
Machine Learning, 52, 147–167, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

On Learning Gene Regulatory Networks Under
the Boolean Network Model

HARRI LÄHDESMÄKI harri.lahdesmaki@tut.fi
Institute of Signal Processing, Digital Media Institute, Tampere University of Technology, P.O. Box 553,
FIN-33101 Tampere, Finland

ILYA SHMULEVICH is@ieee.org
Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 85,
Houston, TX 77030, USA

OLLI YLI-HARJA yliharja@cs.tut.fi
Institute of Signal Processing, Digital Media Institute, Tampere University of Technology, P.O. Box 553,
FIN-33101 Tampere, Finland

Editors: Paola Sebastiani, Isaac S. Kohane and Marco F. Ramoni

Abstract. Boolean networks are a popular model class for capturing the interactions of genes and global dy-
namical behavior of genetic regulatory networks. Recently, a significant amount of attention has been focused on
the inference or identification of the model structure from gene expression data. We consider the Consistency as
well as Best-Fit Extension problems in the context of inferring the networks from data. The latter approach is
especially useful in situations when gene expression measurements are noisy and may lead to inconsistent obser-
vations. We propose simple efficient algorithms that can be used to answer the Consistency Problem and find one
or all consistent Boolean networks relative to the given examples. The same method is extended to learning gene
regulatory networks under the Best-Fit Extension paradigm. We also introduce a simple and fast way of finding
all Boolean networks having limited error size in the Best-Fit Extension Problem setting. We apply the inference
methods to a real gene expression data set and present the results for a selected set of genes.

Keywords: gene regulatory networks, network inference, Consistency Problem, Best-Fit Extension paradigm

1. Introduction

A central focus of genomic research concerns understanding the manner in which cells ex-
ecute and control the enormous number of operations required for normal function and the
ways in which cellular systems fail in disease. In biological systems, decisions are reached
by methods that are exceedingly parallel and extraordinarily integrated. An important goal
is to understand the nature of cellular function and the manner in which genes and their
products collectively form a biological system. In contrast to the reductionistic approaches
in biology, it is becoming increasingly apparent that it is necessary to study the behavior
of genes in a holistic rather than in an individual manner. Such approaches inevitably re-
quire computational and formal methods to process massive amounts of data, to understand
general principles governing the system under study, and to make useful predictions about

148 H. LÄHDESMÄKI, I. SHMULEVICH, AND O. YLI-HARJA

system behavior in the presence of known conditions. A significant role is played by the
development and analysis of mathematical and computational methods in order to construct
formal models of genetic interactions. This research direction provides insight and a con-
ceptual framework for an integrative view of genetic function and regulation and paves the
way toward understanding the complex relationship between the genome and the cell.

A number of different approaches to gene regulatory network modeling have been in-
troduced, including linear models (D’Haeseleer et al., 1999) Bayesian networks (Murphy
& Main, 1999; Friedman et al., 2000; Hartemink et al., 2001), neural networks (Weaver,
Workman, & Stormo, 1999; Vohradsky, 2001), differential equations (Chen, He, & Church,
1999; Mestl, Plahte, & Omholt, 1995), and models including stochastic components on
the molecular level (McAdams & Arkin, 1997) (see Smolen, Baxter, & Byrne, 2000; Hasty
et al., 2001; de Jong, 2002) for reviews of general models). A model class that has received a
considerable amount of attention is the Boolean network (BN) model originally introduced
by Kauffman (Kauffman, 1969; Glass & Kauffman, 1973). Good reviews can be found in
Huang (1999), Kauffman (1993), and Somogyi and Sniegoski (1996). In this model, the
state of a gene is represented by a Boolean variable (ON or OFF) and interactions between
the genes are represented by Boolean functions, which determine the state of a gene on the
basis of the states of some other genes. Recent work suggests that even when gene expression
data are analyzed entirely in the binary domain (only two quantization levels), meaningful
biological information can be successfully extracted (Shmulevich & Zhang, 2002c; Tabus,
Rissanen, & Astola, 2002). One of the appealing properties of BNs is that they are inherently
simple, emphasizing generic network behavior rather than quantitative biochemical details,
but are able to capture much of the complex dynamics of gene regulatory networks.

Most of the recent work on Boolean networks has focused on identifying the structure
of the underlying gene regulatory network from gene expression data (Liang, Fuhrman, &
Somogyi, 1998; Akutsu et al., 1998; Akutsu, Miyano, & Kuhara, 1999; Ideker, Thorsson,
& Karp, 2000; Karp, Stoughton, & Yeung, 1999; Maki et al., 2001; Noda et al., 1998;
Shmulevich et al., 2002b). A related issue is to find a network that is consistent with the
given observations or determine whether such a network exists at all. This is known as the
Consistency Problem (see Section 3.1). The Consistency Problem has been addressed and
algorithms solving the problem have been introduced in Akutsu et al. (1998) and Akutsu,
Miyano, and Kuhara (1999).

On the other hand, one may argue that the simple Consistency Problem can not be used
to infer a network from real data. That is, due to the complex measurement process, ranging
from hybridization conditions to image processing techniques, expression patterns exhibit
uncertainty. For example, in the case of cDNA microarray data, it is widely recognized
that reproducibility of measurements and between-slide variation is a major issue (Chen,
Dougherty, & Bittner, 1997; Kerr et al., 2002). Furthermore, genetic regulation exhibits
considerable uncertainty on the biological level. Indeed, evidence suggests that this type of
“noise” is in fact advantageous in some regulatory mechanisms (McAdams & Arkin, 1999).

A survey of implicit underlying assumptions made in Boolean network inference and
some potential noise sources are discussed in Yli-Harja, Linne, and Astola (2001). The
implicit assumption of noise-free measurements, made in most of the methods presented
thus far, may lead to unpredictable results. In order to cope with noisy expression patterns,

ON LEARNING GENE REGULATORY NETWORKS 149

Akutsu, Miyano, and Kuhara (2000) have proposed a robust inference algorithm for so-
called noisy Boolean networks. Shmulevich et al. showed that inferring a gene regula-
tory network using the so-called Best-Fit Extension method is polynomial-time solvable
(Shmulevich et al., 2002b), therefore making that method computationally useful.

In this paper, we introduce a method that can be used to significantly accelerate the
search for consistent gene regulatory networks under the Boolean network model. The same
method, with minor changes, applies to learning gene regulatory networks under the Best-
Fit Extension Problem. Two different classes of functions are considered in this paper:
(i) the class of all Boolean functions and (ii) the class of Boolean functions containing no
more than k variables.

This paper is organized as follows. Background information and necessary definitions
are given in Section 2. The Consistency and Best-Fit Extension Problem are formulated
in Section 3 and the proposed inference algorithms are then introduced in Section 4.
Section 5 introduces a method for finding a set of Boolean functions having limited
error-size. Experiments with real gene expression data are shown in Section 6 and, finally,
discussion and concluding remarks are given in Section 7.

2. Background and definitions

For consistency of notation with other related work, we use similar notation as in Akutsu,
Miyano, and Kuhara (1999) and Shmulevich et al. (2002b). In the learning part of this paper,
however, the notation follows mainly the paper (Shmulevich et al., 2002b). Let us start by
stating the definition of a Boolean network (BN).

2.1. Boolean networks

Definition 1. A Boolean network G(V, B) is defined by a set of nodes (genes) V =
{x1, . . . , xn} and a set of Boolean functions B = { f1, . . . , fn}. We write simply xi = 1
(resp. xi = 0) to denote that the i th node (gene) is expressed (resp. not expressed). Each
Boolean function fi (xi1 , . . . , xik) with k specific input nodes is assigned to node xi and is
used to update its value. The values of all the nodes in V are then updated synchronously.

