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Abstract�This paper presents an architecture for solving
generically the problem of extracting the constraints of a given
task in a programming by demonstration framework and the
problem of generalizing the acquired knowledge to various
contexts. We validate the architecture in a series of experiments,
where a human demonstrator teaches a humanoid robot simple
manipulatory tasks. First, the combined joint angles and hand
path motions are projected into a generic latent space, composed
of a mixture of Gaussians (GMM) spreading across the spatial
dimensions of the motion. Second, the temporal variation of
the latent representation of the motion is encoded in a Hidden
Markov Model (HMM). This two-step probabilistic encoding
provides a measure of the spatio-temporal correlations across
the different modalities collected by the robot, which determines
a metric of imitation performance. A generalization of the
demonstrated trajectories is then performed using Gaussian
Mixture Regression (GMR). Finally, to generalize skills across
contexts, we compute formally the trajectory that optimizes the
metric, given the new context and the robot's speci�c body
constraints.

Index Terms�Robot Programming by Demonstration, Imi-
tation Learning, Humanoid Robots, Gaussian Mixture Model,
Metric of Imitation.

I. INTRODUCTION

Recent advances in Robot Programming by Demonstra-
tion (RbD), also referred to as Learning by Imitation, have
identi�ed a number of key issues that need to be solved
for ensuring a generic approach to transferring skills across
various agents and situations. These have been formulated
as a set of generic questions, namely what-to-imitate, how-
to-imitate, when-to-imitate and who-to-imitate [1]. This paper
presents an architecture for solving generically the problems
of extracting the constraints of a given task (what-to-imitate)
and the problem of generalizing the acquired knowledge to
various contexts (part of the how-to-imitate issue).

Other approaches have previously attempted to �nd opti-
mal controllers which would reproduce a set of high-level
constraints [2]�[4]. In each of these previous works, the set
of constraints were given, and in any portion of the task,
only a unique constraint could be satis�ed at a time (e.g.
absolute/relative constraints on position/orientation). In our
work we introduce a generic framework which allows for the
extraction of a time-dependent continuous representation of
the constraints.

II. THE EXPERIMENTAL SCENARIO

Fig. 1 presents the setup of our experiments. Fig. 2 illus-
trates the issues that we address in this paper for a Chess

Fig. 1. Experimental setup. The robot is taught a new task through
kinesthetics, i.e. by the user moving the robot's arm through the task. A
�xed pair of cameras tracks the 3-D position of the target (a color patch),
here, the robot's mouth.

Fig. 2. Left: Illustration of the what-to-imitate issue. With two demonstrations
of a Chess Task, we see that the constraints are varying along the motion. To
approach the chess piece, a large set of paths are possible, depending on the
initial position. Grabbing and pushing the piece requires higher constraints,
i.e. the paths do not change much between two consecutive demonstrations.
Right: Illustration of the how-to-imitate issue. To re-use the learned skill in
different situation (here, different position of the chess piece), a cost function
is used to select a controller that best ful�lls the task constraints along the
trajectories.

Task. Left picture shows the path followed by the hand of the
robot during training when starting from two different initial
locations. In order to extract the relevance of each variable
collected during the demonstration (i.e. to determine what-
to-imitate), the robot computes the spatio-temporal variations
and correlations across the variables. In the Chess Task, this
analysis reveals weak correlations at the beginning of the
motion, as there is a large set of possible paths to reach for the
chess piece, depending on the hand's initial position. In con-
trast, the analysis reveals strong spatio-temporal correlations
for, �rst, grabbing the piece and, then, pushing it toward the
desired location without hitting the other pieces lying on the
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Fig. 3. Information �ow across the complete system.

chessboard.
Fig. 2 right illustrates the how-to-imitate issue. Once trained

to perform a particular task in a particular context, the robot
must be able to generalize and to reproduce the same task
in a different context. Here, the robot must be able to grab
and place the White Queen to a speci�c position (between
the Black Knight and Bishop), wherever these may be located
on the chess board. However, joint angles and hand path can
be mutually exclusive in the imitator workspace, i.e. both
constraints can not be ful�lled at the same time. Depending
on the situation, the robot may have to �nd a very different
joint angles con�guration than that �rst demonstrated, in order
to avoid breaking its arm. To do so, the robot computes the
trajectory that �nds a optimal trade-off between satisfying the
constraints of the task (spatio-temporal correlations across the
variables) and its own body constraints.

