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We propose a generalization of proper orthogonal decomposition (POD) for optimal
flow resolution of linearly related observables. This Galerkin expansion, termed
‘observable inferred decomposition’ (OID), addresses a need in aerodynamic and
aeroacoustic applications by identifying the modes contributing most to these
observables. Thus, OID constitutes a building block for physical understanding, least-
biased conditional sampling, state estimation and control design. From a continuum of
OID versions, two variants are tailored for purposes of observer and control design,
respectively. Firstly, the most probable flow state consistent with the observable is
constructed by a ‘least-residual’ variant. This version constitutes a simple, easily
generalizable reconstruction of the most probable hydrodynamic state to preprocess
efficient observer design. Secondly, the ‘least-energetic’ variant identifies modes
with the largest gain for the observable. This version is a building block for
Lyapunov control design. The efficient dimension reduction of OID as compared
to POD is demonstrated for several shear flows. In particular, three aerodynamic
and aeroacoustic goal functionals are studied: (i) lift and drag fluctuation of a
two-dimensional cylinder wake flow; (ii) aeroacoustic density fluctuations measured
by a sensor array and emitted from a two-dimensional compressible mixing layer;
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and (iii) aeroacoustic pressure monitored by a sensor array and emitted from a
three-dimensional compressible jet. The most ‘drag-related’, ‘lift-related’ and ‘loud’
structures are distilled and interpreted in terms of known physical processes.

Key words: aeroacoustics, low-dimensional models, wakes/jets

1. Introduction

The goal of our modelling efforts is to distil a physical understanding of the flow
physics enabling flow control of aerodynamic and aeroacoustic observables.

Reduced-order representations of the coherent flow dynamics constitute key enablers
of this purpose. The optimum is, of course, represented by analytical formulae for
the flow field. Yet, there exist only a small number of corresponding examples,
mostly restricted to quasi-steady base flows and periodic flows (Townsend 1956).
A more generally applicable strategy for the purposes of flow control is achieved by
a low-dimensional flow parametrization. Here, vortex models constitute one of the
oldest forms of reduced-order representations. These are well linked to a physical
understanding of the flow dynamics and the generation of sound (see e.g. Lugt 1996;
Howe 2003; Wu, Ma & Zhou 2006) considering interacting eddies as the basic flow
elements (‘particle picture’). However, most control design methods are inhibited by
the hybrid nature of vortex models (Pastoor et al. 2008), e.g. the modelling of periodic
vortex shedding using a continuous insertion of new state variables representing the
locations of the shed vortices. A second form of reduced-order representation is given
by Galerkin models, including the Galerkin expansion and the dynamical system
for the modal amplitudes. In the Galerkin expansion, the basic flow elements are
considered to be spatial structures with time-varying amplitudes (‘wave picture’), thus
completing a particle–wave analogy of both vortex models and Galerkin models. In
comparison to the vortex models, the Galerkin models exhibit a smaller dynamical
bandwidth, such that unresolved effects have to be implemented separately using,
for example, mean-field, pressure and turbulence models (see e.g. Rempfer & Fasel
1994; Cazemier, Verstappen & Veldman 1998; Noack et al. 2003; Noack, Papas
& Monkewitz 2005; Willcox & Megretski 2005; Noack et al. 2008). However, the
simple nature of the Galerkin system of ordinary differential equations enables the
straightforward application of a rich kaleidoscope of the methodologies of nonlinear
dynamics and control theory. In this paper, the path of Galerkin expansion is pursued
for reduced-order representation.

Galerkin expansion modes are derived from various design principles (Noack,
Morzyński & Tadmor 2011). The mathematical property of completeness is guaranteed
by ‘mathematical modes’, which are utilized, for example, in spectral methods for
numerical flow computation. A low-order description of the linear flow dynamics
is provided by the eigenmodes of linear stability analysis. The eigenmodes of the
observability and of the controllability Gramians are most aligned with an observable
for given linear dynamics and with control effects, respectively. Finally, modes of the
proper orthogonal decomposition (POD) are most fitted to empirical data compression.
Here, we follow the empirical approach employing generalizations of POD.

