, a BA model indicates for each connection n the bandwidth

allocation action a that must be taken for reconfiguring the

network at the next time interval t. If the BA model indicates

an action a for the connection n, then the number of spectrum

slots ∆tn that must be allocated to connection n are given

by ∆tn = max{Ba}. Note that the actions are actually the

indices to the Ba intervals, and thus, for simplicity, the same

notation is used for both the actions and the indices of the

rate intervals. We assume that a network reconfiguration takes

place at the beginning of each time interval t and is computed

offline during the previous time interval t′. We now proceed

with the description of the BA models developed.

1) Highest BA (HBA) Model: Indicates for each connection n
and each upcoming time interval t, the BA action a that corre-

sponds to the highest possible bandwidth demand. Specifically,

∆tn = argmaxa|pa

tn
>0{max{Ba}|a = 0, 1, .., k}.

2) Maximum Probability BA (MPBA) Model: Indicates for

each connection n and each upcoming time interval t, the BA

action a that corresponds to the bandwidth interval with the

maximum probability. Specifically, ∆tn = argmaxa{p
a
tn|a =

0, 1, .., k}.

3) Expected BA (EBA) Model: Indicates for each connection

n and each upcoming time interval t, the BA action a that cor-

responds to the bandwidth interval in which the expected band-

width of the distribution of interest belongs. Specifically, given

that the expected bandwidth is E[∆tn] =
∑k

i=0
max{Bi}p

i
tn,

then ∆tn = max{Ba}, where E[∆tn] ∈ Ba.

4) Predictive BA (PBA) Model: Our stochastic BA problem is

formulated as a Partially Observable Markov Decision Process



(POMDP). POMDPs generalize Markov Decision Processes

(MDPs) that are usually used in heuristic search and planning

for accommodating stochastic actions and full state observ-

ability [15]. POMDPs differ from MDPs in that the states are

not observable but are estimated from observations.

Formally, a POMDP is defined as a tuple

{S,A, T,O,Ω, b0, R, γ}, where S is the set of states.

A is the set of actions, T (s′|s, a) defines the distribution over

next state s′ to which the agent may transition after taking

action a from state s, O is the set of observations, Ω(o|s, a)
is a distribution over observations o that may occur as a result

of taking action a and entering state s, R(s, a) is the reward

function that specifies the immediate reward for taking action

a at state s, γ ∈ [0, 1) is the discount factor that weighs

the importance of current and future rewards, and b0 is the

vector of initial state distribution such that b0(s) denotes the

probability of starting at state s.

In general, at each time step, the environment is at some

state s ∈ S. The agent takes an action a ∈ A, and the

environment transitions to state s′ with probability distribution

T (s′|s, a). At the same time, the agent receives an observation

o ∈ O which is associated with the latent (unobservable)

state s′ according to some conditional likelihood function

Ω(o|s′, a). Finally, the agent receives a reward equal to

R(s, a). Then the process repeats. The goal is for the agent to

choose actions at each time step t that maximize its expected

future discounted reward E[
∑∞

t=0
γtR(st, at)].

In our BA problem, let us consider that the correlation

between optimal network configuration and traffic demand

patterns is not static, but may fluctuate on the grounds of

longer term temporal dynamics. In that case, we must be

capable of inferring these changes and adapting our policies

accordingly. The essence of POMDPs addresses this con-

sideration; POMDPs effect this goal by postulating that, at

each time point, the modeled system has some latent state,

s. Depending on the latent state, s, the same traffic demand

requires a different policy of network reconfiguration, due to

the different longer-term trends/dynamics that this latent state

information encapsulates.

On this basis, for formulating the POMDP according to our

BA problem, S,A, T,O,Ω, b0 and R are now defined, for each

connection n in the network, as follows:

• S = {s|s = 0, 1, ..., k} with each state s representing the

number of spectrum slots assigned to connection n.

• A = {a|a = 0, 1, ..., k} with each action a representing the

interval Ba, and hence the number of spectrum slots ∆∗ that

must be allocated to n.