III. THE ARCHITECTURE

Fig. 3 gives an overview of the input-output �ow through
the complete model. The model is composed of the following
processes:

• Probabilistic data encoding: The signals are encoded in a
two-stage process: First, we determine the latent space of
the motions, by estimating the optimal Gaussian Mixture
Model (GMM) to encode the motions. Second, we encode
the dynamics of the motions (i.e. the transition across
the states of the GMM), using Hidden Markov Model
(HMM).

• Determining the task constraints: We then compute a
time-dependent measure of the relative importance of
each variable, and the dependencies across the vari-
ables, using the probabilistic description of the task.
This measure is used to determine a metric of imitation
performance for the particular task.

• Optimal trajectory generation: We then compute (using
Lagrange optimization) the trajectory that optimizes the
metric for a given context, given a set of robot's body
constraints.

Next, we describe the computation carried out in each of
these modules.

A. Probabilistic data encoding
To avoid making too many assumptions on the spatio-

temporal variability of the dataset, we should, ideally, use a
HMM with the most general architecture, such as a fully-
connected continuous HMM, with full covariance matrix,
describing the output variables distribution. However, using

Fig. 4. Schematic of the probabilistic data encoding process. The selection
of the number of components required to encode a task is performed in the
static phase (estimation of several Gaussian Mixture Models). The dynamic
analysis is then provided by a single estimation of Hidden Markov Model.

such a model requires the estimation of a large set of pa-
rameters, which can be achieved only with a large dataset.
However, to program ef�ciently a robot by demonstration, the
demonstrator should not have to perform more than a few (5
to 10) demonstrations. This means that the set of parameters
to learn is quite large, compared to the amount of training
data.
The standard Expectation-Maximization (EM) algorithm

used to estimate the HMM parameters starts from initial
estimates, and converges to the nearest local maximum of
the likelihood function. Thus, initialization highly affects the
model performance. To better estimate the state distribution
of the HMM, we perform �rst a rough clustering of the
data using k-means, as in [5]. Next, we estimate a Gaussian
Mixture Model (GMM) by EM, using the k-means clusters
at initialization. Finally, the dynamics, i.e. transitions across
states, are encoded in a HMM, with the GMM state variable
distribution (see Fig. 4).

1) Gaussian Mixture Model (GMM): A dataset of N data
of dimensionality D, X = {~x(t1), ~x(t2), . . . , ~x(tN )} with
~x(tn) ∈ R

D is modelled by a multivariate Gaussian mixture
of K-components1 (see e.g. [6]):

p (~x(tn)) =

K
∑

k=1

πkN (~x(tn); ~µk,Σk)

where πk is the prior probability on the Gaussian component k,
and N (~x(tn); ~µk,Σk) is the D-dimensional Gaussian density
of component k. ~µk and Σk are, respectively, the mean and
covariance matrix of the multivariate Gaussian k. {πk, ~µk,Σk}
are estimated using the Expectation-Maximization (EM) algo-
rithm.

2) Model selection: The optimal number of components
K in a model may not be known beforehand. We need to
determine a trade-off between optimizing the model's likeli-
hood (a measure of how well the model �ts the data) and
minimizing the parameters (i.e. the number of states used
to encode the data). To determine the number of states in
a HMM, heuristic methods are often used, sometimes not
adequately tuned for HMM. In our approach, model selection
is performed in the GMM initialization phase. Multiple GMMs

1The process is applied indifferently to joint angles θ and hand position X



are estimated, the best model is selected, and a single HMM
estimation is performed.

We are using the Bayesian Information Criterion (BIC) [7]
to select the optimal number of components K:

SBIC = −L +
n

2
log(N) (1)

where L is the log-likelihood of the model, n is the number
of free parameters required for a mixture of K compo-
nents with full covariance matrix, i.e. n = (K − 1) +
K

(

D + 1

2
D(D + 1)

)

. N is the number of D-dimensional
datapoints. The �rst term of the equation measures how well
the model �ts the data, while the second term is a penalty
factor that aims at keeping the total number of parameters low.
In our experiments, we compute a set of candidate GMMs with
up to 15 states and keep the model with the minimum score
(see Fig. 4).

3) Hidden Markov Model (HMM): Similarly to Gaussian
Mixture Models, Hidden Markov Models use a mixture of
multivariate Gaussians to describe the distribution of the data.
The difference is that HMM also encapsulate the transitions
probabilities between the Gaussians. It offers, thus, a way
of describing probabilistically the temporal variations of the
data2.

Let {Π,A,B} be, respectively, the initial state distribution,
the transition probabilities between the states (or components),
and the multivariate output data distribution. In our experi-
ments, we compute only {Π,A} by Baum-Welch algorithm,
and set B = {~µk,Σk}

K

k=1
, where {~µk,Σk}

K

k=1
are the state

distributions learned by the GMM.
Once trained, the HMM can be used to recognize gestures.