Generalizations of POD have been developed for several purposes. Major emphasis
has been laid on data compression of multiple operating conditions such as, for
example, sequential POD (Jørgensen, Sørensen & Brøns 2003), mode interpolation
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(Morzyński et al. 2007) and double POD (Siegel et al. 2008), or the consideration
of incomplete data sets (see e.g. Willcox 2006). The focus in this paper is on the
manipulation of the utilized POD inner product or norm in the spirit of Freund
& Colonius (2002, 2009). But, in our approach, the construction of the employed
hydrodynamic function subspace is tailored for purposes of observer and control
design.

Examples of decomposition techniques are summarized in table 1. Here, one
example is proposed by the balanced POD (BPOD), enabling the numerical
approximation of the balanced truncation for linear systems. Here, the inner product
or norm of the L2 Hilbert space is modified based on the empirical observability
Gramian (see e.g. Willcox & Peraire 2002; Rowley 2005). Moreover, the computation
of eigenvectors of the observability Gramian is enabled by the concept of the
empirical observability Gramian. Thus observable modes, structures with quantified
observability given by the corresponding eigenvalue, are represented. A generalized
balanced truncation of nonlinear systems has been proposed by Lall, Marsden &
Glavaški (1999, 2002) using generalized empirical Gramians. The generalization of
empirical observability Gramians enables the definition of the observable modes to
be the eigenfunction of a generalized empirical observability Gramian. However, in
aerodynamic and aeroacoustic systems, the identification of observable structures is
mostly inhibited by an extensive computational burden needed to provide an ensemble
of transients given from a large number of initial conditions.

The starting point of this paper is solely aerodynamic and aeroacoustic databases
of the hydrodynamic attractor and the observable describing the kinematics. The
definition of observable structures has to be reconsidered, because the observable
modes are defined only for asymptotically stable dynamics or for dynamics that can
be stabilized under a certain control. This is in general not the case for uncontrolled
attractor dynamics. We interpret the extended POD approach (EPOD) as an example
for such a redefinition based on the modification of the POD inner product. In EPOD,
structures of the hydrodynamic field are identified that are most correlated with a
given observable, e.g. with pressure signals beyond the considered domain (Picard &
Delville 2000; Maurel, Borée & Lumley 2001; Borée 2003; Hoarau et al. 2006). Flow
estimation is therefore facilitated by EPOD to reconstruct the hydrodynamic attractor
from a measured observable.

In the present paper, a unifying framework termed ‘observable inferred
decomposition’ (OID) of POD generalizations is proposed, modifying the POD
inner product or norm and identifying ‘OID structures’ as kinematic counterparts
of most observable structures, the eigenstructures from the observability Gramian. OID
subspaces are spanned by these modes, leading to optimal data compression tailored
for purposes of observer and control design. A draft version of OID was introduced
as the ‘most observable decomposition’ (MOD) in preliminary considerations (Jordan
et al. 2007; Schlegel et al. 2009). OID is based solely on either: (i) empirical data
representing both the hydrodynamic attractor and the observable; or (ii) only one of
these quantities, presupposing that the other quantity can be provided using a known
analytical relationship of hydrodynamics and observable. OID is applicable to a wide
class of structure identification problems, assuming that the coherent dynamics of the
observable is captured by a linear mapping from the hydrodynamics to the fluctuations
of the considered observable.

As a first demonstration of its dimension reduction capability, OID is applied
to distil the flow velocity structures most related to the lift force and to the
drag force fluctuation. Because the OID modes can be compared with well-known
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force-related structures (Protas & Wesfreid 2003; Bergmann, Cordier & Brancher
2005), this constitutes an exercise of a first check of OID’s physical plausibility.

