
 Open access Journal Article DOI:10.1109/TNNLS.2014.2323247

On Learning Navigation Behaviors for Small Mobile Robots With Reservoir Computing
Architectures — Source link

Eric Aislan Antonelo, Benjamin Schrauwen

Institutions: Universidade Federal de Santa Catarina, Ghent University

Published on: 01 Apr 2015 - IEEE Transactions on Neural Networks (IEEE)

Topics: Reservoir computing, Mobile robot, Behavior-based robotics and Recurrent neural network

Related papers:

 Real-time computing without stable states: a new framework for neural computation based on perturbations

 Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication

 Short-term stock price prediction based on echo state networks

 Survey: Reservoir computing approaches to recurrent neural network training

 2007 Special Issue: An experimental unification of reservoir computing methods

Share this paper:

View more about this paper here: https://typeset.io/papers/on-learning-navigation-behaviors-for-small-mobile-robots-
9lyajwog1d

https://typeset.io/
https://www.doi.org/10.1109/TNNLS.2014.2323247
https://typeset.io/papers/on-learning-navigation-behaviors-for-small-mobile-robots-9lyajwog1d
https://typeset.io/authors/eric-aislan-antonelo-1bqg364ozn
https://typeset.io/authors/benjamin-schrauwen-5aiaxdu5xq
https://typeset.io/institutions/universidade-federal-de-santa-catarina-s653iovu
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/journals/ieee-transactions-on-neural-networks-2pup5gfv
https://typeset.io/topics/reservoir-computing-1x05cck3
https://typeset.io/topics/mobile-robot-1is55hi3
https://typeset.io/topics/behavior-based-robotics-3h223g0y
https://typeset.io/topics/recurrent-neural-network-h8eidlb4
https://typeset.io/papers/real-time-computing-without-stable-states-a-new-framework-p44jz35cim
https://typeset.io/papers/harnessing-nonlinearity-predicting-chaotic-systems-and-2h0kiy9kvu
https://typeset.io/papers/short-term-stock-price-prediction-based-on-echo-state-3boqgxcrbo
https://typeset.io/papers/survey-reservoir-computing-approaches-to-recurrent-neural-hy6gpftacw
https://typeset.io/papers/2007-special-issue-an-experimental-unification-of-reservoir-5aaww8gdey
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-learning-navigation-behaviors-for-small-mobile-robots-9lyajwog1d
https://twitter.com/intent/tweet?text=On%20Learning%20Navigation%20Behaviors%20for%20Small%20Mobile%20Robots%20With%20Reservoir%20Computing%20Architectures&url=https://typeset.io/papers/on-learning-navigation-behaviors-for-small-mobile-robots-9lyajwog1d
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-learning-navigation-behaviors-for-small-mobile-robots-9lyajwog1d
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-learning-navigation-behaviors-for-small-mobile-robots-9lyajwog1d
https://typeset.io/papers/on-learning-navigation-behaviors-for-small-mobile-robots-9lyajwog1d

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 1

On Learning Navigation Behaviors for Small

Mobile Robots with Reservoir Computing

Architectures
Eric Aislan Antonelo and Benjamin Schrauwen

Abstract—This work proposes a general Reservoir Computing
(RC) learning framework which can be used to learn navigation
behaviors for mobile robots in simple and complex unknown,
partially observable environments. RC provides an efficient way
to train recurrent neural networks by letting the recurrent part
of the network (called reservoir) fixed while only a linear readout
output layer is trained. The proposed RC framework builds
upon the notion of navigation attractor or behavior which can
be embedded in the high-dimensional space of the reservoir
after learning. The learning of multiple behaviors is possible
because the dynamic robot behavior, consisting of a sensory-
motor sequence, can be linearly discriminated in the high-
dimensional nonlinear space of the dynamic reservoir. Three
learning approaches for navigation behaviors are shown in this
paper. The first approach learns multiple behaviors based on
examples of navigation behaviors generated by a supervisor, while
the second approach learns goal-directed navigation behaviors
based only on rewards. The third approach learns complex goal-
directed behaviors, in a supervised way, using an hierarchical
architecture whose internal predictions of contextual switches
guide the sequence of basic navigation behaviors towards the
goal.

Index Terms—robot navigation, reservoir computing, rein-
forcement learning, goal-directed navigation, recurrent neural
networks, echo state network, sensory-motor coupling.

I. INTRODUCTION

BEHAVIOR-BASED approaches to robotics have been

proposed early in the literature [1], [2]. Instead of having

several modules for perception, world modeling, planning and

execution, they are based on individual intelligent control

modules, where each one contributes to behavior generation

for controlling a robot, thus following a bottom-up approach.

This work aims at designing intelligent navigation systems

from a bottom-up perspective, where learning of implicit world

representations and complex sensory-motor coupling is in-

spired by the implicit, basic mechanisms of intelligence which

control biological systems. Thus, an essential requirement is

that these intelligent systems process information and become

situated in the environment [3] by solely using their local view

E. A. Antonelo is with the Department of Automation and Systems, Federal
University of Santa Catarina, Brazil and B. Schrauwen is with the Department
of Electronics and Information Systems, Ghent University, Belgium, e-mail:
erantone@elis.ugent.be

E. Antonelo acknowledges the Universiteit Ghent (Belgium), the National
Council for Scientific and Technological Development (CNPq-Brazil) and the
National Council for the Improvement of Higher Education (CAPES-Brazil)
for their financial support.

This document is a draft version of the paper. The published version can be
found in the IEEE Transactions on Neural Networks and Learning Systems.

of the environment given by the sensory apparatus present in

the agent or robot. This embodiment of the robot implies that

its control architecture should possess an internal state which

represents its perceptual history of the world.

Recurrent Neural Networks (RNNs) are a good candidate

for that since they have an internal state made possible by the

network’s recurrent connections. However, traditional training

for RNNs, such as Backpropagation through time [4], has

slow convergence and does not guarantee to find the global

optimum.

Training for RNNs is much simplified and efficiently ex-

ecuted under the recently emerging paradigm of Reservoir

Computing (RC) [5] (see Figure 3). This is because the

recurrent non-linear part of the network (called reservoir) is

left fixed, while only a linear output layer is trained, usually

through standard linear regression techniques. This type of

state-dependent computation has been proposed as a biologi-

cally plausible model for cortical processing [6], [7], [8]. Such

theoretical models include: Echo State Networks (ESN) [9] for

analog neurons and Liquid State Machines (LSM) [7] for spik-

ing neurons. Many applications of RC exist: online adaptive

control of robotic arms [10], [11], optoeletronic applications

[12], speech recognition [13], etc. From a machine learning

perspective, a reservoir network, usually randomly generated

and sparsely connected, functions as a temporal kernel [14],

projecting the input to a dynamic high-dimensional space.

During simulation, the reservoir states form a trajectory which

is dependent on the current external sensory input, but which

still contains memory traces of previous stimuli. Computation

in the output layer occurs by linearly reading out instantaneous

states of the reservoir. In this way, reservoir architectures can

inherently process spatiotemporal patterns.

In this work, navigation behaviors are modeled using the

RC paradigm, where ESNs serve as a general mechanism to

build embodied mobile robots with an internal environmental

representation. Additionally, they are designed according to the

notion of navigation attractor1. A navigation attractor (Fig. 1)

is a reactive robot behavior defined by a spatiotemporal

pattern resulting from a specific sensory-motor coupling which

a mobile robot can execute in its environment. Under this

scheme, a robot tends to follow a trajectory with attractor-

like characteristics in space. These navigation attractors are

characterized by being robust to noise and unpredictable events

1The term attractor is used in this paper more metaphorically and does not
directly relate to the exact definition of attractor in mathematics.

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 2

room A room B

robot trajectory

for a navigation attractor

desired

contracting

property

Fig. 1. Representation of a reactive navigation attractor or behavior in the
environment space and desired contracting property.

robot
sensors

actuators

behavior

Fig. 2. Modeling multiple reactive behaviors or navigation attractors using a
single RC network via external binary input channel. Dashed connections are
trainable.

and by having inherent collision avoidance skills. In this

work, it is shown that an RC network can model not only

one behavior, but multiple navigation behaviors by shifting

the operating point of the dynamical reservoir system into

different sub-space attractors using additional external inputs

representing the selected behavior. The sub-space attractors

emerge from the coupling existing between the RC network,

which controls the autonomous robot, and the environment

(Fig.2).

This paper presents three approaches for learning complex

robot behaviors following the idea of embedding sub-space at-

tractors, corresponding to reactive behaviors, into the dynamic

reservoir space2. The first approach uses a single reservoir

for learning behaviors in a supervised way [15], that is, by

showing examples of two different navigation behaviors to

the network. An external binary input selects the behavior

which the network should reproduce. After training, the RC

network is able to replicate and switch between these different

behaviors, where each one corresponds to a different sub-space

attractor in the reservoir state space. The settings, experiments

and results corresponding to the first approach are shown in

Section IV.

The second approach uses a reinforcement learning frame-

work to shape navigation behaviors through trial and error

[16]. The reward is given only at the destination location,

while the correct path of the robot to the goal is dependent

on a temporary initial stimulus, which make the environment

partially observable. It is shown that the recurrent weights of

the network are an important feature for partially observable

2Preliminary results on the approaches presented here were already pub-
lished in conference proceedings [15], [16], [17] .

environments, since they provide a transient memory for these

types of delayed response tasks. The settings, experiments and

results corresponding to the second approach are shown in

Section V.

The third approach extends the first network to a hierar-

chical architecture which can autonomously switch between

different contexts and select the appropriate behavior accord-

ing to the predicted context [17]. This is achieved by training

one network to predict the current robot location in a multi-

room environment (localization reservoir) [18], and another

network to drive the robot through the environment (navigation

reservoir). The goal location is given as input as well as the

distance sensors of the robot. After training the architecture

with examples of trajectories from a starting room to a goal

room in the multi-room environment, the navigation reservoir

can generate a sequence of reactive behaviors towards the

goal. The settings, experiments and results corresponding to

the third approach are shown in Section V.

This work shows that it is possible to learn complex

navigation behaviors, either by reinforcement learning (where

the behavior improves progressively by interaction with the

environment) or by supervised learning (where behaviors are

embedded through one shot training process with desired

sensory-motor coupling), using a recurrent neural network

model, the Echo State Network (RC network). It also shows

that contextual switches (elicited by entering another room in

an environment) predicted by a RC network in a hierarchical

architecture can be used to generate an autonomous sequence

of reactive behaviors for goal-directed navigation.

While feedforward networks with time-windowed inputs

can show good results in a variety of temporal tasks, they

do not satisfy some of our requirements: are not biologically

plausible; can not generate implicit internal representations

based on dynamical states (as RNNs do); and their iterative

training process hinders the concrete realization of the control

task as it will be seen in this paper.

In the next section, a short review on biologically-inspired

navigation systems as well as a comparison with the proposed

approaches in this paper are presented. Section III presents

the basic Reservoir Computing model used in this work

(Section III-A), the robot models used in the experiments

(Section III-B), and the concept of navigation attractors cor-

responding to the robot behaviors (Section III-C).

