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Abstract

In this paper, we provide a study of learning in a Hilbert space of vector−valued func-
tions. We motivate the need for extending learning theory of scalar−valued functions
by practical considerations and establish some basic results for learning vector−valued
functions which should prove useful in applications. Specifically, we allow an output
space Y to be a Hilbert space and we consider a reproducing kernel Hilbert space of
functions whose values lie in Y. In this setting, we derive the form of the minimal
norm interpolant to a finite set of data and apply it to study some regularization
functionals which are important in learning theory. We consider specific examples of
such functionals corresponding to multiple−output regularization networks and sup-
port vector machines, both for regression and classification. Finally, we provide classes
of operator−valued kernels of the dot product and translation invariant type.

1Partially supported by NSF Grant No. ITR-0312113.



1 Introduction

The problem of computing a function from empirical data is addressed in several areas of
mathematics and engineering. Depending on the context, this problem goes under the name
of function estimation (statistics), function learning (machine learning theory), function ap-
proximation and interpolation (approximation theory), among others. The type of functions
typically studied are real−valued functions (in learning theory, the related binary classifica-
tion problem is often treated as a special case). There is a large literature on the subject.
We recommend [11, 14, 15, 27, 28] and references therein.

In this work we address the problem of computing functions whose range is in a Hilbert
space, discuss ideas within the perspective of learning theory and elaborate on their connec-
tions to interpolation and optimal estimation. Despite its importance, learning vector−values
functions has been only marginally studied within the learning theory community and this
paper is a first attempt to set down a framework to study this problem.

We focus on Hilbert spaces of vector−valued functions which admit a reproducing kernel
[3]. In the scalar case these spaces have received a considerable attention over the past few
years in machine learning theory due to the successful application of kernel-based learning
methods to complex data, ranging from images, text data, speech data, biological data,
among others, see for example [14, 24, 27] and references therein. In Section 2 we outline
the theory of reproducing kernel Hilbert spaces (RKHS) of vector−valued functions. These
RKHS admit a kernel with values which are bounded linear operators on the output space.
They have been studied by Burbea and Masani [10], but only in the context of complex
analysis and used recently for the solution of partial differential equations by Amodei [2].
Section 3 treats the problem of minimal norm interpolation (MNI) in the context of RKHS.
MNI plays a central role in many approaches to function estimation and so we shall highlight
its relation to learning. In particular, in Section 4 we use MNI to resolve the form of the
minimizer of regularization functionals in the context of vector−valued functions. In Section
5 we discuss the form of operator−valued kernels which are either of the dot product or
translation invariant form as they are often used in learning. Finally, in Section 6 we describe
examples where we feel there is practical need for vector−valued learning as well as report
on numerical experiments which highlight the advantages of the proposed methods.

2 Reproducing kernel Hilbert spaces of vector−valued
functions

Let Y be a real Hilbert space with inner product (·, ·), X a set, and H a linear space of
functions on X with values in Y . We assume that H is also a Hilbert space with inner
product 〈·, ·〉.

Definition 2.1 We say that H is a reproducing kernel Hilbert space (RKHS) when for any
y ∈ Y and x ∈ X the linear functional which maps f ∈ H to (y, f(x)) is continuous.

In this case, according to the Riesz Lemma (see, e.g., [1]), there is, for every x ∈ X and
y ∈ Y a function K(x|y) ∈ H such that, for all f ∈ H,

(y, f(x)) = 〈K(x|y), f〉.
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Since K(x|y) is linear in y, we write K(x|y) = Kxy where Kx : Y → H is a linear operator.
The above equation can be now rewritten as

(y, f(x)) = 〈Kxy, f〉. (2.1)

For every x, t ∈ X we also introduce the linear operator K(x, t) : Y → Y defined, for every
y ∈ Y , by

K(x, t)y := (Kty)(x). (2.2)

We say that H is normal provided there does not exist (x, y) ∈ X × (Y\{0}) such that the
linear functional (y, f(x)) = 0 for all f ∈ H.

In the proposition below we state the main properties of the function K. To this end, we
let L(Y) be the set of all bounded linear operators from Y into itself and, for every A ∈ L(Y),
we denote by A∗ its adjoint. We also use L+(Y) to denote the cone of nonnegative bounded
linear operators, i.e. A ∈ L+(Y) provided that, for every y ∈ Y , (y,Ay) ≥ 0. When this
inequality is strict for all y 6= 0 we say A is positive definite. Finally, we denote by INm the
set of positive integers up to and including m.

Proposition 2.1 If K(x, t) is defined, for every x, t ∈ X, by equation (2.2) and Kx is given
by equation (2.1) the kernel K satisfies, for every x, t ∈ X , the following properties:

(a) For every y, z ∈ Y, we have that

(y, K(x, t)z) = 〈Ktz, Kxy〉. (2.3)

(b) K(x, t) ∈ L(Y), K(x, t) = K(t, x)∗, and K(x, x) ∈ L+(Y). Moreover, K(x, x) is
positive definite for all x ∈ X if and only if H is normal.

(c) For any m ∈ IN, {xj : j ∈ INm} ⊆ X , {yj : j ∈ INm} ⊆ Y we have that
∑

j,`∈INm

(yj, K(xj, x`)y`) ≥ 0. (2.4)

(d) ‖Kx‖ = ‖K(x, x)‖ 1
2 .

(e) ‖K(x, t)‖ ≤ ‖K(x, x)‖ 1
2‖K(t, t)‖ 1

2 .

(f) For every f ∈ H and x ∈ X we have that

‖f(x)‖ ≤ ‖f‖‖K(x, x)‖
1
2 .

Proof. We prove (a) by merely choosing f = Ktz in equation (2.1) to obtain that

〈Kxy, Ktz〉 = (y, (Ktz)(x)) = (y, K(x, t)z).

Consequently, from this equation, we conclude that K(x, t) admits an algebraic adjoint
K(t, x) defined everywhere on Y and so the uniform boundness principle [1] implies that
K(x, t) ∈ L(Y) and K(x, t) = K(t, x)∗, see also [1, p. 48]. Moreover, choosing t = x in
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equation (2.3) proves that K(x, x) ∈ L+(Y). As for the positive definiteness of K(x, x)
merely use equations (2.1) and (2.3). These remarks prove (b) . As for (c), we again use
equation (2.3) to get

∑

j,`∈INm

(yj, K(xj, x`)y`) =
∑

j,`∈INm

〈Kxjyj, Kx`y`〉 = ‖
∑

j∈INm

Kxjyj‖2 ≥ 0.