A major goal of the modelling efforts of this paper is to provide a physical
understanding of shear flow noise generation. The need for such a physical
understanding is motivated by ongoing efforts from the beginning of civil air traffic
with jet engines to suppress jet noise from engine exhausts leading to larger bypass
ratios of the jet engine, geometrical modifications of the nozzle trailing edge and
active control devices like plasma actuators, microjets, fluidic chevrons and for
acoustic forcing (see e.g. reviews in Tam 1998; Samimy et al. 2007; Jordan &
Gervais 2008; Laurendeau et al. 2008). Yet an intuitive understanding of the noise-
producing structures is still in its infancy after more than five decades of jet noise
research (see e.g. Panda, Seasholtz & Elam 2005). The complexity of this problem
can be ascribed to the high dimensionality and the broadband spectrum of the flow
state attractor. Presently, the main theoretical handle on noise source mechanisms in
turbulent shear flows is given by the acoustic analogy, that of Lighthill (1952) being
the most straightforward. The production of shear flow noise can be understood as a
matching of scales between a ‘source’ term constructed from the flow field and an
acoustic medium loosely thought of as the irrotational region surrounding the flow. By
means of this scale matching (known as acoustic matching), a one-way transmission
of propagative energy is established between the flow and the aeroacoustic far field.
Here, only a very small part of the turbulence energy is transformed into energy
of the aeroacoustic far field by a subtle evolution of turbulent structures and their
interactions (Ffowcs Williams 1963; Crighton 1975). For subsonic jet flows, typical
system dimensions of a few hundred modes of the most energy-efficient POD are
obtained (see e.g. Gröschel et al. 2007). However, as a first hint towards low-
order representations, it is moreover shown in Freund & Colonius (2002, 2009) that
representations of significantly lower order are realizable using the coherent part of the
jet pressure field. As will be seen later, such considerations provide key enablers of the
goal-oriented OID approach to pursue a significant dimension reduction. Preliminary
results are indeed encouraging (Jordan et al. 2007).

The paper is organized as follows. Starting from the well-known POD and EPOD
approaches, the principles of OID as an empirical structure identification method
are outlined in § 2. In § 3, OID is applied to a cylinder wake flow where the
observable is represented by lift and by drag fluctuation, respectively. To obtain
a physical understanding of the noise generation in shear flows, OID results are
presented for aeroacoustic far-field observables of a two-dimensional mixing layer
and a three-dimensional Ma = 0.9 jet in §§ 4 and 5, respectively. In the Appendix,
further mathematical details of the OID variants and the filtering of OID structures are
specified.

2. Snapshot-based flow decomposition methods

In this section, reduced-order representations of the fluctuations (i.e. perturbations
of a mean state 〈u〉, e.g. the time average) of a given hydrodynamic quantity u are
proposed by empirical Galerkin approximations,

u′(x, t) := u − 〈u〉 ≈
L
∑

i=1

aA
i (t) u

A
i (x), (2.1)

to perform an optimal flow resolution of a given observable q, which is linearly related
to the hydrodynamic quantity. The decomposition is based on L space-dependent
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modes uA
i , which have to be determined, and corresponding time-dependent mode

coefficients aA
i . In the following, we consider the flow velocity as hydrodynamic

quantity, and aeroacoustic or aerodynamic observables. In a more abstract perspective,
all of the subsequent considerations can be applied straightforwardly to arbitrary
physical quantities.

Starting from the POD of the hydrodynamic attractor and of the observable in § 2.1,
the known extended POD (EPOD) approach is revisited in § 2.2, leading to a first
decomposition of the class (2.1). EPOD is set in § 2.3 in a mathematically rigorous
framework for definition of POD generalizations. Using this framework, a further
POD generalization is derived in § 2.4 by employing the well-known Moore–Penrose
pseudoinverse. Thus, the ‘observable inferred decomposition’ is proposed in § 2.5.
In this subsection, a variation of Sirovich’s POD snapshot method is provided for
computation of OID. Finally, the treatment and implementation of time delays is
discussed in § 2.6.

2.1. Proper orthogonal decomposition (POD)

Commonly in POD, velocity fluctuations are decomposed by the linear expansion into
N spatial POD modes ui(x),

u′(x, t) ≈
N
∑

i=1

ai(t)ui(x), (2.2)

using their mode coefficients ai(t) := (ui,u
′)Ω , defined via the inner product (·, ·)Ω of

the function space Su ⊆ L2(Ω) of the hydrodynamic attractor. POD decomposes the
flow velocity most efficiently for the resolution of

QΩ(u′) :=
〈
∫

Ω

u′
·u′ dx

〉

= 〈(u′,u′)Ω〉, (2.3)

a goal functional representing twice the total kinetic fluctuation energy 1
2
QΩ(u′).