• T (s′|s, a) defines the probability of transitioning to state s′

if action a is taken at s. Note that for each connection n we

assume that a spectrum size transition is always possible (for

simplicity a network with infinite capacity is assumed - the

network capacity limitations are considered during the RSA

algorithm in which the trained BA models are incorporated).

• O = {o|o = 0, 1, ..., k} with each observation o representing

the interval Bo in which the requested (observed) rate belongs.

• Ωn(o|s, a) = potn is the observation distribution of connec-

tion n. The observation distribution generates at each time step

t the true bandwidth demand of n.

• R(s, a) is the reward function that specifies the immediate

reward for taking action a at state s, and cannot be known

a priori. The immediate reward for each state-action pair

depends on what the agent observes at s′ after action a is taken

at s. On this basis, it is evaluated on the fly during the learning

and exploration procedure of the POMDP (see Algorithm 1).

For evaluating R(s, a), we define instead a reward function

r(s′, a, o). Each element of r(s′, a, o) specifies the reward

received when o is observed at s′, after action a is taken at s.

Specifically,

r(s′, a, o) =

{

−C, if a < o
exp[M(k − a+ o)], otherwise

(1)

Equation 1 indicates that if the requested demand (o) is

higher than the allocated bandwidth (a), then the reward func-

tion r returns the constant negative reward −C, penalizing the

action taken at s. On the other hand, if the requested demand

(o) is lower than the allocated bandwidth (a), then a positive

reward is received. According to Eq. 1 the positive reward

is calculated as exp[M(k − o + a)], where M is a constant

number, and returns a greater reward when the requested

bandwidth is closer to the allocated one. Note that the reward is

increasing exponentially as the requested bandwidth becomes

closer to the allocated one, in order to allow the PBA model

to learn the importance of allocating a bandwidth that is near

the requested one. Equivalently, the PBA model is guided

to avoid allocating at each time interval the highest possible

bandwidth in an attempt to ensure a positive reward. By doing

so, we aim at reducing both the unserved bandwidth as well

as the unutilized allocated bandwidth (PBA is guided to strike

a balance between the unserved bandwidth and the allocated

one). Note that b0 is set to b0(s) = 1

k
∀s indicating that

connection n can be initialized at any possible state s.

Commonly, POMDPs are solved by formulating them as

completely observable MDPs over the belief states (posterior

probability) of the agent [16]. Specifically, in POMDPs, as

the true state is not observable, the agent must choose its

actions based only on past actions and observations. Normally,

the best action to take at time step t depends on the entire

history of actions and observations that the agent has taken so

far. However, the probability distribution over current states,

known as the belief, is a sufficient statistic for a history of

actions and observations [13]. In discrete state spaces, the

belief state at step t + 1 can be computed from the previous

belief, bt, the last action a, and observation o, by the following

application of Bayes rule [13]

ba,ot+1(s) = Ω(o|s, a)
∑

s′∈S

T (s|s′, a)bt(s
′)/Pr(o|b, a), (2)

where Pr(o|b, a) =
∑

s′∈S Ω(o|s′, a)
∑

s∈S T (s′|s, a)bt(s).
The Bellman equation for the resulting belief MDP is [13]:

V ∗
t (b) = max

a∈A
Qt(b, a), (3)



Qt(b, a) = R(b, a) + γ
∑

o∈O

Pr(o|b, a)Vt(b
a,o), (4)

where the value function V (b) is the expected discounted

reward that an agent will receive if its current belief is

b, Q(b, a) is the value of taking action a at belief b, and

R(b, a) is the expected reward given by
∑

s∈S R(s, a)b(s).
As the exact solution of the Bellman equation (Eq. (3)) is

intractable for large spaces [17], in this work, the Real-

Time Dynamic Programming-Bel (RTDP-Bel) [18] heuristic

algorithm is used for finding an optimal policy. In RTDP-Bel

a greedy policy πV is used for finding an optimal policy, where

πV (b) = argmaxa∈A Qt(b, a).
The RTDP-Bel is an asynchronous value iteration algorithm

