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Abstract
Enabling accurate analysis of social network data while preserving differential privacy has been
challenging since graph features such as clustering coefficient or modularity often have high
sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular
data. In this paper, we treat a graph statistics as a function f and develop a divide and conquer
approach to enforce differential privacy. The basic procedure of this approach is to first
decompose the target computation f into several less complex unit computations f1, …, fm
connected by basic mathematical operations (e.g., addition, subtraction, multiplication, division),
then perturb the output of each fi with Laplace noise derived from its own sensitivity value and the
distributed privacy threshold εi, and finally combine those perturbed fi as the perturbed output of
computation f. We examine how various operations affect the accuracy of complex computations.
When unit computations have large global sensitivity values, we enforce the differential privacy
by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing
this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We
illustrate our approach by using clustering coefficient, which is a popular statistics used in social
network analysis. Empirical evaluations on five real social networks and various synthetic graphs
generated from three random graph models show the developed divide and conquer approach
outperforms the direct approach.

1 Introduction
The privacy preserving data mining community has expended great effort in developing
sanitization techniques to effectively anonymize data so that the sanitized data can be
published or shared with others. Researchers have proposed various privacy models such as
k-anonymity [35], l-diversity [28], and t-closeness [27] and developed various sanitization
approaches including suppression, generalization, randomization, permutation, and synthetic
data generation. Refer to a recent survey book [2] for details. The aim is that an honest
analyst should be able to perform a variety of ad hoc analysis and derive accurate results
whereas a malicious attacker should be unable to exploit the published data to infer private
information about individuals. All these sanitization approaches adopt the idea of pre-
processing the raw data such that each individual’s record or her sensitive attribute values
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are hidden within a group of other individuals. However there is no guarantee to achieve
strict privacy protection since they could not completely prevent adversaries from exploiting
various auxiliary information (e.g., via background knowledge attacks [11, 29] and
composition attacks [19]) to breach privacy.

Differential privacy [12, 15] is a paradigm of post-processing the output of queries such that
the inclusion or exclusion of a single individual from the data set make no statistical
difference to the results found. Differential privacy provides formal privacy guarantees that
do not depend on an adversary’s background knowledge (including access to other
databases) or computational power. Differential privacy is achieved by introducing
randomness into query answers. Most differential privacy research focused on theoretical
studies on enforcing differential privacy in relational databases [4–6,8,13,15,16,18–
20,22,24–26,36,42,43]. The applicability of enforcing differential privacy in real world
applications has also been studied, e.g., the application of differential privacy to
collaborative recommendation system [30], logistic regression [8], publishing contingency
tables [4, 41] or data cubes [10], privacy preserving integrated queries [31], computing
graph properties such as degree distributions [21] and clustering coefficient [33], and
spectral analysis [40] in social network analysis.

Differential privacy is usually achieved by directly adding calibrated laplace noise on the
output of the computation f. The calibrating process of this approach (denoted as direct)
includes the calculation of the global sensitivity of the computation f that bounds the
possible change in the computation output over any two neighboring databases. The added
noise is generated from a Laplace distribution with the scale parameter determined by the
global sensitivity of f and the user-specified privacy threshold ε. This approach works well
for traditional aggregate functions (often with low sensitivity values) over tabular data.

In social network analysis, various graph features such as cluster coefficient and modularity
often have a high sensitivity (proportional to the number of nodes), which is different from
traditional aggregate functions (e.g., count and sum) on tabular data. Furthermore, for some
computations such as spectral decomposition, we may not have explicit formula to calculate
global sensitivity. A divide and conquer approach has been suggested in the literature [15].
The basic procedure of this approach (denoted as D&C) is to first decompose the target
computation f into several less complex unit computations f1, …, fm connected by basic
mathematical operations (e.g., addition, subtraction, multiplication, division), then perturb
the output of each fi with Laplace noise derived from its own sensitivity value and the
distributed privacy threshold εi, and finally combine those perturbed fi as the perturbed
output of computation f. However, this straightforward adaptation could lead to poor
performance especially when multiplication or division operations are involved.
Furthermore, there is no theoretical study on calculating the unbiased estimate of f from
perturbed results of fis. In this paper, we theoretically examine how various operations affect
the accuracy of complex computations. When unit computations have large global
sensitivity values, we enforce the differential privacy by calibrating noise based on the
smooth sensitivity [32], rather than the global sensitivity. By doing this, we achieve the strict
differential privacy guarantee with smaller magnitude noise. We illustrate our approach by
learning clustering coefficient (a popular graph feature used in social network analysis) from
private networks. Empirical evaluations on five real social networks and various synthetic
graphs generated from three random graph models show the developed divide and conquer
approach outperforms the direct approach.
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2 Background
We first revisit the formal definition differential privacy and the classic mechanism of
enforcing differential privacy by calibrating Laplace noise based on global sensitivity in
Section 2.1. We then introduce the smooth sensitivity framework [32] when global
sensitivity yields unacceptable high noise levels in Section 2.2. The smooth sensitivity
framework can calibrate the instance-specific noise with smaller magnitude than the worst-
case noise based on the global sensitivity. In Section 2.3, we introduce complex graph
models by which we generate various synthetic graphs for our empirical evaluation in
Section 5.

