
Machine Learning 4, 67-97, 1989
© 1989 Kluwer Academic Publishers--Manufactured in The Netherlands

On Learning Sets and Functions

B. K. NATARAJAN (NAT@CS.CMU.EDU)
The Robotics" Institute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Editor: Pat Langley

Keywords: Learning sets, learning functions, probabilistic analysis, connectionist networks.

Abstract. This paper presents some results on the probabilistic analysis of learning, illustrating the
applicability of these results to settings such as connectionist networks. In particular, it concerns the
learning of sets and functions flom examples and background information. After a formal statement
of the problem, some theorems are provided identifying the conditions necessary and sufficient for
efficient learning, with respect to measures of information complexity and computational complexity.
Intuitive interpretations of the definitions and theorems are provide&

1. Introduction

This paper concerns algorithms that learn sets and functions from examples. The

results presented in these papers appeared in preliminary form in Natarajan (1986,

1987, 1988b) and in Natarajan and Tadepalli (1988). Among others, the following

authors have reported related investigations: Angltiin (1986), Rivest and Schapire

(1987), Berman and Roos (1987), Laird (1987), Blumer, Ehrenfeucht, Haussler,

and Warmuth (1986), and Kearns, Li, Pitt, and Valiant (1987a). Although there

is some overlap of results between this paper and some of the aforementioned

papers, the results in this paper represent independent developments that often

favor simpler proof techniques.

Over the years, many papers in the literature have addressed the topic of concept

learning. These papers can be broadly classified into two categories: (1) the formal

work on inductive inference and, (2) the more empirical work in artificial intelli-

gence. (For an excellent review of the inductive inference literature, see Angluin

and Smith, 1983.) As it happened, the wide gap between the basic assumptions of

inductive inference on the one hand and the needs of the empiricists on the other

denied the formal work significant practical import. The most generous contribution

to this gap may have come from an emphasis on worst-case 1 analysis by the inductive

inference group.

More recently, Valiant (1984) introduced a formal framework for concept learn-

ing with a view towards probabilistic analysis. The framework is probabilistic in

that it only requires the learning agent to learn with high probability, and having

learned, to be correct with high probability. Furthermore, the teacher and the

examiner are the same entity, doing away with the worst-case hopelessness of

learning from one teacher and then having to face an unknown examiner with

68 B.K. NATARAJAN

leanings far divergent from the teacher. In some sense, this framework captures

the essence of the concept-learning problem faced by humans and hence is of

interest from both the theoretical and the practical viewpoint. The results in this

paper are based on Valiant's framework and its variants. In the main, we will

concentrate on the definitions and the intuition behind our theorems rather than

on the proofs and technicalities involved, in the belief that the former will hold

greater interest for the readers of this journal. However, in the interest of com-

pleteness, formal proofs are presented in appendices when warranted. Other au-

thors have presented formal results of a similar flavor in the AI literature, including

Rivest (1987), Angluin and Laird (1988), and Littlestone (1988).

We define a concept to be a subset of a universe of objects. (We will formalize

this later.) An example for a concept is an object from the universe together with

a label indicating whether or not the object belongs to the concept. If the object

belongs to the concept, the example is positive; otherwise, it is negative, The

primary aim of our study can be summarized as follows: suppose the learner were

required to learn an unknown concept from examples. If the learner knew nothing

a priori about the concept to be learned, then he can say nothing about objects

that he has not seen as examples. In other words, unless the concept is exhaustively

enumerated, the learner has little hope of learning the concept. On the other hand,

if the learner knows the unknown concept is, say, one of two predetermined

concepts, then a single well-chosen example would suffice. Thus the number of

examples the learner requires to learn a concept is intimately linked with what he

knows about the concept at the start of the learning process. Our question can be

stated thus: What is the quantitative relationship between the number of examples

required and the learner's a priori knowledge about a concept? We will attempt

to answer this question, although we must first expend much effort to make it

precise.

In Section 2 we give a formal definition of the learning framework. Specifically,

the framework concerns learning concepts defined on the strings of a finite alphabet.

In Section 3, we consider a simple and intuitive notion of the dimension of a space

of concepts. We then use this notion of dimensionality to give theorems that

quantitatively link the efficient learning of a space of concepts with the dimension

of the space. Section 4 concerns the time complexity of learning, characterizing

the class of spaces that can be learned efficiently. In Section 5, we discuss learning

functions as opposed to learning concepts or sets, and show that our development

of concept learning is smoothly extensible to this setting.

In Section 6, we modify our learning framework to permit the learner both

examples for the target concept and hints on it. For instance, when teaching a

concept in geometry, the teacher may present the learner with some basic theorems

in geometry, in addition to some examples for the concept. Our main result here

is a theorem that establishes the equivalence between this framework and the earlier

one; i.e,, with regard to information complexity, learning from examples and advice

is no more powerful than learning from examples alone. This equivalence does not

hold when we consider time complexity, as we can easily show that advice can

SETS AND FUNCTIONS 69

reduce the time complexity of learning substantially.

The results of Sections 2 through 6 concern functions and concepts on discrete

spaces--strings on the Boolean alphabet. In contrast, Section 7 concerns sets and

functions on continuous spaces. Blumer et al. (1986) use the notion of the Vapnik-

Chervonenkis dimension for sets on continuous spaces to obtain a learnability

theorem for concepts. We briefly review their results and then generalize the

Vapnik-Chervonenkis dimension to obtain a learnability theorem for functions on

continuous spaces.

The final section concerns connectionist networks. Specifically, we apply our

dimensionality theorem to show that such networks intrinsically represent spaces

of concepts that are of low dimension. We also point out that based on our results

of Section 4, it is unlikely that "linear threshold" networks can be efficiently

learned.

2. Preliminaries

We now describe our variant of the learning framework proposed by Valiant (1984).

We will call it Framework 1, to distinguish it from those that follow.

To us, a concept is simply a subset of the objects in a predefined universe. For

example, the concept of a chair is simply all objects in the world that we would

call chairs. Formally, we define concepts on strings, with the understanding that

these are symbolic representations for the objects in the universe of interest. Let

~* denote all strings on the binary alphabet 2~ = {0, 1}. A conceptf is any subset

of E*. Viewed another way, a concept is a Boolean-valued function f: 2;* --+ {0,

1}, where f(x) = 1 implies x is in the concept and f(x) = 0 otherwise. We will

understand a concept to mean a function or a set, relying on the context to make

the meaning clear.

An example for a concept is simply an object in the universe and an indication

of its classification with respect to the concept. If the object is a member of the

concept we call it a positive example, and if the object is not a member of the

concept, a negative example. Formally, an example for a concept f is a pair (x,

f(x)). If f(x) = 1, (x, f(x)) is a positive example, else it is a negative example.

Having defined what we mean by a concept and an example for it, we can define

the notion of "learning a concept from examples." Informally speaking, we are

concerned with the following problem: given some examples for an unknown con-

cept and some prior information on it, compute a good approximation for the

concept. Defined this way, concept learning is simply interpolation of an unknown

set from a given collection of data points. As in numerical interpolation, the number

of data points needed for a good approximation will depend on our prior infor-

m a t i o n - f o r instance, whether we know the unknown function to be a polynomial

of degree 3 or degree 5. We are interersted in a precise characterization of this

dependence in the context of concept learning. In order to proceed further, we

70 B.K. NATARAJAN

need to make precise our notions of "learning," "prior information," and "good

approximation," among others.

We now attempt to make precise the informal notion of "knowing something

about an unknown concept." For instance, when numerically interpolating an un-

known function through a given set of points, if we knew that the unknown function

was a polynomial of degree 10, we would have a good handle on the interpolation

task. What has our information done for us? It has served to rule out all functions

that are not polynomials of degree 10, so that we need not consider polynomials

of degree 20 or trigonometric functions. In some sense, prior knowledge allows us

to carve out a small space 2 of concepts around the unknown concept--the space

consisting of all the concepts on the universe that are consistent with the prior

knowledge. We call this the space of concepts corresponding to the prior knowledge.

Formally, a space of concepts F is any set of subsets of £*.

As a first attempt, we will measure the efficacy of prior knowledge and its effect

on the learning process by means of the properties of the space of concepts cor-

responding to it. Notice that a space of concepts has an identity independent of

the prior knowledge to which it corresponds. Henceforth, we will be concerned

only with spaces of concepts, although on occasion we will attempt to interpret

our results in the context of prior knowledge.

Next we formalize the notion of a learner. Let F be a space of concepts on Z*.