II. RELATED WORK ON BIOLOGICALLY-INSPIRED

NAVIGATION SYSTEMS

There are several works in the literature which employ

Recurrent Neural Networks (RNNs) for designing localization

and navigation systems for mobile robots. In [19], RNNs are

used for model-based learning in robot navigation. In order

to achieve situatedness during navigation, a forward model

of the mobile robot is learned in a self-organized way using

Backpropagation through time. The internal model predicts

the next sensory input given the current sensors (range image

and travel distance) and the motor output. In this way, it

learns to be situated through interaction with the environment

by learning the environmental attractor in the offline training

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 3

phase. Other early related works for situated robotics are [20]

and more recently [21].

In [22], evolutionary strategies for RNNs are tackled in the

context of a homing navigation task. In their work, a RNN

is evolved so that a mobile robot drives as long as possible

around an arena and goes back to a recharging area whenever

its battery level is near empty. The evolved RNN learned an

internal representation which is a function of the robot position

and of the battery level.

Other models of hippocampal place cells and biologically-

inspired navigation exist in the literature. In [23], unsupervised

growing networks are used to build an architecture with

idiothetic and allothetic components that are combined in a

hippocampal place cell layer to support spatial navigation

(validated using a Khepera mobile robot with 2D vision

sensors). Their model explicitly uses dead-reckoning to track

the robot position and associates place cell firing with the

estimated position.

In [24], a hippocampal place cell model is designed to solve

the SLAM problem. They choose a pragmatic approach, favor-

ing functionality over biologically plausibility. Their model,

called RatSLAM, has a 3D structure for pose cells (represent-

ing beliefs for the robot position and orientation) which learn

associative connections with view cells (allothetic representa-

tion). They validate their model with several mobile robots,

equipped with a camera, in indoor and outdoor environments.

Other works oriented towards modeling an animal’s capability

for spatial navigation are given in [25], [26]. A single learning

technique which maximizes slowness of the output signal

applied to hierarchical networks is able to generate self-

organized representations of place cells as well as of head-

direction cells [27] without odometry information. A similar

method based on temporal stability for learning hippocampal

place cells for mobile robots is given in [28]. For a further (and

older) review on biologically-inspired localization models, see

[29] and [30].

In [31], an ESN is used to model behavior acquisition by

demonstration for a Khepera mobile robot using an 8x6 color

image as input to the network. They train the ESN to perform

a sequence of reactive behaviors (find and reach target), which

actually do not require the dynamic properties of the reservoir

since their results show that the same performance can be

achieved if the recurrent connections from the reservoir are

removed. The work presented in this paper goes beyond in

three ways: we build upon the idea of dynamic sub-space

attractors in the reservoir state space for embedding multi-

ple navigation behaviors; for acquiring increasingly complex

behaviors, hierarchical architectures are built which handle

context room switches; and it is shown that the same RC

architecture can be used in a reinforcement learning task.

Most of the aforementioned models are based on rich visual

(pixel-based) stimuli as external sensory input and/or use

odometry for path integration. In contrast to this, the RC-

based navigation systems in this work are based solely on

low-dimensional input such as few infra-red distance sensors

(apart from the first approach in Section IV which uses a

few more color sensors). Thus, the models presented here

make no use of odometry for position estimation, even though

input

u

reservoir

x

output

y

Fig. 3. Reservoir Computing (RC) network. The reservoir is a non-linear
dynamical system usually composed of recurrent sigmoid units. Solid lines
represent fixed, randomly generated connections, while dashed lines represent
trainable or adaptive weights.

we may predict the robot location using an additional RC

network (third approach in Section VI). This work also relies

on the fact that the ambiguous perceptual input space of

the robot is disambiguated in the dynamical high-dimensional

space of the reservoir, making it possible to distinguish similar

locations from the robot’s perspective. This is possible because

of the fading memory characteristic of RC networks. A third

main prominent feature of our approach is that the reservoir,

functioning as a temporal non-linear kernel [14], can be used

in supervised, unsupervised and reinforcement learning tasks

by only changing the training method in the linear output layer,

characterizing it as a multi-faceted machine learning method

[32].

III. METHODS

A. Reservoir Computing

1) ESN model: An ESN is composed of a discrete

hyperbolic-tangent RNN, the reservoir, and of a linear readout

output layer which maps the reservoir states to the actual

output. Let ni,nr,no represent the number of input, reservoir

and output units, respectively, u[n] the ni-dimensional external

input, x[n] the nr-dimensional reservoir activation state, y[n]
the no-dimensional output vector. Then the discrete time

dynamics of the ESN is given by the state update equation

x[n+1] =(1−α)x[n]+α f (Wr
rx[n]+Wr

iu[n]+

Wr
oy[n]+Wr

b), (1)

where: α is the leak rate [33], [34]; f () = tanh() is the

hyperbolic tangent activation function, commonly used for

ESNs, and by the output computed as:

y[n+1] = g(Wo
r x[n+1]+Wo

i u[n]+Wo
oy[n]+Wo

b) (2)

= g
(

Wout (x[n+1],u[n],y[n],1)
)

(3)

= g
(

Woutz[n+1]
)

, (4)

where: g is a post-processing activation function; Wout is the

column-wise concatenation of Wo
r , Wo

i , Wo
o and Wo

b; and z[n+
1] = (x[n+1],u[n],y[n],1) is the extended reservoir state, i.e.,

the concatenation of the state, the previous input and output

vectors and a bias term, respectively.

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 4

The matrices Wto
from represent the connection weights be-

tween the nodes of the complete network, where r, i,o,b
denotes reservoir, input, out put, and bias, respectively. All

weight matrices representing the connections to the reservoir,

denoted as Wr
· , are initialized randomly (represented by solid

arrows in Figure 3), whereas all connections to the output

layer, denoted as Wo
· , are trained (represented by dashed

arrows in Figure 3).

Output feedback given by the projection Wr
oy[n] and bias

W.
b are optional. In the absence of these terms, (1) and (2)

become:

x[n+1] = f (Wr
rx[n]+Wr

iu[n]) (5)

y[n+1] = g(Wox[n+1]) . (6)

There are two ways to increase the memory of a reservoir

which has no output feedback. It is possible to either tune the

leak rate α ∈ (0,1] of the reservoir for matching the timescale

of the input signal or downsample the input signal. Low leak

rates yield reservoirs with more memory which can remember

the previous stimuli for longer time spans. On the other hand,

leak rates close to 1 are suitable for high-frequency input

signals which vary in a faster timescale.

Next, the procedures for reservoir creation and dynamics

tuning are presented. The non-trainable connection matrices

Wr
r,W

r
i ,W

r
o,W

r
b are usually generated from a random distri-

bution, such as a Gaussian distribution N(0,1) or a uniform

discrete set {−1,1}. During this initialization, two parameters

are used:

• the connection fraction cto
from corresponds to the per-

centage of nonzero weights in the respective connection

matrix Wto
from.

• υto
from corresponds to the scaling of the respective connec-

tion matrix Wto
from.

While the connectivity between units in Wr
i and Wr

r is not that

important [35], although they are usually created considering

sparse connectivity, the scaling of these matrices have a great

influence on the reservoir dynamics [5] and must be tuned for

achieving optimal performance.

The randomly generated Wr
r must be rescaled such that the

dynamical system is stable but it still exhibits rich dynamics.

As the ESN is usually nonlinear, this can be achieved by study-

ing a linearized version of the ESN around the equilibrium

point [36]. Under this assumption, a necessary condition to

guarantee the Echo State Property (ESP) [37] for ESNs, i.e.,

a reservoir with fading memory3, is to rescale Wr
r such that

the maximal singular value of Wr
r is smaller than unity.

However, using the maximal singular value to rescale the

reservoir connection matrix usually does not provide rich

reservoir dynamics. An alternative is to rescale Wr
r such that its

spectral radius ρ(Wr
r)< 1 [37]. Although it does not guarantee

the ESP, in practice it has been empirically observed that

this criterium works well and often produces analog sigmoid

ESNs with ESP for any input, producing richer reservoirs

which contain signals with multiple frequencies. For most

3The Echo State Property states conditions for the ESN principle to work.
It can be understood as having a reservoir with fading memory which
asymptotically washes out any information from initial conditions.

applications, the best performance is attained with a reservoir

that operates at the edge of stability, e.g., ρ(Wr
r) = 0.99.

Considering a normalized input signal u[n], the effect of

input scaling υr
i on the reservoir dynamics is such that, the

larger the scaling, the closer to saturation the reservoir states

will be, since the reservoir state is shifted torwards the non-

linear area of the tanh activation function. Spectral radius

closer to unity as well as larger input scaling makes the

reservoir more non-linear, which has a deterioration impact

on the memory capacity as side-effect [38].

The scaling of these non-trainable weights is a parameter

which should be chosen according to the task at hand empir-

ically, analyzing the behavior of the reservoir state over time,

or by grid searching over parameter ranges.

Although it is suggested that many parameters should be

optimized, RC is quite robust to several of these parameters.

Thus, it is relevant to mention the two most important pa-

rameters for tuning in this work: leak rate (or, alternatively,

resampling rate of the input signal) and input scaling. The

other parameters are less important.

2) Readout Output Training: The readout output of the RC

network is the only layer to be trained, usually by standard

linear regression methods. For that, the reservoir is driven by

an input sequence u(1), . . . ,u(ns) which yields a sequence of

extended reservoir states z(1), . . . ,z(ns) using (1).

The desired teacher outputs ŷ[n] are collected row-wise into

a matrix Ŷ. The generated extended states are collected row-

wise into a matrix X of size ns × (nr + ni + 1) if no output

feedback is used. Then the training of the output layer consists

of finding the weights Wout which minimizes the sum of

squared errors

ns

∑
t=1

(ŷ[n]−y[n])2 , (7)

by using the Moore-Penrose generalized matrix inverse4, or

pseudo-inverse X† of matrix X:

Wout = X†Ŷ = (X⊤X)−1X⊤Ŷ (8)

where ns denotes the total number of training samples and

the initial state is x(0) = 0. Note that the other matrices

(Wr
r,W

r
i ,W

r
b,W

r
o) are not trained at all.

It is important to note that there is an initial transient during

the generation of reservoir states x[n] using (1) due to the

fading memory of the reservoir, which may be undesired for

the readout training. So, the usual procedure to deal with this

is to disregard the first nwd samples in a process called warm-

up drop so that only the samples z[n],n = nwd ,nwd +1, ...,ns

are collected into the matrix X. Although this procedure is

always used in this work, the notation for the generation of

reservoir states will not change for the sake of simplicity.

The learning of the RC network is a fast process without

local minima. Once trained, the resulting RC-based system can

be used for real-time operation on moderate hardware since

the computations are very fast (only matrix multiplications of

small matrices).

4For numerical stability, we may also employ QR decomposition.