Regulation of nodes is defined by the set B of Boolean functions. In detail, given the value
of the nodes V at time t , the Boolean functions are used to update the value of the nodes at
time t+1. The synchronous update process is then repeated making the network dynamic. In
order to capture the dynamic nature of the network, it may be useful to consider the wiring
diagram (see e.g. Akutsu, Miyano, & Kuhara, 1999; Shmulevich et al., 2002a, 2002b)
which gives an explicit way of implementing the updating procedure. However, we omit
these details here and just use the conceptual synchronous updating process in this paper.

In general, k, the number of input variables (genes) in each Boolean function, can vary as a
function of i . However, without loss of generality, we can define k to be a constant equal to n
and let the missing variables in each function be fictitious. A variable xi in a Boolean function

150 H. LÄHDESMÄKI, I. SHMULEVICH, AND O. YLI-HARJA

f is fictitious if f (x1, . . . , xi−1, 0, xi+1, . . . , xn) = f (x1, . . . , xi−1, 1, xi+1, . . . , xn) holds
for all x1, . . . , xi−1, xi+1, . . . , xn . A variable is called essential if it is not fictitious.

The number of essential input variables in a Boolean function may vary from 0 to n.
However, it has been shown (Akutsu, Miyano, & Kuhara, 1999) that exponential number
of training samples, relative to n, are needed to infer a Boolean network without any
constraints on k. In addition, real gene regulatory networks are shown to have moderately
low mean connectivity. For instance, estimate of mean connectivity in Escherichia coli
is around 2 or 3 (Thieffry et al., 1998) while in higher metazoa, it is between 4 and 8
(Arnone & Davidson, 1997). Further, preliminary results made by utilizing the Minimum
Description Length (MDL) principle in gene regulatory network learning also agreed with
the view that indegree (the number of variables in Boolean functions) of each gene could
be “low” (Tabus & Astola, 2001). On the other hand, exact values of k for different genes
are unknown. Therefore, we let the indegree k, as well as the number of genes n and the
number of measurements m, be free parameters throughout this paper.

2.2. Asymptotic notation

Asymptotic notation is used to define the complexity of learning algorithms. Particularly,
so-called tight upper bound notation is used in terms of n, m and k. The maximum indegree
of functions, k, may be fairly small when compared to the number of nodes n. Thus, one
could say that k acts as a constant in our analysis because asymptotic notation only applies
in the limit, i.e., when all variables in the notation approach infinity. On the other hand, when
considering the definition of the tight upper bound in Eq. (1) below, we can deduce that it
holds for sufficiently large values of variables (see the role of n0, m0 and k0 in Eq. (1)). In
particular, k, which is intuitively and biologically the smallest one, has previously been tied
into a super-exponential term 22k

(see e.g. Akutsu, Miyano, & Kuhara, 1999; Shmulevich
et al., 2002b), making it relevant even for fairly small values in this context.

The definition of a Boolean network gives us an extra constraint: each node in a network
can depend on at most n variables. This is also reflected in the asymptotic notation. So, let
us briefly re-examine the definition of the tight upper bound with that extra constraint using
the problem domain variables.

Definition 2. A function g is a tight upper bound for a function f , denoted as f (n, m, k) ∈
O(g(n, m, k)), if and only if there exist positive constants n0, m0, k0 and c such that

(n > n0, m > m0, k > k0, n ≥ k) ⇒ 0 ≤ f (n, m, k) ≤ cg(n, m, k). (1)

The above definition is usually given without the extra constraint n ≥ k such that it
defines a class of functions O(g(n, m, k)), which contains all functions f satisfying the
above conditions (Cormen, Leiserson, & Rivest, 1998).

3. Problem formulation

We now define the Consistency and Best-Fit Extension Problems first (Boros, Ibaraki, &
Makino, 1998; Akutsu, Miyano, & Kuhara, 1999; Shmulevich et al., 2002b). Note that the

ON LEARNING GENE REGULATORY NETWORKS 151

following definitions are given for one function (gene) only. Their extensions to Boolean
networks can be defined by repeating the same definition for all functions in the network.

3.1. Consistency Problem

In the Consistency Problem (also called Extension Problem) we are concerned with estab-
lishing a Boolean function f from some class of functions C such that f correctly separates
the given true and false examples, if one exists. In other words, the goal is to find a perfect
Boolean classifier for the given binary examples.

A partially defined Boolean function pdBf(T, F) is defined by two sets, T and F , both
belonging to {0, 1}n , where T and F denote the set of true and false examples, respectively.
For a Boolean function f , define the set of true and false vectors as T (f) = {x ∈ {0, 1}n :
f (x) = 1} and F(f) = {x ∈ {0, 1}n : f (x) = 0}. The function f is then said to be a
consistent extension of pdBf(T, F) if T ⊆ T (f) and F ⊆ F(f). The Consistency Problem
entails deciding whether or not there exists a consistent extension f ∈ C for the given sets of
true and false examples T and F . In the affirmative case the function must also be returned.
Thus, the Consistency Problem has an affirmative answer if and only if there exists at
least one function f ∈ C that has consistent output for all examples (inputs). It is worth
mentioning that we are also searching for all consistent functions in the following sections.

3.2. Best-Fit Extension Problem

As in the case of the Consistency Problem, let us assume that we are given two sets of
binary vectors T and F , both belonging to {0, 1}n , which define a partially defined Boolean
function pdBf(T, F). Let us also assume that we are given positive weights w(x) > 0 for
all x ∈ T ∪ F and define the weight of any subset S ⊆ T ∪ F to be

w(S) =
∑
x∈S

w(x). (2)

Now, the error size of function f is defined as

ε(f) = w(T ∩ F(f)) + w(F ∩ T (f)). (3)

In the Best-Fit Extension Problem we are looking for Boolean functions from a certain class
of functions C which make as few “misclassifications” as possible. The formal definition can
be stated as follows. Find subsets T ∗ and F∗ such that T ∗ ∩ F∗ = ∅ and T ∗ ∪ F∗ = T ∪ F
for which the pdBf(T ∗, F∗) has an extension in some class of functions C and so that
w(T ∗ ∩ F) + w(F∗ ∩ T) is minimum. Then, any extension f ∈ C of pdBf(T ∗, F∗) has
minimum error size. (Also note that the Consistency Problem can be viewed as a special case
of the Best-Fit Extension Problem when ε(f) = 0.) In Section 5 we extend this problem
formulation to find all functions from C that have limited error size.