A learning algorithm for F is an algorithm that attempts to infer a concept from

examples for it. The learning algorithm has at its disposal a routine EXAMPLE,

which at each call produces an example for the concept to be learned. For any

concept f in F, the probability that a particular example (x, fix)) will be produced

at any call of EXAMPLE is P(x), where P is an arbitrary and unknown probability

distribution on £*. The choice of the distribution is independent of the concept f

to be learned. (For a discussion .of the intuitive significance of this probability

distribution, please see the Remark below,) After seeing some examples for the

unknown concept, the learning algorithm is to output the learned concept--hope-

fully a good approximation to the unknown concept. We will require that the

concept output by the learner be consistent with the prior knowledge and hence

must be in the space of concepts corresponding to the prior knowledge. One can

also explore learning models where this consistency requirement can be relaxed,

e.g., the notion of predictability as explored in Kearns et al. (1987a, 1987b),

Haussler, Littlestone and Warmuth (1988), and Pitt and Warmuth (1988).

Suppose that in a certain learning experiment the learner sees some examples

for a concept, and the length of the longest example seen is 55 characters. It might

be unreasonable to expect the learner to find an approximation to the unknown

concept that accurately classifies strings much longer than 55 characters. Hence,

we provide as input to the learner an integer n, with the expectation that the learner

will find an approximation to the concept that accurately classifies all strings of

length n or less. Furthermore, the examples provided to the learner will all be of

length at most n in that the probability distribution P is non-zero only on £" ,

SETS AND FUNCTIONS 71

where Z"- is the set of all strings as length n or less on £. In essence, we introduce

n as a parameter to the learning problem and study the asymptotic behaviors of

the learning algorithm as n is varied.

Since the examples provided to the learner are drawn at random, it is unrea-

sonable to expect the learner to learn 100% of the time or be 100% accurate.

Indeed, this might be possible only if the unknown concept is exhaustively enu-

merated, instead, in addition to the length parameter n, we provide as input to

the learner an error parameter h, with the expectation that the learner will learn

with probability (1 - 1/h) and that the learned approximation to the unknown

concept will correctly classify any string of length n or less with probability (1 -

1/h). In other words, the learner is to learn with confidence (1 - 1/h) and accuracy

(1 - 1/h). We note here that some authors choose to use distsinct parameters to

control the confidence and accuracy desired, e.g., Kearns et al. (1987b). We choose

to use a single parameter in the interest of simplicity, noting that our results carry

over to two distinct parameters.

Remark. In essence, the learner takes as input two integers n and h and is to

approximate the unknown concept on strings of length n or less. The learner can

call for examples for the concept to be learned, and these examples are chosen

according to an arbitrary and unknown probability distribution P over all strings

of length at most n. After seeing some number of examples, the learner outputs

an approximation to the unknown concept. The approximation is to be "good" in

the sense that with respect to P, with high probability the learned concept agrees

with the unknown concept on strings of length n or less. By high probability, we

mean probability (1 - 1/h).
The significance of the probability distribution is best explained as follows. Sup-

pose that the learner is trying to learn the concept of a sports car. He stands on a

street corner in Pittsburgh and has someone point out the sports cars as they pass

by. After a few days of such activity, the learner would have a reasonable idea of

the concept of a sports car in that he would be able to correctly classify most cars

in Pittsburgh. Here, the probability distribution P reflects the distribution of cars

in Pittsburgh, the learner sees examples drawn at random according to this distri-

bution, and his learned approximation is tested on the same distribution. The

learner has learned well if his approximation correctly classifies most of the cars

he sees, i.e., the probability that his approximation is incorrect is small. Of course,

it is likely that the approximation the learner obtained in Pittsburgh is a bad one

in Beverly Hills. But this does not reflect on the learner's ability to learn. A good

learner will learn an approximation that is good in Beverly Hills, if his examples

were picked from there as well.

In a different setting, suppose a student takes a course from Professor X. If the

student were a good one, he should be confident of passing a test in the course so

long as Professor X made up the test. On the other hand, the student can offer no

guarantees on his performance in a test set by Professor Y, whose leanings on the

72 B.K. NATARAJAN

same material could be far from those of Professor X. However, if Y taught the

course and set the test, the student should have no difficulty.

In this sense, the probability distribution P attempts to characterize the leanings

of the teacher, and a good learner will succeed with high probability for any teacher,

so long as the teacher and the examiner are the same entity. For additional dis-

cussion on the technical and philosophical ramifications of these assumptions, we

refer the reader to Valiant (1984). Also, while we allow the examples to be chosen

according to any probability distribution, one can consider fixing the distribution

to a known class, as in Benedeck and Itai (1988), and Natarajan (1988a). []

Recall that the learner must output an approximation to the unknown concept

and that this approximation must be in F, the space of concepts corresponding to

the prior knowledge. What is the form of this output? The answer to this question

depends on the focus of our inquiry, and we will consider two loci. The first inquires

into the number of examples required for learning, independent of the time needed

to process the examples. This is the information complexity of learning and will

be the subject of study of this and the following section. The second focus inquires

into the time required for learning, in the sense of the time required by the learning

algorithm to process the examples. This is the time complexity of learning and will

be the subject of later sections. In the student-teacher setting mentioned in the

above remark, the former inquires into the amount of student-teacher interaction

required for learning, whereas the latter inquires into the amount of homework

the student must do to process what he has seen in class. At any rate, the important

issue is that when we are interested only in the number of examples or the infor-

mation complexity of learning, the form of the learning algorithm's output is im-

material. We will simply assume that the algorithm's output is the name of the

concept in some predetermined naming system.

The number of examples the learner might require for length parameter n and

error parameter h can depend on n and h. The nature of this dependence determines

the difficulty of learning a given space of concepts. In general, if this relationship

is a small polynomial, we consider the learning task to be feasible. If the relationship

is super-polynomial, the number of examples required will be hopelessly large for

all but small values of n and h. With this in view, we will call a space of concepts

feasibly learnable if the relationship is polynomial.

Definition. Formally, a space of concepts F is feasibly learnable if there exists an
algorithm 3 A such that

(a) A takes as input two integers n and h, where n is the size parameter and h is

the error parameter.

(b) A makes polynomially few calls of EXAMPLE, polynomial in n and h.
EXAMPLE returns examples for some f ~ F, where the examples are chosen

randomly and independently according to an arbitrary and unknown probability

distribution P on ~"-.

SETS AND FUNCTIONS 73

(c) For all conceptsf E F and all probability distributions P on E"-, with probability

(t - l/h), A outputs a concept g E F such that

P(x) <- 1/h
xE/Zxg

where fag denotes the symmetric difference Or - g) u (g - f).

We have now made precise our notions of "learning," "prior knowledge," "good

approximation," and feasible learnability. In the following section we inquire into

the properties of the prior information (more precisely, of the space of concepts)

that will permit feasible learnability. This will directly address the question raised

in the introduction regarding the quantitative relationship between the number of

examples required for learning and the prior information.

3. D i m e n s i o n and learnabi l i ty

We now turn our attention to a measure of complexity for a space of concepts,

which is a rather well-known measure of information complexity.

Definition. Let F be a space of concepts and let f ~ F. The projection f,, of f on

E"- is simply the set of strings of length at most n in f, i.e., f,, = (f N E"-). Similarly,

the projection F, of the space F o n E" is given by F,, = {f,,If E F}. We call F,, the

n<subspace of F.

Definition. The dimension of subspace F,,, denoted by dim(F~) is defined by

dim(f,,) = log (lf.I).

We use the notation that for a set X, IX I denotes the cardinality, whereas for a

string x, Ixl denotes the string length.

Definition. Let d:N ~ N be a function of one variable, where N is the natural

numbers. The asymptotic dimension (or more simply the dimension) of a space of

concepts F is d(n) if dim(F,) is ®d(n), i.e., both O(d(n)) and f~(d(n)). More

precisely, the dimension of F is d(n) if there exists a constant c such that

V n : dim(F,) <- d(n) and

dim(F,) >_ cd(n) infinitely often.

We denote the asymptotic dimension of a space F by dim(F). We say a space F is

of polynomial dimension if the asymptotic dimension of F is a polynomial in n.

74 B.K. NATARAJAN

Example 1. For any natural number n, consider n Boolean variables al, a2

a,. A monotone monomial is a Boolean formula of the form

/~i~s al, where S _C {1, 2, . . . , n}.