For the proof of (d) we choose y ∈ Y and observe that

‖Kxy‖2 = (y,K(x, x)y) ≤ ‖y‖‖K(x, x)y‖ ≤ ‖y‖2‖K(x, x)‖

which implies that ‖Kx‖ ≤ ‖K(x, x)‖ 1
2 . Similarly, we have that

‖K(x, x)y‖2 = (K(x, x)y, K(x, x)y)

= 〈KxK(x, x)y,Kxy〉

≤ ‖Kxy‖‖KxK(x, x)y‖ ≤ ‖y‖‖Kx‖2‖K(x, x)y‖

thereby implying that ‖Kx‖2 ≥ ‖K(x, x)‖, which proves (d). For the claim (e) we compute

‖K(x, t)y‖2 = (K(x, t)y,K(x, t)y)

= 〈KxK(x, t)y, Kty〉

≤ ‖KxK(x, t)y‖‖Kty‖ ≤ ‖y‖‖Kt‖‖Kx‖‖K(x, t)y‖

which gives
‖K(x, t)y‖ ≤ ‖Kx‖‖Kt‖‖y‖

and establishes (e). For our final assertion we observe, for all y ∈ Y , that

(y, f(x)) = 〈Kxy, f〉 ≤ ‖f‖‖Kxy‖ ≤ ‖f‖‖y‖‖Kx‖

which implies the desired result, namely ‖f(x)‖ ≤ ‖f‖‖Kx‖. 2

For simplicity of terminology we say that K : X × X → L(Y) is a kernel if it satisfies
properties (a)−(c). So far we have seen that ifH is a RKHS of vector−valued functions, there
exists a kernel. In the spirit of Moore-Aronszajn’s theorem for RKHS of scalar functions [3],
it can be shown that a kernel determines a RKHS of vector−valued functions. We state the
theorem below, however, as the proof parallels the scalar case we do not elaborate on the
details.

Theorem 2.1 If K : X × X → L(Y) is a kernel then there exists a unique (up to an
isometry) RKHS which admits K as the reproducing kernel.
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Let us observe that in the case Y = IRn the kernel K is a n× n matrix of scalar−valued
functions. The elements of this matrix can be identified by appealing to equation (2.3).
Indeed by choosing y = ek, and z = e`, k, ` ∈ INn, these being the standard coordinate bases
for IRn, yields the formula

(K(x, t))k` = 〈Kxek, Kte`〉. (2.5)

In particular, when n = 1 equation (2.1) becomes f(x) = 〈Kx, f〉, which is the standard
reproducing kernel property, while equation (2.3) reads K(x, t) = 〈Kx, Kt〉.

The case Y = IRn serves also to illustrate some features of the operator−valued ker-
nels which are not present in the scalar case. In particular, let H`, ` ∈ INn be RKHS of
scalar−valued functions on X with kernels K`, ` ∈ INn and define the kernel whose values
are in L(IRn) by the formula

D = diag(K1, . . . , Kn).

Clearly if {f` : ` ∈ INn}, {g` : ` ∈ INn} ⊆ H we have that

〈f, g〉 =
∑

`∈INn

〈f`, g`〉`

where 〈·, ·〉` is the inner product in the RKHS of scalar functions with kernel K`. Diagonal
kernels can be effectively used to generate a wide variety of operator−valued kernels which
have the flexibility needed for learning. We have in mind the following construction. For
every set {Aj : j ∈ INm} of r × n matrices and {Dj : j ∈ INm} of diagonal kernels, the
operator−valued function

K(x, t) =
∑

j∈INm

A∗
jDj(x, t)Aj, x, t ∈ X (2.6)

is a kernel. We conjecture that all operator−valued kernels are limits of kernels of this type.
Generally, the kernel in equation (2.6) cannot be diagonalized, that is it cannot be rewritten
in the form A∗DA, unless all the matrices Aj, j ∈ INm can all be transformed into a diagonal
matrix by the same matrix. For r much smaller than n, (2.6) results in low rank kernels
which should be an effective tool for learning. In particular, in many practical situations
the components of f may be linearly related, that is, for very x ∈ X f(x) lies on a linear
subspace M ⊆ Y. In this case it is desirable to use a kernel which has the property that
f(x) ∈ M, x ∈ X for all f ∈ H. An elegant solution to this problem is to use a low rank
kernels modeled by the output examples themselves, namely

K(x, t) =
∑

j∈INm

λjyjKj(x, t)y∗j

where λj are nonnegative constants and Kj, j ∈ INm are some prescribed scalar−valued
kernels.

Property (c) of Proposition 2.1 has an interesting interpretation concerning RKHS of
scalar−valued functions. Every f ∈ H determines a function F on X × Y defined by

F (x, y) := (y, f(x)), x ∈ X , y ∈ Y . (2.7)

We let H1 be the linear space of all such functions. Thus, H1 consists of functions which are
linear in their second variable. We make H1 into a Hilbert space by choosing ‖F‖ = ‖f‖.
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It then follows that H1 is a RKHS with reproducing scalar−valued kernel defined, for all
(x, y), (t, z) ∈ X × Y , by the formula

K1((x, y), (t, z)) = (y,K(x, t)z).

This idea is known in the statistical context, see e.g. [13, p. 138], and can be extended in
the following manner. We define, for any p ∈ INn, the family of functions

Kp((x, y), (t, z)) := (y,K(x, t)z)p, (x, y), (t, z) ∈ X × Y

The lemma of Schur, see e.g. [3, p. 358], implies that Kp is a scalar kernel on X × Y. The
functions in the associated RKHS consist of scalar−valued functions which are homogeneous
polynomials of degree p in their second argument. These spaces may be of practical value
for learning polynomial functions of projections of vector−valued functions.

A kernel K can be realized by a mapping Φ : X → L(W ,Y) where W is a Hilbert space,
by the formula

K(x, t) = Φ(x)Φ∗(t), x, t ∈ X

and functions f in H can be represented as f = Φw for some w ∈ W , so that ‖f‖H = ‖w‖W .
Moreover, when H is separable we can choose W to be the separable Hilbert space of square
summable sequences, [1]. In the scalar case, Y = IR, Φ is referred to in learning theory as
the feature map and it is central in developing kernel−based learning algorithms, see e.g.
[14, 24].

3 Minimal norm interpolation

In this section we turn our attention to the problem of minimal norm interpolation of
vector−valued functions within the RKHS framework developed above. This problem con-
sists in finding, among all functions in H which interpolate a given set of points, a function
with minimum norm. We will see later in the paper that the minimal norm interpolation
problem plays a central role in characterizing regularization approaches to learning.

