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Abstract. This paper presents some results on the probabilistic analysis of learning, illustrating the 
applicability of these results to settings such as connectionist networks. In particular, it concerns the 
learning of sets and functions flom examples and background information. After a formal statement 
of the problem, some theorems are provided identifying the conditions necessary and sufficient for 
efficient learning, with respect to measures of information complexity and computational complexity. 
Intuitive interpretations of the definitions and theorems are provide& 

1. Introduction 

This paper concerns algorithms that learn sets and functions from examples. The 

results presented in these papers appeared in preliminary form in Natarajan (1986, 

1987, 1988b) and in Natarajan and Tadepalli (1988). Among others, the following 

authors have reported related investigations: Angltiin (1986), Rivest and Schapire 

(1987), Berman and Roos (1987), Laird (1987), Blumer, Ehrenfeucht,  Haussler, 

and Warmuth (1986), and Kearns, Li, Pitt, and Valiant (1987a). Although there 

is some overlap of results between this paper and some of the aforementioned 

papers, the results in this paper represent independent developments that often 

favor simpler proof techniques. 

Over the years, many papers in the literature have addressed the topic of concept 

learning. These papers can be broadly classified into two categories: (1) the formal 

work on inductive inference and, (2) the more empirical work in artificial intelli- 

gence. (For an excellent review of the inductive inference literature, see Angluin 

and Smith, 1983.) As it happened, the wide gap between the basic assumptions of 

inductive inference on the one hand and the needs of the empiricists on the other 

denied the formal work significant practical import. The most generous contribution 

to this gap may have come from an emphasis on worst-case 1 analysis by the inductive 

inference group. 

More recently, Valiant (1984) introduced a formal framework for concept learn- 

ing with a view towards probabilistic analysis. The framework is probabilistic in 

that it only requires the learning agent to learn with high probability, and having 

learned, to be correct with high probability. Furthermore,  the teacher and the 

examiner are the same entity, doing away with the worst-case hopelessness of 

learning from one teacher and then having to face an unknown examiner with 
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leanings far divergent from the teacher. In some sense, this framework captures 

the essence of the concept-learning problem faced by humans and hence is of 

interest from both the theoretical and the practical viewpoint. The results in this 

paper are based on Valiant's framework and its variants. In the main, we will 

concentrate on the definitions and the intuition behind our theorems rather than 

on the proofs and technicalities involved, in the belief that the former will hold 

greater interest for the readers of this journal. However, in the interest of com- 

pleteness, formal proofs are presented in appendices when warranted. Other au- 

thors have presented formal results of a similar flavor in the AI literature, including 

Rivest (1987), Angluin and Laird (1988), and Littlestone (1988). 

We define a concept to be a subset of a universe of objects. (We will formalize 

this later.) An example for a concept is an object from the universe together with 

a label indicating whether or not the object belongs to the concept. If the object 

belongs to the concept, the example is positive; otherwise, it is negative, The 

primary aim of our study can be summarized as follows: suppose the learner were 

required to learn an unknown concept from examples. If the learner knew nothing 

a priori about the concept to be learned, then he can say nothing about objects 

that he has not seen as examples. In other words, unless the concept is exhaustively 

enumerated, the learner has little hope of learning the concept. On the other hand, 

if the learner knows the unknown concept is, say, one of two predetermined 

concepts, then a single well-chosen example would suffice. Thus the number of 

examples the learner requires to learn a concept is intimately linked with what he 

knows about the concept at the start of the learning process. Our question can be 

stated thus: What is the quantitative relationship between the number of examples 

required and the learner's a priori knowledge about a concept? We will attempt 

to answer this question, although we must first expend much effort to make it 

precise. 

In Section 2 we give a formal definition of the learning framework. Specifically, 

the framework concerns learning concepts defined on the strings of a finite alphabet. 

In Section 3, we consider a simple and intuitive notion of the dimension of a space 

of concepts. We then use this notion of dimensionality to give theorems that 

quantitatively link the efficient learning of a space of concepts with the dimension 

of the space. Section 4 concerns the time complexity of learning, characterizing 

the class of spaces that can be learned efficiently. In Section 5, we discuss learning 

functions as opposed to learning concepts or sets, and show that our development 

of concept learning is smoothly extensible to this setting. 

In Section 6, we modify our learning framework to permit the learner both 

examples for the target concept and hints on it. For instance, when teaching a 

concept in geometry, the teacher may present the learner with some basic theorems 

in geometry, in addition to some examples for the concept. Our main result here 

is a theorem that establishes the equivalence between this framework and the earlier 

one; i.e,, with regard to information complexity, learning from examples and advice 

is no more powerful than learning from examples alone. This equivalence does not 

hold when we consider time complexity, as we can easily show that advice can 
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reduce the time complexity of learning substantially. 

The results of Sections 2 through 6 concern functions and concepts on discrete 

spaces--strings on the Boolean alphabet. In contrast, Section 7 concerns sets and 

functions on continuous spaces. Blumer et al. (1986) use the notion of the Vapnik- 

Chervonenkis dimension for sets on continuous spaces to obtain a learnability 

theorem for concepts. We briefly review their results and then generalize the 

Vapnik-Chervonenkis dimension to obtain a learnability theorem for functions on 

continuous spaces. 

The final section concerns connectionist networks. Specifically, we apply our 

dimensionality theorem to show that such networks intrinsically represent spaces 

of concepts that are of low dimension. We also point out that based on our results 

of Section 4, it is unlikely that "linear threshold" networks can be efficiently 

learned. 

2. Preliminaries 

We now describe our variant of the learning framework proposed by Valiant (1984). 

We will call it Framework 1, to distinguish it from those that follow. 

To us, a concept is simply a subset of the objects in a predefined universe. For 

example, the concept of a chair is simply all objects in the world that we would 

call chairs. Formally, we define concepts on strings, with the understanding that 

these are symbolic representations for the objects in the universe of interest. Let  

~* denote all strings on the binary alphabet 2~ = {0, 1}. A conceptf is any subset 

of E*. Viewed another way, a concept is a Boolean-valued function f: 2;* --+ {0, 

1}, where f(x) = 1 implies x is in the concept and f(x) = 0 otherwise. We will 

understand a concept to mean a function or a set, relying on the context to make 

the meaning clear. 

An example for a concept is simply an object in the universe and an indication 

of its classification with respect to the concept. If the object is a member of the 

concept we call it a positive example, and if the object is not a member of the 

concept, a negative example. Formally, an example for a concept f is a pair (x, 

f(x)). If f(x) = 1, (x, f(x)) is a positive example, else it is a negative example. 

Having defined what we mean by a concept and an example for it, we can define 

the notion of "learning a concept from examples." Informally speaking, we are 

concerned with the following problem: given some examples for an unknown con- 

cept and some prior information on it, compute a good approximation for the 

concept. Defined this way, concept learning is simply interpolation of an unknown 

set from a given collection of data points. As in numerical interpolation, the number 

of data points needed for a good approximation will depend on our prior infor- 

m a t i o n - f o r  instance, whether we know the unknown function to be a polynomial 

of degree 3 or degree 5. We are interersted in a precise characterization of this 

dependence in the context of concept learning. In order to proceed further, we 



70 B.K. NATARAJAN 

need to make precise our notions of "learning," "prior information," and "good 

approximation," among others. 

We now attempt to make precise the informal notion of "knowing something 

about an unknown concept." For instance, when numerically interpolating an un- 

known function through a given set of points, if we knew that the unknown function 

was a polynomial of degree 10, we would have a good handle on the interpolation 

task. What has our information done for us? It has served to rule out all functions 

that are not polynomials of degree 10, so that we need not consider polynomials 

of degree 20 or trigonometric functions. In some sense, prior knowledge allows us 

to carve out a small space 2 of concepts around the unknown concept--the space 

consisting of all the concepts on the universe that are consistent with the prior 

knowledge. We call this the space of concepts corresponding to the prior knowledge. 

Formally, a space of concepts F is any set of subsets of £*. 