In practice, we may have measured identical true and/or false vectors several times, each
of them associated possibly with different positive weight. Consider a simple case where

152 H. LÄHDESMÄKI, I. SHMULEVICH, AND O. YLI-HARJA

we have measured the same binary vector x three times, x = x1 = x2 = x3, and all of
them have the same weight w(x) = w(x1) = w(x2) = w(x3). Further, assume that x1 ∈ T
and x2, x3 ∈ F . Then, what should be the output value for the input x? If we form the sets
T and F without taking into account possible multiplicities, x will appear in both T and
F with the same weight w(x). In that case, it will not make any difference, according to
Eqs. (2) and (3), if we choose the output value of f (x) to be 0 or 1. On the other hand, we
have measured x in F two times and in T only once (with the same weight). That should
be an argument for the output value of the function with input x being 0. Since the weight
of any subset S ⊆ T ∪ F is additive, as shown in Eq. (2), it is justified to define the weight
of x ∈ T (resp. F) to be the sum of all weights of vectors x belonging to T (resp. F). So,
before forming the sets T and F , and assigning weights to their elements, one needs to take
into account possible multiplicities in the original lists (or multisets) of measurements M .
Thus, the weight of a particular vector x ∈ T is defined as

w(x) =
∑

x ′∈M : (x ′=x)∧(x ′∈T)

w(x ′). (4)

A similar definition can be given for x ∈ F . Note, however, that the number of original
measurements m may decrease by the above procedure since the multiple occurrences
of the same vectors in T and/or F are removed. The new weights could be computed
in advance. Alternatively, the effects of the new weights can be achieved, for example
by embedding the weight assignment procedure into the Best-Fit inference method to be
discussed in Section 4.5. Further, the complexity of the Best-Fit inference method would
remain the same when the possible change in the value of m is ignored and therefore, we
omit the weight assignment procedure from further complexity considerations. In order not
to make the following discussion more complicated, we suppose that we are given the sets
of true and false vectors, T and F , and the corresponding weights (recomputed according
to Eq. (4) if needed). We also assume that the set of true and false examples consists of m
examples, i.e., |T | + |F | = m.

4. Proposed inference methods

The inference methods are first introduced for functions having n variables, where n is the
number of genes. The results are then reduced to the class of functions having no more
than k variables (0 ≤ k ≤ n). Further, these results are then extended to Boolean networks,
where each gene is associated with a Boolean function having no more than k variables,
which is the case of primary interest. Note that k is still a free parameter ranging from 0 to n.

4.1. Consistency Problem, n variables

Let us first consider the class of all Boolean functions. It is relatively simple to see that in
this class, a pdBf(T, F) has an extension if and only if T and F are disjoint. This can be
checked in time O(|T | · |F | · poly(n)) by comparing all examples pair wise, where poly(n)
is the time needed to examine one pair of examples (Boros, Ibaraki, & Makino, 1998).1 It is

ON LEARNING GENE REGULATORY NETWORKS 153

easy to see that, in the worst case, the asymptotic time consumption, when written in terms
of m and n, is equal to O(m2 · poly(n)), since |T | + |F | = m.

Sorting algorithms provide an alternative method of solving the Consistency Problem.
Let us first define a bijective mapping s : {0, 1}n → {1, . . . , 2n} that can be used to encode
all binary vectors of length n to positive integers. The corresponding inverse mapping is
denoted as s−1. Then, the Consistency Problem can be answered by encoding all binary
vectors x ∈ T ∪ F by positive integers, sorting the integers, running through the sorted
list, and testing whether there exists an example pattern that belongs to both T and F . The
testing phase can be done simply by comparing consecutive elements in the sorted list. That
is, if the sorted list is strictly increasing (or decreasing) then there is no consecutive terms
in that list which have the same value. This further implies that T and F are disjoint, giving
an affirmative answer to the Consistency Problem. So, asymptotic time consumption is now
controlled by sorting, which can be solved in time O(m · log m · poly(n)). This method
can only be used for answering the Consistency Problem, but not for actually finding a
consistent network.

Example 1. Assume that n = 3 and we have gathered five measurements as follows
T = {001, 101, 110} and F = {010, 101}. The encoding step produces the following sets
of integers s(T) = {2, 6, 7} and s(F) = {3, 6}. Sorting elements in s(T) and s(F) in increas-
ing order gives the list (2, 3, 6, 6, 7), based on which a negative answer to the Consistency
Problem can be given.

In general, instead of just deciding whether or not a consistent function exists, we are also
interested in finding one or all consistent Boolean functions relative to the given examples.
Each Boolean function f having n variables is completely defined by its truth table having
2n entries. Define a 4-ary column vector f ∈ {0, 1, ?, ∗}2n

that is used to encode the truth
table of a Boolean function f having n variables. f is indexed from 1 to 2n (indices are
shown as subscripts fi). So, the i th element of f defines the binary output value for the input
vector s−1(i). If fi equals to ?, the output corresponding to the input s−1(i) is undetermined,
or can be either 0 or 1. Further, f is assumed to be initialized to f = (?, . . . , ?). (In practice,
any constant-valued memory block is appropriate.) Let us call the non-binary truth table,
possibly containing ?s, as the “generalized” truth table and for iteratively updating f define
the j th version of f to be f j . For now, let us assume that all measurements are unique.2

Then, the following procedure answers the Consistency Problem and finds all consistent
functions relative to the given examples.

This procedure runs through all examples x ∈ T ∪ F and during every cycle updates f j

as

f j
s(x) =




0, if x ∈ F ∧ f j−1
s(x) = ?

1, if x ∈ T ∧ f j−1
s(x) = ?

∗, otherwise

, (5)

where j = 1, . . . , m is the index of the current cycle (measurement) and f0 refers to the
initial setting of vector f, i.e., f 0 = (?, . . . , ?). It can be easily seen that if the last branch of

154 H. LÄHDESMÄKI, I. SHMULEVICH, AND O. YLI-HARJA

Eq. (5) is used, no consistent function can be found for the given examples. Otherwise there
exists at least one consistent function and all of them are defined by f in the “generalized”
form. Thus, when the time spent on memory initialization is ignored, the Consistency
Problem can be answered and the “generalized” truth table is found in time

O((|T | + |F |) · poly(n)) = O(m · poly(n)). (6)

Time complexity is, in the worst case, of the magnitude lower than O(|T | · |F | · poly(n)).

4.2. Forming standard truth tables

The found generalized truth table f may now contain question marks. As mentioned above,
each ? specifies an undetermined element of the truth table f. If we prefer standard truth
tables, each question mark must be changed to a single bit, either 0 or 1. In view of the
Consistency Problem, each ? can be set to either 0 or 1 and the resulting truth tables,
regardless of the chosen bits, are all consistent. Conversion to a standard truth table needs
a run through the truth table f and simultaneously each ? has to be set to either 0 or 1. So, f
can be converted to a standard truth table in time O(2n).

Let |f|? denote the number of question marks in vector f. Then, the total number of
consistent functions is 2|f|? . Correspondingly, conversion of all consistent functions into
standard truth tables needs time O(2|f|? · 2n) during which one needs to keep track of the
previously set bits such that all possible combinations are found. The number of consistent
functions may become super-exponential relative to n, or exponential relative to the length
of truth table 2n . For instance, in the case of only one measurement (m = 1), there exist
22n−1 consistent functions. In such a case, we may be interested in converting only some
number h of consistent functions, which takes time O(h · 2n). Various additional criteria
could then be imposed on the selection of h consistent functions. For example, we may
be interested in producing h consistent functions, among all consistent functions, having
minimal complexity.

4.3. Consistency Problem, k variables

Let us now focus on the class of Boolean functions having no more than k variables,
where k is assumed to satisfy 0 ≤ k ≤ n. The answer to the Consistency Problem and
all consistent Boolean functions in the generalized form can be found simply by applying
the above algorithm to all (n

k) different variable combinations. The time needed for this is
O((n

k) · m · poly(k)).
Let us temporarily index all the found generalized truth tables (4-ary vectors), corre-

sponding to (n
k) different variable combinations, as f j , j = 1, . . . , (n

k). Question marks,
in turn, can be removed in time O((n

k) · 2|f|?,max · 2k), where |f|?,max is the maximum of all
the |f j |? over all (n

k) variable combinations, i.e., |f|?,max = max j |f j |?. Again, if we are
interested in converting only some number h of consistent functions, that can be done in
time O(h · 2k).