In words, a monotone monomial is a formula consisting solely of the conjunction

of some subset of the variables a> a2 an. We can view a monotone monomial

f on n variables as a concept on ~;n as follows. Let each string x of length n

correspond to a truth assignment of the variables, so that the i ~h bit of x is the value

of ai. The concept defined by f is simply all strings of length n that satisfy f. This

is similar to our earlier discussion on the equivalence of Boolean-valued functions

and concepts. Now consider the space F,, of all such concepts on ~"-. What is the

dimension of this space? Clearly, there are only 2" distinct monotone monomials

on n variables, at most as many as there are subsets of the n variables, Hence the

dimension of Fn is log2(2 n) = n, and the asymptotic dimension of the space F of

all monotone monomial concepts on ~* is n. Since this is a polynomial in n, we

say it is a space of polynomial (in fact, linear) dimension. []

Hence, the dimension of a space of concepts is simply a measure of the variation

of the size of the space with string length. Intuitively, the notion of dimension

attempts to measure the size of the space as the complexity of the universe on

which the concepts are defined is increased.

We now explore the relationship between the dimension of a space of concepts

and its learnability. We first develop an interesting property of the dimension. In

particular, we will show that the dimension of a space is, in some sense, the number

of "degrees of freedom" of the space. (Hence the choice of the name dimension.)

Definition. Let F be a space of subsets of set X. We say that F shatters a set

S C_ X, if for every $1 C_ S, there exists f ~ F that separates $1 from the rest of S,

i.e., f N S = $1. To our knowledge, this notion was first introduced by Vapnik

and Chervonenkis (1971).

Example 2. Let F be the space of monotone monomial concepts as in Example

1. In particular, let n = 4. Then, the set S = {0111, 1011, 1101, 1110} is shattered

by F. To see this, pick any subset SI of S, say $1 = {0111, 1101}. If f is the set

determined by the formula a2/~ a4, then f ¢ F, and f O S = $I. Therefore, F

shatters S. []

Remark. The significance of the above definition is that if F shatters a set S of

strings, then each string x in S is independent of the others with respect to F, These

strings are independent in the sense that knowing whether or not x ~ F, for an

undetermined concept f E F, tells us nothing about the membership in f of any

other string in S. In fact, Vapnik and Chervonenkis define the dimension of a space

to be the size of the largest set shattered by it and this is the definition used by

Blumer et al. (1986). But then, it is often much simpler to estimate the cardinality

SETS AND FUNCTIONS 75

of a space than to estimate the size of the largest set shattered by it. For this reason,

we define the dimension of a space to be the logarithm of cardinality, and as we

will show shortly, the two definitions of dimension are closely related. []

We will now establish the relationship between our notion of dimension for a

space of concepts and the size of the largest set shattered by the space.

Lemma 1. If F,, is of dimension d, then Fn shatters a set of size ceiling(d/(n +
2)), where ceiling(r) is the smallest integer greater than r. Also, every set shattered

by F,, is of size at most d.

Proof. Given in the Appendix. []

Remark. The significance of Lemma 1 is that if the dimension of a space is d,

then there are at least d/(n + 2) independent strings. Hence, we can intuitively

argue that at least d/(n + 2) examples would be necessary to get a good approx-

imation of any concept in F. In fact, this argument is used formally in the proof

of Theorem 1 below.

Example 2 (continued). In Example 2, n = 4 and the dimension d = n = 4.

Therefore, ceiling(dl(n + 2)) = 1 and hence Lemma 1 requires the existence of

set of size 1 that is shattered. Note that this is a lower bound and larger sets might

well be shattered. Indeed the set S of Example 2 is of cardinality 4 and is shattered

by the monotone monomials. []

Lemma I is key to the main result of this section--a theorem relating learnability

and dimension. Blumer et al. (1986) and Rivest (1987) present independent de-

velopments of variants this theorem.

Theorem 1. A space of concepts F is feasibly learnable if and only if it is of

polynomial dimension.

Proof. We give an informal proof as follows.

(only if) Suppose that F were of dimension d(n). Then, by Lemma 1 there exists

a set of size O(d(n)/(n + 2)) that is shattered by/7,,. As mentioned, these strings

are mutually independent and hence it is not possible to predict the behavior of

an unknown concept on these strings from fewer than O(d(n)/(n + 2)) examples.

Hence, if d(n) were super-polynomial in n, polynomialty few examples would not

suffice for sufficiently large n. For a formal proof see Blumer et al. (1986) or

Natarajan (1988b).

(if) This direction of the proof follows from the claim below.

Claim. Let F be a space of concepts of dimension d(n). Then, there exists a

learning algorithm for F that calls for h(d(n) + log(h)) examples of input n, h.

76 B. K. NATARAJAN

Proof. We say a concept f is cons&tent with a set of examples S if for each

(x, y) in S, y = f(x). i.e., S is a set of examples for f. The following learning

algorithm satisfies the statement of the claim.

program learn;

input: integers n, h;

begin

call EXAMPLE h(d(n) + log(h)) times;

let S be the set of examples seen;

pick a concept f in F consistent with S;

output f

end

In words, the algorithm above simply calls for some number of examples and picks

any concept in F that is consistent with the examples thus obtained. (For this

reason, learning algorithms of this form are sometimes referred to as consistent

algorithms.) Although this is a simple strategy, it is provably good. A formal proof

that this algorithm indeed leai~ns F may be found in Blumer et al. (1986) or in

Natarajan (1986, 1988b). The latter uses a simple counting argument, while the

former uses the results of Vapnik and Chervonenkis (1971). []

To see the import of the above results, suppose the learner's prior knowledge

of an unknown concept carves a space of concepts F around the concept. Then the

number of examples necessary and sufficient to learn the concept is proportional

to the dimension of F. We illustrate this with an example.

Example 3. Consider the n boolean variables a~, a2 . . , an. Suppose we know

that the concept to be learned is a monotone monomial concept on these variables.

This tells us that the unknown concept is simply one in the space F of conjunctive

monomial concepts on the variables. As discussed in Example 1, the dimension of

this space is log(2") = n. To learn with confidence and accuracy (1 - 1/h), we

simply need to call for h(n + log(h)) examples and pick a monotone monomial

concept consistent with the examples we see. The following algorithm employs this

strategy. 4

program learnmonomial;

input: integers n, h;

begin

call for h(n + log(h)) examples;

let S be the examples seen;

• * - a l / k a 2 / ~ . . . am;
for each positive example (x, 1) in S do

for each ai do

if ai = 0 in x then delete ai from ~P.

SETS AND FUNCTIONS 77

od

od

output dO;

end

Notice that learnmonomial ignores negative examples. This is because it starts with

the most restrictive monotone monomia l - -a t /~ a 2 / ~ . . , a,,, and chips away at it

to accommodate the examples seen. If all the examples seen are negative, the

program outputs the monomial it started with, which will be approximately correct

with high probability. []

4. Time considerations in concept learning

Thus far, we have concerned ourselves with the information complexity of learning,

i.e., the number of examples required to learn. Another issue to be considered is

the time-complexity of learning, i.e., the time required to process the examples.

In order to permit interesting measures of time complexity, we must specify the

manner in which the learning algorithm identifies its approximation to the unknown

concept. In particular, we will require the learning algorithm to output a name for

its approximation in some predetermined naming scheme. To this end, we define

the notion of an index for a space of concepts.

In order for each concept in a space F to have a name of finite length, F would

have to be at most countably infinite. Assuming that the space F is countably

infinite, we define an index of F to be a function I:.F --> 2"=* such that

V f, g C F, f ¢ g implies I(f) N I(g) = Q.

For each f E F, I(f) is the set of indices for f.

Remark. A name for a concept is simply a string in ~*. The index function I

maps each concept in F to a set of names. This allows for the possibility of more

than one name for the same concept. []

We are primarily interested in spaces that can be learned efficiently, i.e., in time

polynomial in the input parameters n, h and in the length of the shortest index for

the concept to be learned. Analogous to our definition of learnability, we can now

define polynomial-time learnability. Essentially, a space of concepts is polynomial-

time learnable if it is feasibly learnable by a polynomial-time algorithm.

Definition. A space of concepts F is polynomial-time learnable in an index I if

there exists a deterministic 5 learning algorithm A such that

(a) A takes as input integers n and h.

78 B. K. N A T A R A J A N

(b) A runs in time polynomial in the error parameter h, the length parameter n

and in the length of the shortest index in I for the concept to be learned f. A

may make polynomially few calls of EXAMPLE, polynomial 6 in n and h.

E X A M P L E returns examples for some f in F, the examples being chosen

randomly according to an arbitrary and unknown probability distribution P on
~n .