As a first attempt, we will measure the efficacy of prior knowledge and its effect 

on the learning process by means of the properties of the space of concepts cor- 

responding to it. Notice that a space of concepts has an identity independent of 

the prior knowledge to which it corresponds. Henceforth, we will be concerned 

only with spaces of concepts, although on occasion we will attempt to interpret 

our results in the context of prior knowledge. 

Next we formalize the notion of a learner. Let F be a space of concepts on Z*. 

A learning algorithm for F is an algorithm that attempts to infer a concept from 

examples for it. The learning algorithm has at its disposal a routine EXAMPLE, 

which at each call produces an example for the concept to be learned. For any 

concept f in F, the probability that a particular example (x, fix)) will be produced 

at any call of EXAMPLE is P(x), where P is an arbitrary and unknown probability 

distribution on £*. The choice of the distribution is independent of the concept f 

to be learned. (For a discussion .of the intuitive significance of this probability 

distribution, please see the Remark below,) After seeing some examples for the 

unknown concept, the learning algorithm is to output the learned concept--hope- 

fully a good approximation to the unknown concept. We will require that the 

concept output by the learner be consistent with the prior knowledge and hence 

must be in the space of concepts corresponding to the prior knowledge. One can 

also explore learning models where this consistency requirement can be relaxed, 

e.g., the notion of predictability as explored in Kearns et al. (1987a, 1987b), 

Haussler, Littlestone and Warmuth (1988), and Pitt and Warmuth (1988). 

Suppose that in a certain learning experiment the learner sees some examples 

for a concept, and the length of the longest example seen is 55 characters. It might 

be unreasonable to expect the learner to find an approximation to the unknown 

concept that accurately classifies strings much longer than 55 characters. Hence, 

we provide as input to the learner an integer n, with the expectation that the learner 

will find an approximation to the concept that accurately classifies all strings of 

length n or less. Furthermore, the examples provided to the learner will all be of 

length at most n in that the probability distribution P is non-zero only on £" , 
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where Z"- is the set of all strings as length n or less on £. In essence, we introduce 

n as a parameter  to the learning problem and study the asymptotic behaviors of 

the learning algorithm as n is varied. 

Since the examples provided to the learner are drawn at random, it is unrea- 

sonable to expect the learner to learn 100% of the time or be 100% accurate. 

Indeed, this might be possible only if the unknown concept is exhaustively enu- 

merated, instead, in addition to the length parameter  n, we provide as input to 

the learner an error parameter h, with the expectation that the learner will learn 

with probability (1 - 1/h) and that the learned approximation to the unknown 

concept will correctly classify any string of length n or less with probability (1 - 

1/h). In other words, the learner is to learn with confidence (1 - 1/h) and accuracy 

( 1  - 1/h). We note here that some authors choose to use distsinct parameters to 

control the confidence and accuracy desired, e.g., Kearns et al. (1987b). We choose 

to use a single parameter  in the interest of simplicity, noting that our results carry 

over to two distinct parameters. 

Remark. In essence, the learner takes as input two integers n and h and is to 

approximate the unknown concept on strings of length n or less. The learner can 

call for examples for the concept to be learned, and these examples are chosen 

according to an arbitrary and unknown probability distribution P over all strings 

of length at most n. After  seeing some number of examples, the learner outputs 

an approximation to the unknown concept. The approximation is to be "good"  in 

the sense that with respect to P, with high probability the learned concept agrees 

with the unknown concept on strings of length n or less. By high probability, we 

mean probability (1 - 1/h). 
The significance of the probability distribution is best explained as follows. Sup- 

pose that the learner is trying to learn the concept of a sports car. He stands on a 

street corner in Pittsburgh and has someone point out the sports cars as they pass 

by. After a few days of such activity, the learner would have a reasonable idea of 

the concept of a sports car in that he would be able to correctly classify most cars 

in Pittsburgh. Here,  the probability distribution P reflects the distribution of cars 

in Pittsburgh, the learner sees examples drawn at random according to this distri- 

bution, and his learned approximation is tested on the same distribution. The 

learner has learned well if his approximation correctly classifies most of the cars 

he sees, i.e., the probability that his approximation is incorrect is small. Of course, 

it is likely that the approximation the learner obtained in Pittsburgh is a bad one 

in Beverly Hills. But this does not reflect on the learner's ability to learn. A good 

learner will learn an approximation that is good in Beverly Hills, if his examples 

were picked from there as well. 

In a different setting, suppose a student takes a course from Professor X. If the 

student were a good one, he should be confident of passing a test in the course so 

long as Professor X made up the test. On the other hand, the student can offer no 

guarantees on his performance in a test set by Professor Y, whose leanings on the 
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same material could be far from those of Professor X. However, if Y taught the 

course and set the test, the student should have no difficulty. 

In this sense, the probability distribution P attempts to characterize the leanings 

of the teacher, and a good learner will succeed with high probability for any teacher, 

so long as the teacher and the examiner are the same entity. For additional dis- 

cussion on the technical and philosophical ramifications of these assumptions, we 

refer the reader to Valiant (1984). Also, while we allow the examples to be chosen 

according to any probability distribution, one can consider fixing the distribution 

to a known class, as in Benedeck and Itai (1988), and Natarajan (1988a). [] 

Recall that the learner must output an approximation to the unknown concept 

and that this approximation must be in F, the space of concepts corresponding to 

the prior knowledge. What is the form of this output? The answer to this question 

depends on the focus of our inquiry, and we will consider two loci. The first inquires 

into the number of examples required for learning, independent of the time needed 

to process the examples. This is the information complexity of learning and will 

be the subject of study of this and the following section. The second focus inquires 

into the time required for learning, in the sense of the time required by the learning 

algorithm to process the examples. This is the time complexity of learning and will 

be the subject of later sections. In the student-teacher setting mentioned in the 

above remark, the former inquires into the amount of student-teacher interaction 

required for learning, whereas the latter inquires into the amount of homework 

the student must do to process what he has seen in class. At any rate, the important 

issue is that when we are interested only in the number of examples or the infor- 

mation complexity of learning, the form of the learning algorithm's output is im- 

material. We will simply assume that the algorithm's output is the name of the 

concept in some predetermined naming system. 

The number of examples the learner might require for length parameter n and 

error parameter h can depend on n and h. The nature of this dependence determines 

the difficulty of learning a given space of concepts. In general, if this relationship 

is a small polynomial, we consider the learning task to be feasible. If the relationship 

is super-polynomial, the number of examples required will be hopelessly large for 

all but small values of n and h. With this in view, we will call a space of concepts 

feasibly learnable if the relationship is polynomial. 

Definition. Formally, a space of concepts F is feasibly learnable if there exists an 
algorithm 3 A such that 

(a) A takes as input two integers n and h, where n is the size parameter and h is 

the error parameter. 

(b) A makes polynomially few calls of EXAMPLE, polynomial in n and h. 
EXAMPLE returns examples for some f ~ F, where the examples are chosen 

randomly and independently according to an arbitrary and unknown probability 

distribution P on ~"-. 
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(c) For all conceptsf  E F and all probability distributions P on E"-,  with probability 

(t  - l/h), A outputs a concept g E F such that 

P(x) <- 1/h 
xE/Zxg 

where fag denotes the symmetric difference Or - g) u (g - f). 

We have now made precise our notions of "learning," "prior knowledge," "good 

approximation," and feasible learnability. In the following section we inquire into 

the properties of the prior information (more precisely, of the space of concepts) 

that will permit feasible learnability. This will directly address the question raised 

in the introduction regarding the quantitative relationship between the number of 

examples required for learning and the prior information. 

3. D i m e n s i o n  and  learnabi l i ty  

We now turn our attention to a measure of complexity for a space of concepts, 

which is a rather well-known measure of information complexity. 

Definition. Let F be a space of concepts and let f ~ F. The projection f,, of f on 

E"- is simply the set of strings of length at most n in f, i.e., f,, = (f  N E"-). Similarly, 

the projection F, of the space F o n  E" is given by F,, = {f,,If E F}. We call F,, the 

n<subspace of F. 

Definition. The dimension of subspace F,,, denoted by dim(F~) is defined by 

dim(f,,) = log (lf.I). 

We use the notation that for a set X, IX I denotes the cardinality, whereas for a 

string x, Ixl denotes the string length. 