ON LEARNING GENE REGULATORY NETWORKS 155

4.4. Consistency Problem, n genes and k variables

To generalize this for Boolean networks, we must repeat the above process for all n genes,
essentially multiplying the time needed for finding functions for one gene by n. Thus, the
resulting algorithm for Boolean networks operates in time

O((n
k) · n · m · poly(k)), (7)

where 0 ≤ k ≤ n (follows from Definition 1).
Let us again temporarily index all the found generalized truth tables (4-ary vectors) as f i, j ,

i = 1, . . . , n, j = 1, . . . , (n
k). The generalized truth tables can be converted into standard

type truth tables in time O((n
k) ·n ·2|f|?,max ·2k) or O(n ·h ·2k), where |f|?,max is the maximum

of all the |fi, j |? over all n genes and (n
k) variable combinations, i.e., |f|?,max = maxi, j |fi, j |?.

In principle, either of these terms should be added to Eq. (7) but it is ignored in this context
since we aim to compare inference complexities with the previously published ones. Another
reason for leaving these terms out is that the number of consistent Boolean networks may
become super-exponential, and we may not be interested in finding all of them.

Previous learning algorithms for Boolean networks were based on exhaustive search
and analyzed in Akutsu, Miyano, and Kuhara (1999). Their complexity was shown to be
O(22k · (n

k) · n · m · poly(k)) which is now considerably reduced by Eq. (7).

4.5. Best-Fit Extension Problem, n variables

We now show that a similar approach applies to the Best-Fit Extension Problem as well,
when functions are from the class of all Boolean functions or the class of functions with k
variables. Let us first concentrate on the former class and inspect the best matching function
for a single gene only.

In the Best-Fit Extension Problem, as introduced in Section 3.2, we search for an extension
f ∈ C of pdBf(T ∗, F∗) that has minimum error size. In principle, we could solve the problem
by computing the error size for all functions in C. That would take time O(22n ·m ·poly(n)),
where 22n

is the number of functions in the class of all Boolean functions and m · poly(n) is
the time needed to compute the error size for one function (see Eq. (3)). A faster solution
can be found using a method similar to the one above.

Assume that we have two vectors c(0), c(1) ∈ R
2n

, where R denotes the set of real numbers,
and c(0) and c(1) are indexed from 1 to 2n and initially zero vectors. Then, during one pass
over the given examples, c(0) and c(1) can be updated to

c(0)
i = w(x), if x ∈ F ∧ s(x) = i

c(1)
i = w(x), if x ∈ T ∧ s(x) = i

. (8)

Elements of c(0)
i and c(1)

i that are not set in Eq. (8) remain zero-valued due to initialization.
Let a fully determined candidate function be f with the corresponding truth table f having
only binary elements. fs(x) defines the output value for the input vector x as before. Let f

156 H. LÄHDESMÄKI, I. SHMULEVICH, AND O. YLI-HARJA

denote the complement of f, i.e., a vector where all zeros and ones are flipped. Then, the
error size of function f can be written as

ε(f) =
2n∑

i=1

c(fi)
i . (9)

It is now easy to see that error size is minimized when c(fi)
i is minimum or, conversely, c(fi)

i is
maximum for all i . Thus, the truth table of the optimal Boolean function is fi = argmax j c

(j)
i .

So, the truth table of a function minimizing Eqs. (3) and (9) can be found within a single
pass of the set elements of the vectors c(0) and c(1). Therefore, when the time spent on
memory initialization is ignored, the Best-Fit Extension Problem can be solved, for our
class of functions, in time O(m · poly(n)). Previously, a more general algorithm for solving
the Best-Fit Problem for all transitive classes of Boolean functions was introduced in Boros,
Ibaraki, and Makino (1998). The time complexity was shown to be O((|T |+|F |)3). Instead
of finding a detailed algorithm for the class of all Boolean functions, the main objective
of that study was to show that the problem is polynomial-time solvable for all transitive
classes.

As introduced in Section 3.2, we may need to recompute the weights w(x) in practice.
However, instead of recomputing the weights in advance, it is better to embed the re-
computation procedure into the above method. That can be done simply by changing Eq. (8)
to

c(0)
i =

∑
x∈M : (s(x)=i)∧(x∈F)

w(x)

c(1)
i =

∑
x∈M : (s(x)=i)∧(x∈T)

w(x)
, (10)

where M denotes the original multiset of measurements.

Example 2. Assume a simple hypothetical case where k = 2 and we are given sets T and
F such that after applying Eq. (8) vectors c(0) and c(1) are updated to c(0) = (4, 8, 1, 0) and
c(1) = (2, 2, 1, 5). Then the optimal function is found simply by using fi = argmax j c

(j)
i .

Thus, fopt is (0, 0, 0, 1) and the corresponding error size is ε(f opt) = 5. Note that when
setting the third element of fopt, one needs to break a tie since both c(0)

3 = c(1)
3 = 1.

Gene expression time-series are usually noisy and the number of measurements is fairly
small. Therefore, the best function is often not unique after applying the above inference
scheme. Selecting only one predictor function per gene may lead to incorrect results. So,
we may ultimately be interested in finding all functions f having error size smaller than
or equal to some threshold, i.e., ε(f) ≤ εmax. Vectors c(0) and c(1) can also be used for that
purpose. For instance, the second best function, in view of the Best-Fit Extension Problem,
is found by flipping only one element of the truth table of the best function f opt. The flipped
element, say the i th, has to be selected such that the corresponding absolute difference
between elements c(0)

i and c(1)
i is minimum. This problem is discussed in Section 5.

ON LEARNING GENE REGULATORY NETWORKS 157

4.6. Best-Fit Extension Problem, n genes and k variables

The generalization for n genes and k variables is as straightforward as already shown for
the Consistency Problem in Sections 4.3 and 4.4. That is, the above method must be applied
to all (n

k) variable combinations and all n genes. So, the optimal solution of the Best-Fit
Extension Problem for the entire Boolean network can be found in time

O((n
k) · n · m · poly(k)). (11)

The problem of inferring gene regulatory networks under the Best-Fit extension paradigm
was initially studied in Shmulevich et al. (2002b) and the proposed method was shown to
be polynomial-time solvable for fixed k. In the case of varying k, the complexity of the
algorithm in Shmulevich et al. (2002b) is O(22k · (n

k) · n · m · poly(k)).

5. Finding set of functions with limited error-size

In this section we consider the problem of finding all functions having error size smaller
than or equal to some given threshold εmax. In principle, we need to find a set of functions
{ f : ε(f) ≤ εmax}. We first consider only a single function and single variable combination.
Let us assume that we are considering the class of functions with k variables and have already
found the optimal function, in the sense of the Best-Fit Extension Problem, using the method
introduced above. Thus, we know vectors c(0) and c(1), error-size of the Best-Fit function
ε(f opt) = εopt, and the optimal binary function f opt itself through its truth table fopt. In
order to simplify the following computation/notation, we introduce some new variables.
Define c to contain the absolute values of element-wise differences between c(0) and c(1),
i.e., ci = |c(0)

i − c(1)
i | and let f ′ denote truth table of a distorted (non-optimal) function f ′.