(c) For all concepts f i n F and all probability distributions P on ~" , with probability

(1 - 1/h) the algorithm outputs an index ig ~ l(g) of a concept g in F such

that

e(x) <_ 1lb.
x~fAg

We are interested in identifying the class of pairs (F, /), where F is a space of

concepts and I is an index for it, such that F is polynomial-time learnable in I.

Notice that in the program learn given in the proof of Theorem 1, the only operation

that could be computationally time-consuming is that of picking a concept f in F

consistent with the set of examples seen. If we can ensure that this can be done

efficiently, then the learning algorithm would be provably efficient. To this end,

we define the following.

Definition. For a space of concepts F and index I, an ordering is a program that

(a) takes as input a set of examples S = {(Xl, yl), (x2, y2) , (xi, yi) • • • } such

that xr, x2, x3 E £*, and Yl, Y2, • • • E {0, 1}.

(b) produces as output an index in I of a concept f E F that is consistent with S,

if such exists; i.e., it outputs i s E l(f) for some f E F such that

v (x, y) s , y = f(x).

Remark. We use the term "ordering" to describe the above notion as one can

view it as a listing of the concepts in F indexed by sets of examples. The reader

might prefer other names, such as "hypothesis finder" or "concept-fitting algo-

ri thm." For instance, Rivest (1987) uses the term "identification" to refer to a

similar notion. []

Furthermore, if the ordering is deterministic and runs in time polynomial in the

length of its input and the length of the shortest such index, we say it is a polynomial-
time ordering and F is polynomial-time orderable in I. Note that we do not require

the ordering to output the shortest index, only that its running time be polynomial

in the length of the shortest index. Also, if the ordering is randomized and runs

in polynomial time, we say F is random polynomial-time orderable in I.

SETS AND FUNCTIONS 79

With these definitions in hand, we can state the following theorem.

Theorem 2. A space of concepts is polynomial-time learnable in an index i (1)

if it is of polynomial dimension and is polynomial-time orderable in I, and (2) only

if F is of polynomial dimension and is random polynomial time orderable in I.

Proof. (If) Let Q be a polynomial-time ordering for F in I. The following is a

polynomial time learning algorithm for F in I.

program learnfast;

input: n, h

begin

call EXAMPLE h(dim(Fn) + log(h)) times;

let S be the set of examples seen;

output Q(S);

end

Given Theorem 1, we know that learnfast learns F, and it only remains for us

bound its running time by a polynomial. Now, Q runs in time polynomial in the

size of its input and the length of the shortest index of any concept consistent with

S. Since the concept to be learned must be consistent with S, surely Q runs in time

polynomial in n, h, and in the length of the shortest index of the concept to be

learned. Hence, learnfast runs in time polynomial in n, h, and in the length of the

shortest index for the concept to be learned. Therefore, F is polynomial-time

learnable in I.

(only if) Assume that Fis polynomial-time learnable in an index I by an algorithm

A. Using an argument similar to that used to prove Theorem 1, we can show that

F must be of polynomial dimension. For details, see Natarajan (1988b). It remains

to show that there exists a randomized polynomial-time ordering for F. We give

such an ordering below. The randomization technique used in this ordering is a

variant of that used in the proof of the "only if" direction of Theorem 1. The same

technique is used by Kearns et al. (1987) to obtain hardness results for some learning

problems.

program Q;

input: S: set of examples, n: integer;

begin

place the uniform distribution on S;

let h = Isl + 1:
run A on inputs n, h, and

on each call of EXAMPLE by A

return a randomly chosen element of S;

output the index output by A;

end

80 B.K. NATARAJAN

Let f be a concept consistent with S whose index length is the shortest over all

such concepts. Now, with probability (1 - 1/h), A must output the index of a

concept g such that f and g agree with probability at least (1 - 1/h). Since the

distribution is uniform and h > IS], g must agree with f on every example in S.

Hence with high probability, g is consistent with S. Furthermore, since A is a

polynomial-time learning algorithm for F, our ordering Q is a randomized poly-

nomial-time ordering for F in I. To see this, notice that A runs in time polynomial

in n, h, and l, the length of the shortest index of f. By our choice of h, it follows

that A runs in time polynomial in n, IS], and I. Hence, Q runs in time polynomial

in n, h, and l, and is a randomized polynomial-time ordering for F in I.

This completes the proof. []

Example 4. Again consider the monotone monomial concepts of Example 1. The

set of monotone monomial formulae forms an index for this space of concepts.

The learning algorithm learnmonomial of Example 3 outputs monotone monomial

formulae as its approximations to the concept to be learned. Furthermore, the

algorithm runs in time nh(n + log(h)), which is polynomial in n and h. Thus the

monotone monomial concepts are polynomial-time learnable in the monotone-

monomial formulae. []

5. Learning functions

Thus far our discussion has concerned concepts or sets. In the more general setting,

we consider learning algorithms that learn functions from ~* to 2*. We first need

to generalize our definitions.

Definition. A space of functions F is any set of functions from 2;* to 2".

Definition. For any f ~ F, the projection fn:~"- ~ ~'~- o f f on ~ - is given by

if I f (x) l -< n
f,,(x) = [n-length prefix of f(x), otherwise

Definition. The n'-subspace F,, of F is the projection of F on E n-, i.e.,

f, , = {f,,Lf e F}.

Remark. Intuitively, for a function f , the projection f,, attempts to capture the

behavior of f with n-bit precision. If, for some string x in E ~-, f(x) is of length

greater than n, f,,(x) is the first n bits off(x) , i.e., the n-length prefix off(x) . The

subspace F,, of F is the analog for spaces in that F,, is the projection of F on 2". []

SETS AND FUNCTIONS 81

An example for f is a pair of strings (x, y) such that y = f(x). Again, we provide

the learning algorithm a routine EXAMPLE that produces examples for the func-

tion to be learned, chosen randomly according to an arbitrary and unknown dis-

tribution P.

With these definitions in hand, we can formalize the notion of learnability of

functions as follows.

Definition. A space of functions F is feasibly learnable if there exists an algorithm

A such that

(a) A takes as inputs integers n and h, where n is the size parameter and h the

error parameter.

(b) A makes polynomially few calls of EXAMPLE, polynomial in n and h. EX-

AMPLE returns examples for some function f , ~ Fn, the examples being chosen

according to an arbitrary and unknown probability distribution P on £"- .

(c) For all functions fn ~ F~ and all probability distributions P on E n-, with prob-

ability (1 - 1/h), A outputs a function g ~ F such that

P(x) <_ 1/h.
fn(x)~gn(x)

Our definition of dimension in this setting is exactly the same as the one given

earlier for concepts. We now generalize the notion of shattering as follows.

Definition. Let F be a space of functions from a set X to a set Y. We say F

shatters a set S C_ X if there exist two functions f, g E F such that

(a) for any s E S, f(s) ¢ g(s).

(b) for all S1 C_ S, there exist e E F such that e agrees with f on $1 and with g on

S - Sh i.e.,

V s S, : e(s) = f (s)

V s E S - Sl : e(s) = g(s).

We can now generalize our shattering lemma for functions as follows.

Lemma 2 (Generalized Shattering Lemma). If F, is of dimension d, F,, shatters

a set of size ceiling(d/(3(n + 1))). Also, every set shattered by F, is of size at most

d.

Proof. Given in the Appendix.

Using this lemma, we can prove the following theorem.

82 B. K. NATARAJAN

Theorem 3. A space of functions is feasibly learnable if and only if it is of

polynomial dimension.

Proof Sketch. (if) If F, is of dimension d, then we can use the arguments the

proof of Theorem 1 to show that h(d(n) + log(h)) examples suffice to obtain an

approximation to within 1/h, with a confidence of (1 - 1/h).

(only if) This direction of the proof uses an argument similar to that of Theorem

1, with the difference that here we employ the notion of generalized shattering

and the corresponding generalized shattering lemma. []

We can also examine the time-complexity of learning a space of functions and

attempt to characterize the spaces learnable in polynomial time. To this end we

define the notion of an index analogous to the corresponding definition for a space

of concepts.

Definition. For a space of functions F of countable cardinality, we define an

index I to be a naming scheme for the functions in F, in a sense identical to that

for a space of concepts.

Definition. We say a space of functions Fis polynomial-time learnable in an index

I if there exists a deterministic learning algorithm A such that

(a) A takes as input integers n and h.

(b) A runs in time polynomial in the error parameter h, the length parameter n,

and in the length of the shortest index in I for the function f to be learned.

A may call EXAMPLE polynomially few times, polynomial in n and h.

EXAMPLE returns examples for fn, the examples being chosen randomly

according to an arbitrary and unknown probability distribution P on ~n .