This optimal resolution differs from the targeted flow resolution of the observable
by the decomposition (2.1). Optimal resolution here means that the error QΩ(ri) of the
residual ri := u′ − (u′,u1)Ω u1 − · · · − (u′,ui)Ω ui is minimized for each i = 1, . . . , N.
The modally resolved total kinetic energy is quantified by half of the respective POD

eigenvalue λu
i = 〈(ui,u

′)2
Ω〉 = 〈a2

i 〉.
The expansion (2.2) is generalized for an arbitrary observable q (e.g. a sensor field

of aeroacoustic pressure) via

q′(y, t) ≈
M
∑

i=1

bi(t) qi(y). (2.4)

Analogously, the POD of the observable can be considered to decompose the
fluctuations q′ most efficiently for the resolution of the fluctuation level QΓ (q′) (e.g.
noise level of an aeroacoustic observable) of the observable q = q(y, t), where the goal
functional QΓ (q) is defined via

QΓ (q′) :=
〈
∫

Γ

q′
· q′ dy

〉

= 〈(q′, q′)Γ 〉, (2.5)

using the inner product (·, ·)Γ of the function space Sq ⊆ L2(Γ ) of the observable.
Note that the domain Γ of the observable may be distinct from the domain Ω of
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the considered flow region. Again, the resolution by each mode qi is measured by the

respective POD eigenvalue λ
q
i = 〈(qi, q

′)2
Γ 〉 = 〈b2

i 〉.
In the POD approach, the most efficiently resolved goal functional is thus

determined by the fluctuation level of the decomposed field and cannot be chosen
independently from this field. This inflexibility adversely affects POD’s capability for
reduced-order modelling and control: a large number of dynamical degrees of freedom
might be required to capture the most important flow events for the generation of
a considered aerodynamic or aeroacoustic observable, if only a small part of the
hydrodynamic fluctuation level contributes to the generation of the observable! By way
of example, for the free shear flow investigation in this paper, only a small part of the
total kinetic energy is transformed into acoustic energy (see §§ 4 and 5).

However, when the focus is on the manipulation only of the coherent flow part,
representations (2.2) and (2.4) may act as prefilters with N and M sufficiently large to
capture the considered physical processes for flow control. Thus, the vectors

a(t) := [a1(t), a2(t), . . . , aN(t)]T, (2.6a)

b(t) := [b1(t), b2(t), . . . , bM(t)]T, (2.6b)

of the respective POD mode coefficients are considered instead of the hydrodynamic
field u(x, t) and the observable q(y, t). Respectively, for the Euclidean vector spaces
Sa ⊆ R

N and Sb ⊆ R
M of the POD mode coefficients, the goal functionals QΩ(u′) and

QΓ (q′) are approximated by QE(a) and QE(b), defined via

QE(a) := 〈a · a〉, QE(b) := 〈b · b〉, (2.7)

where the Euclidean vector dot product ‘·’ is employed. Although in general the
dimensions N of a and M of b are not equal, the symbol QE is used in both cases for
simplicity. By application of the representations (2.2) and (2.4), note that POD results
can be obtained by formal application of the POD algorithm to the coefficients a(t)
and b(t) with the Euclidean vector dot product as inner product.

2.2. Extended proper orthogonal decomposition (EPOD)

The essential idea of the EPOD approach is explained in two steps, using the
representations (2.2) and (2.4) of the previous subsection (see Picard & Delville 2000;
Maurel et al. 2001; Borée 2003).

Firstly, POD is generalized by the modification of the inner product considering the
coherent parts of hydrodynamic attractor and observable. In the space of the POD
mode coefficients, the inner vector product (v,w) := v ·w is varied based on a linear
stochastic estimation (LSE)

b = Ca. (2.8)

The modified inner product is given by (v,w)A := Cv · Cw, which constitutes an inner
vector product on each linear subspace of Sa, in which no non-zero vector of the null
space of C is contained. Thus, in EPOD the optimal resolution of the ‘correlated’ goal
functional

QA(a) := 〈Ca · Ca〉 (2.9)

is required. Note that QA(a) is equal to QE(b) by virtue of (2.8).
Secondly, the EPOD subspace spanned by the EPOD modes is defined to be the

only part of the hydrodynamic fluctuations that is correlated to the fluctuations of the
observable. Owing to this choice, arbitrariness of the definition of EPOD modes uA

i
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for M < N (i.e. C is a singular matrix with a continuum of pseudoinverses) is removed,
which are defined via

uA
i (x) :=

N
∑

j=1

au
i,juJ(x), (2.10)

based on the constant vectors au
i , the POD vector obtained via application of the POD

algorithm in the coefficient spaces with above changed inner product.
Thus, the directions of the hydrodynamic attractor are identified via EPOD,

decomposing the coherent fluctuations most efficiently for the resolution of the
correlated observable. Moreover, from given measurements of the observable, the
most correlated and therefore most probable state of the hydrodynamic attractor is
reconstructed.