The truth table of f ′ can now be written as f ′ = fopt ⊕d, where d ∈ {0, 1}2k
is the portion of

distortion from the optimal function and ⊕ stands for addition modulo 2, i.e., d = f ′ ⊕ fopt.
Then, we get directly from Eq. (9) that

ε(f ′) =
2k∑

i=1

c(f ′
i)

i =
2k∑

i=1

c
(f opt

i)
i +

∑
i : di =1

ci = εopt + cT d (12)

and can write the set of functions to be found in terms of truth tables as

{fopt ⊕ d : cT d ≤ εmax − εopt}. (13)

At this stage the problem of finding the set of Boolean functions { f ′ : ε(f ′) ≤ εmax} has
been converted to a problem of finding a subset D ⊂ {0, 1}2k

such that all elements d ∈ D
share the property defined in Eq. (13). Perhaps the easiest way of continuing is as follows.

Let us first sort the vector c in increasing order and denote the sorted vector by c′ and
corresponding permutation (sorting) and inverse permutation operators by p and p−1. Now,

158 H. LÄHDESMÄKI, I. SHMULEVICH, AND O. YLI-HARJA

we aim to find the set of distortion vectors D′ in this new “permutation domain” that satisfy

{d′ : c′T d′ ≤ εmax − εopt}. (14)

Note that this is closely related to Eq. (13). The following greedy recursive algorithm can
be used to find D′ such that their inverse permutations together with fopt define all functions
f , satisfying ε(f) ≤ εmax. The operation of the algorithm can be described as follows.
Conceptually, the algorithm builds a tree such that each node in the tree corresponds to one
acceptable permuted distortion vector. (A tree is not built in practice, but helps to understand
the operation of the algorithm.) At the depth 0, which corresponds to the root of the tree, it has
permuted distortion vector whose Hamming weight is zero, i.e., the zero vector (0 . . . 0). At
the depth 1, the tree has all permuted distortion vectors whose Hamming weight is 1 and they
satisfy Eq. (14) and so on for deeper levels. In detail, on level 1 we have nodes corresponding
to vectors (100 . . . 0), (010 . . . 0), . . . , (000 . . . 010 . . . 0), where the index i of the 1 element
in the last vector is such that next position i + 1 in the sorted vector c′ would alone force
the error to be larger than the given threshold. That is, (000 . . . 010 . . . 0)c′ ≤ εmax − εopt

holds for the last vector in the previous list, but would not hold for the “next” vector.
Below the node (vector) (10 . . . 0) at the level 1, we have nodes (vectors) at the level 2
(11000 . . . 0), (10100 . . . 0), (10010 . . . 0), . . . , (10 . . . 010 . . . 0), where the index i of the
right most 1 element in the last vector in the previous list is such that (10 . . . 010 . . . 0)c′ ≤
εmax − εopt holds for that vector but would not hold for the “next” vector (the one where
the right most 1 is moved one position to the right), and so on for the remaining nodes.
The algorithm itself is shown in figure 1. In the following, we assume that D′ and c′ are
available and the same at all recursion levels.

Statement for the while-loop is assumed to be evaluated in “short-circuit evaluation”
fashion that prevents indexing c′ over its length. When we initialize d′ ← (0 . . . 0), D′ ← d′

and i0 ← 0, the set D′ will contain proper “distortion” vectors, or their p permutations, after
the function call Distortion-Vectors(d′, εopt, i0), assuming ε(f opt) ≤ εmax. In order to
find the final distortion vectors we still need to apply the inverse permutation p−1 to the found
vectors in D′. Then, truth tables of the searched functions, satisfying { f : ε(f) ≤ εmax},
can be formed as {fopt ⊕ d : d ∈ p−1(D′)}.

Example 3. We continue our previous Example 2 in order to illustrate the operation
of the above algorithm. Using the values for c(0) and c(1) shown in Example 2 we get

1 Distortion-Vectors(d′, ε, i)
2 j ← i + 1
3 while j ≤ 2k ∧ ε + c′j ≤ εmax

4 d′
j ← 1

5 D′ ← D′ ∪ {d′}
6 Distortion-Vectors(d′, ε + c′j , j)
7 d′

j ← 0
8 j ← j + 1
9 endwhile

Figure 1. A greedy algorithm that can be used to find the set of functions { f : ε(f) ≤ εmax}.

ON LEARNING GENE REGULATORY NETWORKS 159

{(1000),5}

{(0100),7} {(0010),10}

{(0000),5}

{(1100),7} {(1010),10}

Figure 2. The (conceptual) tree build by the Distortion-Vectors-algorithm. Each node is associated with an
ordered pair consisting of a permuted distortion vector and corresponding error size computed using Eqs. (12) and
(14). All distortion vectors shown in figure 2 are added into D′. Dashed arrows show the running (construction)
order of the nodes where the root is the starting node.

c = (2, 6, 0, 5), and further c′ = (0, 2, 5, 6) after sorting c. Permutation (sorting) opera-
tion is defined by the index vector (3, 1, 4, 2) which defines the original positions of the
elements in c′. We assume εmax to be 10 and therefore εmax − εopt = 5. Then we are
ready to use the Distortion-Vectors-algorithm. The operation of the algorithm using
the conceptual tree is shown in figure 2. Each node is associated with an ordered pair
consisting of a permuted distortion vector and corresponding error size computed using
Eqs. (12) and (14). Precisely all distortion vectors shown in figure 2 are added into D′, thus
D′ = {(0000), (1000), (1100), (1010), (0100), (0010)}. Dashed arrows show the running
(construction) order of the nodes where the root is the starting node.

Final distortion vectors are found by applying the inverse permutation operator p−1 to D′,
i.e., p−1(D′) = {(0000), (0010), (1010), (0011), (1000), (0001)}. Finally, we get the set of
functions { f : ε(f) ≤ εmax} = {fopt⊕d : d ∈ p−1(D′)} = {(0001), (0011), (1011), (0010),
(1001), (0000)}.

Without going into details, we give a sketch of the proof of the correctness of the above
algorithm, also relying on the conceptual tree interpretation. The first observation is that
each node is associated with the correct error size. Clearly, this holds for the root node,
assuming the algorithm is originally called with error size εopt. Then, we can inductively
validate the first claim for deeper levels. Because each node is associated with the correct
error size it follows that only proper permuted distortion vectors are added into D′. Utilizing
the increasing order of c′, similar inductive observations over the depth of the nodes can be
made to prove that all proper permuted distortion vectors are added into D′. So, in total we
have that the set of permuted distortion vectors found by the above algorithm is equal to
that in Eq. (14).

The time complexity of the algorithm is problem dependent. That is, it depends heavily
on the number of functions in the “true” set { f : ε(f) ≤ εmax}. However, it is fairly obvious
that proper permuted distortion vectors are added into D′ only once since nodes in separate
branches of the tree are associated with vectors (binary strings) having different prefixes. So,

160 H. LÄHDESMÄKI, I. SHMULEVICH, AND O. YLI-HARJA

the above procedure makes no fruitless job in that sense. We can also consider the number
of “unnecessary” checks in the while-loop (the third row of the algorithm) here, although
this measure is also problem dependent. Because the while-loop is broken after the first
failure we see that the number of “unnecessary” checks is upper-bounded by the number of
nodes in the tree which further equals the number of proper functions. So, the computational
complexity, when including the sorting step, can be written as O(2k · log(2k) ·poly(k)+|{ f :
ε(f) ≤ εmax}|) = O(2k ·k ·poly(k)+|{ f : ε(f) ≤ εmax}|) assuming that we are considering
the class of functions with k variables.

In order to find the functions for the whole Boolean network one needs to apply the above
procedure for all (n

k) variable combinations and n genes essentially multiplying the time
complexity by (n

k) · n.