Definition 3.1 For distinct points {xj : j ∈ INm} we say that the linear functionals defined
for f ∈ H as Lxjf := f(xj), j ∈ INm are linearly independent if and only if there does not
exist {cj : j ∈ INm} ⊆ Y (not all zero) such that for all f ∈ H

∑

j∈INm

(cj, f(xj)) = 0. (3.1)

Lemma 3.1 The functionals {Lxj : j ∈ INm} are linearly independent if and only if for any
{yj : j ∈ INm} ⊆ Y there are unique {cj : j ∈ INm} ⊆ Y such that

∑

`∈INm

K(xj, x`)c` = yj, j ∈ INm. (3.2)
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Proof. We denote by Ym the m−th Cartesian product of Y . We make Ym into a Hilbert
space by defining for every c = (cj : j ∈ INm) ∈ Ym and d = (dj : j ∈ INm) ∈ Ym their inner
product 〈c, d〉 :=

∑

j∈INm
(cj, dj). Let us consider the bounded linear operator A : H → Ym,

defined for f ∈ H by
Af = (f(xj) : j ∈ INm).

Therefore, by construction, c satisfies equation (3.1) when c ∈ Ker(A∗) and hence the set
of linear functionals {Lxj : j ∈ INm} are linearly independent if and only if Ker(A∗) = {0}.
Since Ker(A∗) = Ran(A)⊥, see [1], this is equivalent to the condition that Ran(A) = Ym.
From the reproducing kernel property we can identify A∗, by computing for c ∈ Ym and
f ∈ H

〈c, Af〉 =
∑

j∈INm

(cj, f(xj)) =
∑

j∈INm

〈Kxjcj, f〉.

Thus, we have established that A∗c =
∑

j∈INm
Kxjcj. We now consider the symmetric

bounded linear operators B := AA∗ : Ym → Ym which we identify for c = (cj : j ∈
INm) ∈ Ym as

Bc = (
∑

j∈INm

K(x`, xj)cj : ` ∈ INm).

Consequently, (3.2) can be equivalently written as Bc = y and so this equation means
that y ∈ Ran(B) = Ker(A∗)⊥. Since it can be verified that Ker(A∗) = Ker(B) we have
shown that Ker(A∗) = {0} if and only if the linear functionals {Lxj : j ∈ INm} are linearly
independent and the result follows.

2

Theorem 3.1 If the linear functionals Lxjf = f(xj), f ∈ H, j ∈ INm are linearly indepen-
dent then the unique solution to the variational problem

min
{

‖f‖2 : f(xj) = yj, j ∈ INm
}

(3.3)

is given by
f̂ =

∑

j∈INm

Kxjcj

where {cj : j ∈ INm} ⊆ Y is the unique solution of the linear system of equations
∑

`∈INm

K(xj, x`)c` = yj, j ∈ INm. (3.4)

Proof. Let f be any element of H such that f(xj) = yj, j ∈ INm. This function always
exists since we have shown that the operator A maps onto Ym. We set g := f − f̂ and
observe that

‖f‖2 = ‖g + f̂‖2 = ‖g‖2 + 2〈f̂ , g〉+ ‖f̂‖2.

However, since g(xj) = 0, j ∈ INm we obtain that

〈f̂ , g〉 =
∑

j∈INm

〈Kxjcj, g〉 =
∑

j∈INm

(cj, g(xj)) = 0.
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It follows that
‖f‖2 = ‖g‖2 + ‖f̂‖2 ≥ ‖f̂‖2

and we conclude that f̂ is the unique solution to (3.3).
2

When the set of linear functionals {Lxj : j ∈ INm} are dependent, generally data y ∈ Ym

may not admit an interpolant. Thus, the variational problem in Theorem 3.1 requires that
y ∈ Ran(A). Since

Ran(A) = Ker(A∗)⊥ = Ker(B)⊥ = Ran(B)

we see that if y ∈ Ran(A), that is, when the data admit an interpolant inH, then the system
of equations (3.2) has a (generally not unique) solution and so the function in equation (3.4)
is still solution of the extremal problem. Hence, we have proved the following result.

Theorem 3.2 If y ∈ Ran(A) the minimum of problem (3.3) is unique and admits the form
f̂ =

∑

j∈INm
Kxjcj, where the coefficients {cj : j ∈ INm} solve the linear system of equations

∑

`∈INm

K(xj, x`)c` = yj, j ∈ INm.

An alternative approach to proving the above result is to “trim” the set of linear functionals
{Lxj : j ∈ INm} to a maximally linearly independent set and then apply Theorem 3.1 to this
subset of linear functionals. This approach, of course, requires that y ∈ Ran(A) as well.

4 Regularization

We begin this section the approximation scheme that arises from the minimization of the
functional

E(f) :=
∑

j∈INm

‖yj − f(xj)‖2 + µ‖f‖2 (4.1)

where µ is a fixed positive constant and {(xj, yj) : j ∈ INm} ⊆ X × Y. Our initial remarks
shall prepare for the general case (4.5) treated later. Problem (4.1) is a special form of regu-
larization functionals introduced by Tikhonov, Ivanov and others to solve ill-posed problems,
[26]. Its application to learning is discussed, for example, in [15]. A justification, from the
theory of optimal estimation, that regularization is the optimal algorithm to learn a function
from noisy data is given in [21].

Theorem 4.1 If f̂ minimizes E in H, it is unique and has the form

f̂ =
∑

j∈INm

Kxjcj (4.2)

where the coefficients {cj : j ∈ INm} ⊆ Y are the unique solution of the linear equations
∑

`∈INm

(K(xj, x`) + µδj`)c` = yj, j ∈ INm. (4.3)
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Proof. The proof is similar to that of Theorem 3.1. We set g = f − f̂ and note that

E(f) = E(f̂) +
∑

j∈INm

‖g(xj)‖2 − 2
∑

j∈INm

(yj − f̂(xj), g(xj)) + 2µ〈f̂ , g〉+ µ‖g‖2.

Using equations (2.1), (4.2), and (4.3) gives the equations

〈f̂ , g〉 =
∑

j∈INm

(cj, g(xj))

∑

j∈INm

(yj − f̂(xj), g(xj)) = µ
∑

j∈INm

(cj, g(xj))

and so it follows that
E(f) = E(f̂) +

∑

j∈INm

‖g(xj)‖2 + µ‖g‖2

from which we conclude that f̂ is the unique minimizer of E. 2

The representation theorem above embodies the fact that regularization is also a MNI
problem in the space H×Ym. In fact, we can make this space into a Hilbert space by setting,
for every f ∈ H and ξ = (ξj : j ∈ INm) ∈ Ym

‖(f, ξ)‖2 :=
∑

j∈INm

‖ξj‖2 + µ‖f‖2

and note that the regularization procedure (4.1) is equivalent to the MNI problem defined in
Theorem 3.2 with linear functionals defined at (f, ξ) ∈ H×Ym by the equation Lxj(f, ξ) :=
f(xj) + ξj, j ∈ INm corresponding to data y = (yj : j ∈ INm).