2.3. A unifying framework for POD generalization

To design generalizations of POD by the modification of inner products, it is
assumed that the relationship between the hydrodynamics and the observable is well
approximated by a linear mapping. Generalizing the relationship (2.8), a propagation
process is modelled via

q′(y, t + τ) =
∫

Ω

C(x, y, τ )u′(x, t) dx, (2.11)

based on a linear propagator C(x, y, τ ) that is dependent on the physical or fitted time
delay τ of propagation and the spatial variables.

The linear relationship is rewritten in operator notation as

q′(t + τ) = CAu
′(t), (2.12)

where q′(t + τ) and u′(t) both represent the respective spatial fields at any given
time. The operator CA may be dependent only on the time delay τ of the physical
propagation process, e.g. the aeroacoustic propagation. For reasons of simplicity, the
time delay is set to zero in the following. Its implementation will be revisited in § 2.6.

Assumption (2.12), which we term the ‘OID assumption’, is true in general for
small fluctuations. At larger amplitudes, the existence of a meaningful linear mapping
CA has to be verified for each configuration. For the configurations employed
in subsequent sections, this assumption is well founded for the considered flow
configurations and goal functionals, because the generation of the observables by
the hydrodynamics can be traced back mainly to a linear mechanism that can be
identified by correlating these two fields. The OID assumption is violated for a strong
nonlinear dependence of the observable on the hydrodynamics, like, for example, the
consideration of self-noise (see § 5), originating in the acoustic source term as the
observable and the velocity fluctuations as the hydrodynamic quantity. To exclude any
dependence of the observable on quantities other than the hydrodynamic quantity, CA

is furthermore assumed to represent a surjective mapping from the function space of
the hydrodynamic attractor, denoted by Su, to the function space of the observable,
denoted by Sq. Moreover, we consider only the non-trivial case dim Sq < dim Su, that
is, M < N in terms of the POD representations (2.2) and (2.4). In this case C is a
singular matrix.

Like in the EPOD approach, the hydrodynamic field is decomposed by the flow
representation (2.1) most efficiently for the resolution of the correlated goal functional

QA(u′) := 〈(CAu
′,CAu

′)Γ 〉 = QΓ (CAu
′) = QΓ (q′) (2.13)
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based on the linear mapping CA. The correlated goal functional QA(u′) is equal to
QΓ (q′) (at least in a good approximation), as ensured via the OID assumption (2.12).
An inner product is defined in a suitable hydrodynamic subspace by the product
(CA f ,CA g)Γ with hydrodynamic fields f and g. Note that POD represents the special
case of this approach with identical fluctuation fields of hydrodynamics and observable,
i.e. if CA coincides with the identity map.

As a first approach, the desired modes uA
i , decomposing the hydrodynamic attractor

most efficiently for the resolution of the correlated goal functional QA(u′), are
extracted from the POD modes of the observable using an inversion of the linear
relationship (2.12),

uA
i := C−

A qi. (2.14)

The concept of the pseudoinverse C−
A of an operator represents a straightforward

generalization of the pseudoinverse of a matrix (see Ben-Israel & Greville 2003).
We term a linear operator C−

A (or matrix C
−) a ‘pseudoinverse’ of the operator CA

(or matrix C) if the equations CAC
−
ACA = CA and C−

ACAC
−
A = C−

A (or CC
−

C = C

and C
−

CC
− = C

−) are fulfilled. In the case that a unique inverse exist, the only
pseudoinverse is given by this inverse.

The desired optimal resolution of QA(u′) is proven by application of CA to the
modes uA

i . These modes are mapped to the POD modes CAu
A
i = qi. Here, the fact

is utilized that CAC
−
A coincides with the identity map because CA is surjective.