6. Experiments

In this section we present inference results for the cdc15 yeast gene expression time-series
data set taken from Spellman et al. (1998) where 799 cell cycle regulated genes were
identified. The cell cycle regulated genes were split into five groups in each of which genes
behaved similarly. The groups were referred to as G1, S, G2, M and M/G1, corresponding to
different states of the cell cycle. In order to limit the computational complexity, we restricted
our experiments only to those 799 cell cycle regulated genes. Further, we did not infer the
entire regulatory network, but searched the functions for a selected set of genes. In this
experiment, we were interested in the set of five genes: {Cln1, Cln2, Ndd1, Hhf1, Bud3}.
See Spellman et al. (1998) for information about function, phase of peak expression, and
other details of the selected genes.) Instead of selecting only one function per gene, we
searched all functions with the error size not exceeding a pre-determined threshold εmax = 5.
(When the number of variables is 3 we used εmax = 3 because the number of functions is
quite large for ε = 4, 5.)

We preprocessed the expression data using the following steps. The normalization was
carried out as in Spellman et al. (1998). The missing expression values in the cdc15 ex-
periment were estimated by using the weighted K-nearest neighbors method introduced in
Troyanskaya et al. (2001). The number of neighbors in the estimation method was set to
15 and the Euclidean norm was used as the basis for the similarity measure, as suggested
in Troyanskaya et al. (2001). We omitted the genes that have more than 20% missing val-
ues. In order to check the biological relevance of our results we added some genes that
are known to regulate the genes of interest. Some of the added genes were not found to
be cell-cycle regulated in Spellman et al. (1998). As a consequence, the set of 799 cell cycle
regulated genes was reduced to 733 genes. The data binarization was performed using the
quantization method described in Shmulevich and Zhang (2002c) together with a global
threshold equal to 0.

Since no measures of quality are available for our set of measurements, we used unity
weight, w(x) = 1, for all measurements. The maximum indegree of the functions, k, was set
to 1, 2, and 3. As a result, the histograms of the error size of the found functions for all the
selected genes are shown in figure 3. The horizontal axis corresponds to the error size and

ON LEARNING GENE REGULATORY NETWORKS 161

0 1 2 3 4 5
0

10

20

30

40

50

60

70

error size

nu
m

be
r

of
 fu

nc
tio

ns

Cln1
Cln2
Ndd1
Hhf1
Bud3

(a)

0 1 2 3 4 5
0

2

4

6

8

10

12
x 10

4

error size

nu
m

be
r

of
 fu

nc
tio

ns

Cln1
Cln2
Ndd1
Hhf1
Bud3

(b)

0 1 2 3
0

1

2

3

4

5

6

7

8
x 10

7

error size

nu
m

be
r

of
 fu

nc
tio

ns

Cln1
Cln2
Ndd1
Hhf1
Bud3

(c)

Figure 3. The histograms of the error size of the found functions for all the selected genes. The maximum
indegree is (a) k = 1, (b) k = 2 and (c) k = 3. The bars for the different genes are coded as shown on the graphs.

162 H. LÄHDESMÄKI, I. SHMULEVICH, AND O. YLI-HARJA

Table 1. The number of functions having error size between 0 and 5 for all the selected genes. The maximum
indegree is set to k = 1, k = 2 and k = 3. For indegree k = 3 we only show the number of functions for error
sizes 0 through 3.

Indegree Gene\Error size 0 1 2 3 4 5

k = 1 Cln1 0 0 3 8 23 42

Cln2 0 0 7 18 41 60

Ndd1 0 0 0 0 0 1

Hhf1 0 0 2 20 50 68

Bud3 0 0 5 15 38 50

k = 2 Cln1 1 175 4930 17022 47018 91895

Cln2 12 432 9018 26425 61933 104595

Ndd1 0 1 34 378 2664 16434

Hhf1 21 332 4110 26665 69989 113637

Bud3 16 510 6712 20769 50257 80427

k = 3 Cln1 27051 860663 12131506 50893601

Cln2 118042 2526975 22822482 77088111

Ndd1 420 13657 246522 2495556

Hhf1 95834 1696500 14920744 72192691

Bud3 93683 2127964 16209816 56397855

the vertical axis shows the number of functions for each gene that have the corresponding
error size. The error sizes are also shown in numerical form in Table 1. Note that the set
of functions with maximum indegree k = i + 1 contains all the functions with maximum
indegree k = i . Recall that the column corresponding to zero error size contains the numbers
of consistent functions.

Recently, yeast cell cycle transcriptional activators have been studied by Simon et al.
(2001) by combining both expression measurements and location analysis. In that study,
of particular interest were certain transcriptional regulators and cyclin genes, including the
genes Cln1, Cln2, Ndd1 and Hhf1. We compare our results with the ones shown in that paper
in order to validate the biological significance of our results. We also want to emphasize
that, in order to simplify the function inference task, we could have concentrated only on
the genes that are known to regulate each other. That is not, however, the purpose of the
proposed inference method. Instead, we really want to search through the whole “space”
of models (functions). The key motivation for doing so is to search new possible predictor
functions not already known.

In the study by Simon et al. (2001), the complex Swi4/Swi6 was found to be a transcrip-
tional regulator of the cyclin gene Cln1. In our analysis, the Best-Fit predictor function for
the gene Cln1, with input variables {Swi4,Swi6}, had error size 3. Recently, genome-wide
location analysis has also revealed that genes such as Mbp1 and Ndd1 can bind to the gene
Cln1 (Lee et al., 2002). So, since the complex Swi4/Swi6 and genes Mbp1 and Ndd1 all can
presumably regulate the gene Cln1, it is instructive to look at the three variable predictor

ON LEARNING GENE REGULATORY NETWORKS 163

functions having input variables {Swi4,Swi6,Mbp1} and {Swi4,Swi6,Ndd1}. The Best-Fit
predictor function for those input variables turned out to have error size 2. Even though
the error size for those functions is not the smallest, it is in clear agreement with the re-
sults shown in Simon et al. (2001) and Lee et al. (2002). For instance, the two variable
predictor {Swi4,Swi6} is among the top 0.5% of all two variable predictors.3 Similarly, the
three variable predictors {Swi4,Swi6,Mbp1} and {Swi4,Swi6,Ndd1} are both among the
top 0.08% of all three variable predictors. For the gene Cln2, a known regulator is Rme1
(Banerjee & Zhang, 2002). The Best-Fit error size for that single variable function is 4,
and it is found to be among the top 2.3% of all one variable predictors. The transcriptional
regulator Swi4/Swi6 has also been found to be able to regulate the gene Cln2 (Simon et al.,
2001). Based on the used data, the Best-Fit method did not find that variable combination
alone as a potential regulator (error size is 5). However, when looking at the three variable
functions, e.g. with variables {Swi4,Swi6,Rme1} and {Swi4,Swi6,Clb2}, (Clb2 can also
regulate the gene Cln2 (Simon et al., 2001)) the minimum error sizes were found to be as
low as 3 and 2, respectively. Previous studies have shown that complexes Swi4/Swi6 and
Swi6/Mbp1 can bind to the promoter region of the gene Ndd1. So, one would expect a
function with variables {Swi4,Swi6,Mbp1} to be a reasonably good predictor for the gene
Ndd1. However, the binary Best-Fit analysis on the used data set did not give very strong
support for these genes to be a probable good predictor set for the gene Ndd1; error size
was found to be 5. One possible reason, in addition to noise, could be that the expression
profile of the Ndd1 has 4 missing measurements in the cdc15 experiment. The interpolated
values may have caused some artificial effects.