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 5

(a) SINAR (b) Extended Webots e-puck

Fig. 4. Robot models. (a) SINAR robot model with distance and color sensors
(usually in number of 17 of each type) positioned in the frontal part of
the robot (−90 to 90). (b) Modified e-puck robot from Webots simulation
environment, extended with simulated longer-range infra-red sensors capable
of reading distances from 5 cm to 80 cm (modeling a real infra-red sensor).

3) Error measure: For regression tasks, the Normalized

Mean Square Error (NMSE) is used as a performance measure

and is defined as:

NMSE =
〈(ŷ[n]− y[n])2〉

σ2
ŷ[n]

, (9)

where the numerator is the mean squared error of the output

y[n] and the denominator is the variance of desired output ŷ[n].

B. Robot Models

1) SINAR: SINAR is a 2D autonomous robot simulator

introduced in [39], where the mobile robot (Fig. 4(a)) interacts

with the environment by distance and color sensors; and by

one actuator which controls the movement direction (turning).

The environment of the robot is composed of several

objects, each one of a particular color. Particularly, obstacles

are represented by blue objects whereas targets are given

by yellow objects. The robot model has 17 sensor positions

distributed uniformly over the front of the robot, from -90◦

to +90◦. Each position holds two virtual sensors for distance

and color perception. The distance sensors are limited in range

such that they saturate for distances greater than 300 distance

units (d.u.), and are noisy - they exhibit Gaussian noise

N(0,0.01) on their readings. A value of 0 means near some

object and a value of 1 means far or nothing detected. At each

iteration the robot is able to execute a direction adjustment to

the left or to the right in the range [0, 15] degrees and the

speed is equal to 0.28 distance units (d.u.)/s.

2) E-puck: The e-puck [40] is a small differential wheeled

robot which was built primarily for education purposes, but has

been largely adopted in research as well. The mobile robot is

equipped with 8 infra-red sensors which measure ambient light

and proximity of obstacles in a range of [0−4]cm originally,

which effectively restricts the ability to read distances to

obstacles. The actuators of the robot are 2 stepper motors.

The variant robot model used in this work is the simulated

e-puck extended with 8 infra-red sensors which can measure

distances in the range [5-80] cm ([0-80] cm for the reinforce-

ment learning task). The original simulation model of the e-

puck has a 5.20 cm diameter, but it increases to 10 cm when

modified with the extra turret for the infra-red sensors. The

0

1

linear discrimination

boundarynavigation

attractor 1 navigation

attractor 2

Fig. 5. Example of two navigation attractors in a hypothetical bi-dimensional
dynamical system space. Dashed arrows represent switching events caused by
activities of external input channels.

reward reward reward

Fig. 6. Reinforcement Learning shapes navigation attractor in a hypothetical
bi-dimensional dynamical system space as learning evolves. The attractor is
dynamic, i.e., changes over time with learning iterations.

speed of the robot is limited to the interval ±[0, 300] steps/s

(or ±[0, 3.77] cm/s).

C. Sub-space attractors in high-dimensional space

For empowering navigation systems with a more complex

and high-level behavior, it is necessary to simultaneously learn

multiple reactive navigation attractors.

In order to embed multiple reactive behaviors into a single

RC network, it is necessary to add external binary inputs to the

RC network (Fig. 2), capable of shifting the attractor dynamics

to a confined sub-space corresponding to the selected behavior.

The external input acts as a bias during the execution of a

reactive behavior. A switch to a different behavior will cause

a shift into a different operating point of the reservoir, which

in turn is coupled to the environment.

As this architecture (Fig. 2) is trained using linear regression

on the dynamical system space (only the motor actuators given

by the dashed connections are trained), the shift in the high-

dimensional space caused by the external binary input makes

possible that a linear discrimination is sufficient to confine

navigation attractors to different sub-spaces (Fig. 5). Thus, this

architecture supports the simultaneous learning of many (even

conflicting) behaviors by the trick of shifting the reservoir state

space. The number of behaviors that could be learned is limited

by the memory capacity of the network [41].

A second approach to learn navigation attractors is through

reinforcement learning (RL). Under this scheme, the RC net-

work does not receive a teacher signal, but only a reward signal

usually indicating success or failure. Thus, learning is achieved

by trial and error, which means that a lot of random trials will

take place in the beginning of the learning process. During this

iterative learning procedure, the navigation attractor learned by

the RNN is actually dynamic, i.e., changing over time (Fig. 6).

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 6

u[0] = [sensors0 0]

u[1] = [sensors1 0]

u[n] = [sensorsn 0]

y[0]

y[1]

y[n]

^

^

^

u[0] = [sensors0 1]

u[1] = [sensors1 1]

u[n] = [sensorsn 1]

y[0]

y[1]

y[n]

^

^

^

Behavior 1

Behavior 2

dynamical

reservoir

extra

input channel

sensors
u

actuator(s)
y

Training data

Fig. 7. Training a single RC network for learning 2 different behaviors.
Behaviors 1 and 2 are generated by distinct teacher controllers. The input u

is the concatenation of the sensors and an extra input channel (0 or 1) or
binary vector for behavior selection.

IV. FIRST APPROACH: SUPERVISED LEARNING OF

NAVIGATION BEHAVIORS

The first approach for modeling autonomous navigation

systems for small mobile robots in this paper is by imitation

learning of robust reactive behaviors. By taking this approach,

learning is accomplished by generating examples of the de-

sired sensory-motor coupling using a supervisor or teacher

controller.

After the learning process, the coupling of the dynamical

system (reservoir), which controls the robot, and the environ-

ment allows that the robot becomes situated in its environment

since the internal state of the reservoir reflects the contextual

state of the environment.

A. Training the Reservoir Architecture with Examples

The robot model used in this section is the SINAR model,

described in Section III-B1.

The samples generated by teacher (supervisor) controllers

containing data from distance and color sensors, and from

actuators are used to train the RC-based controller in a Matlab

environment. The experimental setup is given in the following

section.

The imitation learning procedure, depicted in Fig. 7, can be

summarized in four stages:

1) First, the teacher controllers navigate in a particular

environment, e.g., avoid obstacles and/or seek targets.

2) In a second stage, data samples with the observed

sensory-motor couplings are collected from the teacher

controllers during a robot run of a specific duration.

3) If there are multiple behaviors possibly from different

controllers, the third stage concatenates the data col-

lected in the previous stage, and adds extra binary input

channel(s) for behavior selection (where each possible

binary value could correspond to a behavior, e.g., 01,

10, and 11 encode three different behaviors).

4) The fourth stage corresponds to training the RC-based

controller with the data collected in the second stage and

concatenated in the third stage by supervised learning

methods such as linear regression (Section III-A2).

(a) S1

(b) S2

Fig. 8. 2D environments used for the experiments in this section. Initially,
both targets are visible. After the robot captures one target, the other target
is put back to its original location, making at least one target always visible
or present. (a) Small environment with two targets and one robot. (b) Big
environment with a robot, two targets and two dynamic blinking obstacles
(marked with three white stripes) which block the robot’s way by appearing
at random times during simulation.

B. Experiments

In this section, an RC network is trained to reproduce the

following combined robot behaviors: Environment Explo-

ration (EE) and Target Seeking (TS). The EE behavior makes

the robot explore the environment but ignoring the targets,

while the TS behavior makes the robot seek and capture targets

in the environment as well as avoid obstacles.

The environments used for the experiments are shown

in Fig. 8. The first environment is composed of a (blue)

corridor with two (yellow) targets (the targets are striped

in the figure for clarification). During simulation, the robot

navigates through the environment normally performing cyclic

trajectories. Captured targets are sequentially put back in the

same locations after a capture5. Fig. 9 shows examples of

navigation trajectories.

As EE and TS behaviors are conflicting behaviors, they must

be generated by different teacher controllers. In the following,

it is explained how these controllers are constructed using the

intelligent navigation system described in [39].

EE The teacher controller which implements the EE be-

havior is trained to avoid blue objects (obstacles) and

yellow objects (targets). An example of exploratory

behavior which ignores targets is given in Fig. 9(a).

TS The teacher controller that generates the TS behavior

is trained to avoid blue objects (obstacles) and to

seek yellow objects (targets). The resulting target

seeking behavior is shown in Fig. 9(b).

Next, the samples with sensory and actuator information

are collected from teacher controllers in two stages. In the

first stage, the controller implementing EE behavior steers the

robot in environment S1 from Fig. 8, exploring the environ-

ment and ignoring targets. All sensory inputs and actuators

5A target capture causes the removal of the respective target from the
environment.

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 7

200 250 300 350 400

100

150

200

X (d.u.)

Y
 (

d
.u

.)

(a) EE

200 250 300 350 400

100

150

200

X (d.u.)

Y
 (

d
.u

.)

(b) TS

Fig. 9. Example of navigation trajectories of teacher controllers in environ-
ment S1. (a) EE exploratory behavior (ignores visible targets). (b) TS target
seeking behavior (continually captures targets).

TABLE I
PARAMETER CONFIGURATION FOR RC-BASED CONTROLLER

Number of input channels ni = 35
Input connection fraction cr

i = 0.2
Input scaling υr

i = 0.2
Input downsampling dt = 1
Input to output connections yes

Bias connection fraction cr
b = 1

Bias scaling υr
b = 0.8

Reservoir size nr = 600
Reservoir connection fraction cr

r = 1
Spectral radius ρ(Wr

r) = 0.9
Leak rate α = 1

Number of output channels no = 1
Output feedback to reservoir no

are recorded. In the second stage, the controller with TS

behavior steers the robot in the same environment, but now

generating a different trajectory towards the targets. Each stage

lasts 22,500 timesteps, summing up 45,000 timesteps in total

which corresponds approximately to 24 cyclic trajectories or

loops in the respective environment.

After collecting the training data which represent EE and

TS behaviors individually, a single RC network is trained to

reproduce both behaviors by means of concatenation of the

the training data as well as of an extra input channel added

for behavior selection, as described in previous section and in

Fig. 7. If this extra input has value zero (one), then the EE

(TS) behavior is selected.

C. Settings

The parameter configuration for the RC network which

controls the robot is shown in Table I. The inputs to the

network are 17 distance sensors, 17 color sensors, plus 1

input for behavior selection, summing up ni = 35 inputs. The

reservoir size is nr = 600 neurons. The output unit corresponds

to the turning or direction adjustment robot actuator (the

robot has constant velocity). The training is done according to

Section III-A2 using the collected data of 45,000 timesteps,

of which half of the observations has the value of the extra

input channel set to 0 for EE behavior, and the other half has

this value set to 1 for TS behavior.

The optimization of the spectral radius ρ(Wr
r) for each

experiment in this work was not necessary because the changes

in performance were insignificant. Thus, setting the spectral

radius at the edge of stability (ρ(Wr
r) ∈ [0.9,1)) has yielded

very good results. Additionally, the specific setting of the input

weight matrices (cr
i ,c

r
b,υ

r
i ,υ

r
b) is not particularly critical for the

experiments, allowing for other parameter ranges (although it

could still be optimized).

