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Abstract�We present a Programming by Demonstration
(PbD) framework for generically extracting the relevant features
of a given task and for addressing the problem of generalizing the
acquired knowledge to different contexts. We validate the archi-
tecture through a series of experiments in which a human demon-
strator teaches a humanoid robot simple manipulatory tasks. A
probability based estimation of the relevance is suggested, by
�rst projecting the motion data onto a generic latent space using
Principal Component Analysis (PCA). The resulting signals were
then encoded using a mixture of Gaussian/Bernoulli distributions
(GMM/BMM). This provides a measure of the spatio-temporal
correlations across the different modalities collected from the
robot which can be used to determine a metric of the imitation
performance. The trajectories are then generalized using Gaus-
sian Mixture Regression (GMR). Finally, we analytically compute
the trajectory which optimizes the imitation metric and use this
to generalize the skill to different contexts.

Index Terms�Programming by Demonstration (PbD), Learn-
ing by Imitation, Human-Robot Interaction (HRI), human motion
subspace, Gaussian Mixture Model (GMM), metric of imitation.

I. INTRODUCTION

RECENT advances in robot Programming by Demonstra-
tion (PbD), also referred to as Learning by Imitation,

have identi�ed a number of key issues for ensuring a generic
approach to the transfer of skills across various agents and
situations. These have been formulated into a set of generic
questions, namely what-to-imitate, how-to-imitate, when-to-
imitate and who-to-imitate [1]. These questions were formu-
lated in response to the large body of work on PbD which
emphasized ad-hoc solutions to sequencing and decomposing
complex tasks into known sets of actions, performable by
both the demonstrator and the imitator [2], [3]. In contrast to
these other works the above four questions and their solutions
aim at being generic by making little or no assumption as
to the type of skills which may be transmitted. Recent work
on PbD addresses these questions at different levels [4]. One
approach aims at extracting and encoding low-level features,
e.g. primitives of motion in joint space [5]�[8], and makes
only weak assumptions as to the form of the primitives
or kernels used to encode the motion. By contrast, another
body of work stresses the need to introduce prior knowledge
as to the way information is encoded in order to achieve
fast and reusable learning in the imitation of higher-level
features, such as complete actions, tasks, and behaviors [9],
[10]. In our work we draw on aspects from both approaches.
Different demonstrations of the same task are performed
and a probabilistically based estimation of relevance is used

to extract the important aspects of the task. This method
provides a continuous representation of the constraints, given
by a time-dependent covariance matrix, which can be used to
decompose, generalize and reconstruct gestures. We then go on
to formally demonstrate how such a statistical representation
of motion can be combined with classical solutions to the
inverse kinematics problem, in order to �nd a controller which
optimally satis�es the constraints of the tasks and which is also
adaptive to various contexts. As humanoid robots are endowed
with a large number of sensors, the information contained
within the dataset collected by the robot is often redundant
and correlated. Through the use of linear decomposition and
mixture models, our system �nds a suitable representation of
the data for both continuous and binary data.

Similar work has previously attempted to �nd optimal
controllers which will reproduce a set of high-level constraints
[11]. However, in this previous work, the constraint is unique
during each portion of the task and is selected from a set
of prede�ned constraints (e.g. absolute/relative constraints on
position/orientation). In our work we use a similar paradigm,
but introduce a more generic framework which allows for the
extraction of a time-dependent continuous representation of
the constraints. To illustrate the advantage of our approach,
let us, for example, consider a basketball task. In this task
the ball is grasped and subsequently dropped into a basket.
The basket is �xed, however the position of the ball can vary
from one demonstration to the next. In measuring the absolute
position of the hand and its relative position to the ball, we
see that a relative position constraint is required to grasp the
ball, and that an absolute position constraint is required to
drop the ball into the basket. In this case, reproducing either a
relative or absolute constraint would not ful�ll the purpose of
the task. In contrast however, our model extracts a continuous
representation of the constraints with local information on
variations and correlations across the variables. It thus provides
a localized, ef�cient, and generic description of the important
aspects of the task.

II. THE EXPERIMENTAL SCENARIO
We present an architecture to generically solve the problem

of extracting the relevant features of a given task (what-to-
imitate issue), the problem of evaluating how the task should
be reproduced (metric of imitation), and the problem of �nding
the optimum controller with which to generalize the acquired
knowledge to various contexts (part of the how-to-imitate
issue) [1].
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TABLE I
NOTATIONS USED THROUGHOUT THIS WORK

n Number of demonstrations
T Number of time steps in a demonstration
N Number of data points in a training set
X Training set in the original data space
ξ Training set in the latent space
(d − 1) Spatial dimensionality in the original data space
(D − 1) Spatial dimensionality in the latent space
K Number of Gaussian components

Fig. 1. Left: Illustration of the what-to-imitate issue. Right: Illustration of
the how-to-imitate issue.

Fig. 1 illustrates these issues in a Chess Task. The task
consists of grabbing the White Queen and moving it two
squares forward. The picture on the left shows the path fol-
lowed by the robot's hand during training when starting from
two different initial locations. In order to extract the relevance
of each feature of the demonstration (i.e. to determine what-
to-imitate), the robot computes the spatio-temporal variations
and correlations across the variables. In the Chess Task, this
analysis will reveal weak correlations at the beginning of the
motion, as there are a large set of possible paths to reach for
the Queen depending on the hand's initial position. However,
the analysis will measure a strong spatio-temporal correlation
for grabbing the piece and pushing it towards the desired
location without hitting the other pieces on the chessboard.
Fig. 1 right illustrates the how-to-imitate issue. Once trained

to perform a task in a particular context, the robot must be
able to generalize and reproduce the same task in a different
context. In this example the robot must be able to grab and
move the White Queen two squares forward wherever it may
be on the chess board. Since the demonstrated joint angles
and hand path can be mutually exclusive in the imitator space
it is not possible to ful�ll both constraints at the same time.
Depending on the situation, the robot may have to �nd a very
different joint angle con�guration than the one demonstrated.
In order to do this, the robot computes the trajectory which
gives the optimal trade-off between satisfying the constraints
of the task (spatio-temporal correlations across the variables)
and its own body constraints.