2.1 Differential Privacy
In prior work on differential privacy, a database is treated as a collection of rows, with each
row corresponding to the data of a different individual. Here we focus on how to compute
graph features from private network topology described as its adjacency matrix. We aim to
ensure that the inclusion or exclusion of a link between two individuals from the graph make
no statistical difference to the results found.

Definition 1 (Differential Privacy [12]) A graph analyzing algorithm Ψ that takes as input a
graph G, and outputs Ψ(G), preserves (ε, δ)-differential edge privacy if for all closed subsets
S of the output space, and all pairs of neighboring graphs G and G′ from Γ(G),

(1)

where

(2)

A differentially private algorithm provides an assurance that the probability of a particular
output is almost the same whether or not any individual edge is included. The privacy
parameter pair (ε, δ) controls the amount by which the distributions induced by two
neighboring graphs may differ (smaller values enforce a stronger privacy guarantee).

A general method for computing an approximation to any function f while preserving ε-
differential privacy is given in [15]. The mechanism for achieving differential privacy
computes the sum of the true answer and random noise generated from a Laplace
distribution. The magnitude of the noise distribution is determined by the sensitivity of the
computation and the privacy parameter specified by the data owner. The sensitivity of a
computation bounds the possible change in the computation output over any two
neighboring graphs (differing at most one link).

Definition 2 (Global Sensitivity [15]) The global sensitivity of a function f : D → Rd (G ∈
D),in the analysis of a graph G, is

(3)

Theorem 1 (The Mechanism of Adding Laplace noise [15]) An algorithm A takes as input a
graph G, and some ε > 0, a query Q with computing function f : Dn → Rd, and outputs

(4)
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where the Yi are drawn i.i.d from Lap(GSf (G)/ε). The Algorithm satisfies (ε, 0)-differential
privacy.

Differential privacy maintains composability, i.e., differential privacy guarantees can be
provided even when multiple differentially-private releases are available to an adversary.

Theorem 2 (Composition Theorem [14]) If we have n numbers of (ε, δ)-differentially private
mechanisms M1, …, Mn, computed using graph G, then any composition of these
mechanisms that yields a new mechanism M is (nε, nδ)-differentially private.

Differential privacy can extend to group privacy as well: changing a group of k edges in the
data set induces a change of at most a multiplicative ekε in the corresponding output
distribution. In this paper, we focus on the edge privacy. We can extend the algorithm to
achieve the node privacy by using the above composition theorem [14].

2.2 Smooth Sensitivity
It may be hard to derive the global sensitivity of a complex function or global sensitivity
yields unacceptable high noise levels. Nissim et al. [32] introduces a framework that
calibrates the instance-specific noise with smaller magnitude than the worst-case noise based
on the global sensitivity.

Definition 3 (Local Sensitivity [15, 32]) The local sensitivity of a function f : D → Rd, (G ∈
D) is

(5)

Under the definition of local sensitivity, we only consider the set of G′ for a given and
predetermined G, such that the inclusion or exclusion of a single link between individuals
cannot change the output distribution appreciably. We would emphasize that the release f(G)
with noise proportional to LSf (G) cannot achieve rigorous differential privacy as the noise
magnitude might reveal information about the database. Refer to Example 1 in [32] for an
illustrative example. To satisfy the strict differential privacy, Nissim et al. [32] proposes the
β-smooth sensitivity and shows that adding noise proportional to a smooth upper bound on
the local sensitivity yields a private output perturbation mechanism.

Definition 4 (Smooth Sensitivity [32]) For β > 0, the β-smooth sensitivity of f : D → Rd (G ∈
D), in the analysis of a given graph G, is

(6)

where d(G,G′) is the distance between graphs G and G′.

Nissim et al. [32] introduces how to compute smooth sensitivity based on the local
sensitivity at distance s (measuring how much the sensitivity can change when up to s
entries of G are modified).

Definition 5 (Computing Smooth Sensitivity)The sensitivity of f at distance s is

(7)
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The β-smooth sensitivity can be expressed in terms of  as

(8)

Theorem 3 shows the mechanism of calibrating noise to the smooth bound to achieve (ε, δ)-
differential privacy.

Theorem 3 (Mechanism to Add Noise Based on Smooth Sensitivity [32]) For a function f : D
→ Rd(G ∈ D), the following mechanism achieves (ε, δ)-differential privacy (ε > 0, δ ∈ (0,
1)):

(9)

where α = ε/2, , and Zi (i = 1, …, d) is drawn i.i.d from Lap(0, 1).

Specifically when d=1, β can be reduced as .