Definition. Let d:N ~ N be a function of one variable, where N is the natural 

numbers. The asymptotic dimension (or more simply the dimension) of a space of 

concepts F is d(n) if dim(F,) is ®d(n), i.e., both O(d(n)) and f~(d(n)). More 

precisely, the dimension of F is d(n) if there exists a constant c such that 

V n : dim(F,) <- d(n) and 

dim(F,) >_ cd(n) infinitely often. 

We denote the asymptotic dimension of a space F by dim(F). We say a space F is 

of polynomial dimension if the asymptotic dimension of F is a polynomial in n. 
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Example 1. For any natural number n, consider n Boolean variables al, a2 . . . .  

a,. A monotone monomial is a Boolean formula of the form 

/~i~s al, where S _C {1, 2, . . . ,  n}. 

In words, a monotone monomial is a formula consisting solely of the conjunction 

of some subset of the variables a> a2 . . . .  an. We can view a monotone monomial 

f on n variables as a concept on ~;n as follows. Let each string x of length n 

correspond to a truth assignment of the variables, so that the i ~h bit of x is the value 

of ai. The concept defined by f is simply all strings of length n that satisfy f. This 

is similar to our earlier discussion on the equivalence of Boolean-valued functions 

and concepts. Now consider the space F,, of all such concepts on ~"-.  What is the 

dimension of this space? Clearly, there are only 2" distinct monotone monomials 

on n variables, at most as many as there are subsets of the n variables, Hence the 

dimension of Fn is log2(2 n) = n, and the asymptotic dimension of the space F of 

all monotone monomial concepts on ~* is n. Since this is a polynomial in n, we 

say it is a space of polynomial (in fact, linear) dimension. [] 

Hence, the dimension of a space of concepts is simply a measure of the variation 

of the size of the space with string length. Intuitively, the notion of dimension 

attempts to measure the size of the space as the complexity of the universe on 

which the concepts are defined is increased. 

We now explore the relationship between the dimension of a space of concepts 

and its learnability. We first develop an interesting property of the dimension. In 

particular, we will show that the dimension of a space is, in some sense, the number 

of "degrees of freedom" of the space. (Hence the choice of the name dimension.) 

Definition. Let F be a space of subsets of set X. We say that F shatters a set 

S C_ X, if for every $1 C_ S, there exists f ~ F that separates $1 from the rest of S, 

i.e., f N S = $1. To our knowledge, this notion was first introduced by Vapnik 

and Chervonenkis (1971). 

Example 2. Let F be the space of monotone monomial concepts as in Example 

1. In particular, let n = 4. Then, the set S = {0111, 1011, 1101, 1110} is shattered 

by F. To see this, pick any subset SI of S, say $1 = {0111, 1101}. If f is the set 

determined by the formula a2/~ a4, then f ¢ F, and f O S = $I. Therefore, F 

shatters S. [] 

Remark. The significance of the above definition is that if F shatters a set S of 

strings, then each string x in S is independent of the others with respect to F, These 

strings are independent in the sense that knowing whether or not x ~ F, for an 

undetermined concept f E F, tells us nothing about the membership in f of any 

other string in S. In fact, Vapnik and Chervonenkis define the dimension of a space 

to be the size of the largest set shattered by it and this is the definition used by 

Blumer et al. (1986). But then, it is often much simpler to estimate the cardinality 
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of a space than to estimate the size of the largest set shattered by it. For this reason, 

we define the dimension of a space to be the logarithm of cardinality, and as we 

will show shortly, the two definitions of dimension are closely related. [] 

We will now establish the relationship between our notion of dimension for a 

space of concepts and the size of the largest set shattered by the space. 

Lemma 1. If F,, is of dimension d, then Fn shatters a set of size ceiling(d/(n + 
2)), where ceiling(r) is the smallest integer greater than r. Also, every set shattered 

by F,, is of size at most d. 

Proof. Given in the Appendix. [] 

Remark. The significance of Lemma 1 is that if the dimension of a space is d, 

then there are at least d/(n + 2) independent strings. Hence, we can intuitively 

argue that at least d/(n + 2) examples would be necessary to get a good approx- 

imation of any concept in F. In fact, this argument is used formally in the proof 

of Theorem 1 below. 

Example 2 (continued). In Example 2, n = 4 and the dimension d = n = 4. 

Therefore, ceiling(dl(n + 2)) = 1 and hence Lemma 1 requires the existence of 

set of size 1 that is shattered. Note that this is a lower bound and larger sets might 

well be shattered. Indeed the set S of Example 2 is of cardinality 4 and is shattered 

by the monotone monomials. [] 

Lemma I is key to the main result of this section--a theorem relating learnability 

and dimension. Blumer et al. (1986) and Rivest (1987) present independent de- 

velopments of variants this theorem. 

Theorem 1. A space of concepts F is feasibly learnable if and only if it is of 

polynomial dimension. 

Proof. We give an informal proof as follows. 

(only if) Suppose that F were of dimension d(n). Then, by Lemma 1 there exists 

a set of size O(d(n)/(n + 2)) that is shattered by/7,,. As mentioned, these strings 

are mutually independent and hence it is not possible to predict the behavior of 

an unknown concept on these strings from fewer than O(d(n)/(n + 2)) examples. 

Hence, if d(n) were super-polynomial in n, polynomialty few examples would not 

suffice for sufficiently large n. For a formal proof see Blumer et al. (1986) or 

Natarajan (1988b). 

(if) This direction of the proof follows from the claim below. 

Claim. Let F be a space of concepts of dimension d(n). Then, there exists a 

learning algorithm for F that calls for h(d(n) + log(h)) examples of input n, h. 
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Proof. We say a concept f is cons&tent with a set of examples S if for each 

(x, y) in S, y = f(x). i.e., S is a set of examples for f. The following learning 

algorithm satisfies the statement of the claim. 

program learn; 

input: integers n, h; 

begin 

call EXAMPLE h(d(n) + log(h)) times; 

let S be the set of examples seen; 

pick a concept f in F consistent with S; 

output f 

end 

In words, the algorithm above simply calls for some number of examples and picks 

any concept in F that is consistent with the examples thus obtained. (For this 

reason, learning algorithms of this form are sometimes referred to as consistent 

algorithms.) Although this is a simple strategy, it is provably good. A formal proof 

that this algorithm indeed leai~ns F may be found in Blumer et al. (1986) or in 

Natarajan (1986, 1988b). The latter uses a simple counting argument, while the 

former uses the results of Vapnik and Chervonenkis (1971). [] 

To see the import of the above results, suppose the learner's prior knowledge 

of an unknown concept carves a space of concepts F around the concept. Then the 

number of examples necessary and sufficient to learn the concept is proportional 

to the dimension of F. We illustrate this with an example. 

Example 3. Consider the n boolean variables a~, a2 . . , an. Suppose we know 

that the concept to be learned is a monotone monomial concept on these variables. 

This tells us that the unknown concept is simply one in the space F of conjunctive 

monomial concepts on the variables. As discussed in Example 1, the dimension of 

this space is log(2") = n. To learn with confidence and accuracy (1 - 1/h), we 

simply need to call for h(n + log(h)) examples and pick a monotone monomial 

concept consistent with the examples we see. The following algorithm employs this 

strategy. 4 

program learnmonomial; 

input: integers n, h; 

begin 

call for h(n + log(h)) examples; 

let S be the examples seen; 

• * - a l / k a 2 / ~ . . .  am; 
for each positive example (x, 1) in S do 

for each ai do 

if ai = 0 in x then delete ai from ~P. 
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od 

od 

output dO; 

end 

Notice that learnmonomial ignores negative examples. This is because it starts with 

the most restrictive monotone monomia l - -a t /~  a 2 / ~ . . ,  a,,, and chips away at it 

to accommodate the examples seen. If all the examples seen are negative, the 

program outputs the monomial it started with, which will be approximately correct 

with high probability. [] 

4. Time considerations in concept learning 

Thus far, we have concerned ourselves with the information complexity of learning, 

i.e., the number of examples required to learn. Another issue to be considered is 

the time-complexity of learning, i.e., the time required to process the examples. 