III. SYSTEM ARCHITECTURE

Fig. 2 gives an overview of the input-output �ow through
the complete model. The model is composed of the following
modules: What-to-imitate: The signals are encoded in a three-
stage process. First, we determine the latent space of the
motion by linearly projecting the data onto a subspace of lower
dimensionality using Principal Component Analysis (PCA).

Second, we temporally align the signals using a Dynamic Time
Warping (DTW) approach. Third, we determine a probabilistic
representation of the data in the latent space by estimating
the optimal Gaussian Mixture Model (GMM) and Bernoulli
Mixture Model (BMM) with which to encode the motion.
Metric of imitation: A time-dependent similarity measure
is de�ned by taking into account the relative importance
of each variable and the dependencies across the variables
using the probabilistic representation of the data. This measure
evaluates the reproduction performance of a task. How-to-
imitate: We then compute the trajectory which optimizes the
metric for a certain context, given the robot's body constraints
(encapsulated in a Jacobian matrix), and the position of the
object(s) in the scene.
Next, we describe the computations carried out in each of

these modules. Section IV presents the acquisition of the data,
the reduction of dimensionality, the constraints on the dataset
and the temporal alignment of the signals. Section V presents
the probabilistic encoding in mixture models, the criterion used
to select the number of parameters and the regression process.
Section VI discusses the evaluation of imitation performance
and its derivation to �nd an optimal controller to reproduce
the task.

IV. DATA REPRESENTATION

A. Data acquisition
The experiments were conducted using a Fujitsu HOAP-

2 humanoid robot with 25 degrees of freedom (DOFs), of
which only the 11 DOFs of the arms and torso were required
in the experiments. The remaining DOFs of the legs were
set to a constant position, so as to support the robot in an
upright posture facing a table (see Fig. 1). The robot was
taught through kinesthetics, i.e. by the demonstrator moving its
two arms through each of the task's steps. To achieve this the
robot motors were set in a passive mode, whereby each limb
could be moved by the human demonstrator. The kinematics of
each joint motion were recorded at a rate of 1000Hz during the
demonstrations and were then re-sampled to a �xed number
of points. The robot is provided with motor encoders for every
DOF, except for the hands and the head actuators. Standing
behind the robot and moving simultaneously its two arms is
an ef�cient method to demonstrate a task to the robot using its
own body, see Fig. 3. We will use the term kinesthetic learning
throughout this paper to describe this data acquisition process.
The robot is not provided with force sensors. However, by
moving its limbs, the robot �senses� its own motion by
registering the joint angle data provided by the motor encoders.
The interaction when embodying the robot is more playful than
using a graphical simulation and it presents the advantage for
the user to implicitly feel the robot's limitations in its real-
world environment.
The initial position of the different objects are registered

by helping the robot to grasp and release the objects. It
provides an intuitive and user-friendly means of controlling
the robot without any need of speci�c sensory hardware to
control simultaneously multiple DOFs. In other work, we have
described the use of motion sensors attached to the body of
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Fig. 2. Information �ow across the complete system. The original demonstrated signals X are projected onto a latent space, with ξ the projected signals.
ξ̂ is the generalized version of the signals with associated time-dependent covariance matrix Σ̂s. P is the optional time-dependent priors matrix. J̃ is the
Jacobian matrix de�ned by the architecture of the robot. os is the initial position of the object. H is the imitation metric. X′ and ξ′ are the reproduced
signals in the original data space and latent space.

the demonstrator and the use of a stereoscopic vision system
to track the Cartesian position of objects based on color
segmentation [12]. The advantage of kinesthetic learning over
these systems is that it provides a fast and accurate way of
acquiring data, because it does not require to wear motion
sensors/colored patches and it does not require a calibration
phase. Finally, it simpli�es the correspondence problem. The
main disadvantage is that it remains dif�cult to generalize
to whole body motion, because it is not possible to control
simultaneously more degrees of freedom (e.g. moving the two
arms and two legs of the robots simultaneously). Another
disadvantage is that the demonstrated arm motions can appear
less human than if they were directly produced by the user's
body.

We make the assumption that the important sensory infor-
mation are coming from: 1) The posture of the robot, de�ned
by the joint angles provided by the motor encoders actuating
the upper-body part. 2) The absolute positions of the hands of
the robot in a Cartesian space, calculated by direct kinematics
using the joint angles. 3) The relative positions between the
hands and the initial position of the object, calculated from the
absolute initial position of the object and the absolute positions
of the hands in a Cartesian space. 4) The open/close status of
the two hands of the robot.

The hand-object directional vectors and the nonlinear com-
bination of the joint angles used to retrieve the position of the
hands are hard-coded instead of being extracted autonomously
by the system, which creates additional redundant information
in the dataset. As we are considering manipulation tasks, we
decided to include this information at hand in our system, since
the importance of this information (i.e. position of the hands
in a �xed system of reference) is quite straightforward and
meaningful, and remains general for a broad range of tasks.
This preprocessing reduces the number of examples needed to
extract the important aspects of the task, since it alleviates the
need of learning the direct kinematics of the robot. Note that
choosing initially the adequate task-dependent variables may
not be trivial for more complex paradigms. In the experiments
reported here, n demonstrations of a task are produced. For
each variable, the trajectory length is rescaled to a �xed value
T . The total number of observations is thus N = n × T .