D. Results

After learning in environment S1, the RC-based controller

was evaluated in environments S1 and S2. The results for envi-

ronment S1 are shown in Fig. 10. The simulation takes 20,000

timesteps. At each period of 5,000 timesteps, a behavior

switching event takes place. Fig. 10(a) shows the coordinates

of the robot during the run, where vertical lines represent the

moments in which a behavior switching occurs. It can be seen

that the behaviors are very well defined in their respective time

interval. The trajectory of the robot changes as soon as the

switching occurs and a target is localized. Fig. 10(b) shows

the corresponding robot trajectory in a 2D map during the

simulation. The black (gray) trajectory corresponds to the time

interval in which the EE (TS) behavior is selected.

From these figures, it can be observed that the trajectories

form navigation attractors in the environment. In addition,

switching between these attractors is accomplished smoothly

by the RC-based controller without collisions to obstacles.

By reducing the high-dimensional state space of the dynam-

ical reservoir, using Principal Component Analysis (PCA) on

the reservoir states, it is possible to observe that sub-space

attractors which are linearly separable (Fig. 11). By only

changing an input from 0 to 1 or vice-versa, the operating

point of the dynamical reservoir is changed to a different sub-

space attractor in the dynamical system space, defined by the

tight coupling between robot controller and environment.

Table II shows results for different number of neurons (nr)

in the reservoir. Each row shows the mean values of the:

training NMSE error (defined in (9)), training time, number

of target captures and number of collisions, considering 5

robot runs each of 20,000 timesteps and with a different

randomly generated reservoir Wr
r. The training time includes

the time to generate the matrix X and to compute (8) using

an Intel Core2 Duo processor-based system. During a robot

run, there are three switching events as in Fig. 10. The last

column of the table presents the percentage of successful

runs which have resulted in correctly performing the selected

behaviors for all three events of behavior switching during

the respective simulation. It can be observed that as the

reservoir has more units, the performance of the resulting

RC-based controller increases, e.g., by decreasing the number

of collisions, although the training time also increases. For

reservoirs containing more than 400 neurons, the resulting RC-

based controllers are always stable, i.e., the selected task (EE

or TS) is performed reliably. With a proper initialization of

the reservoir weights, even small reservoirs with 100 units can

perform these navigation tasks very well. As this small reser-

voir must be randomly generated, this proper initialization

is obtained by generating reservoirs and testing the resulting

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 8

EE TS EE TS

0 0.5 1 1.5 2

x 10
4

100

200

300

400

Timestep

P
o

s
it
io

n

(a)

200 250 300 350 400

100

150

200

X (d.u.)

Y
 (

d
.u

.)

(b)

Fig. 10. Results for environment S1. (a) The coordinates of the robot are
shown for 20,000 timesteps during the test phase. The solid and dashed lines
are the x and y coordinates, respectively. Vertical gray lines represent the
moments of behavior switching. (b) The corresponding trajectory of the robot
in the Cartesian map. The solid black (gray) line represents the timesteps in
which the selected behavior is the EE (TS) behavior.

−0.05

0

0.05

−0.1−0.0500.050.10.15

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

PC 2PC 1

P
C

 3

Fig. 11. Three principal components of the reduced dynamical system state
space after applying PCA on the reservoir states during testing with the RC-
based controller in environment S1. Gray and black lines represent trajectories
associated with different selected behaviors. The input channel for behavior
selection effectively shifts the operating point of the reservoir state space
into different linearly separable sub-space attractors. There are six switching
events, represented by the lines connecting both sub-space attractors. This
figure is analogous to the fictitious example of Fig. 5.

TABLE II
MEAN RESULTS FOR DIFFERENT SIZE OF RESERVOIRS - ENVIRONMENT S1

No. Neurons Training Training No. Target No. Correct
(nr) NMSE Time (s) Captures Collisions behavior

100 0.88 5 12 20.6 40 %
200 0.85 9 12.2 11 80 %
400 0.82 25 11.8 0.8 100 %
600 0.80 60 12.6 0.6 100 %

controller until one solves the required task6.

For testing the robustness of the RC controller to perturba-

tions, a new experiment is accomplished in which the robot

is artificially pushed in real time for several timesteps, and

at least ten robot kidnappings take place during a simulation

in S1 made of 20,000 timesteps and three switching events.

Fig. 12 shows the trajectories for each behavior both in the en-

vironment space and reservoir state space. The left plot shows

several displacements in the robot trajectory corresponding to

events of robot kidnapping: after the robot is displaced, the

controller tends to drive it back to the original attractor asso-

ciated with a reactive behavior. The corresponding trajectories

in the reservoir space (right plot) also shows that the property

of linear separation existing between behaviors is maintained.

In order to test the generalization capabilities of the RC-

based controller, a new dynamic environment S2 is considered

which is different from the training environment (S1). The new

environment (Fig. 8) is larger than S1, and has two targets, one

located in the lower-left of the environment and another in the

upper-right of the environment; it also contains two dynamic

obstacles which have random blinking time periods, causing

many disturbances in the robot behavior and perception. The

simulation consists of 90,000 timesteps and 29 switching

events, during which the robot captures the targets 16 times

and collides 33 times against obstacles (mainly due to the

sudden appearance of obstacles and unseen maneuvers). It

has been observed that whenever a target was in the field

of vision of the robot and the TS behavior was selected, the

robot would seek and capture that target. The result in Fig. 13

shows the principal components of the reservoir states during

this long simulation. The first 2 dimensions are correlated to

the behavior selected by the external input whereas the third

component encodes spatial information common to both EE

and TS behaviors. Despite the many changes in environment

configuration and stochasticity, this figure confirms that the

learning of the RC network effectively embeds different robot

behaviors into unseen dynamic environments.

For further comparison, we implemented a Multi-Layer

Perceptron (MLP) with time-windowed inputs as a controller

for the same task in S1. Resilient backpropagation was used

to train the MLP7, since it has given best results for the robot

control task. Experiments were made with a time window of

size tw = 2, tw = 3, generating a input layer of size 70 and

105, respectively, and with a hidden layer containing from

6On average, smaller randomly generated reservoirs have a lower probabil-
ity of achieving a good performance and stable behavior than large reservoirs.

7A validation set was used to stop training.

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 9

200 250 300 350 400

80

100

120

140

160

180

200

220

240

X (d.u.)

Y
 (

d
.u

.)

(a)

−0.1
−0.05

0
0.05

0.1
0.15

−0.1

0

0.1

−0.1

−0.05

0

0.05

0.1

0.15

PC 1
PC 2

P
C

 3

(b)

Fig. 12. Results for perturbations during navigation in environment S1. (a)
Both EE and TS behaviors, given by black and gray trajectories, respectively,
are perturbed several times by: robot kidnapping (at least 10 times), and one
robot pushing (holding it over an small area by force for several iterations).
(b) The corresponding principal components of the reservoir state space after
applying PCA on the reservoir states. There are three switching events.

Fig. 13. Results for dynamic environment S2 using the controller trained in
S1. The figure shows a trajectory formed by three Principal Components (PC)
of the reservoir states over time. There are 29 behavior switch events during a
simulation with 90,000 timesteps. While the first two PCs encode information
on the specific behavior selected by the external input, the third PC encode
spatial information, probably associated to obstacle avoidance skills.

6 up to 9 units. The average training time was 150 seconds.

For each configuration of these two parameters, approximately

2/5 of the experiments were close to the correct behavior.

The main problems with this architecture was: very difficult

to achieve the separation between EE and TS behaviors (e.g.,

eventually when executing the EE behavior, the robot would

mistakenly capture a target); not enough generalization for

collision avoidance (with an average of 36 collisions per

simulation). The iterative nature of the training method seems

to be one of the causes for the aforementioned problems,

because it is not guaranteed to find the global minimum. For

instance, only 1 out of 20 experiments generated a controller

with perfect behavior (12 captures and zero collisions). Thus,

the RC approach considerably benefits from a stable and

reliable training method and a dynamic nature which allows

for the relatively easy linear separation of robust behaviors in

the dynamic reservoir space.

V. SECOND APPROACH: REINFORCEMENT LEARNING OF

NAVIGATION BEHAVIORS

In the previous section, navigation behaviors have been

learned in a supervised way with an one-shot learning process

which uses examples consisting of sequences of the desired

sensory-motor coupling.

In this section, instead, RC networks are used to ap-

proximate the state-action value function (Q(s,a)) in non-

Markovian reinforcement learning navigation tasks, where

the environment is partially observable (as in [42]). Under

this scheme, an alternating sequence of policy improvement

(samples generation from environment interaction) and policy

evaluation (network training) steps are performed, the system

is able to iteratively shape navigation attractors so that, after

convergence, the robot can perform a well-formed behavior

towards the goal.

A. Reservoir Computing for Q-value Approximation

In fitted Q iteration [43], samples in form of tuples

(st ,at ,rt ,st+1), t = 1, · · · , I,

are generated from interaction with the environment and

collected in a training dataset. Training the system is done

offline using the collected samples under a supervised learning

framework: usually, a regression algorithm is used to learn

the state-action value function, by defining the input and the

desired output as follows:

u[t] = (st ,at), (10)

ŷ[t] = rt + γmax
a

Q̂N−1(st+1,a), (11)

where: st , at and rt are the state, action and reward at time t,

respectively; N is the iteration of the training process; and γ
is the discount factor. Using the dataset of input-output pairs

(u[t], ŷ[t]), the function Q̂N(s,a) is induced with a regression

algorithm.

In this section, an analog sigmoidal RC network or Echo

State Network (ESN) is used to model the critic, that is,

the Q-value [44] function, in non-Markovian environments.

Given a partially observable state vector s̃ and an action a as

input, the goal is to approximate the expected future sum of

rewards, the Q-value for the pair (s̃,a), using an RC network

as approximation method. The randomly generated reservoir

can convert non-Markovian state-spaces into Markovian state-

spaces due to its characteristic fading memory of previous

inputs. This method is similar to fitted Q iteration [43], [45]

and least squares policy iteration [46] in that it is based on

batch offline training and approximates the value function in

an iterative way.

In [42], the RC network is used in reinforcement learning

control tasks such as the mountain car problem and the more

complex acrobot swing-up task. The input to the reservoir is

a vector u[t] composed of a partially observable state s̃, such

as the position of the car or the joint angles of the acrobot

(so, excluding the velocity component), and an action a, and

the only output is trained to approximate the state-action value

function.

As Q̂(s̃,a), the desired output ŷ, can be approximated by

a sum of future rewards over a finite time horizon h [42],

equations (10) and (11) can be rewritten, in the case of a non-

Markovian environment:

u[t] = (s̃t ,at), (12)

ŷ[t]≈ rt + γrt+1 + γ2rt+2 + · · ·+ γhrt+h (13)

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 10

Policy improvement =
ESN exploitation +
exploration

Policy evaluation =
ESN training

trained architecture

samples
(st,at,rt)~

start with randomly
generated reservoir

epsilon-greedy policy;
epsilon schedule

Fig. 14. Approximate Policy Iteration: Policy improvement + Policy eval-
uation. The iterative policy learning consists of: generation of samples by
interacting with the environment using a ε-greedy policy and the trained
architecture (policy improvement); and of training the architecture (in this
case, the RC network) to approximate the state-action value function with a
regression algorithm using the dataset generated during policy improvement.
s̃ is a partially observable state, characterizing a non-Markovian task which
should be handled by the RC network.