Let us consider again the case that Y = IRn. The linear system of equations (4.3) reads

(G + µI)c = y (4.4)

and we view G as a m × m block matrix, where each block is a n × n matrix (so G is a
mn × mn scalar matrix), and c = (cj : j ∈ INm), y = (yj : j ∈ INm) are vectors in IRmn.
Specifically, the j−th, k−th block of G is Gjk = K(xj, xk), j, k ∈ INm. Proposition 1 assures
that G is symmetric and nonnegative definite. Moreover the diagonal elements of G are
positive semi-definite. There is a wide variety of circumstances where the linear systems of
equations (4.4) can be effectively solved. Specifically, as before we choose the kernel

K := AT DA

where D := diag(K1, . . . , Kn) and each K`, ` ∈ INn is a prescribed scalar−valued kernel, and
A is a nonsingular n× n matrix. In this case the linear system of equations (4.4) becomes

ÃT D̃Ãc = y

where Ã is the m×m block diagonal matrix whose n× n block elements are formed by the
matrix A and D̃ is the m×m matrix whose j−th, k−th block is D̃jk := D(xj, xk), j, k ∈ INm.
When A is upper triangular this system of equations can be efficiently solved by first solving
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the system ÃD̃z = y and then solving the system ÃT c = z. Both of these steps can be
implemented by solving only n× n systems coupled with vector substitution.

We can also reformulate the solution of the regularization problem (4.1) in terms of the
feature map. Indeed, if Φ : X → L(W ,Y) is any such map, where W is some Hilbert space,
the solution which minimizes (4.4) has the form f(x) = Φ(x)w where w ∈ Y is given by the
formula

w = µ

(

∑

j∈INm

Φ∗(xj)Φ(xj) + µI

)−1
∑

j∈INm

Φ∗(xj)yj.

Let V : Ym× IR+ → IR be a prescribed function and consider the problem of minimizing
the functional

E(f) := V
(

(f(xj) : j ∈ INm), ‖f‖2) (4.5)

over all functions f ∈ H. A special case is covered by the functional of the form

E(f) :=
∑

j∈INm

Q(yj, f(xj)) + h(‖f‖2)

where h : IR+ → IR+ is a strictly increasing function and Q : Y×Y → IR+ is some prescribed
loss function. In particular functional (4.1) corresponds to the choice h(t) := µt2, t ∈ IR+,
and Q(y, f(x)) = ‖y − f(x)‖2. However even for this choice of h other loss functions are
important in applications, see [27].

Within this general setting we provide a representation theorem for any function which
minimizes the functional in equation (4.5). This result is well-known in the scalar case,
see [24] and references therein. The proof below uses the representation for minimal norm
interpolation presented above. This method of proof has the advantage that it can be
extended to normed linear spaces which is the subject of current investigation.

Theorem 4.2 If for every y ∈ Ym the function h : IR+ → IR+ defined for t ∈ IR+ by
h(t) := V (y, t) is strictly increasing and f0 ∈ H minimizes the functional (4.5), then f0 =
∑

j∈INm
Kxjcj for some {cj : j ∈ INm} ⊆ Y. In addition, if V is strictly convex, the minimizer

is unique.

Proof. Let f be any function such that f(xj) = f0(xj), j ∈ INm and define y0 := (f0(xj) :
j ∈ INm). By the definition of f0 we have that

V
(

y0, ‖f0‖2) ≤ V
(

y0, ‖f‖2)

and so
‖f0‖ = min{‖f‖ : f(xj) = f0(xj), j ∈ INm, f ∈ H}. (4.6)

Therefore by Theorem 3.2 the result follows. When V is strictly convex the uniqueness of a
global minimum of E is immediate. 2

There are examples of functions V above for which the functional E given by equation
(4.5) may have more than one local minimum. The question arises to what extent a local
minimum of E has the form described in Theorem 4.2. First, let us explain what we mean
by a local minimum of E. A function f0 ∈ H is a local minimum for E provided that
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there is a positive number ε > 0 such that whenever f ∈ H satisfies ‖f0 − f‖ ≤ ε then
E(f0) ≤ E(f). Our first observation shows that the conclusion of Theorem 4.2 remains valid
for local minima of E.

Theorem 4.3 If V satisfies the hypotheses of Theorem 4.2 and f0 ∈ H is a local minimum
of E then f0 =

∑

j∈INm
Kxjcj for some {cj : j ∈ INm} ⊆ Y.

Proof. If g is any function in H such that g(xj) = 0, j ∈ INm and t a real number such
that |t|‖g‖ ≤ ε then

V
(

y0, ‖f0‖2) ≤ V
(

y0, ‖f0 + tg‖2) .

Consequently, we have that ‖f0‖2 ≤ ‖f0 + tg‖2 from which it follows that (f0, g) = 0. Thus,
f0 satisfies equation (4.6) and the result follows.

2

So far we obtained a representation theorem for both global or local minima of E when
V is strictly increasing in its last argument. Our second observation does not require this
hypothesis. Instead we shall see that if V is merely differentiable at a local minima and its
partial derivative relative to its last coordinate is nonzero the conclusion of Theorems 4.2
and 4.3 remain valid. To state this observation we explain precisely what we require of V .
There exist c = (cj : j ∈ INm) ∈ Ym and a nonzero constant a ∈ R such that for any g ∈ H
the derivative of the univariate function h defined for t ∈ IR by the equation

h(t) := V ((f0(xj) + tg(xj) : j ∈ INm), ‖f0 + tg‖2)

is given by
h′(0) =

∑

j∈INm

(cj, g(xj)) + a〈f0, g〉.

For example, the regularization functional in equation (4.1) has this property.

Theorem 4.4 If V is differentiable at a local minimum f0 ∈ H of E as defined above then
there exists c = (cj : j ∈ INm) ∈ Ym such that f0 =

∑

j∈INm
Kxjcj.

Proof. By the definition of f0 we have that h(0) ≤ h(t) for all t ∈ IR such that |t|‖g‖ ≤ ε.
Hence h′(0) = 0 and so we conclude that

〈f0, g〉 = −1
a

∑

j∈INm

(cj, g(xj)) = −1
a
〈

∑

j∈INm

Kxjcj, g〉

and since g was arbitrary the result follows. 2

We now discuss specific examples of loss functions which lead to quadratic programming
(QP) problems. These problems are a generalization of the support vector machine (SVM)
regression algorithm for scalar functions, see [27].