Table I provides the notations used throughout this work.
The training set consists of N observations of the set of vari-
ables {θ, x, y, h}. Each variable consists of a 1-dimensional
temporal value (time elapsed from the beginning of the

demonstration) and (d − 1)-dimensional spatial values, i.e.
θ = {θt, θs}, x = {xt, xs}, y = {yt, ys} and h = {ht, hs}.
θs ∈ R

N×9 are the joint angles of the two arms and the
torso, xs ∈ R

N×6 are the Cartesian positions of the two
hands, ys ∈ R

N×6 represent the hands-object relationships
and hs ∈ R

N×2 represent the activities of the two hands,
i.e. binary signals de�ning the open/close status of the two
hands. For each of the n demonstrations, ys is de�ned by
the distance vector between the initial position of the object
os ∈ R

6 (the Cartesian position in R
3 is de�ned two times for

the two hands) and the position of the hands xs, i.e.:

ys,i,j = xs,i,j − os,i
∀i ∈ {1, . . . , n}
∀j ∈ {1, . . . , T}

(1)

The initial position of objects is registered by teaching
kinesthetically their position. The user grabs and releases the
different objects to register their position in a preliminary
phase.

B. Reduction of dimensionality
The collected data present redundancies for the majority of

the tasks. However, the degree and the type of redundancies
can differ from one task to another. We are looking for a
latent space onto which we project the original dataset to �nd
an optimal representation for the given task. For example, an
optimal latent space for a writing task is typically represented
as a projection of the 3-dimensional original Cartesian position
of the hand onto a 2-dimensional latent space de�ned by the
writing surface, while a waving motion is typically represented
as a combination of a single 1-dimensional cyclic pattern. Due
to the small number of examples provided, we are only con-
sidering a latent space extracted through a linear combination
of the data in the original data space. It is already a dif�cult
problem that can be resolved using various constraints.

Linear decomposition of the data can be formulated as a
Blind Source Separation (BSS) problem. Xs is assumed to be
composed of statistically independent signals. By observing
Xs, the goal is to estimate the mixing matrix A and recover
the original signals ξs. This goal can not be achieved in
practice, due to the lack of general measure of statistical
independence. However, other related criteria can be used
to approximate the decomposition. In [8], we compared the
use of Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) to reduce the dimensionality of
human motion data. We found that ICA presented very few



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, PART B 4

advantage over PCA, i.e. decorrelation was a suf�cient pre-
processing step. The uncorrelatedness assumption of PCA is
weaker than statistical independence, but it is still a suf�cient
constraint to decompose our human motion dataset. Thus,
we are using PCA that �nds analytically a mixing matrix A

projecting the dataset Xs onto uncorrelated components ξs,
with the criterion of preserving as much variance as possible.
PCA thus assumes that important information is contained in
the energy of the signals. We consider a linear transformation
from the original centered data space Xs ∈ {θs, xs, ys},
consisting of N data points of dimensionality (d − 1), to a
latent space ξs ∈ {ξθ

s , ξx
s , ξy

s}, consisting of N data points
and of dimensionality (D − 1):

Xs − X̄s = A ξs (2)

where X̄s ∈ R
N×(d−1) is a matrix containing the means of

the training set Xs for each dimension, and A ∈ {Aθ, Ax, Ay}
is the transformation matrix.

We apply PCA separately to the set of variables Xs ∈
{θs, xs, ys}, in order to identify an underlying uncorrelated
representation in each dataset. Using the covariance matrix
of the dataset Σ = E(XsX

T
s ) + X̄s, eigenvectors vi and

associated eigenvalues λi are computed, given Σvi = λivi,
∀i ∈ {1, . . . , (d−1)}. By keeping the �rst (D−1) eigencom-
ponents, we project the dataset onto their respective basis of
eigenvectors, and obtain ξs ∈ R

N×D−1. The mixing matrix
is then de�ned as A = {v1, v2, . . . , vD−1}, where (D − 1)
is the minimal number of eigenvectors needed to obtain a
�satisfying� representation of the original dataset, i.e. such that
the projection of the data onto the reduced set of eigenvectors
covers at least 98% of the data's spread:

∑(D−1)
i=1 λi > 0.98,

see Fig. 5.
For each demonstration, the velocities Ẋs in the data space

are estimated as:

Ẋs,i,j = Xs,i,j − Xs,i,j−1
∀i ∈ {1, . . . , n}
∀j ∈ {2, . . . , T}

(3)

The corresponding velocities ξ̇s in the latent space are
estimated as:

ξ̇s,i,j = ξs,i,j − ξs,i,j−1
∀i ∈ {1, . . . , n}
∀j ∈ {2, . . . , T}

(4)

Using (3) and (4), we can rewrite (2) for the velocities:

Ẋs = A ξ̇s (5)

C. Dataset constraints

External constraints are given to the system (see Fig. 2).
The Jacobian J̃ describes the architecture of the robot used to
reproduce the task, i.e. body constraints. The initial position
of the object os de�nes environmental constraints, when
reproducing the task in a new situation. Relations between
the different variables can be expressed with respect to these
external constraints.

1) Body constraints: θ̇s and ẋs are kinematically con-
strained, see e.g. [13]. We consider an iterative, locally linear
solution to the inverse kinematics problem. Using (5), inverse
kinematics can be expressed in the in the latent space:

ẋs = J̃(θ) θ̇s

⇔ Axξ̇x
s = J̃

(

Aθξθ
s + θ̄s

)

Aθ ξ̇θ
s

⇔ ξ̇x
s = J

(

ξθ
s

)

ξ̇θ
s (6)

with J
(

ξθ
s

)

= (Ax)−1J̃
(

Aθξθ
s + θ̄s

)

Aθ

where (Ax)−1 is the pseudo-inverse of Ax, J̃ is the Jacobian
in the original data space, and J is the Jacobian in the latent
space.

2) Environmental constraints: Relation (1) can be ex-
pressed in terms of velocities, and re-written in the latent
space, providing a constraint between ξ̇x

s and ξ̇y
s :

ẏs = ẋs − ȯs

⇔ Ay ξ̇y
s = Axξ̇x

s − ȯs

⇔ ξ̇y
s = Az ξ̇x

s − (Ay)−1ȯs (7)
with Az = (Ay)−1Ax

where ȯs is the initial velocity of objects (null in our experi-
ments) and (Ay)−1 is the pseudo-inverse of Ay .