In order to permit interesting measures of time complexity, we must specify the 

manner in which the learning algorithm identifies its approximation to the unknown 

concept. In particular, we will require the learning algorithm to output a name for 

its approximation in some predetermined naming scheme. To this end, we define 

the notion of an index for a space of concepts. 

In order for each concept in a space F to have a name of finite length, F would 

have to be at most countably infinite. Assuming that the space F is countably 

infinite, we define an index of F to be a function I:.F --> 2"=* such that 

V f, g C F, f ¢ g implies I(f) N I(g) = Q. 

For each f E F, I(f) is the set of indices for f. 

Remark. A name for a concept is simply a string in ~*. The index function I 

maps each concept in F to a set of names. This allows for the possibility of more 

than one name for the same concept. [] 

We are primarily interested in spaces that can be learned efficiently, i.e., in time 

polynomial in the input parameters n, h and in the length of the shortest index for 

the concept to be learned. Analogous to our definition of learnability, we can now 

define polynomial-time learnability. Essentially, a space of concepts is polynomial- 

time learnable if it is feasibly learnable by a polynomial-time algorithm. 

Definition. A space of concepts F is polynomial-time learnable in an index I if 

there exists a deterministic 5 learning algorithm A such that 

(a) A takes as input integers n and h. 
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(b) A runs in time polynomial in the error parameter  h, the length parameter  n 

and in the length of the shortest index in I for the concept to be learned f. A 

may make polynomially few calls of EXAMPLE,  polynomial 6 in n and h. 

E X A M P L E  returns examples for some f in F, the examples being chosen 

randomly according to an arbitrary and unknown probability distribution P on 
~n . 

(c) For all concepts f i n  F and all probability distributions P on ~" , with probability 

(1 - 1/h) the algorithm outputs an index ig ~ l(g) of a concept g in F such 

that 

e(x)  <_ 1lb. 
x~fAg 

We are interested in identifying the class of pairs (F, /),  where F is a space of 

concepts and I is an index for it, such that F is polynomial-time learnable in I. 

Notice that in the program learn given in the proof of Theorem 1, the only operation 

that could be computationally time-consuming is that of picking a concept f in F 

consistent with the set of examples seen. If we can ensure that this can be done 

efficiently, then the learning algorithm would be provably efficient. To this end, 

we define the following. 

Definition. For a space of concepts F and index I, an ordering is a program that 

(a) takes as input a set of examples S = {(Xl, yl), (x2, y2) . . . .  , (xi, yi) • • • } such 

that xr, x2, x3 . . . .  E £*, and Yl, Y2, • • • E {0, 1}. 

(b) produces as output an index in I of a concept f E F that is consistent with S, 

if such exists; i.e., it outputs i s E l(f) for some f E F  such that 

v (x, y) s ,  y = f(x). 

Remark. We use the term "ordering" to describe the above notion as one can 

view it as a listing of the concepts in F indexed by sets of examples. The reader 

might prefer other names, such as "hypothesis finder" or "concept-fitting algo- 

ri thm." For instance, Rivest (1987) uses the term "identification" to refer to a 

similar notion. []  

Furthermore,  if the ordering is deterministic and runs in time polynomial in the 

length of its input and the length of the shortest such index, we say it is a polynomial- 
time ordering and F is polynomial-time orderable in I. Note that we do not require 

the ordering to output the shortest index, only that its running time be polynomial 

in the length of the shortest index. Also, if the ordering is randomized and runs 

in polynomial time, we say F is random polynomial-time orderable in I. 
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With these definitions in hand, we can state the following theorem. 

Theorem 2. A space of concepts is polynomial-time learnable in an index i (1) 

if it is of polynomial dimension and is polynomial-time orderable in I, and (2) only 

if F is of polynomial dimension and is random polynomial time orderable in I. 

Proof. (If) Let Q be a polynomial-time ordering for F in I. The following is a 

polynomial time learning algorithm for F in I. 

program learnfast; 

input: n, h 

begin 

call EXAMPLE h(dim(Fn) + log(h)) times; 

let S be the set of examples seen; 

output Q(S); 

end 

Given Theorem 1, we know that learnfast learns F, and it only remains for us 

bound its running time by a polynomial. Now, Q runs in time polynomial in the 

size of its input and the length of the shortest index of any concept consistent with 

S. Since the concept to be learned must be consistent with S, surely Q runs in time 

polynomial in n, h, and in the length of the shortest index of the concept to be 

learned. Hence, learnfast runs in time polynomial in n, h, and in the length of the 

shortest index for the concept to be learned. Therefore, F is polynomial-time 

learnable in I. 

(only if) Assume that Fis polynomial-time learnable in an index I by an algorithm 

A. Using an argument similar to that used to prove Theorem 1, we can show that 

F must be of polynomial dimension. For details, see Natarajan (1988b). It remains 

to show that there exists a randomized polynomial-time ordering for F. We give 

such an ordering below. The randomization technique used in this ordering is a 

variant of that used in the proof of the "only if" direction of Theorem 1. The same 

technique is used by Kearns et al. (1987) to obtain hardness results for some learning 

problems. 

program Q; 

input: S: set of examples, n: integer; 

begin 

place the uniform distribution on S; 

let h = Isl + 1: 
run A on inputs n, h, and 

on each call of EXAMPLE by A 

return a randomly chosen element of S; 

output the index output by A; 

end 
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Let f be a concept consistent with S whose index length is the shortest over all 

such concepts. Now, with probability (1 - 1/h), A must output the index of a 

concept g such that f and g agree with probability at least (1 - 1/h). Since the 

distribution is uniform and h > IS], g must agree with f on every example in S. 

Hence with high probability, g is consistent with S. Furthermore, since A is a 

polynomial-time learning algorithm for F, our ordering Q is a randomized poly- 

nomial-time ordering for F in I. To see this, notice that A runs in time polynomial 

in n, h, and l, the length of the shortest index of f. By our choice of h, it follows 

that A runs in time polynomial in n, IS], and I. Hence, Q runs in time polynomial 

in n, h, and l, and is a randomized polynomial-time ordering for F in I. 

This completes the proof. [] 

Example 4. Again consider the monotone monomial concepts of Example 1. The 

set of monotone monomial formulae forms an index for this space of concepts. 

The learning algorithm learnmonomial of Example 3 outputs monotone monomial 

formulae as its approximations to the concept to be learned. Furthermore, the 

algorithm runs in time nh(n + log(h)), which is polynomial in n and h. Thus the 

monotone monomial concepts are polynomial-time learnable in the monotone- 

monomial formulae. [] 

5. Learning functions 

Thus far our discussion has concerned concepts or sets. In the more general setting, 

we consider learning algorithms that learn functions from ~* to 2*. We first need 

to generalize our definitions. 

Definition. A space of functions F is any set of functions from 2;* to 2". 

Definition. For any f ~ F, the projection fn:~"- ~ ~'~- o f f  on ~ -  is given by 

if  I f (x) l -<  n 
f,,(x) = [n-length prefix of f(x), otherwise 

Definition. The n'-subspace F,, of F is the projection of F on E n-, i.e., 

f, ,  = {f,,Lf e F}. 

Remark. Intuitively, for a function f ,  the projection f,, attempts to capture the 

behavior of f with n-bit precision. If, for some string x in E ~-, f(x) is of length 

greater than n, f,,(x) is the first n bits off(x) ,  i.e., the n-length prefix off(x) .  The 

subspace F,, of F is the analog for spaces in that F,, is the projection of F on 2". [] 
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An example for f is a pair of strings (x, y) such that y = f(x). Again, we provide 

the learning algorithm a routine EXAMPLE that produces examples for the func- 

tion to be learned, chosen randomly according to an arbitrary and unknown dis- 

tribution P. 

With these definitions in hand, we can formalize the notion of learnability of 

functions as follows. 

Definition. A space of functions F is feasibly learnable if there exists an algorithm 

A such that 

(a) A takes as inputs integers n and h, where n is the size parameter and h the 

error parameter. 