In general, our results agree with most of the known regulatory behavior ((Simon et al.,
2001; Banerjee & Zhang, 2002; Lee et al., 2002). The Best-Fit functions for the known
transcriptional regulators are among the best ones in almost every case. However, we can
also identify some problems in our experiments. The first is the insufficient length of the
time-series or, alternatively, the large size of the space of possible predictors. That is, the
probability of finding a good predictor by chance is fairly high. For instance, since we are
looking at cell cycle regulated genes only, some two genes A and B may simply have similar
(periodic) expression profiles with a proper “phase difference.” If gene A has peaks and
troughs in its expression profile slightly before gene B, it may be found to regulate gene B.
In that kind of case, we are not able to decide whether or not the found transcriptional factor
is spurious. Further biological measurements such as location data (Ren et al. 2000) or
functional studies may be needed. Second, as the Best-Fit framework incorporates positive
weights, it would have been beneficial if one had been able to utilize them in this experiment.
We, on the other hand, only used equal weights for each vector in T and F (see Section 7
for further discussion).

7. Discussion

The current gene expression measurements contain a considerable amount of noise and “low
quality” measurements are usually expunged from the subsequent analysis. Alternatively,
each measurement could be associated with some indicative measure of its quality. Then,
instead of throwing away the low quality measurements, one is able to control their relative

164 H. LÄHDESMÄKI, I. SHMULEVICH, AND O. YLI-HARJA

influence in the following data analysis steps by down-weighting the most unreliable ones.
Estimating the qualities for gene expression measurements has been discussed, e.g. by
Chen et al. (2002) and Smyth, Yang, and Speed (2003) quite recently. Ones those quality
measurements become available, they can be directly used in the gene regulatory network
inference in the Best-Fit Extension framework.

As in most estimation tasks, over-fitting is an issue in inference of gene regulatory net-
works. This is particularly evident from our experiments discussed in the previous section.
That is, as maximum indegree k increases, we get a better fitting for the training set, result-
ing in overtrained network models. A known fact is that models that are “too adapted” to
the training set loose their generalization capability for the cases outside the training set.
In order to avoid possible over-fitting, it may be useful to constrain the search of possible
predictor functions only to a certain (restricted) class of functions, such as canalizing func-
tions, transitive classes, etc. Unfortunately, the inference methods introduced in this paper
do not directly apply to all classes of Boolean functions. This is because the found optimal
functions are not guaranteed to belong to any restricted function class other than the one
that contains all k-variable functions. However, the availability of efficient generation and
membership testing algorithms for special classes of Boolean functions will alleviate this
problem. Nonetheless, constraining the search space without strong prior knowledge may
be risky.

Another possible approach to prevent over-fitting is by utilizing the information-theoretic
Minimum Description Length (MDL) principle. The use of the MDL principle in gene
regulatory network learning was introduced by Tabus and Astola (2001), who considered
the MDL criterion-based two-part code together with a particular encoding scheme for
finding good predictor functions for a single gene. Although their approach was introduced
with ternary data, it is also straightforward to apply it in a binary setting. In detail, the two-
part code consists of the code length for the measured data given the model and the code
length for the model itself, often denoted by L(D|M) and L(M). The encoding method
in Tabus and Astola (2001) encodes only the model residuals, i.e., the errors generated by
the model (function) of interest. It is easily observed that the Best-Fit Extension method
can be utilized in the MDL-based inference approach as well. That is, with unity weights
w(x) = 1 for all x ∈ T ∪ F , the error-size of a Boolean function in the Best-Fit method
is just the number of misclassifications. That measure provides a fast way of computing
the MDL criterion in gene regulatory network inference. For more details, see Tabus and
Astola (2001) and the references therein.

One drawback of Boolean networks is that they are inherently deterministic. Shmulevich
et al. (2002a) recently introduced an extension of the standard Boolean networks, called
Probabilistic Boolean Networks (PBN). This model relaxes the inherent determinism of
Boolean networks, but still provides a rule-based approach to modeling. In principle, un-
certainty is brought into the model as follows. Instead of only one predictor function fi a set
of predictors Fi = { f (i)

1 , . . . , f (i)
l(i)} together with the corresponding selection probabilities

Ci = {c(i)
1 , . . . , c(i)

l(i)} are assigned to the i th gene. Then, during each updating step of the
network, each gene xi can randomly take its predictor function, according to the distribu-
tion Ci , from the corresponding set of functions Fi .4 As introduced by Shmulevich et al.
(2002a), inference of PBNs can be carried out by employing the coefficient of determination

ON LEARNING GENE REGULATORY NETWORKS 165

(COD) (Dougherty, Kim, & Chen, 2000) in selection of the predictors for a given gene.
The predictors themselves can be found, for example, by applying the standard Boolean
network inference methods, such as the proposed methods for the Consistency and the Best-
Fit Extension Problem, or the MDL-based inference. Thus, the need to find sets of “good”
functions in the PBN setting is another reason why we were interested in finding more
than one candidate function per gene in Section 5. The relationship between the PBN and
the (dynamic) Bayesian network was discussed in Shmulevich et al. (2002a). For instance,
it was shown that the conditional probability of a gene (node in PBN) given its (causal)
parents can be expressed in terms of the Boolean functions and selection probabilities. As
noted by Shmulevich et al. (2002a), such a formulation may open up the possibility of se-
lecting models using standard Bayesian learning techniques. In view of model complexity
considerations, this is particularly interesting since the Bayesian model selection criteria
have an automatic built-in Occam’s razor principle (see e.g. MacKay, 1992).

Notes

1. Although poly(n) will be equal to n in most cases, we will use poly(n) for generality.
2. Repeated measurements can always be combined into single measurements without changing the result of the

Consistency Problem.

3. Note that the number of all possible 2-variable predictors is already 222 · (733
k) = 4292448. For three variables

the number of all predictors is as large as 223 · (733
k) = 16734823936.

4. Strictly speaking, this holds only for so-called independent PBNs. There also exist dependent PBNs.

References

Akutsu, T., Kuhara, S., Maruyama, O., & Miyano, S. (1998). Identification of gene regulatory networks by
strategic gene disruptions and gene overexpressions. In Proc. the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’98), (pp. 695–702).

Akutsu, T., Miyano, S., & Kuhara, S. (1999). Identification of genetic networks from a small number of gene
expression patterns under the Boolean network model. Pacific Symposium on Biocomputing, 4, 17–28.

Akutsu, T., Miyano, S., & Kuhara, S. (2000). Inferring qualitative relations in genetic networks and metabolic
pathways. Bioinformatics, 16, 727–734.

Arnone, M. I., & Davidson, E. H. (1997). The hardwiring of development: Organization and function of genomic
regulatory systems. Development, 124, 1851–1864.

Banerjee, N., & Zhang, M. Q. (2002). Functional genomics as applied to mapping transcription regulatory networks.
Current Opinion in Microbiology, 5:3, 313–317.

Boros, E., Ibaraki, T., & Makino, K. (1998). Error-Free and Best-Fit Extensions of partially defined Boolean
functions. Information and Computation, 140, 254–283.

Chen, T., He, H. L., & Church, G. M. (1999). Modeling gene expression with differential equations. Pacific
Symposium on Biocomputing, 4, 29–40.

Chen, Y., Dougherty, E., & Bittner, M. (1997). Ratio-based decisions and the quantitative analysis of cDNA
microarray images. Journal of Biomedical Optics, 2, 364–374.