that converges to the optimal value function and policy over

the relevant belief states without having to consider all the

belief states in the problem. For achieving this, the RTDP-

Bel uses an admissible heuristic function or lower bound h as

the initial value function. Provided with such a lower bound,

RTDP-Bel selects for update the belief over the states that

are reachable from the initial state b0 through the greedy

policy πV in a way that interleaves simulation and updates. For

the implementation of the RTDP-Bel, the estimates V (b) are

stored in a hash table that initially contains only the heuristic

value of the initial state, b0. Then, when the value of a belief

ba,o that is not in the table is needed, a new entry for ba,o

with value V (ba,o) = h(ba,o) is allocated. These entries are

updated following Eq. (3) when a move from s is performed.

The RTDP-Bel algorithm is described analytically in [18].

In this work, the state-of-the-art RTDP-Bel algorithm is

slightly modified to fit our problem formulation, incorporating

the reward function defined in Eq. 1. The modified RTDP-

Bel algorithm is described in Algorithm 1. Algorithm 1 is

independently executed for each connection n in the network,

and hence for each connection a different PBA model is

evaluated. In Algorithm 1, an episode is defined as the

sequence of actions and observations received for all the time

intervals {t}24t=0. According to Algorithm 1, in each time

interval t a single observation is sampled from Ωn(o|s, a).
It is true, however, that within t a number of traffic demand

fluctuations may occur. The algorithm will eventually obtain

enough observations and will converge to an optimal PBA

through the iteration over a large number of episodes. In

Algorithm 1 the target belief is at t = 24.

III. ROUTING AND SPECTRUM ALLOCATION

The RSA heuristic is executed for each time interval {t}24t=1

and for each connection {n}Nn=1, during the previous time

interval t′. Network reconfiguration takes place at the begin-

ning of each time interval t. For each t, the RSA is solved

without considering the network configuration at t′ (complete

connection reallocation is allowed). Specifically, for each t,
the RSA finds a route and a spectrum allocation for each

connection n, starting with the connection, n′, requesting

the maximum number of slots ∆tn′ . For the R problem,

the k-shortest path algorithm is used [19], while for the SA

problem the first-fit algorithm is used, subject to the spectrum

continuity, spectrum contiguity, and no frequency overlap

constraints [3]. An ILP formulation was also developed for

BA model evaluation, demonstrating that the proposed PBA

model outperforms the benchmark BA models (omitted due to

space limitations).

Algorithm 1 Modified RTDP-Bel alg. for each connection n

1: Start with b = b0.
2: Sample state s from its probability distribution b(s).
3: Evaluate each action a at belief state b as:

Q(b, a) = R(b, a) + γ
∑

o∈O

Pr(o|b, a)V (ba,o),

initializing V (ba,o) to h(ba,o) if ba,o is not in the hash.
4: Select action a that maximizes Q(b, a).
5: Update V (b) to Q(b, a).
6: Sample next state s′ from its probability distribution T (s′|s, a).
7: Sample observation o from its probability distribution Ωn(o|s′, a)
8: Sample reward r from the reward function r(s′, a, o)
9: Set R(s, a) equal to r(s′, a, o).

10: Compute ba,o using (2).
11: Finish if ba,o is target belief, else b := ba,o, s := s′, and go to 3.

IV. PERFORMANCE EVALUATION

The performance of the BA models was evaluated and

compared on the generic Deutsche Telekom (DT) network [4].

Each spectral slot in the network was set at 12.5GHz, with

each fiber link utilizing B′ = 180 slots. The feasible range

of the BVTs was set to B = 100 slots. Note that this link

capacity was chosen for reducing the computational time in

our MATLAB machine with a CPU @2.60GHz and 8GB

RAM. Bandwidth B was divided into k = 10 rate intervals

{Ba}
k
a=0. Hence, each BA model can choose at each t and for

each n amongst 11 spectrum allocation actions. Each action a
indicates that ∆tn = a × k spectrum slots must be allocated

at time interval t for connection n. Twenty-four time intervals

were assumed.