(b) A makes polynomially few calls of EXAMPLE,  polynomial in n and h. EX- 

AMPLE returns examples for some function f ,  ~ Fn, the examples being chosen 

according to an arbitrary and unknown probability distribution P on £"- .  

(c) For all functions fn ~ F~ and all probability distributions P on E n-, with prob- 

ability (1 - 1/h), A outputs a function g ~ F such that 

P(x)  <_ 1/h. 
fn(x)~gn(x) 

Our definition of dimension in this setting is exactly the same as the one given 

earlier for concepts. We now generalize the notion of shattering as follows. 

Definition. Let F be a space of functions from a set X to a set Y. We say F 

shatters a set S C_ X if there exist two functions f, g E F such that 

(a) for any s E S, f(s) ¢ g(s). 

(b) for all S1 C_ S, there exist e E F such that e agrees with f on $1 and with g on 

S - Sh i.e., 

V s S, : e(s)  = f ( s )  

V s E S - Sl : e(s) = g(s). 

We can now generalize our shattering lemma for functions as follows. 

Lemma 2 (Generalized Shattering Lemma). If F, is of dimension d, F,, shatters 

a set of size ceiling(d/(3(n + 1))). Also, every set shattered by F, is of size at most 

d. 

Proof. Given in the Appendix. 

Using this lemma, we can prove the following theorem. 
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Theorem 3. A space of functions is feasibly learnable if and only if it is of 

polynomial dimension. 

Proof Sketch. (if) If F, is of dimension d, then we can use the arguments the 

proof of Theorem 1 to show that h(d(n) + log(h)) examples suffice to obtain an 

approximation to within 1/h, with a confidence of (1 - 1/h). 

(only if) This direction of the proof uses an argument similar to that of Theorem 

1, with the difference that here we employ the notion of generalized shattering 

and the corresponding generalized shattering lemma. [] 

We can also examine the time-complexity of learning a space of functions and 

attempt to characterize the spaces learnable in polynomial time. To this end we 

define the notion of an index analogous to the corresponding definition for a space 

of concepts. 

Definition. For a space of functions F of countable cardinality, we define an 

index I to be a naming scheme for the functions in F, in a sense identical to that 

for a space of concepts. 

Definition. We say a space of functions Fis polynomial-time learnable in an index 

I if there exists a deterministic learning algorithm A such that 

(a) A takes as input integers n and h. 

(b) A runs in time polynomial in the error parameter h, the length parameter n, 

and in the length of the shortest index in I for the function f to be learned. 

A may call EXAMPLE polynomially few times, polynomial in n and h. 

EXAMPLE returns examples for fn, the examples being chosen randomly 

according to an arbitrary and unknown probability distribution P on ~n . 

(c) For all functions f in  F and all probability distributions P on "2 n ,withprobability 

(1- 1/h) the algorithm outputs an index ig E I(g) of a function g in F such 

that 

p(x) <_ 1/h. 
[n(x)~gn(x) 

We are interested in identifying the class of pairs (F, /), where F is a space of 

functions and I is an index for it, such that F is polynomial-time learnable in I. To 

this end, we define the following. 

Definition. For a space of functions F and index I, an ordering is a program that 

(a) takes as input a set of examples S = {(Xl, yl), (x2, y2), • . . ,  (xi, yi), . . . }. Let 

n be the length of the longest string among the xi and yi. 

(b) produces as output an index in I of a function f C F that is consistent with S, 

if such exists; i.e., it outputs i I C I(f) for some f C F such that 
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v (x, y) e s ,  y : L(x).  

Furthermore, if the ordering runs in time polynomial in the length of its input and 

the length of the shortest such index, we say it is a polynomial-time ordering and 

F is polynomial-time orderable in I. If the ordering runs in random-polynomial 

time, we say F is random-polynomial-time orderable in I. 

With these definitions in hand, we can state the following theorem. 

Theorem 4. A space of functions is polynomial-time learnable: (1) if it is of 

polynomial dimension and polynomial-time orderable, and (2) only if it is of 

polynomial dimension and is orderable in random polynomial time. 

Proof. Similar to that of Theorem 3. [] 

6. Learning from examples and background information 

In this section, we consider general-purpose learning programs that may be used 

over many domains. Specifically, such programs take as input a description of the 

space of functions to be learned and, after some precomputation, behave like 

learning algorithms for that space. We will refer to such algorithms as general 

purpose learning programs. 

Consider a general-purpose learning program M that works over a set of spaces 

G~, G2, . . . ,  G~ . . . .  ; i.e., M takes as input the description of some G~ and then 

behaves as a learning algorithm for Gi. Now, if G = G~ U G2 . . . U G i . . .  is 

itself a space of low dimension, then it follows from Theorem 1 that we can build 

a learning algorithm for G and not bother with the complications of M. The 

interesting question is whether it is possible for G to be of intractably-high di- 

mension and yet be decomposable into G1 . . . ,  G ~ . . .  such that each G~ is of low 

dimension and each Gi has a short description that can be fed into M. Such de- 

composability would be desirable, as it would permit the construction of a general- 

purpose learning algorithm M for G, so that even though G is of high dimension 

and difficult to learn, M would efficiently handle all the components of G, given 

their descriptions. In order to explore this further, we consider the Framework 2 
presented below. 

Let F be a space of functions. A theory for F is simply any total function from 

F to ~*. The theory string for a function f ~ F is the string t = TOO. 

Remark. Consider the typical explanation based learning framework (e.g., Mitch- 

ell, Keller & Kedar-Cabelli, 1986). When attempting to teach an explanation based 

learning system a new concept, it is necessary to load in the relevant domain theory 

and then provide it with examples. The domain theory reflects some prior infor- 

mation on the concept to be learned and, typically, different concepts will require 

different domain theories. Our notion of theory attempts to capture this idea. [] 
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A learning algorithm for F is an algorithm that attempts to infer functions in F 

from examples and background information. The learning algorithm has at its 

disposal a routine TEACHER,  which is best described as the pair {EXAMPLE, 

T}, where EXAMPLE is the source of random examples described in Framework 

1 and T is a theory for F. When attempting to teach the learning algorithm a 

function f E F, TEACHER behaves thus: On the first call, TEACHER returns 

t = T(f). On subsequent calls, TEACHER returns a randomly chosen example 

for the projection fn of f by invoking EXAMPLE. 

Remark. We are interested in the relationship between the length of a theory 

string and the number of examples required for learning before and after reading 

the theory string. In some sense, this represents the tradeoff between background 

information and the information obtained from examples. Is it possible that a single 

bit of theory is worth many examples? We explore this below. [] 

Definition. We say that a space of functions F is feasibly learnable in Framework 

2 if there exists a learning algorithm A and a theory T for F such that 

(a) A takes as input integers n and h. 

(b) A makes polynomially many calls of TEACHER = {EXAMPLE, T}, poly- 

nomial in n and h. A reads the first l bits of the theory string returned by 

TEACHER, where l varies polynomially in n and h. 

(c) For all functions f in F, and all probability distributions P over ~2-, with 

probability (1 - 1/h) the algorithm A outputs a function g in F such that 

P(x) <- 1/h. 
fn(x)¢gn(X) 

We are now ready to state our result. 

Theorem 5. A space of functions is feasibly learnable in Framework 2 if and only 

if it is of polynomial dimension. 

Proof. Given in the Appendix. [] 

Corollary. A space of functions is feasibly learnable in Framework 2 if and only 

if it is feasibly learnable in Framework 1. 
This answers our question at the beginning of this section: If G is a space of 

high dimension, then G is not decomposable into component spaces of low di- 

mension with short descriptions. Does this mean that general-purpose learning 

programs are not very useful? It does not, for two reasons. 

First, note that we are comparing the number of examples used by the learning 
algorithm with the number of bits of theory read by it. If each example is of length 

n, where n is the length parameter, this compares the information from examples 
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and theory in a bit-for-bit fashion, within the factor of n. In some situations such 

a comparison may not be meaningful, as the cost of each example might be sig- 

nificantly higher than the cost of each bit of theory. 

Second, if NP # RP 7, there exist spaces of functions that are polynomial-time 

learnable in Framework 2, but not polynomial time learnable in Framework 1. 