Example 4.1: We choose Y = IRn, y = (yj : j ∈ INm), f = (f` : ` ∈ INn) : X → Y and
Q(y, f(x)) :=

∑

`∈INn
max(0, |y` − f`(x)| − ε), where ε is a positive parameter and consider

the problem

min

{

∑

j∈INm

Q(yj, f(xj)) + µ‖f‖2 : f ∈ H

}

. (4.7)
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Using Theorem 3.1 we transform the above problem into the quadratic programming problem

min

{

∑

`∈INm

(ξj + ξ∗j ) · 1 + µ
∑

j,`∈INm

(cj, K(xj, x`)c`)

}

subject, for all j ∈ INm, to the constraints on the vectors cj ∈ IRn, ξj, ξ∗j ∈ IRm, j ∈ INm that

yj −
∑

`∈INm
K(xj, x`)c` ≤ ε + ξj

∑

`∈INm
K(xj, x`)c` − yj ≤ ε + ξ∗j

ξj, ξ∗j ≥ 0

where the inequalities are meant to hold component-wise, the symbol 1 is used for the vector
in IRn whose all of components are equal to one, and “·” stands for the standard inner
product in IRm. Using results from quadratic programming, see [20, pp. 123–5], this primal
problem can be transformed to its dual problem, namely,

max

{

−1
2

∑

j,`∈INm

(αj − α∗j , K(xj, x`)(α` − α∗`)) +
∑

j∈INm

(αj − α∗j ) · yj − ε(αj + α∗j ) · 1

}

subject, for all j ∈ INm, to the constraints on the vectors αj, α∗j ∈ IRn, j ∈ INm that

0 ≤ αj, α∗j ≤ (2µ)−1.

If {(α̂j,−α̂∗j ) : j ∈ INn} is a solution to the dual problem, then {ĉj := α̂j − α̂∗j : j ∈ INm}
is a solution to the primal problem. The optimal parameters {(ξj, ξ∗j ) : j ∈ INm} can be
obtained, for example, by setting c = ĉ in the primal problem above and minimizing the
resulting function only with respect to ξ, ξ∗.

Example 4.2: The setting is as in Example 4.1 but now we choose the loss function

Q(y, f(x)) := max{max(0, |y` − f`(x)| − ε) : ` ∈ INm}.

In this case, problem (4.7) is equivalent to the following quadratic programming problem

min

{

∑

j∈INm

(ξj + ξ∗j ) +
∑

j,`∈INm

(cj, K(xj, x`)c`)

}

subject, for all j ∈ INm, to the constraints on the vectors cj ∈ IRn, ξj, ξ∗j ∈ IR, j ∈ INm that

yj −
∑

`∈INm
K(xj, x`)c` ≤ ε + ξj

∑

`∈INm
K(xj, x`)c` − yj ≤ ε + ξ∗j

ξj, ξ∗j ≥ 0.
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The corresponding dual problem is

max

{

−1
2

∑

j,`∈INm

(αj − α∗j , K(xj, x`)(α` − α∗`)) +
∑

j∈INm

(αj − α∗j ) · yj − ε(αj + α∗j ) · 1

}

subject, for all j ∈ INm, to the constraints on the vectors αj, α∗j ∈ IRn, j ∈ INm that

(αj, 1), (α∗j , 1) ≤ (2µ)−1, αj, α∗j ≥ 0

where the symbol 1 is used for the vector in IRn whose all of components are equal to one,
and · stands for the standard inner product in IRm.

We note that when Y = IR, the loss functions used in Examples 4.1 and 4.2 are the same
as the loss function used in the scalar SVM regression problem, i.e. the loss Q(y, f(x)) :=
max(0, |y − f(x)| − ε), see [27]. In particular the dual problems above coincide. Likewise,
we can also consider squared versions of the loss functions in the above examples and show
that the dual problems are still quadratic programming problems. Those problems reduce
to the SVM-regression problem with the loss max(0, |y − f(x)| − ε)2.

Examples 4.1 and 4.2 share some similarities with the multiclass classification problem
considered in the context of SVM. This problem consists in learning a function from an
input space X to the index set INn. To every index ` ∈ INn, n > 2 we associate a j−th
class or category denoted by Cj. A common approach to solve such problem is by learning
a vector−valued function f = (f` : ` ∈ INn) : X → IRn and classify x in the class Cq such
that q = argmax`∈INn

f`(x). Given a training set {(xj, kj) : j ∈ INm} ⊆ X × INn with m > n
if, for every j ∈ INm, xj belongs to class Ckj , the output yj ∈ IRn is a binary vector with all
component equal −1 except for the kj−th component which equals 1. Thus, the function
fk should separate as best as possible examples in the class Ck (the positive examples) from
examples in the remaining classes2 (the negative examples). In particular, if we choose
Q(yj, f(xj)) :=

∑

`∈INn
max(0, 1− fkj(xj) + f`(xj)), the minimization problem (4.7) leads to

the multiclass formulation studied in [27, 30] while the choice

Q(yj, f(xj)) := max{max(0, 1− fkj(xj) + f`(xj)) : ` ∈ INn}

leads to the multiclass formulation of [12] (see also [6] for related work in the context of linear
programming). For further information on the quadratic programming problem formulation
and discussion of algorithms for the solution of these optimization problems see the above
references.

5 Kernels

In this section we consider the problem of characterizing a wide variety of kernels of a form
which have been found to be useful in learning theory, see [27]. We begin with a discussion
of dot product kernels. To recall this idea we let our space X to be IRn and on X we put the
usual Euclidean inner product x · y =

∑

j∈INn
xjyj, x = (xj : j ∈ INn), y = (yj : j ∈ INn). A

2The case n = 2 (binary classification) is not included here because is merely reduces to learning a
scalar−valued function.
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dot product kernel is any function of x·y and a typical example is to choose Kp(x, y) = (x·y)p,
where p is a positive integer. Our first result provides a substantial generalization. To this
end we let INm be the set of vectors in IRm whose components are nonnegative integers and
if α = (αj : j ∈ INm) ∈ INm, z ∈ IRm we define zα :=

∏

j∈INm
zαj

j , α! :=
∏

j∈INm
αj!, and

|α| :=
∑

j∈INm
αj.