In our experiments, this is used to decide whether a new
demonstration belongs or not to the same task, following an
approach similar to [9]. In order to measure the similarity
between a new gesture and the ones encoded in the model, we
run the forward-algorithm, an iterative procedure to estimate
the likelihood that the observed data could have been generated
by the model.

4) Gaussian Mixture Regression (GMR): To reconstruct
a signal from the GMM/HMM encoding, after training and
generalization over the demonstrations, we apply a Gaussian
Mixture Regression (GMR), see e.g. [10]. Previous work
suggested an �averaging� approach to retrieve human motion
sequences from HMM, see e.g. [3]. This approach did not
provide satisfying results with our dataset, essentially because
it required a very large amount of generated sequences (more
than 1000) to retrieve smooth trajectories that can be run
on the robot. Another side-effect of the averaging process
is that it tends to cut-off and smooth the local minima and
maxima of the signals, which can be essential to reproduce
human gestures. The clear advantage of GMR over a stochastic
retrieval process is that it provides a fast and analytic way to
reconstruct the �best� sequence from a Gaussian model.

2People unfamiliar with HMM should refer to [8]

Fig. 5. A,B,C: Snapshots of 3 steps during the reproduction of the Chess Task.
Bottom left: in solid line, projection along the 2 �rst dimension of the latent
space of the desired trajectory ~xd(t) for the robot's hand. The continuous
time-dependent weight matrixWx(t) is depicted as a superposition of ellipses,
representing the task constraints along the trajectory.

For a D-dimensional variable ~x ∈ R
D, the means and

covariance matrices given by the GMM/HMM representation
for component k are given by ~µH

kX
and Σ

H

kX
. The regression

is done along the time index. We compute the means and
covariance matrices of the set of observations {t, ~x(t)} with
dimension (D+1). Note that sole the time-indexed covariances
matrices and means are estimated, since the rest of the means
and covariance matrixes {~µH

kX
,ΣH

kX
} have already been esti-

mated:

~µR

k = {µR

kt, µ
H

kx1
, µH

kx2
, . . . , µH

kxD
}

Σ
R

k =

(

ΣR

kt
Σ

R

ktX

Σ
R

kXt
Σ

H

kX

)

The Gaussian Mixture Regression estimates:

~xd(t) =

K
∑

k=1

βk(t)~xd

k(t)

βk(t) =
πkN (t; µR

kt
,ΣR

kt
)

∑K

i=1
πiN (t; µR

it
, ΣR

it
)

~xd

k(t) = ~µkX + Σ
R

kXtΣ
R

kt

−1

(t − µkt)

~xd

k
(t) are the regression output for each associated Gaussian

component k, βk(t) the corresponding weight, that measures
the relative in�uence of component k, and πk the prior
probability. ~xd(t) is the desired trajectory, a generalized form
of the motion learned during training. The time-dependent
inverse covariance on ~x(t) is estimated by:

Wx(t) =

(

K
∑

k=1

βk(t)ΣR

k

)−1



Fig. 6. Probabilistic encoding of the Sugar Task (bottom left), by projecting
along the �rst 2 dimensions of ~xd(t). The continuous generalized trajectory
~xd(t) is represented in solid line, with associated weight matrix Wx(t)
depicted as a superposition of ellipses.

B. Determining the task constraints
In previous work, we proposed a general formalism for

determining the cost function of an imitation task [11], [12].
Here, we extend this work and consider a time-dependent
version of the original cost function H . This generic cost
function measures the variations of the constraints and of the
dependencies across the variables over time. It is continuous,
positive de�nite and can be estimated at any time along the
trajectory, by interpolating between the �nite set of Gaussians.
To have a proper reproduction of the task, the constraints char-
acterizing it are thus de�ned by: 1) a measure of the variations
that we can admit for each signal, and 2) a measure of the
correlations that we can admit across the different signals.
In our work, the constraints are thus de�ned statistically as a
generalized multivariate signal with associated time-dependent
covariance matrix.

Let {~θd(t), ~xd(t)} be the desired trajectories for the joints
and hand path, generalized forms of the signals gathered
during the demonstrations. Let {~θ(t), ~x(t)} be the candidate
trajectories for reproducing the motions. The metric of imita-
tion performance (cost function for the task) H is given by:

H =
(

~θ(t) − ~θd(t)
)T

Wθ(t)
(

~θ(t) − ~θd(t)
)

+
(

~x(t) − ~xd(t)
)T Wx(t)

(

~x(t) − ~xd(t)
)

(2)

H=0 corresponds to a perfect reproduction. Wθ(t) (4 × 4
matrix) andWx(t) (3×3 matrix) give a measure of the relative
importance of each set of variables, and covariance across the
different variables (see section III-A.4).