D. Temporal alignment of the signals
In our previous work, Hidden Markov Models (HMMs) were

used to encapsulate the temporal variations of the signals,
previously encoded in Gaussian Mixture Models (GMMs)
[14]. The aim of this method was to combine the temporal
alignment properties of HMM with the regression capabilities
of a static GMM encoding. However, the temporal information
encoded in the two models was redundant, modelled as tran-
sition probabilities in the HMM, and as an additional variable
in the GMM. In HMM, multivariate Gaussians are modelling
local portions of the signals. By probabilistically encoding the
transitions between these Gaussians, HMMs can deal with
non-homogenous temporal deformation of the signals. They
so act as a method to temporally align different signals,
represented spatially by the Gaussians. HMM can be seen a
double stochastic process, described by transition probabilities
and output probabilities. Thus, retrieving a smooth trajectory
from the model (generalized version of the demonstrated
trajectories) is not an easy task. Previous work suggested an
�averaging� approach to retrieve human motion sequences
from HMM, see e.g. [15]. This approach did not provide sat-
isfying results with our dataset, essentially because it required
a very large amount of generated sequences (more than 1000)
to retrieve smooth trajectories that can be run on the robot.
Another side-effect of the averaging process is that it tends
to cut-off and smooth the local minima and maxima of the
signals, which can be essential to reproduce human gestures.
By encoding the temporal signals directly in a mixture of
Gaussians, i.e. considering the temporal component as an
additional dimension, it is possible to retrieve analytically a
smooth signal through regression. To do so, each time-step
is considered as an input query point, and an estimation of
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the output for each dimension is found by regression. The
clear advantage of Gaussian Mixture Regression (GMR) over a
stochastic retrieval process is that it provides a fast and analytic
way to reconstruct the �best� sequence from a Gaussian
model.

In the work presented here, temporal alignment of the
signals is performed by a pattern-based approach used as a
pre-processing step. It provides a more coherent framework,
allowing temporal distortion between different examples and
providing a simple and unique description of the sequential
information contained in the data. Dynamic Time Warping
(DTW) is used as a template matching pre-processing step to
temporally align the signals, see e.g. [16]. Being much simpler,
training of the DTW carries a small computational cost bene�t.
The drawback is that recognition under this system requires a
large number of distance computations.

Regression using GMMs offers a way of extracting, from a
data set, a single generalized signal made up from the set of
signals used to train the model. The signal is not part of the
dataset, but instead encapsulates all of its essential features.
Gaussian Mixture Regression (GMR) treats the temporal in-
formation and spatial components of the signal indifferently
in the �tting of multivariate Gaussians. This method can then
perform poorly when the signal has strong non-homogeneous
time distortions. We thus explore the use of DTW as a pre-
processing step to improve the quality of the regression, after
encoding the aligned signals with GMM. DTW is sometimes
considered as a weaker method than HMM, but it does have
the advantage of being simple and robust, and can be used
conjointly with GMR. DTW �nds a non-linear alignment
which minimizes the error between the signals and reference
signal. A distance table is �rst built and a DTW path is
searched by a dynamic programming approach through the
table, with slope limits to prevent degenerate warps. Here,
to improve the computational ef�ciency, the alignment is
performed in the latent space, which is usually of lower
dimensionality than the original data space.

Let us consider two multivariate signals ξA
s and ξB

s of length
T . We de�ne the distance measure between two datapoints of
temporal index k1 and k2 by h(k1, k2) = ||ξA

s,k1
− ξB

s,k2
||. A

warping path S = {sl}
L
l=1 is de�ned by L elements sl =

{k1, k2}. The warping path is subject to several constraints.
Boundary conditions are given by s1 = {1, 1} and sK =
{T, T}. If sk = {a, b} and sk−1 = {a′, b′}, monotonicity is
given by a ≥ a′ and b ≥ b′, while continuity is de�ned by
a − a′ ≤ 1 and b − b′ ≤ 1. Dynamic programming is used to
minimize

∑L
l=1 sl, by evaluating iteratively:

γ(k1, k2) = h(k1, k2) + min{γ(k1−1, k2−1),

γ(k1−1, k2), γ(k1, k2−1)}

Global and local constraints are de�ned so as to reduce
the computational cost of the algorithm, and to limit the
permissible warping paths. Here, we experimentally �xed an
adjustment window condition and a slope constraint condition,
de�ning the maximum amount of warping allowed, as in [17].

V. MIXTURE MODELS

A probabilistic representation of the projected, temporally
aligned data ξj = {ξt,j , ξs,j} with ξt,j = Xt,j is used to
estimate the variations and correlations across the variables,
allowing a localized characterization of the different parts
of the gesture. Mixture modelling is a popular approach for
density approximation of continuous or binary data, see e.g.
[18]. It allows for �exibility by looking at an appropriate trade-
off between model complexity and variations of the available
training data. A mixture model of K components is de�ned
by a probability density function:

p (ξj) =

K
∑

k=1

p(k) p (ξj |k) (8)

where ξj is a datapoint, p(k) is the prior and p(ξj |k) the
conditional probability density function.

A. Gaussian Mixture Model (GMM)
Let us consider a dataset in the latent space ξj =

{ξt,j , ξs,j}
N
j=1. The dataset consists of N datapoints of dimen-

sionality D, taking into account the temporal information. The
dataset can be either joint angles, hand paths, or hands-object
distance vectors. The dataset is modelled by a mixture of K

Gaussians of dimensionality D. The parameters in (8) become:

p(k) = πk

p (ξj |k) = N (ξj ; µk, Σk) (9)

=
1

√

(2π)D|Σk|
e−

1

2 ((ξj−µk)T Σ−1

k
(ξj−µk))

where {πk, µk, Σk} are the parameters of the Gaussian com-
ponent k, de�ning respectively the prior, mean and covariance
matrix. Maximum Likelihood Estimation of the mixture param-
eters is performed iteratively using the standard Expectation-
Maximization (EM) algorithm [19]. EM is a simple local
search technique that guarantees monotone increase of the
likelihood of the training set during optimization. The algo-
rithm requires an initial estimate, and to avoid getting trapped
into a poor local minima a rough k-means clustering technique
is �rst applied to the data. The Gaussian parameters are then
derived from the clusters found by k-means.