The training is accomplished in an iterative way and consists

of a sequence of policy improvement and policy evaluation

steps (see Fig. 14). During policy improvement, new samples

(st ,at ,rt), t = 1, ..., I are generated using a ε-greedy policy and

the trained architecture. I is the number of samples generated

during one iteration of the policy improvement stage, which is

set to I = 1000. During policy evaluation, the training input-

output pairs (u[t], ŷ[t]), t = 1, ...,E are generated using (12) and

(13), respectively, and the RC network is trained on a subset of

the dataset generated through interaction with the environment.

This subset corresponds to a sliding window of samples of size

E, such that only the most recent E = 40,000 samples are

used for training. During the iterative policy learning process,

the ε-greedy policy follows a learning schedule where the

exploration is intense at the beginning of the process and

monotonically decreases towards the end of the experiment.

This is accomplished by varying ε according to a predefined

schedule [42] (given in Section V-D).

The equations of the model and its training method, linear

regression, are described in Section III-A. The equation for

the readout output y[t], which models the state-action value

function in this section, is given by (6).

The exploitation of the RC network for the control task

is based on the following equations:

aopt [t +1] = arg max
a

(y[t +1]) (14)

aopt [t +1] = arg max
a

[

Wo
r Wo

i

]

xa[t +1]
s̃[t]
a

 , (15)

where xa[t+1] is a internal reservoir state which is dependent

on the action a tested during the application of argmax:

xa[t +1] = f

(

Wr
rx[t]+Wr

i

[

s̃[t]
a

])

.

This means that the reservoir state is freezed at timestep t, and

to choose the optimal action, the arg max function runs the

reservoir for each value of action a always starting at the same

reservoir state x[t] from timestep t. For instance, Fig. 15 shows

how the reservoir state evolves over time by using the argmax

function on three possible values for action a (−1,0,1).

a=-1

a=0

a=1

x0

a=-1

a=0

a=1

x1

a=-1

a=0

a=1

x2

a=-1

a=0

a=1

x3

a=-1

a=0

a=1

x4 x5

Fig. 15. Evolution of the reservoir state x[t] over time as the operator arg max
is applied to the RC network. Dashed lines represent reservoir states which
generated suboptimal paths during the application of arg max operator. The
real path followed by the reservoir is given by solid lines.

43.5 44 44.5

−59

−58

−57

−56

X (cm)

Y
 (

c
m

)

Fig. 16. Motor primitives or basic behaviors: left, forward and right.

B. Motor Primitives

There are three motor primitives or basic behaviors in the

low-level control module, which steer the 2 stepper motors

of the e-puck robot: forward (left wheel: 500 steps/s; right

wheel: 500 steps/s), left (left wheel: 250 steps/s; right wheel:

500 steps/s), and right (left wheel: 500 steps/s; right wheel:

250 steps/s). These motor primitives are executed for a period

of 11 timesteps in the simulator (704 ms). See Fig. 16 for

a graphical representation of the trajectories given by each

of the motor primitives. It is relevant to observe that each

primitive is inherently stochastic once the robot wheels can

not reproduce the same trajectory due to non-systematic noise

originated from wheel-slippage or irregularities of the floor.

The motor primitives are designed to simplify the control task,

by reducing the action space to 3 discrete actions.

C. Experiments

The robot task is to learn context-dependent navigation

attractors in a partially observable environment. The environ-

ment is a rectangular arena with an obstacle between the robot

and the goal location, as it can be seen in Fig. 17(a). During

a simulation experiment, each episode starts with the robot

located in the upper part of the room with position randomly

chosen from a small interval defined by the solid rectangle

in Fig. 17(b); the initial orientation of the robot is South,

with small uniform noise added in the range [0,1.2] degrees.

The robot is controlled according to a ε-greedy policy. The

architecture is trained using the scheme depicted in Fig. 14

and explained in Sections V-A.

The task of the robot in this environment consists of navi-

gating to the goal location, given by the light blue dashed box

in Fig. 17(b), through the left or right part of the environment,

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 11

(a)

−0.200.20.40.60.81

−0.4

−0.2

0

0.2

0.4

0.6

0.8

X (m)

Y
 (

m
)

(b)

Fig. 17. Rectangular environment with an obstacle between the robot and
the goal location. (a) 3D environment in Webots, with the e-puck robot in
the upper part. (b) Representative map of the environment in two dimensions.
The box with a point inside represents the possible starting positions for the
robot (randomly chosen), while the black and gray dashed rectangles represent
the possible circumvention areas (dependent on the initial transient stimulus)
which the robot has to use to reach the goal, represented by dashed box in
light blue color.

shown by black and gray dashed rectangles in the same

figure, depending on a previously received stimulus from the

environment. This temporary stimulus can be implemented

through the presence/absence of an object in the environment,

the on/off of a light source, or the existence/absence of a

sound. In the current experiments, this is simply implemented

as an additional input signal to the reservoir which is 1.5

whenever the trajectory towards the goal should be done via

the left side and -1.5 when the this trajectory should be

performed via the right side. This extra signal is present for

2.1s in the beginning of each episode, during which the robot

is not able to go left or right but only slowly forward (meant

not to bias learning). After the initial period of 2.1s, this extra

input becomes zero.

One episode is finished whenever the robot reaches the goal

performing the correct trajectory, hits against an obstacle, or

when the length of the episode is greater than 60 timesteps.

The reward rt is always -1, unless the robot is at the goal

location, when rt = 0. When an episode ends, the input and

desired output can be computed according to equations (12)

and (13).

D. Settings

Table III shows the parameter configuration for the RC

network, with critical parameters in bold. The inputs u to the

network are 8 frontal distance sensors, scaled to the interval

[0,1], an action a ∈ {−1,0,1} and an additional input for the

temporary stimulus.

The ε parameter for the policy, which corresponds

to the probability of selecting random actions at each

timestep, is selected from an arbitrarily chosen vector

[0.9,0.8,0.6,0.5,0.4,0.3,0.1,0.01], similarly to [42]. The par-

ticular timesteps in which ε changes follows a learning sched-

ule chosen as [40, 140, 190, 220, 240, 260, 310, 330]∗103

timesteps. This means, for instance, that during the first 40,000

timesteps, ε = 0.9. The finite time horizon in (13) is h = 40.

TABLE III
PARAMETER CONFIGURATION FOR RC NETWORK

Number of input channels ni = 10
Input connection fraction cr

i = 0.5
Input scaling υr

i = 0.14
Input downsampling dt = 1
Input to output connections yes

Bias connection fraction cr
b = 1

Bias scaling υr
b = 0.2

Reservoir size nr = 400
Reservoir connection fraction cr

r = 0.1
Spectral radius ρ(Wr

r) = 0.9
Leak rate α = 0.1

Number of output channels no = 1
Output feedback to reservoir no

The discount factor is γ = 1, which defines a shortest-path

problem.

The regression learning procedure for the reservoir archi-

tecture is executed every 1,500 timesteps considering the last

E = 50,000 generated samples as learning window. These

samples used for learning are generated from the interaction

of the reservoir with the environment, while samples result-

ing from random actions are not taken into account during

learning.

E. Results

0 20 40 60 80 100 120 140 160 180
−5

0

5

10

15

20

25

30

35

Timesteps (x 2000)

G
oa
ls
pe
r
20
00

tim
es
te
ps

0 20 40 60 80 100 120 140 160 180
−5

0

5

10

15

20

25

30

35

Timesteps (x 2000)

G
oa
ls
pe
r
20
00

tim
es
te
ps

(a) ESN

0 20 40 60 80 100 120 140 160 180
−5

0

5

10

15

20

25

30

35

Timesteps (x 2000)

G
oa
ls
pe
r
20
00

tim
es
te
ps

0 20 40 60 80 100 120 140 160 180
−5

0

5

10

15

20

25

30

35

Timesteps (x 2000)

G
oa
ls
pe
r
20
00

tim
es
te
ps

(b) The same network but without recurrent connections

Fig. 18. Average number of goals achieved per two thousand timesteps for
10 simulation experiments. The graphs at the left side represent the goals
achieved via the left trajectory, while the graphs at the right represent the
goals achieved via right trajectory. Error bars represent the standard deviation
between runs. (a) Using the reservoir architecture presented in this section. (b)
Using the same architecture, but without internal memory by setting Wres

res = 0.

In order to evaluate the proposed robot navigation task using

the ESN, the mean number of goals achieved per 2 × 103

timesteps considering left and right trajectories separately is

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 12

shown in Fig. 18(a). As time evolves, exploration decreases

and the number of goals achieved via left and right trajectories

(represented by black and blue lines, respectively) increases,

which shows the capability of the architecture to learn short-

term temporal dependencies in robot navigation tasks.

In Fig. 18(b), the mean number of achieved goals is

computed using a memoryless architecture, implemented by

simply setting the reservoir weights Wr
r to zero. It is possible

to observe that the system does not learn the task correctly,

preferring the right trajectory over the left trajectory in most

of the experiments because the number of goals increases

for the right navigation attractor (in blue) and decreases for

the left attractor. Thus, without the fading memory of the

reservoir, it is not possible to learn these navigation attractors

correctly, because a memoryless architecture does not hold the

temporary stimulus for future moments.

A single ESN can model multiple navigation attractors in

a reinforcement learning task. These attractors, in the context

of reinforcement learning, are dynamic, because the agent-

environment interaction changes over time. Fig. 19(a) shows

how these dynamic attractors evolves during the learning

process. In the beginning, the two navigation attractors are

not well formed, also because exploration is very high. In that

stage, the system performs several possible trajectories due

to random actions. As the simulation advances, the dynamic

attractors are shaped so that the robot reaches the goal location

performing a trajectory which is dependent on the initial

temporary stimulus given at the beginning of the run.

Fig. 19(b) shows the principal components resulting from

applying PCA on the reservoir states for the last episodes of

simulation of Fig. 19(a). The principal component 3 encodes

information used to follow the correct trajectory at the left or

right side, thus forming a short-term memory responsible for

holding the initial temporary stimulus. Fig. 19(c) shows that,

after convergence of the learning process, the principal com-

ponents form different trajectories in the state space according

to the past stimulus given at the beginning of the episode.

One might use evolutionary methods to train RNNs in

reinforcement learning tasks [47], [48], [49], but since the

training of RC networks is not a problem as usually would

be for traditional RNNs (because the recurrent reservoir is left

untrained), the use of RC networks under a policy iteration

scheme as shown above seems particularly fit to learning non-

Markovian tasks.