Thus, the optimal resolution of QΓ (q′) by the POD modes qi of the observable is
transferred to the optimal resolution of QA(u′) by the modes uA

i . Thus these modes
are sorted by the resolved level of the correlated goal functional QA(u) from largest to
smallest, quantified by the respective POD eigenvalues λ

q
i = QΓ (biqi) = QΓ (aA

i CAu
A
i )

of the POD analysis of the observable (see Holmes et al. 1998, and the Appendix).
Orthonormality of the modes uA

i is ensured in the sense of the modified inner product,
i.e. (CAu

A
i ,CAu

A
j )Γ

= 1 for i = j, and zero otherwise, but not for the common POD

inner product (·, ·)Ω .
Using the POD representations (2.2) and (2.4), this methodology can be completely

described in the finite-dimensional spaces of the POD mode coefficients a and b. First
the matrix C of the linear relationship (2.8) is identified using LSE or directly from
the operator CA, if the relationship (2.12) is analytically known. As POD modes, the
unit vectors ei are obtained from a POD analysis of the vector-valued dynamics b(t)
using the Euclidean vector product as inner product. The modes uA

i are obtained from
application of the pseudoinverse C

− of C onto the POD modes of the observable,

au
i := C

−ei, (2.15)

and (2.10), where the vectors au
i decompose the POD coefficient vector a most optimal

for the resolution of QA(a) defined in (2.9). Thus, the uA
i modes are one-to-one related

to the columns of C
−.

The pseudoinverse matrix C
− is not uniquely defined for the considered case M < N.

Thus, the vectors au
i and therefore the modes uA

i are at first not well defined via the
above definitions, as expounded in the subsequent example.

EXAMPLE 2.1. Let the hydrodynamic data ensemble be represented by the following
harmonic oscillator and an observable (one-dimensional) by the sine signal,

a =
[

sin(2πt)

cos(2πt)

]

, b = sin(2πt), (2.16)
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for all t ∈ R. Thus, QE(b) = 1/2. The linear mapping from the hydrodynamic field
to the observable is given by the projection C = [1, 0] onto the first component of a.
The goal functional QA(a) = QE(b) is completely resolved by only one direction, e.g.
by au = [1, 0]T. In contrast, two orthogonal directions of the hydrodynamic field are
required to resolve 100 % of QE(a). However, au is not uniquely defined owing to the
non-invertibility of C; the complete resolution of QA(a) is performed as well by any
direction au = [α, β]T with α 6= 0.

2.4. Application of the Moore–Penrose pseudoinverse

In the case of EPOD modes, the pseudoinverse C
− is tailored to observer design,

because the EPOD space resolves the only part of the hydrodynamic field, correlated
to the observable. Besides the assumptions of the previous subsections, it is therefore
presupposed that the dynamics both of the hydrodynamic field and the observable are
provided.

For the least-biased choice of a pseudoinverse, only measurements of the observable
and the null space of the linear relationship (2.12) have to be known. No
additional information is required, in contrast to EPOD employing the statistics of
the hydrodynamic attractor. This choice is given by the well-known Moore–Penrose
pseudoinverse, which can be defined by the following optimal property: for each
observable q(t), the norm of C−

A q(t) at each time t is minimized, i.e. the total kinetic
energy 1

2
QΩ(u′) contained in the subspace spanned by the respective modes uA

i is

minimal for a given fluctuation level of the observable QΓ (q′). A manipulation of the
dynamics that leads to a reduction of kinetic energy in this subspace therefore causes
a reduction of fluctuation level of the observable. Thus, the use of the Moore–Penrose
pseudoinverse is predestinated for Lyapunov control design, e.g. energy-based control
design, to suppress the fluctuations of the observable.