C. Optimal trajectory generation
Once the cost function and the relative in�uence of each

constraint have been determined, we generate a trajectory that

is optimal with respect to the cost function H , by taking into
account the body constraints of the robot.

The forward kinematics of the robot is given by ~x = f(~θ).
For complex manipulators such as humanoid robot arms,
the inverse kinematics (IK) problem is under-constrained, i.e.
the computation may have no solutions (degenerate case) or
multiple solutions. In this paper, we used the pseudo-inverse
with optimization method proposed in [13] and adapt its
form to optimize our global cost function H . We consider
an iterative, locally linear, solution to the IK equation, such
that3:

ẋ(t) = J · θ̇(t) (3)
where θ̇(t) = θ(t) − θ(t − 1) and ẋ(t) = x(t) − x(t − 1) are
the velocity vectors of the joint angles and the hand path. J
is the Jacobian (4 × 3 matrix).

The problem is now reduced to �nding a minimum of (2)
when subjected to (3). Since H is a quadratic function, the
problem can be solved analytically by Lagrange optimization.
After substituting c1(t) = θd(t)−θ(t−1) and c2(t) = xd(t)−
x(t − 1) in (2), we de�ne the Lagrangian as:

L(θ̇, ẋ, λ) = (θ̇ − c1)
T Wθ (θ̇ − c1)

+ (ẋ − c2)
T Wx (ẋ − c2) (4)

+ λT (ẋ − J θ̇)

where λ is the vector of associated Lagrange multipliers. By
computing ∇L(θ̇, ẋ, λ) = 0, we �nd (derivation along λ, θ̇, ẋ):
ẋ = Jθ̇ , −2W θ(θ̇ − c1) − JT λ = 0 , −2W x(ẋ − c2) + λ = 0

Solving for θ̇, we obtain:
θ̇ = (Wθ + JTWxJ)−1(Wθc1 + JTWxc2) (5)

We can then recompute the joint angle trajectories, using
θ(t) = θ(t − 1) + θ̇(t). The �nal gesture {~θ′(t), ~x′(t)} is
computed and evaluated using this method, and reproduced
by the robot.

IV. EXPERIMENTS

We conducted two experiments to demonstrate the validity
of our model for teaching a humanoid robot simple manip-
ulatory tasks. The tasks consisted in moving a chess piece
on a chessboard (see Fig. 2 and 5), and bringing a piece of
sugar to the mouth (see Fig. 1 and 6). Note that, in these
experiments, control affected only the 4 degrees of freedom
of the arm and the opening and closing of the robot's hand was
hard-coded and activated by the user. In each case, the robot
was shown the task 5 times. Hand paths ~x(t) were encoded
in a Cartesian space whose origin is at the goal position (end-
position of the chess piece and of the mouth). Once trained,
the robot was required to reproduce each task under different
constraints, by placing the goals at different locations in the
robot's workspace. This procedure aimed at demonstrating the
robustness of the system when the constraints were transposed
to different locations within the robot's workspace.

3For clarity in the notation, we will omit the vectorial notations and the
time index for the rest of the developments.
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Fig. 7. Left: Joint angle trajectories for the Chess Task. Right: Hand paths for
the Sugar Task. The dotted lines represent the different demonstrations, while
the solid line represent the reconstructed trajectory. The ellipses represent the
3 multivariate Gaussians in the GMM.

A. Experimental setup
The experiments were conducted with a Fujitsu HOAP-

2 humanoid robot with 25 degrees of freedom (DOF), of
which only the 4 DOFs of the right arm were required in
the experiments. The remaining DOFs of the torso and legs
were set to a constant position, so as to support the robot in
an upright posture, facing a table, see Fig. 2.

A color-based4 stereoscopic vision system tracks the 3D-
position of pre-de�ned objects used in the experiments, at a
rate of 15Hz and an accuracy of 10mm. The system uses two
Phillips webcams with a resolution of 320x240 pixels, see Fig.
1. For the Chess Task, a marker placed at the desired �nal
position of the chess piece is tracked. For the Sugar Task, a
marker placed on the robot's mouth is tracked.

In the experiments reported here, the robot was taught
through kinesthetics, i.e. by the demonstrator moving its arm
through the task. To achieve this, the robot's motors were set
in a passive mode, whereby each limb could be moved by the
human demonstrator. The kinematics of each joint motions
was recorded at a rate of 1000Hz during the demonstration
and was, then, downrated to 15Hz to match the tracking rate
of the cameras.