(c) For all functions f in F and all probability distributions P on "2 n ,withprobability

(1- 1/h) the algorithm outputs an index ig E I(g) of a function g in F such

that

p(x) <_ 1/h.
[n(x)~gn(x)

We are interested in identifying the class of pairs (F, /), where F is a space of

functions and I is an index for it, such that F is polynomial-time learnable in I. To

this end, we define the following.

Definition. For a space of functions F and index I, an ordering is a program that

(a) takes as input a set of examples S = {(Xl, yl), (x2, y2), • . . , (xi, yi), . . . }. Let

n be the length of the longest string among the xi and yi.

(b) produces as output an index in I of a function f C F that is consistent with S,

if such exists; i.e., it outputs i I C I(f) for some f C F such that

SETS AND FUNCTIONS 83

v (x, y) e s , y : L(x).

Furthermore, if the ordering runs in time polynomial in the length of its input and

the length of the shortest such index, we say it is a polynomial-time ordering and

F is polynomial-time orderable in I. If the ordering runs in random-polynomial

time, we say F is random-polynomial-time orderable in I.

With these definitions in hand, we can state the following theorem.

Theorem 4. A space of functions is polynomial-time learnable: (1) if it is of

polynomial dimension and polynomial-time orderable, and (2) only if it is of

polynomial dimension and is orderable in random polynomial time.

Proof. Similar to that of Theorem 3. []

6. Learning from examples and background information

In this section, we consider general-purpose learning programs that may be used

over many domains. Specifically, such programs take as input a description of the

space of functions to be learned and, after some precomputation, behave like

learning algorithms for that space. We will refer to such algorithms as general

purpose learning programs.

Consider a general-purpose learning program M that works over a set of spaces

G~, G2, . . . , G~ ; i.e., M takes as input the description of some G~ and then

behaves as a learning algorithm for Gi. Now, if G = G~ U G2 . . . U G i . . . is

itself a space of low dimension, then it follows from Theorem 1 that we can build

a learning algorithm for G and not bother with the complications of M. The

interesting question is whether it is possible for G to be of intractably-high di-

mension and yet be decomposable into G1 . . . , G ~ . . . such that each G~ is of low

dimension and each Gi has a short description that can be fed into M. Such de-

composability would be desirable, as it would permit the construction of a general-

purpose learning algorithm M for G, so that even though G is of high dimension

and difficult to learn, M would efficiently handle all the components of G, given

their descriptions. In order to explore this further, we consider the Framework 2
presented below.

Let F be a space of functions. A theory for F is simply any total function from

F to ~*. The theory string for a function f ~ F is the string t = TOO.

Remark. Consider the typical explanation based learning framework (e.g., Mitch-

ell, Keller & Kedar-Cabelli, 1986). When attempting to teach an explanation based

learning system a new concept, it is necessary to load in the relevant domain theory

and then provide it with examples. The domain theory reflects some prior infor-

mation on the concept to be learned and, typically, different concepts will require

different domain theories. Our notion of theory attempts to capture this idea. []

84 B.K. NATARAJAN

A learning algorithm for F is an algorithm that attempts to infer functions in F

from examples and background information. The learning algorithm has at its

disposal a routine TEACHER, which is best described as the pair {EXAMPLE,

T}, where EXAMPLE is the source of random examples described in Framework

1 and T is a theory for F. When attempting to teach the learning algorithm a

function f E F, TEACHER behaves thus: On the first call, TEACHER returns

t = T(f). On subsequent calls, TEACHER returns a randomly chosen example

for the projection fn of f by invoking EXAMPLE.

Remark. We are interested in the relationship between the length of a theory

string and the number of examples required for learning before and after reading

the theory string. In some sense, this represents the tradeoff between background

information and the information obtained from examples. Is it possible that a single

bit of theory is worth many examples? We explore this below. []

Definition. We say that a space of functions F is feasibly learnable in Framework

2 if there exists a learning algorithm A and a theory T for F such that

(a) A takes as input integers n and h.

(b) A makes polynomially many calls of TEACHER = {EXAMPLE, T}, poly-

nomial in n and h. A reads the first l bits of the theory string returned by

TEACHER, where l varies polynomially in n and h.

(c) For all functions f in F, and all probability distributions P over ~2-, with

probability (1 - 1/h) the algorithm A outputs a function g in F such that

P(x) <- 1/h.
fn(x)¢gn(X)

We are now ready to state our result.

Theorem 5. A space of functions is feasibly learnable in Framework 2 if and only

if it is of polynomial dimension.

Proof. Given in the Appendix. []

Corollary. A space of functions is feasibly learnable in Framework 2 if and only

if it is feasibly learnable in Framework 1.
This answers our question at the beginning of this section: If G is a space of

high dimension, then G is not decomposable into component spaces of low di-

mension with short descriptions. Does this mean that general-purpose learning

programs are not very useful? It does not, for two reasons.

First, note that we are comparing the number of examples used by the learning
algorithm with the number of bits of theory read by it. If each example is of length

n, where n is the length parameter, this compares the information from examples

SETS AND FUNCTIONS 85

and theory in a bit-for-bit fashion, within the factor of n. In some situations such

a comparison may not be meaningful, as the cost of each example might be sig-

nificantly higher than the cost of each bit of theory.

Second, if NP # RP 7, there exist spaces of functions that are polynomial-time

learnable in Framework 2, but not polynomial time learnable in Framework 1.

Essentially, a space of functions is polynomial-time learnable in Framework 2 if it

is feasibly learnable in Framework 2 by a polynomial-time algorithm. Formally, a

space F of functions is polynomial-time learnable in an index I for F in Framework

2 if there exists a theory T for F and a deterministic learning algorithm A such that

(a) A takes as input integers n and h.

(b) A runs in time polynomial in n, h and in the length of the shortest index for

the function to be learned f. A may call T E A C H E R polynomially few times,

polynomial in n and h. A reads the first I bits of the theory string returned by

T E A C H E R , where I varies polynomially in n and h.

(c) For all functions f in F, and for all probability distributions P over ~;~-, with

probability (1 - 1/h) the algorithm outputs an index ig E I(g) of a function g

in F such that

P(x) <- 1/h.
xCfn(x)¢gn(x)

Theorem 6. If NP ~ RP, there exists a space of functions F and an index I for

it, such that F is polynomial-time learnable in I in Framework 2, but not in Frame-

work 1.

Proof Sketch. The proof rests on a result of Kearns et al. (1987) concerning the

existence of spaces that are of polynomial dimension but not polynomial-time

learnable in Framework 1, under the assumption NP # RP.

A funct ionf is a Boolean threshold function on n variables al, a2 an if there

exists S C_ {al, az , a,,} and 1 -< k -< n such that

1, if at least k of the variables in S are set to 1 in x
f(x) = 0, otherwise

where x is a Boolean assignment to the variables a~, a 2 . . . , an. Kearns et al. (1987)

show that the space of Boolean threshold functions is not polynomial-time learnable

unless RP = NP. Yet it is easy to show that this space of functions is polynomial-

time learnable in Framework 2. To do so, we construct a theory function T for the

space, where the theory string for each function is a complete description of the

function in that it enumerates the set S and the value of k. [B

The significance of Theorem 6 is that, although the availability of theory cannot

reduce the information complexity of learning, it can reduce the computational

86 B.K. NATARAJAN

complexity of learning. In the proof of Theorem 6, this reduction was obtained in

a trivial way in that the theory string for each function gave the learner a complete

description of the function. Natarajan (1987) considers the possibility of non-trivial

reductions, but without significant progress in that direction.

Theorem 5 might seem contrary to the intuition of some readers. We urge the

reader to bear in mind that the theorem does not claim that theory is useless, but

merely that theory cannot offer super-polynomial reductions in information com-

plexity. In the proof of Theorem 5, we show that the length of a theory string is

comparable to the reduction in the dimension of the space of functions achieved

by it. In interpreting this, we should note that a theory string does not require

repeated sampling to establish confidence and accuracy. Hence, if the confidence

and accuracy required is one part in one hundred, each bit of theory could be

worth one hundred times as many examples.

7. F in i t e l earnabi l i ty

Thus far we have explored the asymptotic learnability of spaces of sets and func-

tions, that is, we have considered the asymptotic variation of the number of ex-

amples needed for learning with increasing values of the size parameter. We will

now investigate a different notion of learnability, one that asks whether the number

of examples needed for learning is finite, i.e., varies as a finite-valued function of

the error parameter, without regard to the size parameter. We call this "finite

learnability" as opposed to the notion of asymptotic learnability.