2.5. A generalized decomposition approach

In summary of the previous subsections, a unifying framework for generalizations of
POD has been provided using modified, observable-weighted inner products. The
methodology of the resulting decomposition, which we term ‘observable inferred
decomposition’ (OID), is outlined in figure 1. POD represents the special case of
OID with identical fluctuation fields of hydrodynamics and observable, i.e. if CA

coincides with the identity map. The modes uA
i and the vectors au

i , the subspaces of
the hydrodynamic space spanned by these modes, and the coefficients of the ‘OID
representation’ (2.1) are termed ‘OID modes’, ‘OID subspace’ and ‘OID coefficients’,
respectively. There are two types of pseudoinverse, defining two variants of OID, both
given by a respective optimal property:

(a) By the ‘least-residual principle’, the error of the reconstruction of the
hydrodynamic field is minimized via application of the pseudoinverse to the
observable. Thus, the variant of the ‘least-residual OID’ (LR-OID) is provided. In
the case that the POD representation (2.2) is used to prefilter coherent structures,
this variant coincides with the EPOD approach. However, LR-OID is defined
for a more general class of structure identification problems. Like in the EPOD
approach, the most correlated (i.e. most probable) state of the hydrodynamic
attractor can be reconstructed in the LR-OID subspace from given data of the
observable, thus preprocessing efficient observer design.

(b) By the ‘principle of least energy’, the total kinetic energy is minimal in the
OID subspace for a given fluctuation level fulfilled by the Moore–Penrose
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LE-OID modes

Observer design Controller design

LR-OID modes

Hydrodynamic attractor

Linear mapping from hydrodynamics to observable

Observable

Maximal resolution of correlated observable

Least-energetic principle

Inverse mapping from observable 

to hydrodynamic subspace

Least-residual principle

FIGURE 1. Principle of the observable inferred decomposition.

pseudoinverse. This defines the ‘least-energetic OID’ (LE-OID), which quantifies
the smallest displacement in phase space that a controller has to perform for
reduction of the goal functional to zero. Exploiting this definition, an energy-
based control strategy to suppress the fluctuations of the observable is to pursue
the reduction of the total kinetic energy in the LE-OID subspace, which is
by definition irreducible with respect to maintaining the level of the correlated
fluctuations of the observable.

More mathematically rigorous definitions of the LR- and LE-OID variants are detailed
in the Appendix. The above terminologies are adapted to the OID variants, leading
to the terms ‘LR-OID modes’, ‘LE-OID modes’, ‘LR-OID coefficients’, ‘LE-OID
coefficients’, etc.

For computation of OID, here an analogue of Sirovich’s POD snapshot method
(Sirovich 1987) is provided. As empirical basis, the data are given as an ensemble
of statistically independent snapshots {u(t1), . . . ,u(tK)} of the hydrodynamic attractor
and as an ensemble of statistically independent snapshots {q(t1), . . . , q(tK)}. Here
the number of snapshots is denoted by K. The times of the snapshots are denoted
by t1, . . . , tK . The following algorithm can be easily varied, if only one of these
ensembles is given and linear relationship (2.12) is, for example, analytically known.
The hydrodynamic fluctuations are denoted by u1 := u(t1) − 〈u〉, . . . ,uK := u(tK) − 〈u〉,
and the fluctuations of the observable by q1 := q(t1)−〈q〉, . . . , qK := q(tK)−〈q〉, where
means are estimated by the (pointwise) arithmetic mean

〈u〉 = 1

K

K
∑

i=1

u(ti), 〈q〉 = 1

K

K
∑

i=1

q(ti). (2.17)

First of all, the POD representations (2.2) and (2.4) are computed by the POD
snapshot method (see Sirovich 1987; Holmes et al. 1998, for details). Thereby,
fluctuations of hydrodynamics and observable are completely described by the
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a b

Inner 
product

POD 
filter

ObservableHydrodynamics

Ca ⋅ Ca  

a  

b ⋅ bp

u

bp

p

q
q CAu

C ab

u q p

FIGURE 2. Commutative diagram of OID products, defined in the hydrodynamic state space,
the space of the observable and the respective POD subspace representations.

respective vectors of POD mode coefficients a1, . . . , aK and b1, . . . , bK such that the
dynamics of the coherent structures is represented by

uj =
N
∑

i=1

a
j
iui, qj =

M
∑

i=1

b
j
iqi, (2.18)

at each snapshot time tj, j = 1, . . . , K. The number of utilized POD modes M and N is
chosen such that M 6 N < K − 1. Using the POD filter, the desired linear mapping CA

of (2.12) is approximated by its matrix-valued analogue C defined in (2.8), which can
be computed by linear stochastic estimation.