B. Experimental results
Fig. 7 left shows the encoding and reconstruction of the joint

angle trajectories for the Chess Task. 3 states were found to en-
code optimally the trajectories, according to the BIC criterion,
see Section III-A.2. These correspond roughly to the different
phases of the motion (approaching the object, adjusting the
hand posture and pushing the object). When looking at the
width of the ellipses (which represent the variance along the
joint angle trajectories across the demonstrations), we observe
that the �rst phase of the motion shows high variability (and,
thus, does not require to follow a precise path), whereas the
two other phases are much more constrained. This change
in the constraints along the task will be encapsulated in the
weights W θ(t) of the cost function H .

Fig. 7 right shows the encoding and reconstruction of the
hand path for the Sugar Task. 3 states were also found to

4The tracking is based on color segmentation in the YCbCr color space.
Only Cb and Cr are used, to be robust to changes in luminosity.
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Fig. 8. Bottom left: Color map with mean values taken by the cost function
H for the Chess Task, for various �nal locations on the chess board. 1,2,3:
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map. The solid line represents the hand path ~x′(t) reproduced by the robot,
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Fig. 9. Bottom left: Color map of the mean values taken by the cost function
H for the Sugar Task, for various pan/tilt orientation of the head (see Fig. 8
for additional comments).

Fig. 10. Experimental results for the Chess Task and Sugar Task, when
performed under different situations than the ones demonstrated (different
�nal position on the chessboard and different head pan/tilt). The trajectory of
the hand was tracked by the vision system, and superimposed to the image.



encode ef�ciently the task. We see that the states found au-
tomatically by the system correspond roughly to the different
phases of the task (grabbing the piece of sugar, approaching
the mouth, putting the piece of sugar in the mouth). At the
beginning and at the end of the trajectory, since the position of
the hand with respect to the sugar and to the mouth do not vary
across demonstrations, the trajectories are highly constrained,
which is re�ected by the narrow ellipses at the beginning and
at the end of the motion.

Fig. 8 and 9 show the mean values of the cost function H ,
when reconstructing the motion for different locations of the
target (end-position of the chess piece or robot's mouth). At
3 different locations, the path followed by the robot's hand
is shown (see also Fig. 10). In each case, the system �nds a
correct solution, that reaches correctly the desired locations for
the chess piece or the mouth. However, the farther the target is
from its original position, the higher the cost function and the
less straight the path. This is expected and entirely acceptable,
since achieving the high-level goals of the task (reaching for
the targets) takes precedence over any other classical control
constraint, such as running in a straight trajectory.

V. DISCUSSION AND CONCLUSION

This paper presented a method to: 1) extract the important
characteristics of a task, i.e. the spatio-temporal variations and
correlations across the multivariate dataset of the task, 2) to
determine a generic metric to evaluate the robot's imitation
performance, and, �nally, 3) to optimize the robot's reproduc-
tion of the task when placed in a new context according to
the task metric. The method was validated in two experiments
where a robot was taught simple manipulation tasks.

We showed that, in each case, the robot managed to adapt its
motions correctly, so as to reproduce the important qualitative
constraints of each task, namely grabbing and pushing the
chess piece to the correct location, grabbing the piece of sugar
and bringing it to its mouth. However, none of these high-level
goals were explicitly represented in the robot's control system,
but, were nevertheless correctly extracted by our probabilistic
system.

The system we presented for solving the what-to-imitate
and how-to-imitate issues is generic, in the sense that it
makes no assumption on the robot's con�guration (number of
degrees of freedom and length of segments). As �rst stressed
out by Nehaniv and colleagues [14], there is a multitude of
correspondence problems, when trying to transfer skills across
various agents and situations. In the experiments presented in
this paper, the robot was being taught through kinesthetics.
By showing kinesthetically how to perform a task, the user
�embodies� the robot's body. Thus, this way, we simpli�ed
the correspondence problem and overlooked the problem of
having different embodiments. However, by testing the system
in different situations than those taught, we tackled another
aspect of the correspondence problem.

Note that, in the experiments reported here, we assumed
implicitly that the kinematics of joint angle trajectories and
hand path is suf�cient to describe the skill, and that dynamics

is of less importance. This may not be true and taking into
account the forces applied on the object may certainly be very
important in certain task. However, it is very likely that these
are not learned through imitation, but, through more generic
motor learning processes.

Further work will focus on exploiting dimensionality re-
duction techniques such as Principal Component Analysis to
pre-process the data, and to extend the metric and associated
optimization paradigm in this latent space of lower dimension-
ality.
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