Definition 5.1 We say that a function h : Cm → L(Y) is entire whenever there is a
sequence of bounded operators {Aα : α ∈ INm} ⊆ L(Y), such that, for every z ∈ Cm and any
c ∈ Y the function

∑

α∈INm

(c, Aαc)zα

is an entire function on Cm and for every c ∈ Y and z ∈ Cm it equals (c, h(z)c). In this
case we write

h(z) =
∑

α∈INm

Aαzα, z ∈ Cm. (5.1)

Let B1, . . . , Bm be any n × n complex matrices and h an entire function with values in
L(Y). We let h((B1), . . . , (Bm)) be the n × n matrix whose j, `−element is the operator
h((B1)j`, . . . , (Bm)j`) ∈ L(Y)

Proposition 5.1 If {Kj : j ∈ INm} is a set of kernels on X × X with values in IR, and
h : IRm → L(Y) an entire function of the type (5.1) where {Aα : α ∈ INm} ⊆ L+(Y) then

K = h(K1, . . . , Km)

is a kernel on X × X with values in L(Y).

Proof. For any {cj : j ∈ INm} ⊆ Y , and {xj : j ∈ INm} ⊆ X we must show that
∑

j,`∈INm

(cj, h(K(xj, x`), . . . , Km(xj, x`))c`) ≥ 0.

To this end, we write the sum in the form
∑

α∈INm

∑

j∈INm

Kα1
1 (xj, x`), . . . , Kαm

m (xj, x`)(cj, Aαc`).

Since Aα ∈ L+(Y), it follows that the matrix ((cj, Aαc`)), j, ` ∈ INm is positive semidefinite.
Therefore, by the lemma of Schur, see e.g. [3, p. 358], we see that the matrix whose j−th,
`−th element appears in the sum above is positive semidefinite for each α ∈ INm. From this
fact the result follows.

2

In our next observation we show that the function h with the property described in
Proposition 5.1 must have the form (5.1) with {Aα : α ∈ INm} ⊆ L+(Y) provided it and the
kernels K1, . . . , Km satisfy some additional conditions. This issue is resolved in [17] in the
scalar case. To apply those results we find the following definition useful.
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Definition 5.2 We say that the set of kernels Kj : X×X → C, j ∈ INm, is full if for every n
and any n×n positive semidefinite matrices B`, ` ∈ INm, there exist points {xj : j ∈ INn} ⊆ X
such that, for every ` ∈ INm, B` = (K`(xj, xk))j,k∈INm.

For example when m = 1 and X is a infinite dimensional Hilbert space with inner product
(·, ·), the kernel (·, ·) is full.

Proposition 5.2 If {Kj : j ∈ INm} is a set of full kernels on X ×X , h : Cm → L(Y), there
exists some r > 0 such that the constant

γ = sup{‖h(z)‖ : ‖z‖ ≤ r}

is finite, and h(K1, . . . , Km) is a kernel with values in L(Y), then h is entire of the form

h(z) =
∑

α∈INm

Aαzα, z ∈ Cm

for some {Aα : α ∈ INm} ⊆ L+(Y).

Proof. For any c ∈ Y and any positive semidefinite n× n matrices {Bj : j ∈ IN : m}, the
n× n matrix

(c, h(B1, . . . , Bm)c)

is positive semidefinite. Therefore, the function g : Cm → C defined by equation

g(z) := (c, h(z)c), z ∈ Cm

has the property that g(B1, . . . , Bm) is an n × n positive semidefinite matrix. We now can
apply the result in [17] and conclude that g is an entire function on Cm with nonnegative
coefficients. Therefore, we have for all z ∈ Cm that

g(z) =
∑

α∈INm

gαzα

where, for all α ∈ INm, gα ≥ 0. By the polarization identity in Y we conclude that for any
c, d ∈ Y the function f defined, for z ∈ Cm as

f(z) := (c, h(z)d)

is also entire on Cm, that is, for all z ∈ Cm we have that

f(z) =
∑

α∈INm

fαzα

for some coefficients fα, α ∈ INm. We will use these coefficients to construct the operators
Aα, α ∈ INm. To this end, we express them by the Cauchy integral formula

fα = α!
∮

T

(c, h(z)d)
ξα+1 dξ
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where T := {z = (zj : j ∈ INm) : |zj| = r, j ∈ INm}, the m−torus. Hence, we obtain the
estimate

|fα| ≤ α!
M‖c‖‖d‖(2π)m

r|α|
.

From this fact and the observation that each fα is bilinear in c and d we conclude that there
is an Aα ∈ L(Y) such that fα = (c, Aαd), see [1]. But gα = (c, Aαc), and so we obtain that
Aα ∈ L+(Y). This complete the proof.

2

Let us now comment on translation invariant kernels on IRn with values in L(Y). This case
is covered in great generality in [7, 16] where the notion of operator−valued Borel measures is
described and used to generalize the theorem of Bochner, see e.g. [16, p. 12]. The interested
reader can find complete details in these references. For the purpose of applications we
point out the following sufficient condition on a function h : IRn → L(Y) to give rise to a
translation invariant kernel. Specifically, for each x ∈ IRn, we let W (x) ∈ L+(Y), and define
for x ∈ IRn the function

h(x) =
∫

IRn
eix·tW (t)dt.

Consequently, for every m ∈ IN, {xj : j ∈ INm} ⊆ IRn, and {cj : j ∈ INm} ⊆ Y we have that

∑

j,`∈INm

(cj, h(xj − x`)c`) =
∫

IRn
(cjeixj ·t,W (t)(c`eix`·t))

which implies that K(x, y) := h(x − t) is a kernel on IRn × IRn. In [7, 16] all translation
invariant kernels are characterized in form

h(x) =
∫

IRn
eix·tdµ(t)

where dµ is a operator−valued Borel measure relative to L+(IRn). In particular this says,
for example, that a function

h(x− t) =
∑

j∈INm

ei(x−t)·tjBj

where {Bj : j ∈ INm} ⊆ L+(IRn) gives a translation invariant kernel too.
We also refer to [7, 16] to assert the claim that the function g : IR+ → IR+ such that

K(x, t) := g(‖x − t‖2) is a radial kernel on X × X into L(Y) for any Hilbert space X has
the form

g(s) =
∫ ∞

0
e−σsdµ(σ)

where again dµ is a operator−valued measure with values in L+(Y). When the measure is
discrete and Y = IRn we conclude that

K(x, t) =
∑

j∈INm

e−σj‖x−t‖2Bj

is a kernel for any {Bj : j ∈ INm} ⊆ L+(IRn) and {σj : j ∈ INm} ⊂ IR+. This is the form of
the kernel we use in our numerical simulations.
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6 Practical considerations

In this final section we describe several issues of a practical nature. They include a description
of some numerical simulations we have performed, a list of several problems for which we
feel learning vector−valued functions is valuable and a brief review of previous literature on
the subject.