2.3 Graph Generation Models
Several network models have been proposed for studying the topological properties of real
networks. Among them, the Erdös and Rényi random graphs, the Watts and Strogatz small
world model, and the Barabási-Albert scale-free networks have been widely used [9]. In our
work, we use the above three models with various parameters to generate synthetic graphs
for empirical evaluation.

The Erdös and Rényi Random Graph [17] is the most basic model of complex networks
which defines a graph with n vertices and a probability p of connecting each pair of vertices.
In this model, the average degree of each node is p(n − 1) and the degree distribution is a
Poisson distribution. The global cluster coefficient of the graph equals p. We refer to this
model as the ER model in our paper.

The Small-World Model of Watts and Strogatz [38] is the most popular model of random
networks with the small-world property, i.e., most vertices can be reached from others
through a small number of edges. The Watts and Strogatz model can also generate graphs
with the presence of a large number of triangles. In contrast, ER networks have the small
world property but a small average clustering coefficient. We can construct a small-world
network by staring with a regular lattice of n nodes in which each node is connected to k
nearest neighbors in each direction. Next each edge is randomly rewired with probability p.
When p near zero, the generated graph tends to have a high number of triangles but large
distances; when p gets close to 1, the generated graph becomes a random graph with short
distances but few triangles. The degree distribution for small-world networks is similar to
that of random networks, with average degree 2k. The cluster coefficient of the graph is

correlated to  [9]. Scale-free small world networks have received much
attention recently. For example, the authors in [7] presented an algorithm to generate graphs
with small world properties by replacing each node of a random graph with cliques of
different sizes. The authors in [34] developed a model for generating social networks having
community structures with small-world and scale-free properties. In [44], small world

Wang et al. Page 5

Soc Netw Anal Min. Author manuscript; available in PMC 2014 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



properties were examined in a snapshot of the facebook social network. We refer to the
Small-World Model of Watts and Strogatz as the WS model in our paper.

The Scale-free Networks of Barabási and Albert [3] was proposed after the WS model in
order to capture the characteristics of some networks whose degree distributions follow a
power law. In scale-free networks, some vertices are highly connected while others have few
connections. The Barabási and Albert model generates a graph by starting with a set of m0
nodes, afterwards, at each step of the construction the network grows with the addition of
new nodes. For each new node, m1 new edges are added between the new node and some
previous nodes. The nodes which receive the new edges are picked following a linear
preferential attachment rule so that the most connected nodes have greater probability to
receive new nodes as neighbors. The degree distribution of graphs generated by this model
is P(d) ~ d−3. The average degree is 2m1. The cluster coefficient of the graph is correlated to
n−0.75. We refer to this model as the BA model in our paper.

3 A Divide and Conquer Algorithm
Our divide and conquer approach is to express a function f in terms of unit computations f1,.
…, fm such that f can be calculated from results of fi (i = 1, …,m) via basic mathematical
operations ⊙. In this paper, we limit ⊙ as linear combination, multiplication, and division.
In our future work, we will extend our study to other mathematical operations such as root
square and logarithm which are often used in data mining algorithms. For each unit
computation fi, we introduce noise in order to maintain its differential privacy requirement
(εi, δi). Specifically, we can run the randomization mechanism with noise distribution on
each fi to achieve (εi, δi)-differential privacy. Using Theorem 2, we can achieve (ε, δ)-

differential privacy of f where  and .

Algorithm 1 illustrates our divide and conquer approach. In Line 2, the total privacy budget
(ε, δ) is distributed among unit computations such that each fi has a privacy threshold (εi, δi).
It is a challenging problem to determine the optimal distribution of privacy budget such that
the combined output f̃ achieves the optimal approximation of f. In our paper, we simply

distribute privacy budget equally among all unit computations, i.e.,  and . In
our evaluation, we show that the accuracy of the output f ̃ varies significantly when we have
different privacy budget distributions among fi. In Lines 3–12, we enforce (εi, δi)-differential
privacy on each fi. For fi that has small global sensitivity GSfi (G), we apply Theorem 1
directly (Line 10). For fi that may still have large global sensitivity or may not have an
explicit formula for deriving global sensitivity, we first calculate its local sensitivity at
distance s (Line 5), derive the smooth sensitivity parameter (β, α) based on the (εi, δi) (Line
6), compute its β-smooth sensitivity (Line 7), and finally enforce (εi, δi)-differential privacy
on fi by following Theorem 3 to calibrate noise based on the derived smooth sensitivity
(Line 8). In Line 13, we output (ε, δ)-differential private f̃ by integrating f̃i (i = 1, …, m).