For the case of spaces of sets, Blumer et al. (1986) present conditions necessary

and sufficient for finite learnability. Their elegant results rely on the powerful results

in classical probability theory of V.apnik and Chervonenkis (1971). In this section,

we review their results briefly and then go on to present learnability results for

spaces of functions, relying in part on the same results of Vapnik and Chervonenkis.

Definition. Let F be a space of concepts on R k, where R is the set of reals and

k is fixed natural number. We say F is finitely-learnable if there exists an algorithm

A such that

(a) A takes as input an integer h, the error parameter.

(b) A makes finitely many calls of EXAMPLE, although the exact number of calls

may depend on h. EXAMPLE returns examples for some function f in F, the

examples being chosen randomly according to an arbitrary and unknown prob-

ability distribution P on R k.
(c) For all probability distributions P and all functions f in/~, with probability

(1 - 1/h), A outputs g E F such that

f f#gdP <- 1/h.

SETS AND FUNCTIONS 87

The following theorem is adapted from Blumer et al. (1986).

Theorem 7. A space of sets F on R k is finitely learnable if and only if there exists

a finite bound on the size of the subsets of R ~ shattered by F. Blumer et al. (1986)

refer to the size of the largest set shattered by F as the Vapnik-Chervonenkis
dimension of the space F.

Let us now formalize the notion of finite learnability of spaces of functions on

the reals.

Definition. Let F be a space of functions from R ~ to R k. We say F is finitely-
learnable if there exists an algorithm A such that

(a) A takes as input an integer h, the error parameter.

(b) A makes finitely many calls of EXAMPLE, although the exact number of calls

may depend on h. EXAMPLE returns examples for some function f in F,

where the examples are chosen randomly according to an arbitrary and un-

known probability distribution P on R k.

(c) For all probability distribfltions P and all functions f in F, with probability

(1 - 1/h), A outputs g E F such that

f dP <- 1/h.
f#g

We need the following supporting definitions.

Definition. Let f be a function from R k to W. We define the graph set of f,

denoted by graph(f), to be the set of all examples for f. That is,

graph(f) = {(x, y)ly = f(x)}.

Clearly, graph(f) C_ R k × R ~. Analogously, for a space of functions F, we define

the graph space, denoted by graph(F), to be the space of graphs sets of the functions

in F. That is,

graph(F) = {graph(f)lf E F}.

We now state the main theorem of this section. The theorem is not tight in the

sense that the necessary and sufficient conditions do not match. Natarajan and

Tadepalli (1988) reported a tight version of the theorem on the basis of an incorrect

proof. More recently, Natarajan (1988b) identifies a space of functions that is finitely

learnable and sits in the gap between these conditions. We note that while there

are convergence results in the literature for functions (Pollard, 1986) that are akin

to those of Vapnik and Chervonenkis (1971) for sets, these results do not resolve

88 B.K. NATARAJAN

the gap in Theorem 8. This is because these results concern uniform convergence

properties and not the information complexity properties required for our purposes.

Theorem 8. A space of functions F from R k to R k is finitely-learnable

(a) If there exists a bound on the size of the sets in R k x R k shattered by the

space graph(F). (This is simple shattering as defined in Section 2.)

(b) Only if there exists a bound on the size of the sets in R k shattered by F. (This

is generalized shattering as defined in Section 5.)

Proof sketch. (If) This direction of the proof follows from the convergence results

of Vapnik and Chervonenkis (1971), exactly as in Blumer et al. (1986). Essentially,

the "if" condition implies that the space graph(F) is finitely learnable. It follows

that the space F is finitely learnable.

(Only if) This direction of the proof is identical to that of Theorem 3, which in

turn followed the arguments of Theorem 1. In essence, the size of the set that is

shattered by F is the number -of independent pieces of information necessary to

identify a function in F. If this is unbounded, then F will not be learnable from

finitely many examples. []

In the foregoing, we considered functions on real spaces, requiring that on a

randomly chosen point, with high probability, the learner's approximation agree

exactly with the target function. In a sense, this result is largely of technical interest,

as practical computations can only be carried out to some finite degree of precision.

Of course, if all the computations were carried out to some finite precision, Theorem

3 would apply directly. Alternatively, we could demand that the learned function

approximate the target function with respect to some standard norms, say the square

norm. Specifically, we could replace the integral in condition (c) of the definition

of a finitely learnable class of functions with the norm of interest. In the case of

the square norm, it would read

fx~,kE(f(x), g(x))dP <- I/h,

where E(a, b) is the Euclidean distance between a and b in R k. For such norms,

we can prove the equivalent of Theorem 8 for the case where P is a fixed distri-

bution. Such a theorem involves the use of covers as defined in Benedeck and Itai

(1988). In brief, we define a (1/h)-cover of F, with respect to the square norm and

the distribution P, to be a subset K of F such that for each f E F there exists

g E K such that f and g satisfy the above inequality. Then, we can show that F is

finitely learnable over P if for all h, there exists a finite (1/h)-cover for F. This is

discussed in greater detail in Natarajan (1989b).

SETS AND FUNCTIONS ~9

8. An application to connectionist networks

In this section we discuss an application of our results to connectionist networks.

These networks are the subject of numerous investigations (Rumelhart & Mc-

Clelland, 1986) and appear to be promising as machine architectures for learning.

In the following, we will show that such networks intrinsically represent spaces of

functions that are of low dimension.

A connectionist ne twork (more simply, a network) consists of a set of nodes and

a set of input and output terminals. Each node has several input wires and one

output. The input wires may be connected to the output points of other nodes or

to the terminals that serve as the input to the entire network. Similarly, the output

of a node may connect to inputs of other nodes or to the output terminals of the

entire network. Each input wire of a node has a weight associated with it. Each

node computes the same function--the node function---~r:R ~ R and outputs the

value of -r on the sum of its inputs duly scaled by the appropriate weights. More

precisely, for a certain node, let x~ and w~ be the i 'h input and weight, respectively.

The value of the output of the node is ~r(s), where s = ~,~ ~,pu~s wi'xi.

These networks are used to compute functions as follows. Signals of (0, 1) value

are applied to the input terminals of the network. The nodes connected to these

terminals change their output values based on these signals and the effect propagates

through the network. The output terminals of the network display new values as

a result of the propgataion. (If the network has cycles in it, we consider the values

of the output terminals when the network equilibrates, if at all.) The values at the

output terminals form the value of the function computed by the network for the

applied input. The function computed by the network can be changed by altering

the weights on the inputs of the nodes. Depending on the range of the weights, a

network can be configured to compute any of a space of functions. Thus it can be

used to learn a function from this space by picking examples for the function to

be learned and then changing the weights on the network so that the network

agrees with the examples. Additional details and background on such network~

may be found in Rumelhart and McClelland (1986).

We are interested in the following question. What is the dimension of the space

of functions that can be computed by a network of n nodes? As it happens, we

can provide an upper bound on the dimension, independent of the node function

used by the nodes.

Consider a network of n nodes where each node is connected to the outputs of

all the other n - 1 nodes. Let each weight be a b-bit binary integer. Rather than

specify input and output terminals, we will use the following convention. We

designate those nodes that have zero weights on all their input wires to be input

terminals. Also, we assume n output terminals, where each is connected to the

output of a single node. It is easy to see that this convention loses no generality

with respect to the functions computed by these networks. With these definitions

behind us, we estimate the number of different functions that a network of n nodes

90 B. K. NATARAJAN

can compute. There are at most n(n - 1) weights, and each weight is a binary

integer of b bits. This implies that there are at most 2 b"("- o distinct weight assign-

ments to the network and hence at most as many functions computed by it. Hence,

the space of functions computable by the network is of cardinality at naost 2 b"('`- 1~

and therefore of dimension at most bn(n - 1).

Thus, connectionist networks intrinsically support spaces of functions that are

of dimension polynomial in the size of the network. Since the length of the input

is no more than the size of the network, the space of functions represented by the

network is feasibly learnable by Theorem 1. Unfortunately, most interesting node

functions investigated to date generate networks that are not known to be efficiently

orderable and, therefore, by Theorem 2, not polynomial-time learnable. Specifi-

cally, given a set of examples for the function to be learned, it is computationally

intractable to adjust the weights in the network to obtain agreement between

function and network. See Blum and Rivest (1988) for more on this issue.

In the foregoing, we considered networks with finite precision integer weights.