Essentially, a space of functions is polynomial-time learnable in Framework 2 if it 

is feasibly learnable in Framework 2 by a polynomial-time algorithm. Formally, a 

space F of functions is polynomial-time learnable in an index I for F in Framework 

2 if there exists a theory T for F and a deterministic learning algorithm A such that 

(a) A takes as input integers n and h. 

(b) A runs in time polynomial in n, h and in the length of the shortest index for 

the function to be learned f. A may call T E A C H E R  polynomially few times, 

polynomial in n and h. A reads the first I bits of the theory string returned by 

T E A C H E R ,  where I varies polynomially in n and h. 

(c) For all functions f in F, and for all probability distributions P over ~;~-, with 

probability (1 - 1/h) the algorithm outputs an index ig E I(g) of a function g 

in F such that 

P(x) <- 1/h. 
xCfn(x)¢gn(x) 

Theorem 6. If NP ~ RP, there exists a space of functions F and an index I for 

it, such that F is polynomial-time learnable in I in Framework 2, but not in Frame- 

work 1. 

Proof Sketch. The proof rests on a result of Kearns et al. (1987) concerning the 

existence of spaces that are of polynomial dimension but not polynomial-time 

learnable in Framework 1, under the assumption NP # RP. 

A funct ionf is  a Boolean threshold function on n variables al, a2 . . . . .  an if there 

exists S C_ {al, az . . . .  , a,,} and 1 -< k -< n such that 

1, if at least k of the variables in S are set to 1 in x 
f(x) = 0, otherwise 

where x is a Boolean assignment to the variables a~, a 2 . . . ,  an. Kearns et al. (1987) 

show that the space of Boolean threshold functions is not polynomial-time learnable 

unless RP = NP. Yet it is easy to show that this space of functions is polynomial- 

time learnable in Framework 2. To do so, we construct a theory function T for the 

space, where the theory string for each function is a complete description of the 

function in that it enumerates the set S and the value of k. [B 

The significance of Theorem 6 is that, although the availability of theory cannot 

reduce the information complexity of learning, it can reduce the computational 
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complexity of learning. In the proof of Theorem 6, this reduction was obtained in 

a trivial way in that the theory string for each function gave the learner a complete 

description of the function. Natarajan (1987) considers the possibility of non-trivial 

reductions, but without significant progress in that direction. 

Theorem 5 might seem contrary to the intuition of some readers. We urge the 

reader to bear in mind that the theorem does not claim that theory is useless, but 

merely that theory cannot offer super-polynomial reductions in information com- 

plexity. In the proof of Theorem 5, we show that the length of a theory string is 

comparable to the reduction in the dimension of the space of functions achieved 

by it. In interpreting this, we should note that a theory string does not require 

repeated sampling to establish confidence and accuracy. Hence, if the confidence 

and accuracy required is one part in one hundred, each bit of theory could be 

worth one hundred times as many examples. 

7.  F in i t e  l earnabi l i ty  

Thus far we have explored the asymptotic learnability of spaces of sets and func- 

tions, that is, we have considered the asymptotic variation of the number of ex- 

amples needed for learning with increasing values of the size parameter. We will 

now investigate a different notion of learnability, one that asks whether the number 

of examples needed for learning is finite, i.e., varies as a finite-valued function of 

the error parameter, without regard to the size parameter. We call this "finite 

learnability" as opposed to the notion of asymptotic learnability. 

For the case of spaces of sets, Blumer et al. (1986) present conditions necessary 

and sufficient for finite learnability. Their elegant results rely on the powerful results 

in classical probability theory of V.apnik and Chervonenkis (1971). In this section, 

we review their results briefly and then go on to present learnability results for 

spaces of functions, relying in part on the same results of Vapnik and Chervonenkis. 

Definition. Let F be a space of concepts on R k, where R is the set of reals and 

k is fixed natural number. We say F is finitely-learnable if there exists an algorithm 

A such that 

(a) A takes as input an integer h, the error parameter. 

(b) A makes finitely many calls of EXAMPLE, although the exact number of calls 

may depend on h. EXAMPLE returns examples for some function f in F, the 

examples being chosen randomly according to an arbitrary and unknown prob- 

ability distribution P on R k. 
(c) For all probability distributions P and all functions f in/~,  with probability 

(1 - 1/h), A outputs g E F such that 

f f#gdP <- 1/h. 
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The following theorem is adapted from Blumer et al. (1986). 

Theorem 7. A space of sets F on R k is finitely learnable if and only if there exists 

a finite bound on the size of the subsets of R ~ shattered by F. Blumer et al. (1986) 

refer to the size of the largest set shattered by F as the Vapnik-Chervonenkis 
dimension of the space F. 

Let us now formalize the notion of finite learnability of spaces of functions on 

the reals. 

Definition. Let F be a space of functions from R ~ to R k. We say F is finitely- 
learnable if there exists an algorithm A such that 

(a) A takes as input an integer h, the error parameter. 

(b) A makes finitely many calls of EXAMPLE,  although the exact number of calls 

may depend on h. EXAMPLE returns examples for some function f in F, 

where the examples are chosen randomly according to an arbitrary and un- 

known probability distribution P on R k. 

(c) For all probability distribfltions P and all functions f in F, with probability 

( 1  - 1/h), A outputs g E F such that 

f dP <- 1/h. 
f#g 

We need the following supporting definitions. 

Definition. Let f be a function from R k to W. We define the graph set of f,  

denoted by graph(f), to be the set of all examples for f. That is, 

graph(f) = {(x, y)ly = f(x)}. 

Clearly, graph(f) C_ R k × R ~. Analogously, for a space of functions F, we define 

the graph space, denoted by graph(F), to be the space of graphs sets of the functions 

in F. That is, 

graph(F) = {graph(f)lf E F}. 

We now state the main theorem of this section. The theorem is not tight in the 

sense that the necessary and sufficient conditions do not match. Natarajan and 

Tadepalli (1988) reported a tight version of the theorem on the basis of an incorrect 

proof. More recently, Natarajan (1988b) identifies a space of functions that is finitely 

learnable and sits in the gap between these conditions. We note that while there 

are convergence results in the literature for functions (Pollard, 1986) that are akin 

to those of Vapnik and Chervonenkis (1971) for sets, these results do not resolve 
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the gap in Theorem 8. This is because these results concern uniform convergence 

properties and not the information complexity properties required for our purposes. 

Theorem 8. A space of functions F from R k to R k is finitely-learnable 

(a) If there exists a bound on the size of the sets in R k x R k shattered by the 

space graph(F). (This is simple shattering as defined in Section 2.) 

(b) Only if there exists a bound on the size of the sets in R k shattered by F. (This 

is generalized shattering as defined in Section 5.) 

Proof sketch. (If) This direction of the proof follows from the convergence results 

of Vapnik and Chervonenkis (1971), exactly as in Blumer et al. (1986). Essentially, 

the "if" condition implies that the space graph(F) is finitely learnable. It follows 

that the space F is finitely learnable. 

(Only if) This direction of the proof is identical to that of Theorem 3, which in 

turn followed the arguments of Theorem 1. In essence, the size of the set that is 

shattered by F is the number -of independent pieces of information necessary to 

identify a function in F. If this is unbounded, then F will not be learnable from 

finitely many examples. [] 

In the foregoing, we considered functions on real spaces, requiring that on a 

randomly chosen point, with high probability, the learner's approximation agree 

exactly with the target function. In a sense, this result is largely of technical interest, 

as practical computations can only be carried out to some finite degree of precision. 

Of course, if all the computations were carried out to some finite precision, Theorem 

3 would apply directly. Alternatively, we could demand that the learned function 

approximate the target function with respect to some standard norms, say the square 

norm. Specifically, we could replace the integral in condition (c) of the definition 

of a finitely learnable class of functions with the norm of interest. In the case of 

the square norm, it would read 

fx~,kE(f(x), g(x))dP <- I/h, 

where E(a, b) is the Euclidean distance between a and b in R k. For such norms, 

we can prove the equivalent of Theorem 8 for the case where P is a fixed distri- 

bution. Such a theorem involves the use of covers as defined in Benedeck and Itai 

(1988). In brief, we define a (1/h)-cover of F, with respect to the square norm and 

the distribution P, to be a subset K of F such that for each f E F there exists 

g E K such that f and g satisfy the above inequality. Then, we can show that F is 

finitely learnable over P if for all h, there exists a finite (1/h)-cover for F. This is 

discussed in greater detail in Natarajan (1989b). 
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8. An application to connectionist networks 

In this section we discuss an application of our results to connectionist networks. 