VI. THIRD APPROACH: HIERARCHICAL ARCHITECTURE

FOR GOAL-DIRECTED NAVIGATION

So far, RC networks have been used to generate behaviors

under two different learning paradigms: supervised learning

and reinforcement learning. Both approaches learn navigation

attractors, either in an one-shot learning process (with exam-

ples given by a supervisor) or iteratively through interaction

with the environment. Besides, the different behaviors have

been formed and discriminated in the dynamic reservoir space

by shifting the operating point of the reservoir with an external

binary input channel.

Now, in this section, the transition from one behavior to

another one is not done via an external input channel as before,

but, instead, is accomplished through trained hidden units.

These hidden units are responsible for autonomously detecting

contextual switches, indicating, for example, when a robot is

crossing a specific boundary from one room to another one in

the environment. In this way, the change to a new behavior

can be made dependent on the internally predicted context.

This ultimately leads to a system which can generate

particular sequences of basic behaviors in an autonomous way

for reaching a specific goal in a multi-room environment. In

practical terms, this section presents an hierarchical architec-

ture, composed of two modules: a localization module and a

navigation module which operate at slow and fast timescales,

respectively. The former module is trained to predict the

current and the previously visited room based on the current

distance sensors’ readings, whereas the latter is trained to steer

the robot in a goal-directed manner based on the input signals

received from the localization module, distance sensors, and

the target room. After training this multiple timescale hier-

archical architecture with examples of navigation routes in

simulated environments, the resulting RC-based controller is

able to successfully navigate to specific target rooms in both

simple and large unknown environments composed of many

rooms.

A. Learning to Navigate to Goals by Imitation

The imitation learning procedure consists of two stages as

follows.

1) Data Generation and Collection. In this stage, several ex-

amples of routes through the environment are generated,

in which the robot navigates from a starting room to

a destination room according to a predefined algorithm

which uses primitive reactive behaviors to steer the robot

in different modes. All required data for training are

collected during this stage such as: distance sensors and

destination room (which will be used as input channels);

and the currently and previously visited robot rooms and

desired motor actuators (for desired hidden or output

units).

2) Training. The second stage involves the training of the

RC networks with the data generated in the first stage.

Afterwards, the trained RC-based navigation system can

be used to drive the robot to specific destination rooms

given as input.

To actually generate examples of navigation routes, two

primitive reactive behaviors or navigation attractors are used

to steer the robot through different paths inside a room. They

are called Left attractor and Right attractor. Fig. 20 shows

how these primitive behaviors can be used in sequence to

generate complete paths to a destination room in an hypo-

thetical environment. As a matter of simplicity, both primitive

behaviors are implemented by different Braitenberg vehicles

[50], whose motors’ outputs consists of a linear combination

of the current sensory readings (i.e., a linear sensory-motor

mapping). The Braitenberg vehicle which avoids obstacles

more intensely at the left side than at the right side forms

a reactive Left navigation attractor. The Right navigation

attractor is constructed in a similar way. These primitive

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 13

e=1,...,1024 e=1025,...,2048 e=2049,...,3072 e=3073,...,4096 e=4097,...,5120

e=5121,...,6144 e=6145,...,7168 e=7169,...,8192 e=8193,...,9216 e=9217,...,10240

e=10241,...,11264 e=11265,...,12288 e=12289,...,13312 e=13313,...,14336 e=14337,...,15360

(a)

−2

0

2

PC 1

−0.5

0

0.5
PC 2

−0.1

0

0.1

PC 3

Robot coordinates

Time steps
0 50 100 150 200 250 300 350 400

−0.2
0

0.2
0.4
0.6
0.8

(b)

−2
0

2
4 −0.5

0

0.5

−0.15

−0.1

−0.05

0

0.05

0.1

PC 2

PC 1

P
C

 3

(c)

Fig. 19. (a) A sequence of robot trajectories as learning evolves, using the ESN. Each plot shows robot trajectories in the environment for several episodes
during the learning process. In the beginning, exploration is high and several locations are visited by the robot. As the simulation develops, two navigation
attractors are formed to the left and to the right so that the agent receives maximal reward. (b) Three principal components (PC) over time after applying PCA
on the reservoir states, at the end of the simulation corresponding to last episodes in Fig. 19(a). The fourth plot shows the robot coordinates x,y over time in
the environment. The gray vertical lines delimit different episodes. These plots were made disregarding the initial timesteps where the temporary stimulus is
given, i.e., those initial timesteps were removed. The PC 3 encodes information used to follow the correct trajectory (left or right), thus forming a short-term
memory responsible for holding the initial stimulus. (c) Sub-space attractors in the reduced dynamical system space for left and right navigation trajectories.
The plot shows a 3D state space of the principal components, where gray and black lines represent different (left and right) trajectories in the environment,
which are dependent on the previously received transient external stimulus.

behaviors form spatial attractors since they tend to follow

cyclic sensory-motor patterns in space in static environments.

In the dynamical system space of the reservoir, sub-space at-

tractors are formed resulting from the sensory-motor coupling

which is learned with data collected using the two primitive be-

haviors. In other words, the reservoir should learn to reproduce

the same context-dependent sensory-motor coupling, where

each context transition (entering a room through a specific

door) causes a change in the sensory-motor coupling (or

navigation attractor). As the reservoir-based navigation system

is tightly coupled with the environment, spatial navigation

attractors once projected into the dynamical system space

can be seen as sub-space attractors shifted by internal and/or

external context switches. Fig. 21 shows the corresponding left

and right sub-space attractors in a simplified bi-dimensional

dynamical system space for the sequence of spatial navigation

attractors shown in Fig. 20. Starting at room 1, the robot gets

an external input for the goal destination, indicated by the

transition given by the dashed arrows, and performs a series

of primitive behaviors which are fired by internal transitions,

represented by solid arrows, which ultimately lead to the final

destination. For instance, the transition r.2 g.5 signals that the

robot entered room 2 from room 1 while its destination (goal)

is room 5. These internal transitions will be modeled by a lo-

calization reservoir, which predicts the current and previously

visited room. The navigation reservoir models the sensory-

motor coupling given by navigation attractors, whose operation

is modified by the guidance of the localization reservoir. These

two RC networks form an hierarchical architecture described

in the following section.

B. Hierarchical RC Architecture

The Hierarchical Reservoir Computing (HRC) controller is

composed of two RC networks or modules: the localization

and the navigation modules (see Fig. 22). It is relevant to

observe that the localization reservoir operates at a much

slower timescale than the navigation reservoir since transitions

between rooms are very sporadical, requiring a reservoir

with slow dynamics (achieved by using a low leak rate α)

when compared to the required quick reaction of reservoirs

implementing navigation behaviors.

The learning process is divided in two stages:

1) The localization module is trained with examples of

robot trajectories to detect the current and previously

visited robot room using the controller described in last

section.

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 14

1 2

3

4

56

left

attractor

right

attractor

left

attractor

right

attractor

goal 6

goal 5

goal 4

left

attractor

start

Fig. 20. Example of goal-directed navigation as a sequence of reactive
navigation attractors or behaviors: left attractor and right attractor. The
plot shows an hypothetical environment with 6 rooms and robot trajectories
represented by solid and dashed lines, with arrows indicating the orientation
of the robot. The two simple reactive behaviors, i.e., left and right attractors,
lead the robot to different paths in a room. Three different trajectories leading
to goals 4, 5 and 6 are shown in the environment. For instance, the mobile
robot reaches goal 5, starting at room 1 and choosing: right attractor, left
attractor and left attractor. Examples of routes like these are generated for the
imitation learning process.

right
goal 4/5

left

r.2 g.5

rightr.2 g.4

start
room 1

left/right

left

r.3 g.5
left

goal 6

at room 6

at room 4

at room 5

Fig. 21. Simplistic view of navigation attractors in bi-dimensional dynamical
system space corresponding to the routes to goals 4, 5 and 6 shown in Fig. 20.
The circle represents the starting position of the robot, which can be in
left or right attractor. Dashed lines represent transitions between sub-space
attractors in the dynamical system space given by external input channels,
while solid lines indicate transitions given by internal hidden activity, resulting
from the internal predictions of the current and possibly the previously visited
location, for instance (the transition r.2 g.4 is an abbreviation of room 2 and
goal 4, i.e., the robot is located at intermediate room 2, with room 4 as
final destination). The goal rooms are reached after a sequence of sub-space
attractors, representing simple reactive behaviors, has been performed.

2) Then, the navigation module is trained with new exam-

ples of robot trajectories, but now using the prediction

of the trained localization module as input.

By rewriting equations (1) and (2) for the localization

module, we get:

xloc[n+1] = (1−αloc)xloc[n]+αloc f ((Wr
i locudist[n]+ (16)

Wr
r locx[n]+Wr

b loc)),

yc[n+1] = g(Wout
c xloc[n+1]), (17)

yp[n+1] = g(Wout
p xloc[n+1]), (18)

where yc and yp are vectors of size nl representing the pre-

dicted current and previous robot locations, respectively; nl is

the number of locations or rooms in the environment and g(x)

localization

reservoir

goal

room

distance

sensors

current

room

previous

room

navigation

reservoir

motor

actuators

"slow"

"fast"

predictions

STAGE 1
Train this module

STAGE 2
Train this module

Fig. 22. Hierarchical architecture with localization and navigation modules.
The navigation and localization reservoirs are randomly generated recurrent
networks which are not trained, but left fixed. Trainable components (or
weights) are shown in dashed lines. The sensory input feeds both reservoirs,
being mapped to a high-dimensional space, where learning occurs. The
navigation reservoir receives input also from the localization module and the
target location and outputs the desired motor actuators. Stage 2 trains the
navigation module using the predictions given by the localization module,
trained in Stage 1.

is a winner-take-all function which gives +1 for the highest

input and -1 otherwise. The other parameters and variables

have the same meaning as the ones in Section III-A1, but

have new subscripts for identifying the localization reservoir.

Analogously, the equations for the navigation module are

as follows:

xnav[n+1] = (1−αnav)xnav[n]+αnav f ((Wr
i navumulti[n]

(19)

+Wr
r navx[n]+Wr

b nav)),

ynav[n+1] = g(Wout
navxnav[n+1]), (20)

where ynav is a vector with the speeds for the left and right

wheels of the robot; and umulti(t) is a concatenated input vector

consisting of the distance sensors, the current and previous

predicted locations, and the goal location

umulti(t) = [uT
dist(t)y

T
c (t)y

T
p (t)u

T
goal(t)]

T .

The weight matrices Wout
. in Equations (17), (18) and

(20) are trained using linear regression as explained in Sec-

tion III-A2. All other weight matrices connecting to the reser-

voir are randomly generated at the beginning of the experiment

and left fixed.

VII. EXPERIMENTS

The proposed HRC architecture was evaluated in two en-

vironments. Environment E4 is composed of three rooms

connected by a central corridor (see Fig. 23). A second,

larger environment E5 is made of 9 rooms with open doors

connecting them.

For the first environment, there are two training datasets,

one consisting of 500,000 samples (4 hours and a half of

simulation time) for training the localization module in a

first step and the other one consisting of 100,000 samples

for training the navigation reservoir in a second step. These

training datasets contain examples of trajectories of a robot

continuously going from an initial room to a target room (see

Fig. 24(a) for an example) - there are 6 possible routes in

environment E4.