6.1 Numerical simulations

In order to investigate the practical advantages offered by learning within the proposed
function spaces we have carried out a series of three preliminary experiments where we tried
to learn a target function f0 by minimizing the regularization functional in equation (4.1)
under different conditions. In all experiments set f0 to be of the form

f0(x) = K(x, x1)c1 + K(x, x2)c2, c1, c2 ∈ IRn, x ∈ [−1, 1]. (6.1)

I the first experiment, the kernel K was given by a mixture of two gaussian functions, namely

K(x, t) = Se−6‖x−t‖2 + Te−30‖x−t‖2 , x, t ∈ [−1, 1] (6.2)

where S, T ∈ L+(IRn). Here we compared the solution obtained by minimizing equation
(4.1) either in the RKHS of kernel K above (we call this method 1) or in the RKHS of the
diagonal kernel

I
(

tr(S)
n

e−6‖x−t‖2 +
tr(T )

n
e−30‖x−t‖2

)

, x, t ∈ [−1, 1] (6.3)

where tr denotes the trace of a squared matrix (we call this method 2). We performed different

Table 1: Experiment 1: average difference between the test error of method 1 and the test error of
method 2 with its standard deviation (bottom row in each cell) for different values of the number of
outputs n and the noise level a. The average error of method 1 (not reported here) ranged between
2.80e−3 and 1.423.

a \ n 2 3 5 10 20
0.1 2.01e−4 9.28e−4 .0101 .0178 .0331

(1.34e−4) (5.07e−4) (.0203) (.0101) (.0238)
0.5 1.83−3 .0276 .0197 .0279 .5508

(1.17e−3) (.0123) (.126) (.0131) (.3551)
1 .0167 .0238 .0620 .3397 .5908

(.0104) (.0097) (.0434) .3608 (0.3801)

series of simulations, each identified by the number of the outputs n ∈ {2, 3, 5, 10, 20} and an
output noise parameter a ∈ {0.1, 0.5, 1}. Specifically, for each pair (n, a), we computed the
matrices S = A∗A and T = B∗B where the elements of matrices A and B were uniformly
sampled in the interval [0, 1]. The centers x1, x2 ∈ [−1, 1] and the vector parameters c1, c2 ∈
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[−1, 1]n defining the target function f0 were also uniformly distributed. The training set
{(xj, yj) : j ∈ INm} ⊂ [−1, 1] × IRn was generated by sampling the function f0 with noise,
namely xj was uniformly distributed in [−1, 1] and yj = f0(xj) + εj with εj also uniformly
sampled in the interval [−a, a]. In all simulations we used a set of m = 20 points for training
and a separate validation set of 100 data to select the optimal value of the regularization
parameter. Then we computed on a separate test set of 200 samples the mean squared error
between the target function f0 and the function learned from the training set. This simulation
was repeated 100 times, that is for each pair (n, a), 100 test error measures were produced
for method 1 and method 2. As a final comparison measure of method 1 and method 2
we computed the average difference between the test error of method 2 and the test error
of method 1 and its standard deviation, so, for example, a positive value of this average
means that method 1 performs better than method 2. These results are shown in table 1
were each cell contains the average difference error and, below it, its standard deviation.
Not surprisingly, the results indicate that the use of the non-diagonal kernel always on the
average improves performance, especially when the number of outputs increases.

Table 2: Experiment 2: average difference between the test error of method 3 and the test error of
method 4 with its standard deviation for different values of the number of outputs n and the noise
level a. The average error of method 3 (not reported here) ranged between 3.01e−3 and 6.95e−2.

a \ n 2 3 5 10 20
0.1 8.01e−4 7.72e−4 -6.85e−4 6.72e−4 7.42e−4

(6.76e−4) (8.05e−4) (5.00e−4) 5.76e−4 3.99e−3
0.5 1.57e−3 .0133 7.30−3 -7.30e−3 8.64e−3

(1.89e−3) (.0152) (4.51e−3) (4.51e−3) (4.63e−3)
1 .0113 .0149 9.17e−3 .0242 .0233

(.0086) (.0245) (5.06e−3) (.0103) (.0210)

In the second experiment, the target function in equation (6.1) was modelled by the
diagonal kernel

K(x, t) = I
(

ae−6‖x−t‖2 + be−30‖x−t‖2
)

, x, t ∈ [−1, 1]

where a, b ∈ [0, 1], a + b = 1. In this case we compared the optimal solution produced by
minimizing equation (4.1) either in the RKHS of the above kernel (we call this method 3) or
in the RKHS of the kernel

an
tr(S)

Se−6‖x−t‖2 +
bn

tr(T )
Te−30‖x−t‖2 , x, t ∈ [−1, 1]

(we call this method 4). The results of this experiment are shown in table 2 where it is evident
that the non diagonal kernel very often does worse than the diagonal kernel. Comparing these
results with those in table 1 we conclude that the non diagonal kernel does not offer any
advantage when n = 2, 3. On the other hand, this type of kernel helps dramatically when the
number for outputs is larger or equal to 5 (it does little damage in experiment 2 and great

17



benefit in experiment 1). There is no current explanation for this phenomenon. Thus, it
appears to us that such kernel and its generalization as we discussed above may be important
for applications where the number of outputs is large and complex relations among them are
likely to occur.

The last experiment addressed hyper-parameters tuning. Specifically, we again choose
a target function as in equation (6.1) and K as in equation (6.2) but, now, S = S0 where
S0

`q = 1 if ` = q, −1 if ` = q+1 (with periodic conditions, i.e. n+1 = 1), and zero otherwise,
and T = T 0 is a sparse out-of-diagonal p.d. binary matrix. Thus, S0 models correlations
between adjacent components of f (it acts as a difference operator) whereas T0 accounts
for possible “far away” component correlations. To learn this target function using three
different parameterized kernel models. Model 1 consists of kernels as in equation (6.2) with
S = S0 + λI and T = ρT0, λ, ρ ≥ 0. Model 2 is as model 1 but with ρ = 0. Finally, model
3 consists of diagonal kernels as in equation (6.3) with S = S0 and T = νT0, ν > 0. The
data generation setting was like in the above experiments except that the matrices S0 and
T0 were kept fixed in each simulation (this explain the small variance in the plots below)
and the output noise parameter was fixed to 0.5. Hyper-parameters of each model as well
as the regularization parameter in equation (4.1) were found by minimizing the squared
error computed on a separate validation set containing 100 independently generated points.
Figure 1 depicts the mean square test error with its standard deviation as a function of the
number of training points (5,10,20,30) for n = 10, 20, 40 output components. The result
clearly indicated the advantage offered by model 1.

Figure 1: Experiment 3 (n = 10, 20, 40) Mean square test error as a function of the training
set size for model 1 (solid line), model 2 (dashed line) and model 3 (doted line). See text for
a description on these models.