What if the weights were allowed to be real numbers of arbitrary precision? If we

allow infinite precision weights, we must limit the class of node functions to keep

things meaningful. Otherwise, the network can compute any function of its inputs

and thereby support spaces of functions of arbitrary dimension. Consider the linear

threshold funct ion "r, defined as follows.

~-(s) = {~ i f s > - I
otherwise

We refer to networks with linear threshold node functions as linear threshold

networks. The interesting thing here is that a linear threshold network of n nodes

with arbitrary precision weights can be replaced exactly by a linear threshold net-

work of n nodes with (nlogn)-bit integer weights, (J-W. Hong, personal commu-

nication, 1987). Hence, our arguments on the dimension of the space of functions

represented by a network of n nodes hold for networks with linear threshold

functions, even if the weights are arbitrary real numbers. In particular, a linear

threshold function network of n nodes supports a space of dimension at most

n2(n - 1)log(n), even if the weights are arbitrary real numbers.

If a connectionist network is good model of the human brain, then the space of

functions supported by the one would be a good model of the space of functions

supported by the other. It would follow that a connectionist network is a good

architecture for learning those functions that are learned easily by the human brain.

The import of this section is that the types of networks (such as the linear threshold

network) investigated to date are efficient with respect to the number of examples

required for learning, but not with respect to the computational time involved.

The difficulty lies in ordering them, i.e., given a set of examples for a network, it

is computationally difficult to adjust the weights in the network so that the network

agrees with the examples. Given this, one might wonder whether these types of

SETS AND FUNCTIONS 91

networks are too powerful and not very good models of the human brain. It would

be interesting to investigate other types of networks that are efficiently orderable,

even if they are computationally less powerful than the types of networks that are

the subject of current investigations.

9. Conclusion

This paper concerned learning concepts and functions. Two frameworks were de-

fined, one that provided the learner with examples for the unknown concept or

function, and another that provided the learner with examples and background

information. Within the first framework, we identified necessary and sufficient

conditions for learning from a small number of examples and in a time-efficient

manner. As for the second framework, we showed that the addition of background

information gave this framework no advantage over the first with respect to in-

formation complexity, although it might offer advantages with respect to time

complexity. We also considered an application of our results to connectionist net-

works to show that these networks intrinsically support hypothesis spaces of low

dimension.

Another possible application of these results is in the context of learning heuristics

for solving puzzles and problems such as symbolic integration. This is explored by

Natarajan and Tadepalli (1988) and by Natarajan (198%). The first paper applies

some of the results of this paper towards learning deterministic heuristics, given

solved sample instances from a problem domain. The second paper discusses the

learning of probabilistic heuristics from solved instances, as well as from unsolved

instances or exercises over a problem domain.

In all, this paper presented some theoretical results on learning sets and functions,

attempting to link the assumptions and results to their counterparts in the artificial
intelligence literature.

Appendix

This appendix is a collection of technical proofs to some of the results in the body
of the paper.

Lemma 1. If F, is of dimension d, then F,, shatters a set of size 9 ceiling(d/(n +

2)). Also, every set shattered by F is of size at most d.

Proof (From Natarajan, 1988b). First, we prove the upper bound. Suppose a set

S is shattered by by F,. Since there are 2 IsJ distinct subsets of F,, it follows from

the definition of shattering that 2 Isl -< IF, I. Taking logarithms on both sides of the

inequality, we get IS[-< log(IF, I) = d, which is as desired.

92 B.K. NATARAJAN

We prove the lower bound part of the lemma through the following claim. A

variant of the claim is given by Vapnik and Chervonenkis (1971), among others.

Claim. Let X be any finite set and let H be a set of subsets of X. If k is the size

of the largest subset of X shattered by H, then

IHI (Ixl + 1)*.

Proof. By induction on }X}, the size of X.

Basis. Clearly true for IXI = 1.

Induction. Assume the claim holds for {X I = m and prove true for m + 1. Let

IXI = m + 1 and let H be any set of subsets of X. Also, let k be the size of the

largest subset of X shattered by H. Pick any x ~ X and partition X into two sets

{x} and Y = X - {x}. Define H~ to be the set of all sets in H that are reflected

about x. That is, for each set h~ in HI, there exists a set h C H such that h differs

from hi only in that h does not include x. Formally,

H, = {hllh~ ~ H, 3 h E H, h ¢ h, and h~ = hO{x}}.

Now define H2 = H - H 1 . Surely, the sets of Ha can be distinguished on the

elements of Y. That is, no two sets of H2 can differ only on x, by virtue of our

definition of H~. Hence, we can consider//2 as sets defined on Y. Surely,/-/2 cannot

shatter a set larger than the largest set shattered by H. Hence, H2 shatters a set

no bigger than k. Since IYI --- m, by the inductive hypothesis we have IH21 <-

(Irl + I)
Now consider H1. By definition, the sets of H1 are all distinct on Y. That is, for

any two distinct sets h~, h2, in H~, h~ C~ Y ¢ h2 f~ Y. Suppose HI shattered a set

S C_ Y, IsI _> k. Then, H would shatter S tO {x}. But, IS tO {x} I -> k + 1, which is

impossible by assumption. Hence, H1 shatters a set of at most (k - 1) elements

in Y. By the inductive hypothesis, we have

(It) + 1)

Combining the two bounds, we have

}H I : I H - HI I ~-IHll : IH21-~-[HI]

(I YI -31- l) k -~- (I YI -~ 1) k-1 ~ (m + 1) k + (m + 1) k-'

--< (m + l)g-l(m + 2) -< (m + 2) k -< (IX[+ 1) k.

Thus the claim is proved. []

SETS AND FUNCTIONS 93

Returning to the lemma, we see that if X is all strings of length n or less on the

binary alphabet, then IxI = 2 "+~. By our claim, if the largest set shattered by F,

is of size k,

IF,,I-< (2 ,,+' + 1) k.

Hence, k >- log(lF, I)/log(2 ~+' + 1) >- dim(F;,)/(n + 2).

Since k must be an integer, we take the ceiling of the right-hand side of the last

inequality. This completes the proof of the lemma. []

Lemma 2 (Generalized Shattering Lemma). If F, is of dimension d, F,, shatters

a set of size ceiling(d/(3n + 3)). Also, every set shattered by F, is of size at most

d.

Proof. (From Natarajan, 1988b). The upper 'bound part of the lemma can be

proved exactly as the corresponding part of Lemma 1. To see that this upper bound

can be attained, we simply need to consider a family E, of {0, 1}-valued functions.

The lower bound part of the lemma is proved through the following claim.

Claim. Let X and Y be two finite sets and let H be a set of functions from X to

Y. If k is the size of the largest subset of X shattered by H, then

IHI-< (Ixl)~(I vb 2~.

Pro@ By induction on IXI.

Basis. Clearly true for Ixl = 1, for all lY I.

Induction. Assume true for tXt = 1, IYI = m, and prove true for IXt = l + 1,

I Yt = m. Let X = {xl, xz, . . . , xe} and Y = {yl, Y2, . . . , yl}. Define the subsets

H, of H as follows:

H i = ~fV ~ H , f (x ,) = yL

Also, define the sets of functions Hij and H0 as follows:

for i ¢ j: Hij = {flf ~/4,., 3 g ~ H/such that f = g on X - {Xl} }.

/4o = H - U,~Hii.

Now,

II-II -- Iml + Iu,~,H,,I < - Iml + E IH~I.

94 B.K. NATARAJAN

We seek bounds on the quantities on the right-hand side of the last inequality. By

definition, the functions in H0 are all distinct on the m elements of X - {x~}.

Furthermore, the largest set shattered in/4o must be of cardinality no greater than

k. Hence, we have by the inductive hypothesis,

IHol <- lkm 2k,

And then, every H~j shatters a set of cardinality at most k - l , as otherwise H

would shatter a set of cardinality greater than k. Also, since the functions in Hsj

are all distinct on X - {Xl}, we have by the inductive hypothesis,

For i # i, I ,1 -< l -'m

Combining the last three inequalities, we have

IHI <- lkm zk + ~ lk-lm 2(k~1) < lkm 2k + m2lk-lm2(k-l) < lkm ~k + Ik-lm2k
iej

-<l k - t m 2 k (l + 1) - < (l + 1) km 2k.

Which completes the proof of the claim. []

Returning to the lemma, we have X = Y = Zn-, and hence l = m = 2 ~'+~. If

k is the cardinality of the largest set in Z"- shattered by F,,, we have by our claim,

IF~I <- (2.+~)*(2,,+~) 2.

G 2 kl3n+3).

Taking logarithms, we have

log(IF.)l = dim(F,,) = d <-k(3n + 3)

Hence, k >- d/On + 3), which is as desired.