B. Bernoulli Mixture Model (BMM)
To encode a set of (D − 1)-dimensional binary datapoint

hs,j = {hs,j,i}
D−1
i=1 in a probabilistic framework, a mixture of

multivariate Bernoulli distributions is used in a similar fashion
to the use of a mixture of multivariate Gaussian distributions
for continuous data, see e.g. [20]. The dependencies across
the binary data are captured thanks to the contribution of the
different components of the mixture.

A mixture of (D−1)-dimensional Bernoulli density function
component k, of parameters or prototype pk = {pk,i}

D−1
i=1 ,

with pk,i ∈ [0, 1], is de�ned by (8) and:

p(k) = πk

p (hs,j |k) = B (hs,j ; pk) =

D−1
∏

i=1

(pk,i)
hs,j,i(1 − pk,i)

1−hs,j,i
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Similarly to GMM, parameters {πk, pk} are estimated using
the EM-algorithm.

C. Model selection
A drawback of EM is that the optimal number of compo-

nents K in a model may not be known beforehand. A common
method consists of estimating multiple models with increasing
number of components, and selecting an optimum based on
some model selection criterion, see e.g. [21].

We therefore need to arrive at a trade-off between opti-
mizing the model's likelihood (a measure of how well the
model �ts the data) and minimizing the number of parameters
needed to encode the data. Different criterions have been pro-
posed: Cross validation, Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC) or Minimum Descrip-
tion Length (MDL) are commonly found in the literature.
Cross validation has the disadvantage to require additional
demonstrations to form a test set. We selected the Bayesian
Information Criterion (BIC) [22] that provided the most sat-
isfying results with our dataset. Multiple GMMs/BMMs are
then estimated and the BIC score is used to select the optimal
number of GMM/BMM components K:

SBIC = −L +
np

2
log(N)

where L =
∑N

j=1 log (p(ξj)) is the log-likelihood of the
model using the demonstrations as testing set, np is the number
of free parameters required for a mixture of K components,
i.e. np = (K − 1) + KD for a Bernoulli Mixture Model
and np = (K − 1) + K

(

D + 1
2D(D + 1)

)

for a Gaussian
Mixture Model with full covariance matrix. N is the number
of D-dimensional datapoints. The �rst term of the equation
measures how well the model �ts the data, while the second
term is a penalty factor which aims to minimize the number of
parameters. In our experiments we compute a set of candidate
GMMs/BMMs with up to 10 components and keep the model
with the minimum score, see Fig. 6. Several approaches exist
to optimize the model selection paradigm and the computa-
tional ef�ciency of the algorithms, but they are not discussed
here.

D. Gaussian Mixture Regression (GMR)
To reconstruct a general form for the signals we apply Gaus-

sian Mixture Regression (GMR) [23]. Consecutive temporal
values ξt are used as query points and the corresponding
spatial values ξ̂s are estimated through regression. For each
GMM, the temporal and spatial components (input and output
parameters) are separated, i.e. the mean and covariance matrix
of the Gaussian component k are de�ned by:

µk = {µt,k, µs,k} , Σk =

(

Σt,k Σts,k

Σst,k Σs,k

)

For each Gaussian component k, the conditional expectation
of ξs,k given ξt, and the estimated conditional covariance of
ξs,k given ξt are:

ξ̂s,k = µs,k + Σst,k(Σt,k)−1(ξt − µt,k)

Σ̂s,k = Σs,k − Σst,k(Σt,k)−1Σts,k (10)

ξ̂s,k and Σ̂s,k are mixed according to the probability that the
Gaussian component k ∈ {1, . . . ,K} has of being responsible
for ξt:

βk =
p(ξt|k)

∑K
i=1 p(ξt|i)

(11)

Using (10) and (11), for a mixture of K components,
the condition expectation of ξs given ξt, and the conditional
covariance of ξs given ξt are:

ξ̂s =

K
∑

k=1

βk ξ̂s,k , Σ̂s =

K
∑

k=1

β2
k Σ̂s,k

Thus, by evaluating {ξ̂s, Σ̂s} at different time steps ξt, a
generalized form of the motions ξ̂ = {ξt, ξ̂s} and associ-
ated covariance matrix are produced. The temporal interval
between two time steps can be directly related to the controller
requirements of the robot. Note that it is not equivalent
to taking the mean and variance of the data at each time
step, which would produce jerky trajectories and increase
dramatically the amount of parameters (the mean and variance
values would be kept in memory for each time step). With a
probabilistic model, only the means and covariance matrices
of the Gaussians are kept in memory.

VI. EVALUATION OF IMITATION PERFORMANCE

A. Weighted similarity measure
To measure the similarity between a candidate position ξs

and a desired position ξ̂s, both of dimensionality (D − 1), a
weighted Euclidean distance measure can be de�ned as:

D−1
∑

i=1

wi(ξs,i − ξ̂s,i)
2 = (ξs − ξ̂s)

T W (ξs − ξ̂s)

where W is a (D−1)×(D−1) time-dependent matrix. W can
be used as a diagonal matrix, with weights wi in the diagonal
de�ning the importance of the different variables. In the most
general case, a full covariance matrix is used to account for
the correlations across the different variables.

B. Metric of imitation
We proposed in [24] a general formalism for evaluating the

reproduction of a task. The generic similarity measure H takes
into account the variations of constraints and the dependencies
across the variables which have been learned over time. The
metric is continuous, positive, and can be estimated at any
point along the trajectory.