In total 14 connection were considered, with seven of the

connections following the log-normal distribution and the rest

set to be static. The static connections were added as a simple

approach for bringing the network at its capacity crunch and

enabling the performance evaluation of the BA models on such

a network. Regarding the stochastic connections, their traffic

demand parameters, for each connection n and time interval

t, are given by the (µtn, σ
2
tn) parameters of the log-normal

distribution. The σ2 parameters were uniformly generated in

the range [0, 1] and the µ parameters were uniformly generated

in the range [0, 5]. Note that for simplicity, and without

loss of generality, we did not consider that the mean rate

value (µ) between sequential (in time) traffic distributions

increases/decreases smoothly. Such a consideration would not

affect the learning procedure or the efficiency of the PBA

model. Regarding the static connections, their bandwidth de-

mand ∆∗ was set to be constant for all the time intervals. ∆∗

values were randomly generated in the range [20, 60].

A. Training the PBA Model

For training the PBA model, the discount factor γ was set

to 0.95 (typical value for POMDP training). Constants C and



M of the reward function (Eq. 1) were set to 10000 and

10, respectively. Note that a complete examination of how

γ, C, and M values affect the trained PBA model could not

be performed in this paper due to space limitations, and it

is left for future work. A unique PBA model was trained

for each one of the seven stochastic connections. For each

PBA model, RTDB-Bel was iterated over 6000 episodes of

learning, which interleaved simulation and model updates (the

model was updated after every 20 simulated episodes). After

each model update, 200 test episodes were generated with the

model fixed, for evaluating the model’s efficiency. For each

test episode, the model returned the total reward, the total

allocated bandwidth, and the total number of negative rewards

received. These values were averaged over all 200 episodes.

Figures 1-3 illustrate how the average reward, the average

allocated bandwidth, and the average number of negative

rewards evolve over the training time of the PBA model.

Training time is given in hours and corresponds to the time

required for training and testing the model (for the 6000
episodes). A model update is indicated with a circle in Figs. 1-

3 (250 total model updates). Figures 1-3 correspond to the

PBA model of connection n = 1 (similar figures were obtained

for all the other connections but are omitted due to space

limitations). Figure 1 shows that the PBA model performs

better as the training procedure evolves. The average reward

increases with the number of model updates (training time) as

the agent learns to take better bandwidth allocation decisions.

Fewer negative rewards are received (Fig. 3) and the allocated

bandwidth converges near the requested one (Fig. 2).

Fig. 1: Average reward over training time.

Fig. 2: Average allocated bandwidth over training time.

Fig. 3: Average negative rewards over training time.

In our simulations, each connection was trained for the

same number of episodes and the last PBA model obtained

was utilized for the network reconfigurations (during the RSA

heuristic). Each model required up to 6 hours of training and

testing. An action was generated within milliseconds from

each model. Note that the models for each connection can be

trained in parallel and independently from each other, and thus

the number of time-varying connections does not affect the

scalability of the PBA model. Further, the training procedure

can be continuously performed for automatically adjusting

the models upon significant variations on the traffic demand

distributions; an important capability of the proposed method,

given that the future traffic demand is expected to increase in

uncertain ways (we cannot know the magnitude of a future

traffic demand or the sources of this traffic).

Table I demonstrates how each trained PBA model performs

against HBA, MPBA, and EBA. For each BA model we

generated 200 episodes of actions and observations assuming

a network with infinite capacity. The allocated bandwidth and

the number of times an observation was greater than the action

taken (negative reward) were averaged over these episodes.

Note that a single observation was drawn for each action taken.

Table I shows both the average allocated bandwidth and the

average number of negative rewards.