Theorem 5. A space of functions F is learnable in Framework 2 if and only if F

is of polynomial dimension.

Proof. (From Natarajan (1988a)) Informally speaking, the proof of this theorem

is almost obvious in the sense that a simple counting argument lies at its heart.

However, a formal proof requires the argument to be buried in detail.

Abusing notation, we extend the theory function T to subsets of F as follows:

For B C F, T(B) -- {T(f) lf a}.

SETS AND FUNCTIONS 95

Also, we define the inverse function T- from Z* to subsets of F as given below:

For t ~ 2", T-(t) = { f l f C F, t is a prefix of T(f)}

(if) By Theorem 1, if F is of polynomial dimension, then F is learnable in

Framework 1. Hence it is learnable in Framework 2, as Framework 1 is but a

special case of Framework 2.

(only if) Let A be a learning algorithm for F in Framework 2 using a TEACHER

= {EXAMPLE, T} for some theory T of F. For any n and h, let T,,.h be the set of

theory strings read by A over all functions in F. These will be prefixes (of length

at most l) of the theory strings offered by TEACHER over all functions in F. For

any string t, let F,(t) denote the n'J'-subspace of T-(t) . Also, let

d = max {dim(F,(t))[t ~ T~.h}, and

lm~, = max {length(t)lt ~ 2,,.h}.

Claim. d~a~ + G~ >-dim(Fn).

Pro@ By a simple counting argument. Since T,,.h is over all the functions in F,

surely

F, C_ U,<rn.,,E,(t).

Hence,

IFnl __< {Ut~TnhFn(t) I , ~ ~t~Tr~,h Qdim(Fn(t)) ~ 2~,,o,2 d < 2,,,,o,+d,~..~

Thus, dim(F,) ~ l,,,,,~ + d m

From the above claim, if dim(F,) is super-polynomial in n, then either l,,,a, or

d, varies superpolynomially with n. The former is a contradiction, since A reads

only polynomially many bits of the theory strings. The latter is a contradiction as

well, using the arguments of the proof of Theorem 1. Hence F is of polynomial

dimension. This completes the proof. ~]

Acknowledgements

My thanks to T. Mitchell and P. Tadepalli for giving freely of their time and

patience, and to P. Langley for reading various drafts of my papers and guiding

me towards versions more appropriate to this journal. My deepest thanks to the

reviewers, who contributed immensely to this paper.

96 B.K. NATARAJAN

Notes

1. We mean worst case with respect to the assumptions regarding the source of examples for learning,
not worst-case complexity analysis.

2. Our use of the terms "space of concepts" and "space of functions" is equivalent to the term

"hypothesis space" in the AI literature and the term "family" in the formal literature.

3. Unless stated otherwise, by "algorithm" we mean a finitely representable procedure, not necessarily

computable. That is, the procedure might use well-defined but non-computable functions as prim-
itives.

4. Valiant (1984) uses the same algorithm to learn conjunctive normal form expressions with a bounded
number of clauses.

5. We could equally well allow for randomized algorithms, obtaining the corresponding results in a
similar fashion. A randomized algorithm is one that tosses coins during its computation and produces

the correct answer with high probability, Gill (1977).

6. Alternatively, we could allow as many calls of EXAMPLE as possible within the time limit. As this

will not change our discussion substantially, we avoid this alternative in the interest of clarity.

7. NP and RP are the classes of functions computable in nonzdeterministic polynomial time and random
polynomial time respectively.

8. F should satisfy some "niceness" conditions as in Vapnik and Chervonenkis (1971) and Blumer et
al. (1986).

9. The expression ceiling(r) denotes the least integer greater than r.

References

Angluin, D. & Smith, C. H. (1983). Inductive inference: Theory and methods. Computing Surveys,
15, 237-269.

Angluin, D. (1986). Learning regular sets' from queries and counter-examples (Technical Report YALEU/

DCS-464). New Haven, CT: Yale University, Department of Computer Science.

Angluin, D. & Laird, P. (1968). Learning from noisy examples. Machine Learning, 2, 343-370.

Benedeck, G. M., & Itai, N. (1988). Learning by fixed distributions. Proceedings of the Workshop on

Computational Learning Theory (pp. 80-90). Cambridge, MA: Morgan Kaufmann.

Berman, P., & Roos, R. (1987). Learning one-counter languages in polynomial time. Proceedings of

the Symposium on Foundations of Computer Science (pp. 61-67), Los Angeles, CA: IEEE Computer

Society Press.

Blum, A., & Rivest, R. (1988). Training a 3-node neural network is NP-complete. Proceedings of the

Workshop on Computational Learning Theory (pp. 9-18). Cambridge, MA: Morgan Kaufmann.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1986). Classifying learnable geometric

concepts with the Vapnik-Chervonenkis dimension. Proceedings of the ACM Symposium on Theory

of Computing (pp. 273-282). Berkeley, CA: ACM Press.

Gill, J. (1977). Computational complexity of probabilistic turing machines. SIAM Journal of Computing,
6, 675-695.

Haussler, D., Littlestone, N,, & Warmuth, M. (1988). Predicting {0, I} functions on randomly drawn

points. Proceedings' of the Workshop on Computational Learning Theory (pp. 280-296). Cambridge,

MA: Morgan Kaufmann.

Kearns, M., Li, M., Pitt, L., & Valiant, L. G. (1987a). On the learnability of Boolean formulae.
Proceedings of the ACM Symposium on Theory of Computing (pp. 285-295). New York, NY: ACM
Press.

Kearns, M., Li, M., Pitt, L., & Valiant, L. G. (1987b). Recent results on Boolean concept learning

Proceedings of the Fourth International Workshop on Machine Learning (pp. 337--352). lrvine, CA
Morgan Kaufmann.

SETS AND FUNCTIONS 97

Laird, P. (1987). Learning from data good and bad. Doctoral Dissertation, Department of Computer

Science, Yale University, New Haven, CT.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound. Machine Learning, 2, 285-

318.
Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation based generalization: A

unifying view. Machine Learning, 1, 47-80.
Natarajan, B. K. (1986). On learning Boolean functions (Technical Report CMU-RI-TR-86-17). Pitts-

burgh, PA: Carnegie Mellon University, Robotics Institute. Also Proceedings of the A CM Symposium

on Theory of Computing, 1987 (pp. 296-304). New York, NY: ACM Press.
Natarajan, B. K. (1987). Two new frameworks for learning (Technical Report CMU-RI-TR87-25).

Pittsburgh, PA: Carnegie Mellon University, Robotics Institute.
Natarajan, B. K. (1988a). Learning over classes of distributions. Proceedings of the Workshop on

Computational Learning Theory. Cambridge, MA: Morgan Kaufmann.
Natarajan, B. K. (1988b). Some results on learning. Unpublished manuscript.

Natarajan, B. K. (1989a). On learning from exercises (Technical Report CMU-RI-TR4-89). Pittsburgh,
PA: Carnegie Mellon University, Robotics Institute.

Natarajan, B. K., Probably approximate learning over classes of distributions (Technical Report HPL-

SAL-89-29). Palo Alto, CA: Hewlett Packard Research Laboratories.

Natarajan, B. K., & Tadepalli, P. (1988). Two new frameworks for learning. Proceedings of the Fifth
International Symposium on Machine Learning (pp. 402-415). Ann Arbor, MI: Morgan Kaufmann.

Pitt, L., & Warmuth, M. (1988). Reductions among prediction problems: On the difficulty of predicting
automata. Proceedings of 3rd IEEE Conference on Structure in Complexity Theory (pp. 60-69).
Washington, D.C.: ACM Press.

Pollard, J. (1986). Convergence of stochastic processes. New York: Springer-Verlag.

Rivest, R. (1987). Learning decision lists. Machine Learning, 2, 229-246.

Rivest, R., & Schapire, R. E. (1987). Diversity based inference of finite automata. Proceedings of the

Symposium on Foundations of Computer Science (pp. 78-87). Los Angeles, CA: IEEE Computer
Society Press.

Rumelhart, D.~ & McClelland, J. (Eds.). (1986). Parallel distributed processing. Cambridge, MA: MIT
Press.

Valiant, L. G. (1984). A theory of the learnable. Proceedings of the ACM Symposium on Theory of
Computing (pp. 436-445). Washington, D.C.: ACM Press.

Vapnik, V. N , & Chervonenkis, A.Ya. (1971). On the uniform convergence of relative frequencies
of events to their probabilities. Theory of probability and its applications, 16, 264-280.