Algorithm 1

Differentially private graph statistics learning: D&C Approach

Require: Graph G, a target graph statistic function f, privacy parameters (ε, δ)

Ensure: f̃(G) satisfies (ε, δ)-differential privacy

1: Decompose f into unit computations f1, …, fm connected by basic mathematical operations ⊙

2: Distribute (εi, δi) for each fi such that ε = ∑εi and δ = ∑δi
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3: for i = 1 → m do

4:   if GSfi (G) is uncomputable or too large for perturbation then

5:

    Derive the formula of 

6:     Using the (εi, δi) to compute (β, α) //Theorem 3

7:

    Compute the β-smooth sensitivity  using β,  //Equation 8

8:

    Compute f ̃i(G) using α,  //Equation 9

9:   else

10:     Compute f̃i(G) using GSfi (G) // Theorem 1

11:   end if

12: end for

13: Integrate f̃1(G), …, f̃m(G) into the (ε, δ)-differential private estimator of f: f̃(G).

Next we show that our divide and conquer approach achieves unbiased estimate of f when
operations ⊙ contain linear combination, multiplication, and division. For simplicity, we
choose one pair of functions, fi and fj. We assume the true value of fi (fj) on a given data set
is a (b) and fi (fj) is perturbed by a Laplace noise Lap(0, a′) (Lap(0, b′)). In other words, f̃i =
a + Lap(0, a′) and f̃j = b + Lap(0, b′). Lemma 1 shows the linear combination of Laplace
noise perturbed results (f̃i and f̃j) is an unbiased estimate for the linear combination of the
original variables (fi and fj). This lemma covers the mathematical operations of addition and
subtraction. Similarly, Lemma 2 and Lemma 3 shows the result for multiplication and
division, respectively. We leave all proof details in Appendix.

Lemma 1 The linear combination of two perturbed values with Laplace noise is an
unbiased estimate for the linear combination of the two original values without the
perturbations.

(10)

Assuming that a, b, a′, b′ ∈ R; and u, υ ∈ R are parameters of the linear combination.

Lemma 2 The product of two perturbed values with independent Laplace noise is an
unbiased estimate for the product of the two original values without the perturbations.

(11)

Assuming that a, b, a′, b′ ∈ R and a, b are independently perturbed.

Lemma 3 The quotient of two perturbed results with Laplace noise is an unbiased estimate
for the quotient of the two original values without the perturbation.

(12)

Assuming that a, b, a′, b′ ∈ R and b ≠ 0.
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4 Learning Vertex Clustering Coefficient
In this section, we illustrate our D&C-based differential privacy preserving approach by
learning vertex clustering coefficient, a widely used graph metric in social network analysis.
Specifically, we show how to derive the local sensitivity at distance s (a key step in
Algorithm 1 Line 5) for vertex clustering coefficient. We would emphasize here that our
approach works naturally with other graph metrics such as graph modularity and data
mining tasks (where functions can be decomposed by unit computations connected by basic
mathematical operations).

The vertex clustering coefficient of vertex i in a graph quantifies how close i’s neighbors are
to being a clique (complete graph). This measure was first introduced by Watts and Strogatz
in 1998 [39] to determine whether a graph is a small-world graph.

(13)

where NΔ(i) is the number of triangles involving vertex i, N3(i) is the number of connected
triples having i as the central vertex, and di is the degree of vertex i.

We can see that Ci can be naturally expressed as a quotient of two unit computations NΔ(i)
and N3(i) or a quotient of NΔ(i) and di(di − 1)/2. In social network analysis, data miners often
query for the vector C=(C1, …, Cn)′, which contains the clustering coefficients of all the
vertices. For example, the average vertex clustering coefficient among all the vertices, which

is defined as , is a widely used metric for graph analysis. We can see that C can
also be expressed by two vectors, NΔ=(NΔ(1), …, NΔ(n))′ and N3=(N3(1), …, N3(n))′.
Similarly, N3 could be further decomposed to D=(d1, …, dn)′. Table 1 shows the notations
used in our paper.

Table 2 shows the global sensitivity and local sensitivity for the vertex clustering coefficient
Ci (as well as its decomposed unit computations NΔ(i), N3(i), di) and all vertices’s clustering
coefficients C (as well as its decomposed unit computations NΔ, N3, D). We skip the proof
details in this paper since most of them are either well known or can be easily derived. We
would point out that degree sequence D has a low global sensitivity while other functions
such as NΔ have very high global sensitivity value.

To apply our D&C algorithm, we need to derive the formulas of the local sensitivity at
distance s for all above computations. We show our derived results in the remainder of this
section and leave all proof details in Appendix. Result 1 shows the formula of the local
sensitivity at distance s for the vertex clustering coefficient Ci and Result 2 shows the
formulas of the local sensitivity at distance s for NΔ(i) and N3(i).

Result 1 The local sensitivity at distance s for the vertex clustering coefficient Ci is

(14)

Result 2 ([32]) The local sensitivity at distance s for NΔ(i) is

(15)
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where

and bij = ∑k∈[n] aik ⊕ akj is the number of half-built triangles involving edge(i,j).

The local sensitivity at distance s for N3(i) is

(16)

Result 3 shows the formula of the local sensitivity at distance s for the clustering coefficient
vector C and Result 4 shows the formulas of the local sensitivity at distance s for vector NΔ

and N3.