TABLE I: BA Model Comparison

Average Allocated Bandwidth Average No. of Negative Rewards

n HBA MPBA EBA PBA HBA MPBA EBA PBA

1 1490 560 690 868 0 4.77 3.3 3.1

2 1730 500 470 1171 0 7.2 4.2 2.1

3 1310 370 480 950 0 3.48 2.5 0.9

4 1400 370 580 750 0 6 3.3 4.5

5 1690 350 488 665 0 6.13 4 3.5

6 1420 320 520 830 0 6.7 4.3 4.1

7 1700 380 480 667 0 6.1 4.1 3.4

According to Table I, PBA tends to allocate fewer slots

compared to HPBA and more slots compared to MPBA and

EBA. Hence, PBA increases the negative rewards received

compared to HBA that never receives a negative reward.

MPBA and EBA receive on the average more negative rewards

than PBA as they tend to allocate fewer slots than PBA. This

is a consequence of the reward function (Eq. 1) defined for

PBA training that aims at allocating at each time interval a

bandwidth that is close to the requested one.



B. Network Performance Evaluation

The RSA algorithm was solved on the DT network for each

BA model and each time interval t. For each t, an action was

generated for each connection n and RSA was solved having

as inputs the rates ∆tn indicated by the model’s actions. RSA

required at most 15 seconds for finding a feasible solution

for each time interval. Between network reconfigurations the

traffic demand fluctuated according to the given set of traffic

demand distributions. For the traffic demand fluctuations we

have drawn from each Ztn the samples {zitn}
60
i=1 representing

the traffic demand fluctuations every minute of the hour.

Sample δitn = zitn denotes that connection n requests δitn
spectrum slots at the ith minute of time interval t.

For each established connection, the allocated ∆tn

slots were compared to each δitn in order to calculate

the unserved slots and the excess (unutilized) allocated

slots. The unserved slots for each episode are given by

U = 1

60×24

∑

t

∑

n

∑

i |∆tn − δitn|, if ∆tn < δitn.

The excess slots for each episode are given by E =
1

60×24

∑

t

∑

n

∑

i(∆st − δitn), if ∆tn > δitn. Two-hundred

episodes were generated for each BA model and the unserved

and excess slots were averaged over these episodes. Table II

shows the average number of unserved (Ū ) and excess (Ē)

slots per time interval. It also shows the average number of

blocked connections (Π̄) per episode.

TABLE II: BA Model Comparison on DT Network

HBA MPBA EBA PBA

Av.# of Excess Slots (Ē) 337 35.3 82 155

Av.# of Unserved Slots (Ū) 23 49 48 20.3

Av.# of Blocked Connections (Π̄) 16 0 0 0

According to Table II, as expected, HBA allocates on the

average a higher number of excess slots (337) compared to

the other models. The high number of excess slots led, on

the average, to 16 blocked connections (these connections are

entirely terminated, each for an hour during a day). HBA

is clearly not a feasible solution for a network operating at

its capacity crunch. If we assume that the end user behavior

remains the same during the unavailability period, the 16
blocked connection lead to 23 unserved slots (greatly un-

balanced between the connections). Under this consideration,

PBA outperforms HBA by 11%.

Table II shows that MPBA, EBA, and PBA significantly

reduce the average excess slots by 80%, 75%, and 54%,

respectively, compared to HBA. Consequently, these models,

unlike HBA, did not cause any blocking. However, the traffic

demand fluctuations within each time interval resulted in some

unserved slots. In particular, PBA results on the average in

20.3 unserved slots, while MPBA and EBA, result on the

average in 49 and 48 unserved slots, respectively. Hence, PBA

outperforms MPBA and EBA, in terms of unserved slots, by

approximately 58%. Overall, PBA predicts a bandwidth that

more efficiently handles traffic demand fluctuations.

V. CONCLUSION

We proposed an effective formulation of a state-of-the-

art POMDP method that learns by means of DP an optimal

predictive BA model from a given set of traffic demand

distributions that is consequently used for bandwidth allocation

decisions during network reconfigurations. PBA is compared

to the naturally arising HBA, MPBA, and EBA techniques and

it is shown that it outperform HBA on the number of blocked

connections, as well as MPBA and EBA on the unserved

bandwidth that may occur during traffic demand fluctuations.
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