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 15

(a) E4 (b) E5

Fig. 23. Webots 3D environments used for experiments. (a) Environment
(165 cm x 150 cm) with 3 goal rooms and a connecting corridor. (b) Large
environment (300 cm x 300 cm) with 9 rooms (goal rooms are 1, 3, 7 or 9).
Dashed lines represent boundary limits between rooms.

(a) E4 (b) E5

Fig. 24. Samples of robot trajectories used as training examples for the HRC
controller. (a) Trajectory in E4. (b) Trajectory in E5.

The second environment E5 has 9 rooms and only 4 of them

will be used as starting and goal locations: rooms 1, 3, 7 and

9. In this way, starting in one of the 4 locations, there are 12

possible shortest (optimal) routes that the robot can follow.

The training datasets are also generated in the same way as

before, but now 500,000 samples represent only 32 routes,

which are less examples for training than for environment E4.

See Fig. 24(b) for an example of robot trajectories generated

with the supervisor controller.

VIII. SETTINGS

For both environments E4 and E5, the two datasets of

500,000 and 100,000 samples were downsampled by a factor

of dloc
t = 10 and dnav

t = 5 respectively (values empirically cho-

sen to give best performance), resulting in two new datasets of

50,000 and 20,000 samples for training the localization and the

navigation module, respectively. As the these sampling rates

are different from each other, signals from the localization

reservoir yc and yp are upsampled to the same sampling rate

of the navigation reservoir before they are used as input to

that module.

The parameter configuration is given in Table IV for envi-

ronment E4 and Table V for environment E5. Some of these

parameters are described in Section III-A. As it can be seen

from these tables, the experiments on both environments use

the same parameter configuration, except for the number of

TABLE IV
PARAMETER CONFIGURATION FOR ENVIRONMENT E4

Module Localization Navigation

Number of input channels ni = 8 ni = 19
Input connection fraction cr

i = 0.3 cr
i = 0.5

Input scaling υr
i = 1 υr

i = 1
Input downsampling dt = 10 dt = 5
Input to output connections yes yes

No bias

Reservoir size nr = 400 nr = 400
Reservoir connection fraction cr

r = 1 cr
r = 1

Spectral radius ρ(Wr
r) = 0.98 ρ(Wr

r) = 0.98
Leak rate α = 0.01 α = 1

Number of output channels no = 8 no = 2
Output feedback to reservoir no no

TABLE V
PARAMETER CONFIGURATION FOR ENVIRONMENT E5

Module Localization Navigation

Number of input channels ni = 8 ni = 30
Input connection fraction cr

i = 0.3 cr
i = 0.5

Input scaling υr
i = 1 υr

i = 1
Input downsampling dt = 10 dt = 5
Input to output connections yes yes

No bias

Reservoir size nr = 400 nr = 400
Reservoir connection fraction cr

r = 1 cr
r = 1

Spectral radius ρ(Wr
r) = 0.98 ρ(Wr

r) = 0.98
Leak rate α = 0.01 α = 1

Number of output channels no = 18 no = 2
Output feedback to reservoir no no

outputs no of the localization module, and the number of

inputs ni for the navigation reservoir. For environment E5,

nloc
o = 18 (9 units for previously visited room and 9 for the

current room) and nnav
i = 30 (18 from the localization module

+ 4 goal inputs + 8 distance sensors). The critical parameters

α and dt (shown in bold in the tables above) were found by

a grid search in the case of the localization module (offline

testing), and empirically in the case of the navigation module

(online testing by trial and error).

IX. RESULTS

The test data for environment E4 consists of 50,000 samples

downsampled to 5,000 timesteps. The system can correctly

detect the current robot room 97.5% of the time and the

previously visited room 97.8% of the time (this result is consis-

tent if different randomly generated reservoirs are considered).

Examples of the successful trajectories generated by the HRC

system after training are shown in Fig. 25. The robot starts

in one of the rooms in a position indicated by a circle and

navigates to the goal room (given as input) with the end

position represented by a small cross. The trajectory is drawn

such that its color incrementally changes from green to blue,

representing the progress of the navigation. In Fig. 25(c), it

is shown that the trained system can easily recover from a

kidnapping event. The robot started at room 1 and aimed at

room 3 as a goal. After reaching room 3, its goal changed

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 16

(a) (b)

(c)

Fig. 25. Trajectories for robot driven by the HRC controller in environment
E4. (a) Robot starts at room 1 and goes to room 3. (b) Robot starts at room
3 and goes to room 2. Starting and ending positions are marked with a circle
and a cross, respectively. (c) The robot drives from room 1 to goal room 3.
In room 3, its goal changes back to room 1, but it is kidnapped to room 2
after few timesteps. The trajectory shows that it recovered nicely from the
kidnapping once it drove directly back to room 1.

back to room 1, but few timesteps later it was kidnapped to

room 2. It is possible to see that although it was displaced to

another room, the robot was able to drive successfully to its

destination (goal room 1), showing that it correctly recognizes

the room the robot is located at, which in turn, affects

the operation mode of the sensory-motor coupling of the

navigation reservoir. This result is consistent across multiple

trials and experiments. In 63 routes that were evaluated, the

HRC controller has been able to successfully drive the robot

to the destination room in all cases without any collision.

The localization performance on test data for environment

E5 is shown in Fig. 26(a). The system can detect the current

and previously visited room 96.33% and 93.63% of the time,

respectively. An example of a successful trajectory in environ-

ment E5 is shown in Fig. 27(a). The robot, driven by the HRC

controller, starts at room 7 and reaches room 1 successfully.

In 15 out of 23 runs, the robot was able to follow the optimal

(shortest) path to its goal. In all 23 runs it was able to complete

the task. Task completion means that the robot reaches the

goal location, being acceptable that during navigation it takes

a wrong decision and then goes back to the correct path (see

Fig. 27(b) for an example). This also shows that the HRC

controller is robust to noise and unpredictable situations since

it is able to reach the destination even though the robot looses

itself for a moment when it mistakenly enters a room outside

the shortest path. A summary of the experimental results is

given in Table VI.

It is important to observe that most of the errors of the

localization module are made at the transitions between one

room and the following one. These errors represent a tem-

porary confusion, which is better than a permanent mistake.

0 1000 2000 3000 4000 5000

1

2

3

4

5

6

7

8

9

Timesteps (x 10)

R
o

o
m

(a) E5 - current room

0 1000 2000 3000 4000 5000

1

2

3

4

5

6

7

8

9

Timesteps (x 10)

R
o

o
m

(b) E5 - previous room

Fig. 26. Performance results of the localization module in environment E5.
Predicted locations are represented by black points whereas solid grey lines
are the true robot location. Black crosses represent mistakes.

TABLE VI
PERFORMANCE RESULTS IN NUMBER OF TRAJECTORIES

Shortest Path Task completion

Environment E4 63 out of 63 (100%) 100%
Environment E5 15 out of 23 (65%). 100%

Although navigation does not start in intermediate rooms in

environment E5 during testing, it is expected that the robot can

reach any goal location regardless of its initial position as long

as the same sub-route appears during training. Generalization

has been tested to the extent of the kidnapping event. Future

work should confirm that the trained system can avoid dynamic

unseen obstacles during testing while reaching the desired

goal locations. This generalization capability is expected to

work with the proposed architecture once it has been shown in

Section IV that reservoir architectures can learn and generalize

obstacle avoidance behaviors.

X. CONCLUSION

In this paper, three approaches have been presented on

learning navigation behaviors for small mobile robots. It is

assumed that these robots have only a few (from 8 to 17)

noisy distance sensors for navigation, which could facilitate

the application of these methods to commercial products in

the field of service robotics.

The common aspects for all approaches are mainly two-

fold: they use Reservoir Computing networks for efficient

recurrent neural network training, where the reservoir (an

RNN) has fixed weights while only a readout output layer is

trained; they are based on the concept of navigation attractors

which correspond to reactive behaviors that can be embedded

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 17

(a) Start 7 - Destination 1

(b) Start 9 - Destination 1

(c) Start 1 - Destination 3 and Start 3 - Destination
9

Fig. 27. Trajectories for robot driven by the HRC controller in environment
E5. Starting and ending positions are marked with a circle and a cross,
respectively. (a) Starting at room 7 and going to target room 1 via rooms
(8 → 5 → 4) (optimal path). (b) Starting at room 9 and going to target room
1 via rooms (8 → 7 → 8 → 5 → 4) (task completion). (c) Two routes: Starting
at room 1 and going to target room 3 via room 2; and starting at room 3 and
going to target room 9 via room 6.

into a dynamic system space (reservoir space) through robot-

environment coupling after training.

The three approaches differ in two aspects: while the first

and third approaches are based on a supervised learning

framework for modeling directly the desired sensory-motor

coupling, the second approach learns behaviors iteratively in a

reinforcement learning way by modeling the state-action value

function; whereas the first and second approaches model and

discriminate behaviors by the use of an external binary input

channel and a single RC network, the third approach makes

use of an hierarchical structure in which hidden units predict

contextual switches responsible for guiding the execution of

reactive behaviors.

In summary, this work shows how an RC network can model

increasingly complex behaviors with single and hierarchical

networks, by either showing examples of behaviors or making

use of rewards in a trial and error process. The proposed RC

framework is based on the notion of sub-space attractors,

which can be viewed as the projection of the reactive behaviors

from the sensory space to the dynamic reservoir space. This

projection enables the learning of multiple behaviors since the

high-dimensional space of the reservoir makes possible their

linear discrimination.

There are several research directions to be explored in

the future. In the context of animal spatial navigation, the

hierarchical architecture shown in this work could be used to

generate future possible trajectories according to the selected

behavior (as an extension to [51]), known as planning in the

robotics literature, and as mental simulation in cognitive sci-

ence [52], [53]. By examining all possible future routes (based

on past experiences), the one that leads to a reward could then

be chosen to be executed. A second research direction is to

automate the segmentation of complex behaviors into a set of

smaller and basic reactive behaviors (e.g., as motor primitives)

which, in turn, could be sequenced to be executed in a

hierarchical architecture such as the one presented in this work.

However, instead of separating segmentation and learning

architecture, they could be merged into an architecture which

autonomously segment the complex behaviors into simpler

ones as well as learns to switch from one behavior to the next

one just by demonstration of the complex behavior. Similar

works in literature which implement this type of segmentation

are [54], [55]. Extensions for the second approach (Sec. V)

include the generation of more complex behaviors such as

those with more longer-term temporal dependencies and goal-

directed navigation in larger room-based environments. Ad-

ditionally, the supervised learning of spatial features in the

hierarchical architecture could be replaced by an unsupervised

method such as the one proposed in [56], such that no manual

labeling of location data is necessary.

ACKNOWLEDGMENT

The authors gratefully acknowledge the contributions of

Dries Van Puymbroeck and Stefan Depeweg to the experi-

ments in this paper.

REFERENCES

[1] R. Brooks, “New approaches to robotics,” Science, vol. 253, no. 5025,
pp. 1227–1232, 1991.