In the latent space, let {ξ̂θ
s , ξ̂x

s , ξ̂y
s} be, respectively, the

generalized joint angle trajectories, the generalized hand path
and the generalized hands-object distance vectors extracted
from the demonstrations. Let {ξθ

s , ξx
s , ξy

s} be the candidate
trajectories for reproducing the motion. The metric of imitation
performance (i.e. cost function for the task) H is given by:

H = (ξθ
s − ξ̂θ

s )T W θ (ξθ
s − ξ̂θ

s )

+ (ξx
s − ξ̂x

s )T W x (ξx
s − ξ̂x

s ) (12)
+ (ξy

s − ξ̂y
s )T W y (ξy

s − ξ̂y
s )
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We consider the additional variables c1, c2 and c3 de�ned by:
c1,i,j = ξ̂θ

s,i,j − ξθ
s,i,j−1

c2,i,j = ξ̂x
s,i,j − ξx

s,i,j−1

c3,i,j = ξ̂
y
s,i,j − ξ

y
s,i,j−1

∀i ∈ {1, . . . , n}
∀j ∈ {2, . . . , T}

and rewrite (12) as:
H = (ξ̇θ

s − c1)
T W θ (ξ̇θ

s − c1)

+ (ξ̇x
s − c2)

T W x (ξ̇x
s − c2) (13)

+ (ξ̇y
s − c3)

T W y (ξ̇y
s − c3)

C. Finding an optimal controller
The problem is now reduced to �nding a minimum of (13),

when subjected to the body constraint (6) and environmental
constraint (7). Since H is a quadratic function, the problem can
be solved analytically by Lagrange optimization. We de�ne the
Lagrangian as:

L(ξ̇θ
s , ξ̇x

s , ξ̇y
s , λ1, λ2) = H + λT

1 (ξ̇x
s − J ξ̇θ

s )

+ λT
2 (ξ̇y

s − Az ξ̇x
s + (Ay)−1ȯs)

where λ1 and λ2 are the vectors of associated Lagrange
multipliers. To solve ∇L = 0, we consider symmetric matrix
WT = W and derive respectively ∂L

∂ξ̇θ
s

= 0, ∂L

∂ξ̇x
s

= 0 and
∂L

∂ξ̇
y
s

= 0:

−2 W θ (ξ̇θ
s − c1) − JT λ1 = 0 (14)

−2 W x (ξ̇x
s − c2) + λ1 − (Az)T λ2 = 0 (15)
−2 W y (ξ̇y

s − c3) + λ2 = 0 (16)
Using (15) and (16), we �nd:

λ1 = 2 W x (ξ̇x
s − c2) + (Az)T 2 W y (ξ̇y

s − c3) (17)
Using (17) and (14), we �nd:

W θ (ξ̇θ
s − c1) + JT W x (ξ̇x

s − c2) +

JT (Az)T W y (ξ̇y
s − c3) = 0

Solving for ξ̇θ
s , we obtain:

ξ̇θ
s =

(

W θ + JT W xJ + (AzJ)T W y(AzJ)
)−1

×
(

W θ c1 + JT W x c2 + (AzJ)T W yc4

)

with c4 = (Ay)−1ȯs + c3

We can then compute iteratively the joint angle trajectories
with:

ξθ
s,i,j = ξθ

s,i,j−1 + ξ̇θ
s,i,j

∀i ∈ {1, . . . , n}
∀j ∈ {2, . . . , T}

The joint angle trajectories are �nally found using the
relation θs = Aθξθ

s + θ̄s.
In our model, W ∈ {W θ,W x,W y} are weighting matrices

which represent the time-varying constraints during the task.
The statistical variations and relations across the different
variables Σ̂s ∈ {Σ̂θ

s, Σ̂
x
s , Σ̂y

s} serve as a basis to represent
the constraints, i.e.:

W = (Σ̂s)
−1

Note that the current framework can be extended to other
loss functions, as long as these can be continuously differen-
tiable along the state variables.
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Fig. 5. Estimation of the number of components required to reduce the
dimensionality of the data space for the Bucket Task, using eigenvalues (solid
line for the joint angles dataset, dashed line for the hands paths dataset and
dash-dotted line for the hands-object distance vectors dataset). The point
corresponds to the number of dimensions retained to represent at least 98%
of the data variance.
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Fig. 6. Estimation of the number of Gaussian components required to model
the trajectories in the latent space for the Bucket Task (solid line for the joint
angles dataset, dashed line for the hands paths dataset and dash-dotted line
for the hands-object relationships dataset). Adding more Gaussian components
increases the log-likelihood, but also increases the number of parameters. The
BIC criterion de�nes a trade-off to select an optimal number of parameters.

VII. EXPERIMENTAL RESULTS

We conducted three experiments to demonstrate the validity
of our model for teaching a humanoid robot simple manipu-
latory tasks, see Fig. 3. Control affected only the eight DOFs
of the arms, the one DOF of the torso, and the two binary
commands to open and close the robot's hands. The robot
was shown the task 4 to 7 times by an expert user. Note that
the number of examples required for an ef�cient reproduction
of the task depends on the teaching ef�ciency of the user: an
expert teacher produces demonstrations that are exploring as
much as possible the variations allowed by the task, while a
naive user can demonstrate the task several times in the same
manner without fully exploiting the constraints required by
the task. Once trained, the robot was required to reproduce
each task under different constraints, by placing the object at
different locations in the robot's workspace. This procedure
aimed at demonstrating the robustness of the system when the
constraints were transposed to different locations within the
robot's workspace.