Result 3 The local sensitivity at distance s for C=(C1, …, Cn)′ is

(17)

where bij = ∑k∈[n] aik ⊕ akj is the number of half-built triangles involving edge(i,j)

Result 4 The local sensitivity at distance s for NΔ is

where

and bij = ∑k∈[n] aik ⊕ akj is the number of half-built triangles involving edge(i,j) (This result
was appeared in [32]).

The local sensitivity of N3 at distance s is

where bij = ∑k∈[n] aik ⊕ akj is the number of half-built triangles involving edge(i,j).

For vertex clustering coefficient Ci, we have two decomposition strategies: (NΔ(i), N3(i)) or
(NΔ(i), di). Similarly for clustering coefficient vector C, we can also have two decomposition
strategies: (NΔ, N3) or (NΔ, D). When we apply the second decomposition strategy, we use
the global sensitivity of di or D because they are very small. However, we should adjust our
estimate of di(di − 1)/2, as shown in Lemma 4, if we use the same d̃i twice in the calculation.
Of course, we can query twice to get two perturbed values of di and calculate the unbiased
estimate of di(di −1)/2 based on Lemma 2. In this case, two queries of di should split the
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privacy budget assigned to di. This example illustrates the importance of deriving unbiased
estimate of f from its perturbed values of unit computations.

Lemma 4 The unbiased estimate for the product of the linear combinations of the same
perturbed value with Laplace noise is

Assuming that a ∈ R and ã = a + Lap(0, a′).

The time complexity for computing the cluster coefficient Ci for node i is  where di
denotes the degree of node i. In the worst case where the node degree may be as large as n −
1, the time complexity is O(n2) for computing the cluster coefficient of one node and O(n3)
for computing the cluster coefficients of all vertices. Since the time complexity of perturbing
one output with the Laplacian noise is O(1), enforcing differential privacy by the direct
approach has no influence on the time complexity of the original algorithm of computing
cluster coefficient. Furthermore, our divide and conquer approach, which decomposes the
computation f into m less complex unit computations f1, …, fm connected by basic
mathematical operations, has the same time complexity as the direct approach because m is
often a small constant. Note that it takes constant time for the algorithm to compute β-

smooth sensitivity  (Line 7 in Algorithm 1). This is because we can compute the
maximum value by calculating the derivative of the right side of Equation 8 rather than
iteratively calculate the value for each distance s. In the characteristics of the function

, the e−sβ part decreases exponentially as s increases while the  part
increases polynomially, which ensures the strategy of computing the derivative feasible.

5 Empirical Evaluation
In this section, we conduct evaluations to compare the utility of the direct approach and the
D&CD approach on five real graphs and several synthetic graphs generated with three graph
models, ER model, WS model and BA model (refer to section 2.3).

The five real graphs are denoted respectively as GrQc, Enron, Polbooks, Polblogs,
YesIWell. GrQc is the General Relativity and Quantum Cosmology collaboration network
from the SNAP Stanford [23]. Table 3 gives some published statistics of the GrQc dataset.
We mainly use the GrQc graph data when comparing the utility preservations of different
approaches in Section 5.1 and exploring the privacy budget distribution in Section 5.2.
Enron1 is an email network collected and prepared by the CALO Project and it has 148
nodes and 869 edges; Polbooks2 is a network of books about US politics published around
the time of the 2004 presidential election and sold by Amazon.com and it has 105 nodes and
441 edges; Polblog [1] is a network of hyperlinks between weblogs on US politics;
YesIWell is a human physical activities related social network dataset with 185 nodes and
684 edges, which is part of the data gained from the YesIWell study3 conducted in 2010–
2011 as collaboration among several health laboratories and universities to help people
maintain active lifestyles and lose weight.

1http://www.cs.cmu.edu/enron/
2http://www–personal.umich.edu/mejn/netdata/
3http://aimlab.cs.uoregon.edu/smash/
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Synthetic graphs are generated using the software Gephi4 with the Complex Generators
plugin. For each graph model (ER, WS, and BA), we generate several graphs by varying
graph generation parameters. Table 4 shows some basic characteristics of the generated
graphs, where n denotes the number of nodes, m denotes the number of edges, c̄ is the
average cluster coefficient, nΔ is the total number of triangles in the graph, frΔ is the fraction
of the closed triangles, which is defined as the total number of triangles divided by the total
number of length two paths. The generation parameters for the ER model are listed as (n, p),
those for the WS model as (n, k, p) and those for the BA model as (n, m0, m1) (refer to
Section 2.3). For all synthetic graphs, we fix the number of nodes as 1000.

5.1 Utility
We compare our divide and conquer approach with the direct approach that directly adds
calibrated laplace noise on the output of the computation of f. For vertex cluster coefficient
Ci, to examine how different decomposition strategies affect the accuracy of the final output
C ̃(i), we include evaluation results on two decomposition strategies: (NΔ(i), N3(i)) and
(NΔ(i), di).