Although the above experiments are preliminary and consider a simple data-setting, they
enlighten the value offered by matrix-valued kernels.

6.2 Application scenarios

We outline some practical problems arising in the context of learning vector−valued functions
where the above theory can be of value. Although we do not treat the issues that would arise
in a detailed study of these problems, we hope that our discussion will motive substantial
studies of them.

A first class of problems deals with finite dimensional vector spaces. For example, an
interesting problem arises in reinforcement learning or control when we need to learn a map
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between a set of sensors placed in a robot or autonomous vehicle and a set of actions taken by
the robot in response to the surrounding environment, see e.g. [18]. Another instance of this
class of problems deals with the space of n×m matrices over a field whose choice depends
on the specific application. Such spaces can be equipped with the standard Frobenius inner
product. One of many problems which come to mind is to compute a map which transforms
an ` × k image x into a n × m image y. Here both images are normalized to the unit
interval, so that X = [0, 1]`×k and Y = [0, 1]n×m. There are many specific instances of this
problem. In image reconstruction the input x is an incomplete (occluded) image obtained
by setting to 0 the pixel values of a fixed subset in an underling image y which forms our
target output. A generalization of this problem is image de-noising where x is an n × m
image corrupted by a fixed but unknown noise process and the output y is the underling
“clean” image. Yet a different application is image morphing which consists in computing
the pointwise correspondence between a pair of images depicting two similar objects, e.g.
the faces of two people. The first image, x0, is meant to be fixed (a reference image) whereas
the second one, x, is sampled from a set of possible images in X = [0, 1]n×m. The output
y ∈ IR2(n×m) is a vector field in the input image plane which associates each pixel of the
input image to the vector of coordinates of the corresponding pixel in the reference image,
see e.g. [8] for more information on these issues.

A second class of problems deals with spaces of strings, such as text, speech, or biological
sequences. In this case Y is a space of finite sequences whose elements are in a (usually
finite) set A. A famous problem asks to compute a text-to-speech map which transforms a
word from a certain fixed language into its sound as encoded by a string of phonemes and
stresses. This problem was studied by Sejnowski and Rosenberg in their NETtalk system
[25]. Their approach consists in learning several Boolean functions which are subsequently
concatenated to obtained the desired text-to-speech map. Another approach is to learn
directly a vector−valued function. In this case Y could be described by means of an appro-
priate RKHS, see below. Another important problem is protein structure prediction which
consists in predicting the 3D structure of a protein immerse in a aqueous solution, see, e.g.,
[4]. Here x = (xj ∈ A : j ∈ IN`) is the primary sequence of a protein, i.e. a sequence of
twenty possible symbols representing the amino acids present in nature. The length ` of
the sequence varies typically between a few tens and a few thousand elements. The output
y = (yj ∈ IR3 : j ∈ IN`) is a vector with the same length as x and yj is the position of the
j−th amino acid of the input sequence. Towards the solution of this difficult problem an
intermediate step consists in predicting a neighborhood relation among the amino acids of
a protein. In particular, recent work has focused on predicting a squared binary matrix C,
called the contact map matrix, where C(j, k) = 1 if the amino acids j and k are at a distance
smaller or of the order of 10A, and zero otherwise, see [4] and references therein.

Note that in the last class of problems the output space is not a Hilbert space. An
approach to solve this difficulty is to embed Y into a RKHS. This requires choosing a
scalar−valued kernel G : Y × Y → IR which provides a RKHS space HG. We associate
every element y ∈ Y with the function G(y, ·) ∈ HG and denote this map by G : Y → HG. If
we wish to learn a function f : X → Y, we instead learn the composition mapping f̃ := G◦f .
We then can obtain f(x) for every x ∈ X as

f(x) = argminy∈Y‖G(y, ·)− f̃(x)‖G.
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If G is chosen to be bijective the minimum is unique. This idea is also described in [29]
where some applications of it are presented.

As third and a final class of problems which illustrate the potential of vector−valued
learning we point to the possibility of learning a curve, or even a manifold. In the first
case, the usual paradigm for the computer generation of a curve in IRn is to start with
scalar−valued basis functions {Mj : j ∈ INm}, and a set of control points, {cj : j ∈ INm} ⊆
IRn, and consider the vector−valued function

f =
∑

j∈INm

cjMj

see e.g. [22]. We are given data {yj : j ∈ INm} ⊆ IRn and we want to learn the control
points. However the input data, which belong to a unit interval, say X = [0, 1], is unknown.
We then fix {xj : j ∈ INm} ⊂ [0, 1] and we learn a parameterization τ : [0, 1] → [0, 1] such
that

f(τ(xi)) = yi.

So the problem is to learn both τ and the control points. Similarly, if {Mj : j ∈ INm} are
functions in IRk, k < n we face the problem of learning a manifoldM obtained by embedding
IRk in IRn. It seems that to learn the manifold M a kernel of the form

K(x, t) =
∑

j∈INm

Mj(x)Mj(t)Aj

where {Aj : j ∈ INm} ⊂ L+(IRn) would be appropriate, because the functions generated by
such kernel lie in the manifold generated by the basis functions, namely K(x, t)c ∈ M for
every x, t ∈ IRk, c ∈ IRn.

6.3 Previous works on vector−valued learning

The problem of learning vector−valued functions has been addressed in the statistical liter-
ature under the name of multiple response estimation or multiple output regression, see [19]
and references therein. Here we briefly discuss two methods that we find interesting.

A well-studied technique is the Wold partial least squares approach. This method is
similar to principal component analysis but with the important difference that the principal
directions are computed simultaneously in the input and output spaces, both being finite
dimensional Euclidean spaces, see e.g. [19]. Once the principal directions have been com-
puted, the data are projected along the first n directions and a least square fit is computed in
the projected space where the optimal value of the parameter n can be estimated by means
of cross validation. We note that like principle component analysis, partial least squares are
linear models, that is they can model only vector−valued functions which depend linearly
on the input variables. Recent work by Trejo and Rosipal [23] and Bennett and Embrechts
[5] has reconsidered PLS in the context of scalar RKHS.

Another statistically motivated method is Breiman and Friedman curd & whey procedure
[9]. This method consists of two main steps where, first, the coordinates of a vector−valued
function are separately estimated by means of a least squares fit or by ridge regression and,
second, they are combined in a way which exploit possible correlations among the responses
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(output coordinates). The authors show experiments where their method is capable of
reducing prediction error when the outputs are correlated and not increasing the error when
the outputs are uncorrelated. The curd & whey method is also primarily restricted to model
linear relation of possibly non linear functions. However it should be possible to “kernelized”
this method following the same lines as in [5].
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