Fig. 4 shows an encoding example for the Bucket Task. By
observing the continuous description of the variations along
the trajectories, we see that the object-hands distance vectors
are highly constrained at time steps 30-50, when grabbing
and holding the bucket (i.e. relative constraint). The hands
paths are also highly constrained at the end of the motion.
The essential features of the task have thus been extracted

Fig. 7. Legend for Fig. 8-13.
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Fig. 3. Teaching through kinesthetics for the 3 experiments conducted. Chess Task: Grabbing and moving a chess piece two squares forward. Bucket Task:
Grabbing and bringing a bucket to a speci�c position. Sugar Task: Grabbing a piece of sugar and bringing it to the mouth, using either the right or left hand.
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Fig. 4. Probabilistic encoding for the Bucket Task. Left column: Generalization of the hands paths x ({x1, x2, x3} and {x4, x5, x6} represent respectively the
right/left hand paths), hands-object relationships y ({y1, y2, y3} and {y4, y5, y6} represent respectively the relationships for the right/left hand) and joint angle
trajectories θ (θ1 represents the torso joint angle, {θ2, . . . , θ5} and {θ6, . . . , θ9} represent respectively the right/left arm joint angles). The demonstrations are
represented in grey lines and the generalized signal reconstructed from the latent space is represented in bold line. Middle column: Reduction of dimensionality
and temporal alignment. The signals X are projected onto a latent space of lower dimensionality, and processed by DTW. The resulting signals ξ are encoded
in GMM, whose covariance matrix is represented by ellipses. Right column: Extraction of the constraints. The generalized version of the signals in the latent
space ξ̂ is represented in bold line, with the corresponding covariance information Σ̂s represented as an envelope around ξ̂. The �rst clear observation is
that the hands-object relationships are highly constrained when the user is grabbing the object at time steps 30-50, i.e. the generalized signal presents a
narrow envelope for each dimension. The second observation is that the generalized hands paths are highly constrained at the end of the motion, since the
ending-positions vary very little across the demonstrations (the bucket is always placed at a speci�c location after being grabbed).
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TABLE II
NUMBER OF PARAMETERS FOUND AUTOMATICALLY BY THE SYSTEM (SEE

TABLE I FOR THE NOTATIONS).

Data space Latent space
n T (d − 1) (D − 1) K

Chess Task θ 7 100 9 4 5
x 7 100 6 4 5
y 7 100 6 4 4
h 7 100 2 (2) 1

Bucket Task θ 7 100 9 5 4
x 7 100 6 4 7
y 7 100 6 4 6
h 7 100 2 (2) 1

Sugar Task - left θ 4 100 9 2 5
x 4 100 6 3 5
y 4 100 6 3 6
h 4 100 2 (2) 1

Sugar Task - right θ 4 100 9 2 6
x 4 100 6 3 6
y 4 100 6 3 6
h 4 100 2 (2) 1
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Fig. 8. Decomposition of the Chess Task, when reproducing the task with
an initial position of the object which is close to the generalized trajectories.
The hands paths have been tracked by a stereoscopic vision system.
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Fig. 9. Bottom left: Mean values taken by the cost function H for the Chess
Task, with a varying initial position of the chess piece on the board. 1,2,3:
Reproduction for the corresponding three locations on the map.

-100 -50 0 50 100 150

50

100

150

200

250

x1 [mm]

x 2 [m
m

]

1

Fig. 10. Decomposition of the Bucket Task, when reproducing the task with
an initial position of the object close to the generalized trajectories.
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Fig. 11. Bottom left: Mean values taken by the cost function H for the
Bucket Task with a varying initial position of the bucket on the table. 1,2,3:
Reproduction for the corresponding three locations on the map.

successfully in a continuous representation. The joint angle
trajectories can present some redundancies with the hands
paths but they still provide useful additional information. As
the robot's arms permit to position the hands in the space with
different joint con�gurations, an inverse kinematics problem
arises when hands paths must be reproduced. Adding the
constraint of matching the joint angles solution demonstrated
by the user to the inverse kinematics solution produces results
that are looking more natural. This process is also highly rel-
evant when considering different embodiments, e.g. different
segment lengths. In this condition, it is important to consider
what are the features that should be reproduced, i.e. joint
angles or hands paths, because they are not consistent for the
different embodiments.

Fig. 5 and 6 provide an example for the automatic selection
of the number of PCA/GMM components for the Bucket Task.
Results for the different tasks are provided in Table II. We see
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Fig. 12. Decomposition of the Sugar Task for the left hand, when reproducing
the task with an initial position of the object close to the generalized
trajectories.
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Fig. 13. Bottom left: Mean values taken by the cost function H for the
Sugar Task, with a variation in the initial position of the piece of sugar on
the box. We distinguish two different areas for the left and right arm. The
difference in size is due to the different variations used for the left and right
part. Bottom right: Selection of a left/right arm controller depending on the
value of H (black areas correspond to Hleft < Hright). 1,2,3,4: Reproduction
for the corresponding four locations on the map.

that the dimensionality of the latent space for the Chess Task
and Bucket Task are higher than for the Sugar Task, probably
due to the facts that both hands are used simultaneously in
these cases (for the Chess Task, the left hand is used to
bend over the table). For the Sugar Task, one hand is usually
motionless while the other is performing the task. The number
of Gaussian components are between 4 and 7. The number of
components for the binary signals h is always 1 (one hand or
two hands closed simultaneously).

The total number of parameters depends quadratically on the
dimensionality of the latent space and linearly on the number
of Gaussian components, i.e. the total number of parameters
used to encode the data are nPCA = (D − 1)(d − 1) and
nGMM = (K − 1) + K

(

D + 1
2D(D + 1)

)

.
Fig. 8-13 are using the same legend as that presented in

Fig. 7. Fig. 8 and 9 show the reproduced trajectories for the
Chess Task, depending on the initial position of the chess
piece. Knowing that the right shoulder position is {x1, x2} =
{100,−35}, we see on the map of Fig. 9 that the best location
to reproduce the motion is to initially place the chess piece in
front of the right arm, see inset (1). In inset (2) and (3), the
chess piece is placed initially at different positions unobserved
during the demonstrations.