Table 5 shows comparisons of these three methods, denoted as direct, D&CN3(i), and D&Cdi
respectively. In our experiments, we fix δ = 0.01 and vary ε ∈ {0.01, 0.1, 1, 10}. We choose
the node with the largest degree (di = 81) for the vertex cluster coefficient. For each of three
methods with every privacy setting, we repeat the randomization process for 3,000 times.
We report the the mean and standard deviation of the absolute error between C̃i and Ci in
Table 5.

Similarly for clustering coefficient vector C, we use D&CN3 and D&CD to denote divide
and conquer approaches based on two decomposition strategies. We set ε′ here with the
magnitude of n · ε, where ε ∈ {0.01, 0.1, 1, 10}. As a result, each entry of the vector
achieves the same (ε, δ)-differential privacy as the previous experiment. Table 6 shows our
comparisons.

Note that in our experiments, we also use the β-smooth sensitivity in the direct approach.
This is because the utility is significantly lost if we use the global sensitivity. For example, if
we use the the global sensitivity for Ci when ε = 1, the error is 0.3558 ± 0.1915, which is
significantly larger than 0.0338 ± 0.0332 (shown in Table 5) of the direct approach using the
smooth sensitivity.

We have following observations from our evaluation results. First, in general, the D&C
approach achieves equivalent utility as, if not better than, that of the direct approach. This
result indicates that we can still enforce differential privacy by decomposing a complex
function into unit computations even though the complex function may have a large global
sensitivity or may not have an explicit formula of its global sensitivity. Second, for the D&C
approach, querying for the degree sequence D instead of the N3 vector will probably lead to
better utility. This is because the degree sequence has a low global sensitivity. Third, under
the same privacy threshold, it is much better to query for the vector of all the clustering
coefficients at once rather than to query for the vertex clustering coefficient one by one.

5.2 Distribute Privacy Budget
Note that in our previous experiments, we adopted a simple strategy, i.e., distributing
privacy budget equally among unit computations. One conjecture is that the D&C approach
would achieve much better utility preservation if we have a better strategy of distributing

4https://gephi.org/
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privacy budget. For example, in our D&CD method that obtains the clustering coefficient
vector C by querying for the vectors NΔ and D, the sensitivity magnitude of the vector NΔ is
much larger than that of the vector D. Hence we expect to achieve better utility if we
distribute more privacy budget to NΔ than to D. On the other hand, one characteristic of the
division is that the denominator is more sensitive than the numerator, having more influence
on the quotient result. As a result, the denominator vector D may need more privacy budget
under certain conditions.

Figure 1 shows how preservation of utility (in terms of approximation error shown as X-
axis) varies when we change the ratio of the privacy budget on NΔ (numerator) and the
privacy budget on D (shown as Y-axis) when we apply our D&CD method with the total
budget ε = 0.1, 1.0, 10. The red lines correspond to the direct method and the blue curves
correspond to the D&CD method. The points of those blue curves that are under the red line
show the privacy budget distributions with which the D&CD method outperforms the direct
method. Our evaluation results (shown as the third column in Table 6) correspond to the first
point (with ratio=1) in each figure. In our future work, we will study the use of Newton
iterative method to find out the optimal ratio so that we can achieve optimal utility
preservation in our divide and conquer approach.

5.3 Evaluation on other real graphs and synthetic graphs
In this section, we conduct evaluations to compare the utility of the direct approach and the
D&CD approach on the other four real graphs and various synthetic graphs generated by the
three graph models (ER, WS, and BA). In all our experiments, we fix δ = 0.01 and set ε′
here with the magnitude of n · ε, where ε ∈ {0.01, 0.1, 1, 10}. As a result, each entry of the
vector achieves the same (ε, δ)-differential privacy as the previous experiment. For the
D&CD approach, we simply distribute privacy budget equally, i.e., setting the distribution
ratio of privacy budget as 1. As illustrated in Section 5.2, we would achieve even better
utility preservation for the D&C approach when we adopt a better strategy of distributing
privacy budget.

The evaluation results are shown in Table 7. Specifically, we have the following
observations.

– For the ER model with parameters n and p, ER1, ER2, and ER3 are generated
with the same number of nodes n = 1000 with increasing p values, 0.05, 0.1, 0.5.
The number of edges (m), the average cluster coefficient (c ̄), and the fraction of
triangle (frΔ) of these three graphs increase with the increasing of p. For the
direct approach, we can see that the entrywise absolute error increases with p.
On the contrary, the entrywise absolute error decreases for the D&CD approach.
Thus we can conclude that the D&CD approach tends to achieve much better
utility preservation than the direct approach for ER random graphs. The utility
of D&CD approach increases as p increases.