These networks are the subject of numerous investigations (Rumelhart & Mc- 

Clelland, 1986) and appear to be promising as machine architectures for learning. 

In the following, we will show that such networks intrinsically represent spaces of 

functions that are of low dimension. 

A connectionist  ne twork  (more simply, a network) consists of a set of nodes and 

a set of input and output terminals. Each node has several input wires and one 

output. The input wires may be connected to the output points of other nodes or 

to the terminals that serve as the input to the entire network. Similarly, the output 

of a node may connect to inputs of other nodes or to the output terminals of the 

entire network. Each input wire of a node has a weight associated with it. Each 

node computes the same function--the node function---~r:R ~ R and outputs the 

value of -r on the sum of its inputs duly scaled by the appropriate weights. More 

precisely, for a certain node, let x~ and w~ be the i 'h input and weight, respectively. 

The value of the output of the node is ~r(s), where s = ~,~ ~,pu~s wi'xi.  

These networks are used to compute functions as follows. Signals of (0, 1) value 

are applied to the input terminals of the network. The nodes connected to these 

terminals change their output values based on these signals and the effect propagates 

through the network. The output terminals of the network display new values as 

a result of the propgataion. (If the network has cycles in it, we consider the values 

of the output terminals when the network equilibrates, if at all.) The values at the 

output terminals form the value of the function computed by the network for the 

applied input. The function computed by the network can be changed by altering 

the weights on the inputs of  the nodes. Depending on the range of the weights, a 

network can be configured to compute any of a space of functions. Thus it can be 

used to learn a function from this space by picking examples for the function to 

be learned and then changing the weights on the network so that the network 

agrees with the examples. Additional details and background on such network~ 

may be found in Rumelhart and McClelland (1986). 

We are interested in the following question. What is the dimension of the space 

of functions that can be computed by a network of n nodes? As it happens, we 

can provide an upper bound on the dimension, independent of the node function 

used by the nodes. 

Consider a network of n nodes where each node is connected to the outputs of 

all the other n - 1 nodes. Let each weight be a b-bit binary integer. Rather than 

specify input and output terminals, we will use the following convention. We 

designate those nodes that have zero weights on all their input wires to be input 

terminals. Also, we assume n output terminals, where each is connected to the 

output of a single node. It is easy to see that this convention loses no generality 

with respect to the functions computed by these networks. With these definitions 

behind us, we estimate the number of different functions that a network of n nodes 
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can compute. There are at most n(n - 1) weights, and each weight is a binary 

integer of b bits. This implies that there are at most 2 b"("- o distinct weight assign- 

ments to the network and hence at most as many functions computed by it. Hence, 

the space of functions computable by the network is of cardinality at naost 2 b"('`- 1~ 

and therefore of dimension at most bn(n - 1). 

Thus, connectionist networks intrinsically support spaces of functions that are 

of dimension polynomial in the size of the network. Since the length of the input 

is no more than the size of the network, the space of functions represented by the 

network is feasibly learnable by Theorem 1. Unfortunately, most interesting node 

functions investigated to date generate networks that are not known to be efficiently 

orderable and, therefore, by Theorem 2, not polynomial-time learnable. Specifi- 

cally, given a set of examples for the function to be learned, it is computationally 

intractable to adjust the weights in the network to obtain agreement between 

function and network. See Blum and Rivest (1988) for more on this issue. 

In the foregoing, we considered networks with finite precision integer weights. 

What if the weights were allowed to be real numbers of arbitrary precision? If we 

allow infinite precision weights, we must limit the class of node functions to keep 

things meaningful. Otherwise, the network can compute any function of its inputs 

and thereby support spaces of functions of arbitrary dimension. Consider the linear 

threshold funct ion "r, defined as follows. 

~-(s) = {~ i f s > - I  
otherwise 

We refer to networks with linear threshold node functions as linear threshold 

networks.  The interesting thing here is that a linear threshold network of n nodes 

with arbitrary precision weights can be replaced exactly by a linear threshold net- 

work of n nodes with (nlogn)-bit integer weights, (J-W. Hong, personal commu- 

nication, 1987). Hence, our arguments on the dimension of the space of functions 

represented by a network of n nodes hold for networks with linear threshold 

functions, even if the weights are arbitrary real numbers. In particular, a linear 

threshold function network of n nodes supports a space of dimension at most 

n2(n - 1)log(n), even if the weights are arbitrary real numbers. 

If a connectionist network is good model of the human brain, then the space of 

functions supported by the one would be a good model of the space of functions 

supported by the other. It would follow that a connectionist network is a good 

architecture for learning those functions that are learned easily by the human brain. 

The import of this section is that the types of networks (such as the linear threshold 

network) investigated to date are efficient with respect to the number of examples 

required for learning, but not with respect to the computational time involved. 

The difficulty lies in ordering them, i.e., given a set of examples for a network, it 

is computationally difficult to adjust the weights in the network so that the network 

agrees with the examples. Given this, one might wonder whether these types of 
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networks are too powerful and not very good models of the human brain. It would 

be interesting to investigate other types of networks that are efficiently orderable, 

even if they are computationally less powerful than the types of networks that are 

the subject of current investigations. 

9. Conclusion 

This paper concerned learning concepts and functions. Two frameworks were de- 

fined, one that provided the learner with examples for the unknown concept or 

function, and another that provided the learner with examples and background 

information. Within the first framework, we identified necessary and sufficient 

conditions for learning from a small number of examples and in a time-efficient 

manner. As for the second framework, we showed that the addition of background 

information gave this framework no advantage over the first with respect to in- 

formation complexity, although it might offer advantages with respect to time 

complexity. We also considered an application of our results to connectionist net- 

works to show that these networks intrinsically support hypothesis spaces of low 

dimension. 

Another possible application of these results is in the context of learning heuristics 

for solving puzzles and problems such as symbolic integration. This is explored by 

Natarajan and Tadepalli (1988) and by Natarajan (198%). The first paper applies 

some of the results of this paper towards learning deterministic heuristics, given 

solved sample instances from a problem domain. The second paper discusses the 

learning of probabilistic heuristics from solved instances, as well as from unsolved 

instances or exercises over a problem domain. 

In all, this paper presented some theoretical results on learning sets and functions, 

attempting to link the assumptions and results to their counterparts in the artificial 
intelligence literature. 

Appendix 

This appendix is a collection of technical proofs to some of the results in the body 
of the paper. 

Lemma 1. If F, is of dimension d, then F,, shatters a set of size 9 ceiling(d/(n + 

2)). Also, every set shattered by F is of size at most d. 

Proof (From Natarajan, 1988b). First, we prove the upper bound. Suppose a set 

S is shattered by by F,. Since there are 2 IsJ distinct subsets of F,, it follows from 

the definition of shattering that 2 Isl -< IF, I. Taking logarithms on both sides of the 

inequality, we get IS[-< log(IF, I) = d, which is as desired. 
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We prove the lower bound part of the lemma through the following claim. A 

variant of the claim is given by Vapnik and Chervonenkis (1971), among others. 

Claim. Let X be any finite set and let H be a set of subsets of X. If k is the size 

of the largest subset of X shattered by H, then 

IHI (Ixl + 1)*. 

Proof. By induction on }X}, the size of X. 

Basis. Clearly true for IXI = 1. 

Induction. Assume the claim holds for {X I = m and prove true for m + 1. Let 

IXI = m + 1 and let H be any set of subsets of X. Also, let k be the size of the 

largest subset of X shattered by H. Pick any x ~ X and partition X into two sets 

{x} and Y = X - {x}. Define H~ to be the set of all sets in H that are reflected 

about x. That is, for each set h~ in HI, there exists a set h C H such that h differs 

from hi only in that h does not include x. Formally, 

H, = {hllh~ ~ H, 3 h E H, h ¢ h, and h~ = hO{x}}. 