Fig. 10 and 11 show the reproduced trajectories for the
Bucket Task, depending on the initial position of the bucket.
The optimal trajectory which satis�es the learned constraints
follows globally the demonstrated hands paths, still using the
demonstrated object-hands trajectories when approaching the
bucket.

Fig. 12 and 13 show the reproduced trajectories for the
Sugar Task, depending on the initial position of the piece of
sugar. In this task, a box is centered in front of the robot
and two different gestures are taught to the robot. Firstly the
robot is taught how to grasp with its right hand a piece of
sugar located at the far right on the top of the box. Then,
it is taught how to grasp with its left hand a piece of sugar
located at the far left on the top of the box. We compute an
optimal controller for both the left and right arms, evaluate
each controller with its respective metric, and select the best
controller to reproduce the task. We see in the bottom-right
inset of Fig. 13 that the limit between the left/right part is
clearly situated at x1 = 0 (i.e. on the symmetry axis of the
robot). Insets (3) and (4) of Fig. 13 correspond to an initial
position of the piece of sugar which differs from the initial
positions used during the demonstrations.

VIII. DISCUSSION

The imitation metric in our experiments is used to �nd a
solution that tries to match as best as possible the object-hands
relationships, the hands paths and the joint angle trajectories
used to produce these hands paths. Depending on the task,
these variables have different importance, and the different
levels of relevance are extracted by observation of the task
produced by a human expert. In a goal-directed framework,
these three variables have also different levels of relevance. If
an object is manipulated, the �rst variable shows the highest
importance. If there is no object in the scene and the hands
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paths follow an invariant pattern, the second variable domi-
nates. Reproducing the exact gesture is often less important for
manipulation tasks but can become highly relevant for motion
such as waving the hand, dancing, or knocking on a door.
Bekkering and colleagues have set up experiments to show that
imitation is goal-directed, using several gestures to reproduce
during an imitation game [25]. They suggested that the hands
paths and hands-object relationships have different levels of
importance, following a hierarchy of relevance. They also
suggested that the use of the different levels mainly depends
on the working memory capacities of the infants/adults. While
infants focus on a single level, adults use multiple levels
simultaneously with preferences for the levels of highest
relevance in the hierarchy. In previous work [12], we used a
similar paradigm by weighting the different levels of variables,
and showed how these priors can speed up the extraction of
the task constraints.
The presented system can deal with two types of generaliza-

tions: 1) By projecting the original data onto a latent space and
by encoding the resulting data in Gaussian Mixture Models
and Bernoulli Mixture Models, the system can generalize
over the variations in joint angles, hands paths, hands-object
relationships, and signals commanding the opening and closing
of the hands. 2) By extracting the variation and correlation
information and using this information to �nd a solution to
the inverse kinematics, the system is also able to generalize
over different situations, i.e. over different initial position of
the object. Note that the range of generalization permitted
for the initial position depends directly on the dimensionality
of the latent space obtained by the system. For example, if
the system detects that the hands are constrained to move an
object in a plane (2-dimensional hands paths latent space),
the system will not be able to generalize over initial position
of the object that is not in this plane. For small changes in
the initial position of the object between the demonstrations
and the reproduction the robot managed to correctly adapt its
motions. It reproduced the important qualitative features of
each task, namely grabbing and moving the chess piece with
a speci�c relative path, grabbing the bucket with two hands
and moving it to a speci�c location or grabbing the piece of
sugar and bringing it to its mouth with either left or right arm.
None of these high-level goals were explicitly represented in
the robot's control system, nevertheless they were correctly
extracted by our probabilistic system.
In the experiments reported here, we implicitly assumed that

kinematics information was suf�cient to describe the task and
that dynamics information was less important. This may not
always be true and certainly in some tasks the forces applied
to the object would be very important, see e.g [26]. However,
it is very likely that these processes are not learned through
imitation but rather through more generic motor learning
processes. The proposed system is open-loop and is aimed
at providing a solution to the reproduction of a task, which is
a generalization of the demonstrations produced. It restrains
the search space of the possible solutions that the robot can
use to achieve a task, and can be used co-jointly with other
systems to re�ne the solution. Our current work investigate the
use of this system to provide a solution to the reproduction of

a task, which is then used in a dynamical system achieving
stable solutions in case of perturbations [27].
In [28] and [29], we investigated the use of social cues to

extract information about the relevant features in the task, as
well as to guide the teaching scenario through communicative
gesture or speech. These social cues are aimed at understand-
ing the intent of the user and can be used and combined
differently, depending on the demonstrator's and imitator's
personalities. For humans, the combination of these cues
involves complex emotional and cultural interaction aspects.
Some of these hints are subtle and can involve misunderstand-
ing (e.g. facial expression), while others are more explicit
(e.g. speech). Depending on who they are interacting with,
humans naturally select the appropriate means by which to
transfer their intention (e.g. use of gestures with deaf people).
A humanoid robot also has its own particular sensory and
working memory capabilities. Actual humanoid robot sensors
are still not able to capture subtle social cues in the way
humans do. Thus, we suggest that one of the most robust and
appropriate ways of transferring information to the robot is
by using statistics and associated machine learning algorithms.
Learning of relationships and invariance across a set of sensory
data can be carried out quite ef�ciently by the robot. Compared
to humans, keeping track of a large amount of information is
not a bottleneck for the robot, due to its high working memory
capacity.

IX. CONCLUSION

We presented a method to: 1) extract the important features
of a task, where the important features consisted of spatio-
temporal correlations across a multivariate dataset, 2) to de-
termine a generic metric to evaluate the robot's imitative per-
formance, and, �nally, 3) to optimize the robot's reproduction
of the task, according to the metric of imitation performance
and when placed in a new context.
The method was validated in three experiments in which a

humanoid robot was taught simple manipulation tasks through
kinesthetics. Various types of regularities were extracted from
the demonstrated motions, de�ning time-varying constraints
that drive the reproduction of the motions. We showed that the
important features of the task were successfully reproduced by
the robot, and, this for different initial conditions.
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