[2] R. Arkin, Behavior-Based Robotics. Cambridge, MA: The MIT Press,
1998.

[3] M. Wilson, “Six views of embodied cognition,” Psychonomic Bulletin

& Review, vol. 9, no. 4, pp. 625–636, 2002.
[4] P. J. Werbos, “Backpropagation through time: what it does and how to

do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.
[5] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “An

experimental unification of reservoir computing methods,” Neural Net-

works, vol. 20, no. 3, pp. 391–403, 2007.
[6] D. Buonomano and W. Maass, “State-dependent computations: Spa-

tiotemporal processing in cortical networks,” Nature Reviews Neuro-

science, vol. 10, no. 2, pp. 113–125, 2009.
[7] W. Maass, T. Natschläger, and H. Markram, “Real-time computing

without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 18

[8] T. Yamazaki and S. Tanaka, “The cerebellum as a liquid state machine,”
Neural Networks, vol. 20, no. 3, pp. 290–297, 2007.

[9] H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless telecommunication,” Science, vol.
304, no. 5667, pp. 78–80, Apr. 2004.

[10] T. Waegeman, M. Hermans, and B. Schrauwen, “MACOP modular
architecture with control primitives,” Frontiers in Computational

Neuroscience, vol. 7, no. 99, pp. 1–13, 2013.

[11] C. Emmerich, R. F. Reinhart, and J. J. Steil, “Multi-
directional continuous association with input-driven neural dynamics,”
Neurocomputing, vol. 112, no. 18, pp. 47–57, 2013.

[12] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen,
M. Haelterman, and S. Massar, “Optoelectronic reservoir computing,”
Scientific Reports, vol. 2, no. 287, pp. 1–6, 2012.

[13] F. Triefenbach, A. Jalalvand, K. Demuynck, and J.-P. Martens, “Acoustic
modeling with hierarchical reservoirs,” IEEE Trans. Audio, Speech, and

Language Processing, vol. 21, no. 11, pp. 2439–2450, Nov. 2013.

[14] M. Hermans and B. Schrauwen, “Recurrent kernel machines: computing
with infinite echo state networks,” Neural Computation, vol. 24, no. 1,
pp. 104–133, 2012.

[15] E. A. Antonelo, B. Schrauwen, and D. Stroobandt, “Modeling multiple
autonomous robot behaviors and behavior switching with a single
reservoir computing network,” in Proceedings of the IEEE International

Conference on Systems, Man and Cybernetics, Singapore, Oct. 2008,
pp. 1843–1848.

[16] E. A. Antonelo, S. Depeweg, and B. Schrauwen, “Learning navigation
attractors for mobile robots with reinforcement learning and reservoir
computing,” in Proceedings of the X Brazilian Congress on Computa-

tional Intelligence (CBIC), Fortaleza, Brazil, Nov. 2011.

[17] E. A. Antonelo and B. Schrauwen, “Supervised learning of internal
models for autonomous goal-oriented robot navigation using reservoir
computing,” in Proceedings of the IEEE International Conference on

Robotics and Automation, Anchorage, AK, May 2010, pp. 2959–2964.

[18] E. A. Antonelo, B. Schrauwen, and D. Stroobandt, “Event detection and
localization for small mobile robots using reservoir computing,” Neural

Networks, vol. 21, no. 6, pp. 862–871, 2008.

[19] J. Tani, “Model-based learning for mobile robot navigation from the
dynamical systems perspective,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol. 26, no. 3, pp. 421–436, Jun.
1996.

[20] P. Verschure, B. Krose, and R. Pfeifer, “Distributed adaptive control:
The self-organization of structured behavior,” Robotics and Autonomous

Systems, vol. 9, no. 3, pp. 181–196, 1992.

[21] P. Verschure, T. Voegtlin, and R. Douglas, “Environmentally mediated
synergy between perception and behaviour in mobile robots,” Nature,
vol. 425, no. 6958, pp. 620–624, 2003.

[22] D. Floreano and F. Mondada, “Evolution of homing navigation in a real
mobile robot,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, vol. 26, no. 3, pp. 396–407, Jun. 1996.

[23] A. Arleo, F. Smeraldi, and W. Gerstner, “Cognitive navigation based
on nonuniform gabor space sampling, unsupervised growing networks,
and reinforcement learning,” IEEE Transactions on Neural Networks,
vol. 15, no. 3, pp. 639–652, May 2004.

[24] M. Milford, Robot Navigation from Nature: Simultaneous Localisation,

Mapping, and Path Planning Based on Hippocampal Models, ser.
Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg,
2008, vol. 41.

[25] T. Stroesslin, D. Sheynikhovich, R. Chavarriaga, and W. Gerstner,
“Robust self-localisation and navigation based on hippocampal place
cells,” Neural Networks, vol. 18, no. 9, pp. 1125–1140, 2005.

[26] R. Chavarriaga, T. Strsslin, D. Sheynikhovich, and W. Gerstner, “A
computational model of parallel navigation systems in rodents,” Neu-

roinformatics, vol. 3, no. 3, pp. 223–241, 2005.

[27] M. Franzius, H. Sprekeler, and L. Wiskott, “Slowness and sparseness
lead to place, head-direction, and spatial-view cells,” PLoS Computa-

tional Biology, vol. 3, no. 8, pp. 1605–1622, 2007.

[28] R. Wyss, P. Knig, and P. F. M. J. Verschure, “A model of the ventral
visual system based on temporal stability and local memory,” PLoS Biol,
vol. 4, no. 5, 2006.

[29] D. Filliat and J.-A. Meyer, “Map-based navigation in mobile robots: I.
a review of localization strategies,” Cognitive Systems Research, vol. 4,
no. 4, pp. 243–282, 2003.

[30] O. Trullier, S. I. Wiener, A. Berthoz, and J.-A. Meyer, “Biologically-
based artificial navigation systems: Review and prospects,” Progress in

Neurobiology, vol. 51, no. 5, pp. 483–544, Apr. 1997.

[31] C. Hartland and N. Bredeche, “Using Echo State Networks for Robot
Navigation Behavior Acquisition,” in Proc. of the IEEE Int. Conf. on

Robotics and Biomimetics, Sanya, China, Dec. 2007, pp. 201–206.

[32] M. Lukosevicius, H. Jaeger, and B. Schrauwen, “Reservoir computing
trends,” KI - Knstliche Intelligenz, vol. 26, no. 4, pp. 365–371, 2012.

[33] H. Jaeger, M. Lukosevicius, and D. Popovici, “Optimization and appli-
cations of echo state networks with leaky integrator neurons,” Neural

Networks, vol. 20, no. 3, pp. 335–352, Apr. 2007.

[34] B. Schrauwen, J. Defour, D. Verstraeten, and J. Van Campenhout, “The
introduction of time-scales in reservoir computing, applied to isolated
digits recognition,” in Proceedings of the 17th International Conference

on Artificial Neural Networks (ICANN 2007), ser. LNCS. Springer
Berlin Heidelberg, 2007, vol. 4668, pp. 471–479.

[35] B. Schrauwen, L. Busing, and R. Legenstein, “On Computational Power
and the Order-Chaos Phase Transition in Reservoir Computing,” in
Advances in Neural Information Processing Systems 21 (NIPS 2008).
Curran Associates, Inc., 2009, pp. 1425–1432.

[36] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory. Springer,
1998.

[37] H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks,” German National Research Center for Information
Technology, Tech. Rep. GMD Report 148, 2001.

[38] D. Verstraeten, J. Dambre, X. Dutoit, and B. Schrauwen, “Memory ver-
sus non-linearity in reservoirs,” in Proceedings of the IEEE International

Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, Jul.
2010, pp. 1–8.

[39] E. A. Antonelo, A.-J. Baerlvedt, T. Rognvaldsson, and M. Figueiredo,
“Modular neural network and classical reinforcement learning for au-
tonomous robot navigation: Inhibiting undesirable behaviors,” in Pro-

ceedings of the International Joint Conference on Neural Networks

(IJCNN), Vancouver, BC, Jul. 2006, pp. 498–505.

[40] F. Mondada, “E-puck education robot,” Sep. 2007, http://www.e-
puck.org/.

[41] H. Jaeger, “Short term memory in echo state networks,” German
National Research Center for Information Technology, Tech. Rep. GMD
Report 152, Mar. 2002.

[42] K. Bush, “An echo state model of non-markovian reinforcement learn-
ing,” Ph.D. dissertation, Colorado State University, Fort Collins, CO,
2008.

[43] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” J. Mach. Learn. Res., vol. 6, pp. 503–556, Apr.
2005.

[44] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, Mar. 1998.

[45] M. Riedmiller, “Neural fitted Q iteration first experiences with a data
efficient neural reinforcement learning method,” in Machine Learning:

ECML 2005, ser. LNCS, vol. 3720. Springer, 2005, pp. 317–328.

[46] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” J. Mach.

Learn. Res., vol. 4, pp. 1107–1149, Dec. 2003.

[47] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127,
Jun. 2002.

[48] F. Gomez and R. Mikkulainen, “Incremental evolution of complex
general behavior,” Adapt. Behav., vol. 5, no. 3-4, pp. 317–342, Jan.
1997.

[49] N. Hansen, “The CMA evolution strategy: A comparing review,” in
Towards a New Evolutionary Computation, ser. Studies in Fuzziness
and Soft Computing. Springer Berlin Heidelberg, 2006, vol. 192, pp.
75–102.

[50] V. Braitenberg, Vehicles: Experiments in synthetic psychology. MIT
Press, Jan. 1984.

[51] E. A. Antonelo, B. Schrauwen, and J. V. Campenhout, “Generative
modeling of autonomous robots and their environments using reservoir
computing,” Neural Processing Letters, vol. 26, no. 3, pp. 233–249,
2007.

[52] B. E. Pfeiffer and D. J. Foster, “Hippocampal place-cell sequences
depict future paths to remembered goals,” Nature, vol. 497, pp. 74–79,
May 2013.

[53] F. Chersi, F. Donnarumma, and G. Pezzulo, “Mental imagery in the
navigation domain: a computational model of sensory-motor simulation
mechanisms,” Adaptive Behavior, vol. 21, no. 4, pp. 251–262, Aug.
2013.

[54] J. Tani and S. Nolfi, “Learning to perceive the world as articulated: An
approach for hierarchical learning in sensory-motor systems,” Neural

Networks, vol. 12, no. 7-8, pp. 1131–1141, Oct. 1999.

DRAFT VERSION OF PAPER PUBLISHED IN IEEE TNNLS, 2014 19

[55] Y. Yamashita and J. Tani, “Emergence of functional hierarchy in
a multiple timescale neural network model: A humanoid robot
experiment,” PLoS Comput Biol, vol. 4, no. 11, pp. 1–18, Nov. 2008.

[56] E. A. Antonelo and B. Schrauwen, “Learning slow features with
reservoir computing for biologically-inspired robot localization,” Neural

Networks, vol. 25, no. 1, pp. 178–190, Jan. 2012.