Now define H2 = H - H 1 .  Surely, the sets of Ha can be distinguished on the 

elements of Y. That is, no two sets of H2 can differ only on x, by virtue of our 

definition of H~. Hence, we can consider//2 as sets defined on Y. Surely,/-/2 cannot 

shatter a set larger than the largest set shattered by H. Hence, H2 shatters a set 

no bigger than k. Since IYI --- m, by the inductive hypothesis we have IH21 <- 

(Irl + I) 
Now consider H1. By definition, the sets of H1 are all distinct on Y. That is, for 

any two distinct sets h~, h2, in H~, h~ C~ Y ¢ h2 f~ Y. Suppose HI shattered a set 

S C_ Y, IsI _> k. Then, H would shatter S tO {x}. But, IS tO {x} I -> k + 1, which is 

impossible by assumption. Hence, H1 shatters a set of at most (k - 1) elements 

in Y. By the inductive hypothesis, we have 

(It) + 1) 

Combining the two bounds, we have 

}H I : I H -  HI I ~-IHll  : IH21-~-[HI] 

(I YI -31- l) k -~- (I YI -~ 1) k-1 ~ (m + 1) k + (m + 1) k-'  

--< (m + l)g-l(m + 2) -< (m + 2) k -< (IX[ + 1) k. 

Thus the claim is proved. [] 
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Returning to the lemma, we see that if X is all strings of length n or less on the 

binary alphabet, then IxI = 2 "+~. By our claim, if the largest set shattered by F, 

is of size k, 

IF,,I-< (2 ,,+' + 1) k. 

Hence, k >- log(lF, I)/log(2 ~+' + 1) >- dim(F;,)/(n + 2). 

Since k must be an integer, we take the ceiling of the right-hand side of the last 

inequality. This completes the proof of the lemma. []  

Lemma 2 (Generalized Shattering Lemma). If F, is of dimension d, F,, shatters 

a set of size ceiling(d/(3n + 3)). Also, every set shattered by F, is of size at most 

d. 

Proof. (From Natarajan, 1988b). The upper 'bound part of the lemma can be 

proved exactly as the corresponding part of Lemma 1. To see that this upper bound 

can be attained, we simply need to consider a family E, of {0, 1}-valued functions. 

The lower bound part of the lemma is proved through the following claim. 

Claim. Let X and Y be two finite sets and let H be a set of functions from X to 

Y. If k is the size of the largest subset of X shattered by H, then 

IHI-< (Ixl)~(I vb 2~. 

Pro@ By induction on IXI. 

Basis. Clearly true for Ixl = 1, for all lY I. 

Induction. Assume true for tXt = 1, IYI = m, and prove true for IXt = l + 1, 

I Yt = m. Let X = {xl, xz, . . . ,  xe} and Y = {yl, Y2, . . . ,  yl}. Define the subsets 

H, of H as follows: 

H i  = ~fV ~ H ,  f ( x , )  = yL 

Also, define the sets of functions Hij and H0 as follows: 

for i ¢ j: Hij = {flf ~/4,., 3 g ~ H/such  that f = g on X - {Xl} }. 

/4o = H -  U,~Hii. 

Now, 

II-II -- Iml + Iu,~,H,,I < - Iml  + E IH~I. 
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We seek bounds on the quantities on the right-hand side of the last inequality. By 

definition, the functions in H0 are all distinct on the m elements of X - {x~}. 

Furthermore, the largest set shattered in/4o must be of cardinality no greater than 

k. Hence, we have by the inductive hypothesis, 

IHol <- lkm 2k, 

And then, every H~j shatters a set of cardinality at most k - l ,  as otherwise H 

would shatter a set of cardinality greater than k. Also, since the functions in Hsj 

are all distinct on X - {Xl}, we have by the inductive hypothesis, 

For i # i, I ,1 -< l -'m 

Combining the last three inequalities, we have 

IHI <- lkm zk + ~ lk-lm 2(k~1) < lkm 2k + m2lk-lm2(k-l) < lkm ~k + Ik-lm2k 
iej 

-<l k - t m  2 k ( l +  1 ) - < ( l +  1) km 2k. 

Which completes the proof of the claim. []  

Returning to the lemma, we have X = Y = Zn-, and hence l = m = 2 ~'+~. If 

k is the cardinality of the largest set in Z"- shattered by F,,, we have by our claim, 

IF~I <- (2.+~)*(2,,+~) 2. 

G 2 kl3n+3). 

Taking logarithms, we have 

log(IF.)l = dim(F,,) = d <-k(3n + 3) 

Hence, k >- d/On + 3), which is as desired. 

Theorem 5. A space of functions F is learnable in Framework 2 if and only if F 

is of polynomial dimension. 

Proof. (From Natarajan (1988a)) Informally speaking, the proof of this theorem 

is almost obvious in the sense that a simple counting argument lies at its heart. 

However, a formal proof requires the argument to be buried in detail. 

Abusing notation, we extend the theory function T to subsets of F as follows: 

For B C F, T(B) -- {T(f) lf a}. 



SETS AND FUNCTIONS 95 

Also, we define the inverse function T- from Z* to subsets of F as given below: 

For t ~ 2", T-( t )  = { f l f  C F, t is a prefix of T(f)} 

(if) By Theorem 1, if F is of polynomial dimension, then F is learnable in 

Framework 1. Hence it is learnable in Framework 2, as Framework 1 is but a 

special case of Framework 2. 

(only if) Let A be a learning algorithm for F in Framework 2 using a TEACHER 

= {EXAMPLE, T} for some theory T of F. For any n and h, let T,,.h be the set of 

theory strings read by A over all functions in F. These will be prefixes (of length 

at most l) of the theory strings offered by TEACHER over all functions in F. For 

any string t, let F,(t) denote the n'J'-subspace of T-( t ) .  Also, let 

d ..... = max {dim(F,(t))[t  ~ T~.h}, and 

lm~, = max {length(t)lt ~ 2,,.h}. 

Claim. d~a~ + G~ >-dim(Fn). 

Pro@ By a simple counting argument. Since T,,.h is over all the functions in F, 

surely 

F, C_ U,<rn.,,E,(t). 

Hence, 

IFnl __< {Ut~TnhFn(t) I ,  ~ ~t~Tr~,h Qdim(Fn(t)) ~ 2~,,o,2 d ..... < 2,,,,o,+d,~..~ 

Thus, dim(F,) ~ l,,,,,~ + d m  .... 

From the above claim, if dim(F,) is super-polynomial in n, then either l,,,a, or 

d, .... varies superpolynomially with n. The former is a contradiction, since A reads 

only polynomially many bits of the theory strings. The latter is a contradiction as 

well, using the arguments of the proof of Theorem 1. Hence F is of polynomial 

dimension. This completes the proof. ~] 
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Notes 

1. We mean worst case with respect to the assumptions regarding the source of examples for learning, 
not worst-case complexity analysis. 

2. Our use of the terms "space of concepts" and "space of functions" is equivalent to the term 

"hypothesis space" in the AI literature and the term "family" in the formal literature. 

3. Unless stated otherwise, by "algorithm" we mean a finitely representable procedure, not necessarily 

computable. That is, the procedure might use well-defined but non-computable functions as prim- 
itives. 

4. Valiant (1984) uses the same algorithm to learn conjunctive normal form expressions with a bounded 
number of clauses. 

5. We could equally well allow for randomized algorithms, obtaining the corresponding results in a 
similar fashion. A randomized algorithm is one that tosses coins during its computation and produces 

the correct answer with high probability, Gill (1977). 

6. Alternatively, we could allow as many calls of EXAMPLE as possible within the time limit. As this 

will not change our discussion substantially, we avoid this alternative in the interest of clarity. 

7. NP and RP are the classes of functions computable in nonzdeterministic polynomial time and random 
polynomial time respectively. 

8. F should satisfy some "niceness" conditions as in Vapnik and Chervonenkis (1971) and Blumer et 
al. (1986). 

9. The expression ceiling(r) denotes the least integer greater than r. 
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