– For the WS model with parameters n, k and p, from Section 2.3, we know that
the graph tends to have more triangles and larger distance when p is near 0 and
the graph is more random with less triangles and shorter distance when p
approaches 1. WS1, WS2, and WS3 are generated with the same parameters n
and k but decreasing p as 0.7, 0.5 and 0.2 respectively. These three graphs have
the same density but increasing c̄ and frΔ. We see no clear trend of the absolute
entrywise error change for both approaches. WS3, WS4, and WS5 are generated
with the same parameters n and p (0.2) but increasing k as 50, 100, and 500
respectively. As a result, these three graphs have increasing m, c̄, and frΔ. For
the direct approach, we can see that the entrywise absolute error increases with k
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whereas the entrywise absolute error decreases for the D&CD approach. Thus
we can conclude that the D&CD approach tends to achieve much better utility
preservation than the direct approach among WS small world graphs and the
utility of the D&CD approach increases as k increases.

– For the BA model with parameters n, m0, and m1, BA1, BA2, and BA3 are
generated with the same parameter n and increasing m1 as 25, 50, and 250
respectively. Recall that in the BA model m1 denotes the number of newly added
edges between each new node and existing nodes. Note that when the ratio
between m0 and m1 is fixed, the increase of m1 indicates the increases of m, c̄,
and frΔ. For the direct approach, we can see that the entrywise absolute error
increases with the increase of m1 whereas the entrywise absolute error decreases
for the D&CD approach. Thus we can conclude that the D&CD approach tends
to achieve much better utility preservation than the direct approach among BA
small world graphs with large density.

– For the BA model with parameters n, m0 and m1, BA4, BA5, BA6, and BA7 are
generated with the same parameters n and m1 = 5 but increasing m0 as 10, 50,
100, and 500 respectively. Recall that in the BA model m0 denotes the number
of nodes in the starting set. When m1 is fixed, the increase of m0 indicates the
increases of c̄ and frΔ. We can see that the utility of the D&CD approach is still
better than that of the direct approach but not as significant as the graphs BA1,
BA2, and BA3. The absolute entrywise error for the D&CD approach is
increasing as parameter m0 increases, which shows the same trend as that of the
direct approach. Thus we can conclude that the D&CD approach still tends to
achieve better utility preservation than the direct approach among BA small
world graphs with low density but its advantage decreases when m0 is larger.

– For all four real networks (Enron, Polbook, Polblog and YesIWell), we can see
that the D&CD approach outperforms the direct approach. The extent of the
advantage of the D&CD approach is similar as that observed in BA graphs with
low density (BA4, BA5, BA6, and BA7).

In summary, we draw the following conclusions. First, the D&CD approach outperforms the
direct approach in all graphs (15 synthetic graphs and four real graphs). Second, the D&CD
approach shows overwhelming superiority in all three graphs generated by the ER model, all
five graphs generated the WS model, and the first three graphs (BA1, BA2, BA3) from the
BA model. In the above eleven graphs, the entrywise error of the output of D&CD approach
tends to much smaller (by several orders of magnitude) than that of the direct approach.
Third, for real graphs (Enron, Polbook, Polblog, and YesIWell), and the last four graphs
(BA4, BA5, BA6 and BA7) generated with the BA model, the advantage of the D&CD
approach is still obvious and the entrywise error of the output of D&CD approach is still
smaller (by 10% with small ε or by one order of magnitude with large ε than that of the
direct approach. We observe that in the four real networks and the last four BA graphs are
relatively sparse and most nodes tend to have a very small magnitude of degree (less than
10) and hence a small number of triangles. When calibrating the noises to NΔ and D in our
D&CD approach, the influence due to the distortion is large. As a result, the advantage of
our D&CD approach decreases when the graphs have low density.

6 Conclusion and Future Work
Enabling accurate analysis of graph data while preserving differential privacy is of great
importance and poses great challenge due to potential high global sensitivity. In this paper,
we have presented a divide and conquer approach that can be used to enforce differential
privacy for complex functions. We have conducted theoretical analysis and extensive
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empirical evaluations to show that the developed divide and conquer approach generally
outperforms the approach of directly enforcing differential privacy in terms of utility
preservation. This result is especially promising for data mining or exploration tasks with
interactive processes, in which a user can adaptively query the system about the data. The
user now has options of reusing previous intermediate query results rather than submitting to
the system “new” queries that can be expressed by previous ones.

There are some other aspects of this work that merit further research. Among them, we will
continue the line of this research by investigating how to enforce differential privacy for
other complex functions or social network analysis tasks. For functions that we cannot
compute the smooth sensitivity efficiently or explicitly, Nissim et al. proposed an
approximation method that computes the β-smooth upper bound on the local sensitivity of
these functions and developed a sample-aggregation framework for a large class of functions
[32]. We will evaluate those functions based on the sample-aggregation framework. We will
exploit the use of correlations among unit computations to further reduce noise and enhance
accuracies of computation outputs. Our goal is to identify (optimal) decomposition strategies
and (optimal) budget privacy distribution. Finally, we will study non-interactive graph data
release mechanisms, i.e., we use the derived differentially private graph statistics to generate
synthetic graphs for release.
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A Proof
Proof of Lemma 1.