Chen, Y., Kamat, V., Dougherty, E. R., Bittner, M. L., Meltzer, P. S., & Trent, J. M. (2002). Ratio statistics of gene
expression levels and applications to microarray data analysis. Bioinformatics, 18, 1207–1215.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1998). Introduction to Algorithms. MIT Press.
D’Haeseleer, P., Wen, X., Fuhrman, S., & Somogyi, R. (1999). Linear modeling of mRNA expression levels during

CNS development and injury. Pacific Symposium on Biocomputing, 4, 41–52.

166 H. LÄHDESMÄKI, I. SHMULEVICH, AND O. YLI-HARJA

de Jong, H. (2002). Modeling and simulation of genetic regulatory systems: A literature review. Journal of
Computational Biology, 9:1, 67–103.

Dougherty, E. R., Kim, S., & Chen, Y. (2000). Coefficient of determination in nonlinear signal processing. Signal
Processing, 80:10, 2219–2235.

Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data.
Journal of Computational Biology, 7, 601–620.

Glass, L., & Kauffman, S. A. (1973). The logical analysis of continuous non-linear biochemical control networks.
Journal of Theoretical Biology, 39, 103–129.

Hartemink, A., Gifford, D., Jaakkola, T., & Young, R. (2001). Using graphical models and genomic expression
data to statistically validate models of genetic regulatory networks. Pacific Symposium on Biocomputing, 6,
422–433.

Hasty, J., McMillen, D., Isaacs, F., & Collins, J. J. (2001). Computational studies of gene regulatory networks: In
numero molecular biology. Nature Reviews Genetics, 2, 268–279.

Huang, S. (1999). Gene expression profiling, genetic networks and cellular states: An integrating concept for
tumorigenesis and drug discovery. Journal of Molecular Medicine, 77, 469–480.

Ideker, T. E., Thorsson, V., & Karp, R. M. (2000). Discovery of regulatory interactions through perturbation:
Inference and experimental design. Pacific Symposium on Biocomputing, 5, 302–313.

Karp, R. M., Stoughton, R., & Yeung, K. Y. (1999). Algorithms for choosing differential gene expression experi-
ments. RECOMB99 (pp. 208–217). ACM.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of
Theoretical Biology, 22, 437–467.

Kauffman, S. A. (1993). The Origins of Order: Self-organization and Selection in Evolution. New York: Oxford
University Press.

Kerr, M. K., Leiter, E. H., Picard, L., & Churchill, G. A. (2002). Sources of variation in microarray experiments.
In W. Zhang, & I. Shmulevich (Eds.), Computational and Statistical Approaches to Genomics. Boston: Kluwer
Academic Publishers.

Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., Hannett, N. M., Harbison, C. T.,
Thompson, C. M., Simon, I. et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science, 298, 799–804.

Liang, S., Fuhrman, S., & Somogyi, R. (1998). REVEAL, A general reverse engineering algorithm for inference
of genetic network architectures. Pacific Symposium on Biocomputing, 3, 18–29.

Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S., & Eguchi, Y. (2001). Development of a system for the
inference of large scale genetic networks. Pacific Symposium on Biocomputing, 6, 446–458.

MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4:3, 415–447.
McAdams, H. H., & Arkin, A. (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA, 94,

814–819.
McAdams, H. H., & Arkin, A. (1999). It’s a noisy business! Genetic regulation at the nanomolar scale. Trends in

Genetics, 15, 65–69.
Mestl, T., Plahte, E., & Omholt, S. W. (1995). A mathematical framework for describing and analyzing gene

regulatory networks. Journal of Theoretical Biology, 176, 291–300.
Murphy, K., & Mian, S. (1999). Modelling gene expression data using dynamic Bayesian networks. Technical

Report, University of California, Berkeley.
Noda, K., Shinohara, A., Takeda, M., Matsumoto, S., Miyano, S., & Kuhara, S. (1998). Finding genetic network

from experiments by weighted network model. Genome Informatics, 9, 141–150.
Ren, B., Robert, F., Wyrick, J. J., Aparicio. O., Jennings, E. G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N.,

Kanin, E. et al. (2000). Genome-wide location and function of DNA binding proteins. Science, 290, 2306–2309.
Shmulevich, I., Dougherty, E. R., Seungchan, K., & Zhang, W. (2002a). Probabilistic Boolean networks: A rule-

based uncertainty model for gene regulatory networks. Bioinformatics, 18, 261–274.
Shmulevich, I., Saarinen, A., Yli-Harja, O., & Astola, J. (2002b). Inference of genetic regulatory networks under the

Best-Fit Extension paradigm. In W. Zhang, and I. Shmulevich (Eds.), Computational And Statistical Approaches
To Genomics. Boston: Kluwer Academic Publishers.

Shmulevich, I., & Zhang, W. (2002c). Binary analysis and optimization-based normalization of gene expression
data. Bioinformatics, 18, 555–565.

ON LEARNING GENE REGULATORY NETWORKS 167

Simon, I., Barnett, J., Hannett, N., Harbison, C. T., Rinaldi, N. J., Volkert, T. L., Wyrick, J. J., Zeitlinger, J., Gifford,
D. K., Jaakkola, T. S., & Young, R. A. (2001). Serial regulation of transcriptional regulators in the yeast cell
cycle. Cell, 106, 697–708.

Smolen, P., Baxter, D. A., & Byrne, J. H. (2000). Mathematical modeling of gene networks. Neuron, 26, 567–580.
Smyth, G. K., Yang, Y. H., & Speed, T. (2003). Statistical issues in cDNA microarray data analysis. In M. J.

Brownstein, & A. B. Khodursky (Eds.), Functional Genomics: Methods and Protocols, Methods in Molecular
Biology series (pp. 111–136). Totowa, NJ: Humana Press. To appear.

Somogyi, R., & Sniegoski, C. (1996). Modeling the complexity of gene networks: Understanding multigenic and
pleiotropic regulation. Complexity, 1, 45–63.

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D.,
& Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces
cerevisiae by Microarray Hybridization. Molecular Biology of the Cell, 9, 3273–3297.

Tabus, I., & Astola, J. (2001). On the use of MDL principle in gene expression prediction. Journal of Applied
Signal Processing, 4, 297–303.

Tabus, I., Rissanen, J., & Astola, J. (2002). Normalized maximum likelihood models for Boolean regression with
application to prediction and classification in genomics. In W. Zhang, & I. Shmulevich (Eds.), Computational
And Statistical Approaches To Genomics. Boston: Kluwer Acadmic Publishers.

Thieffry, D., Huerta, A. M., Pèrez-Rueda, E., & Collado-Vides, J. (1998). From specific gene regulation to genomic
networks: A global analysis of transcriptional regulation in Escherichia coli. BioEssays, 20, 433–440.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., & Altman, R. B.
(2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17, 520–525.

Vohradsky, J. (2001). Neural model of the genetic network. The Journal of Biological Chemistry, 276:39, 36168–
36173.

Weaver, D. C., Workman, C. T., & Stormo, G. D. (1999). Modeling regulatory networks with weight matrices.
Pacific Symposium on Biocomputing, 4, 112–123.

Yli-Harja, O., Linne, M.-L., & Astola, J. (2001). On the use of cDNA microarray data in Boolean network inference.
In Proc. Conf. on Computer Science and Information Technologies (pp. 405–409). Yerevan, Armenia.

Received June 18, 2002
Revised November 7, 2002
Accepted November 8, 2002
Final manuscript January 14, 2003