Since E(Lap(0, a′)) = 0 and E(Lap(0, b′)) = 0, we have

Proof of Lemma 2.
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E(Lap(0, a′)) = E(Lap(0, b′)) = 0; besides, E(Lap(0, a′) · Lap(0, b′)) = E(Lap(0, a′)) ·
E(Lap(0, b′)) since a, b are independently perturbed with Laplace noise; hence

Proof of Lemma 3.

Since E(Lap(0, a′)) = 0 and E(0, Lap(b′)) = 0, we have

Proof of Result 1.

In order to derive , we first consider the case for s = 0, i.e., LSCi (G).

Let G and G′ respectively denote the original graph G and its neighbor graph by deleting an
edge from G. For a given node i: let NΔ(i) and N3(i) denote the attributes of i in G; while

 and  denote the same attributes in G′. By definition, we have 0 ≤ NΔ(i) ≤ N3(i) =
2/(di(di − 1)), When deleting an edge from G, NΔ(i) would be decreased by at most di − 1;
while N3(i) would be decreased by exactly di − 1. Therefore,

(18)

When 0 ≤ NΔ(i) ≤ di − 1, we have

When di − 1 ≤ NΔ(i) ≤ di(di − 1)/2, we have

So that .

In general case, for s > 0, we have (Equation 7),
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for di − s > 2; and  otherwise.

Proof of Lemma 4.

Since E(Lap(0, a′)) = 0 and E(Lap2(0, a′)) = a′2, ã = a + Lap(0, a′),therefore

Proof of Result 3.

We first consider the situation of s = 0,

 for s ≤ bij because we may add one edge to complete a half-built
triangle involving edge(i, j) which makes the sensitivity increased by at most one;

meanwhile,  for s > bij because we have to add two edges to
form a triangle to make the sensitivity increased by one, after completing all the bij half built

triangles involving edge(i, j). Besides, . So we have Equ. 17.

Proof of Result 4.

In addition to the proof of Result. 2 given in [32],  because
each of the two entries corresponding to vertex i and j will be decreased by at most
maxi≠j;j∈[n] cij (s), when edge (i, j) is deleted from G. Besides, there are maxi≠j;j∈[n] cij (s)
other entries whose value will be decreased by one, corresponding to the neighbours in
common by vertex i and j.

For N3, we first consider the situation of s = 0,
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In general case,  for s ≤ bij and  for s

> bij which are similar as those of , and . So we

have the form for .
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Fig. 1.
Average entrywise absolute error change with the distribution ratio of ε′, given varying, ε, δ
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Table 1

Notations of graph metrics

The original graph with n nodes and m edges G(n,m)

Adjacent matrix of G A

An entry in A aij

The degree of a node i di

The maximum node degree in G dmax

The clustering coefficient of a node i Ci

The set of the neighboring nodes of node i N gb(i)

Number of triangles involving node i NΔ (i)

Number of connected triples (i as the central node) N3(i)

The vector of all Ci C

The vector of all di D

The vector of all NΔ(i) NΔ

The vector of all N3(i) N3
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Table 2

Global sensitivity and local sensitivity of graph metrics

Function f GSf LSf

Ci 1 2/di

NΔ(i) n − 2 maxaij=1 |Ngb(i) ∩ Ngb(j)|

N3(i) n − 2 di − 1

di 1 1

C n − 1 dmax

NΔ 3(n − 2) 3maxaij=1 |Ngb(i) ∩ Ngb(j)|

N3 2n − 4 2dmax − 2

D 2 2
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Table 3

General Relativity and Quantum Cosmology Collaboration Network Dataset Statistics

Number of nodes 5242

Number of edges 28980

Nodes in the largest connected component 4158

Edges in the largest connected component 26850

Average clustering coefficient 0.5296

Number of triangles 48260

Fraction of closed triangles 0.6298

Diameter 17
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Table 5

Mean and standard deviation (mean ± std) of the absolute error for the clustering coefficient of one node (δ =
0.01)

ε direct D& CN3(i) D&Cdi

0.01 0.4986 ± 0.1369 0.3656 ± 0.1568 0.4651 ± 0.1510

0.1 0.4695 ± 0.1594 0.3578 ± 0.1800 0.3772 ± 0.1942

1.0 0.0338 ± 0.0332 0.0629 ± 0.0611 0.0549 ± 0.0533

10 0.0036 ± 0.0036 0.0062 ± 0.0057 0.0055 ± 0.0053
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Table 6

Mean and standard deviation (mean ± std) of all the absolute error for the clustering coefficient vector (δ =
0.01)

ε direct D&CD D&CN3

0.01 0.3257 ± 0.0045 0.2971 ± 0.0045 0.3269 ± 0.0040

0.1 0.1043 ± 0.0021 0.1069 ± 0.0028 0.1398 ± 0.0029

1.0 0.0118 ± 0.0002 0.0145 ± 0.0005 0.0182 ± 0.0006

10 0.0012 ± 0.0001 0.0015 ± 0.0001 0.0019 ± 0.0001
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