In the next step, the OID snapshot matrix

ROID
u =

[

1

K
(uj,uk)A

]K

j,k=1

(2.19)

has to be determined with

(u′,v′)A := (CAu
′,CAv

′)Γ , (2.20)

approximated by

(u′,v′)A ≈ Ca · Cav =
M
∑

i=1

(

N
∑

j=1

Cij aj

)(

N
∑

j=1

Cij av
j

)

, (2.21)

where the vector of mode coefficients of v′ is denoted by av, and the Cij are the matrix
elements. The relations of the inner products defined for the hydrodynamics fields and
the observable, respectively, in the function spaces and the finite-dimensional spaces of
the POD coefficients are illustrated in figure 2, demonstrating that the OID snapshot
method can be considered as a generalization of the POD snapshot method with new
inner products.

The OID snapshot matrix can now be computed from this approximation via

ROID
u =

[

1

K
(aj, ak)A

]K

j,k=1

= 1

K

[

Caj
· Cak

]K

j,k=1
. (2.22)
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We assume the OID eigenvalues λ
p
i of the OID snapshot matrix, which as mentioned

above are equal to the POD eigenvalues of the POD of the observable, to be sorted
by size, starting from the largest. The eigenvalues will be verified by solving the
eigenvalue equation

ROID
u c[i] = λ

p
i c

[i], (2.23)

where the eigenvector of the ith eigenvalue λ
p
i is denoted by c[i].

The LR-OID modes are obtained from

uA
i =

K
∑

j=1

d[i]
j uj where d [i] :=

K
∑

m=1

c[i]
m a(t

m), (2.24)

which results in a formula coinciding with the computation of EPOD modes (see
Maurel et al. 2001).

To calculate the LE-OID modes, all vectors d [i] are projected onto the subspace

spanned by the row vectors of the matrix C. Let ĉ
l = [Cl1, . . . , ClK]T be the transposed

lth row vector of C. Then the projection of d [i] is given by

d̂
[i] =

M
∑

l=1

d [i]
· ĉ

l

ĉ
l
· ĉ

l
ĉ

l
. (2.25)

The ith LE-OID mode is obtained from (2.24) using the projected d̂
[i]

instead of d [i].
The OID mode coefficients of LR- or LE-OID modes are uniquely determined after

orthonormalization of the d [i] or d̂
[i]

vector set using

aA
i (t) = a(t) · d [i] or aA

i (t) = a(t) · d̂
[i]
, (2.26)

respectively.

2.6. Implementation of time delays

Throughout the previous subsections, an instantaneous dependence of the observable
on the hydrodynamics is presupposed. A larger class of structure identification
problems may be tackled, revisiting the occurrence of a unique time delay τ in
the equations of the OID assumption (2.11) or (2.12). This includes a configuration
where the uniqueness of a time delay τ 6= 0 is analytically known, e.g. for the arrival
of separated vortices downstream a certain distance from a van Kármán vortex street.

However, in the aeroacoustic problems considered in this paper, usually there is
a continuum, or after discretization a large number, of locally dependent, physical
time delays. By modelling of this ensemble of physical propagation times via the
OID assumption with a fitted, unique propagation time τ , at first a filter of the
aeroacoustic effects is constituted. However, because of the strong wave character of
the aeroacoustic waves in the far field of mixing layers and the jet, future and past
events are captured in this filtering. An insensitivity of this filter against the variations
of the physical, aeroacoustic propagation times is enabled by strong correlation of
the current with future and past events. Therefore, for OID identification of ‘loud’
flow structures, aeroacoustic propagation is modelled via a unique time delay. This
time delay is fitted by maximization of the OID resolution. Following the above
arguments, only small distortions of the ‘loud’ OID flow structures against the local
spatial structures responsible for flow noise generation are expected. The first efforts of
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the authors to vary the OID assumption to implement several, or even a continuum of,
time delays are interesting, but go beyond the scope of this paper.

OID with a unique time delay τ 6= 0 can be computed in complete analogy to the
case τ = 0 treated in the OID snapshot method of the previous subsection. Here, as
data source, an ensemble of statistically independent snapshots {q(t1+τ), . . . , q(tK+τ)}
of the observable is given, which is shifted by time delay τ in comparison to the
ensemble of the hydrodynamic data. Moreover, the vector-valued analogue (2.8) of
(2.12) is given by

b(t + τ) := C(τ )a(t), (2.27)

such that C is identified as above using LSE, but is dependent on τ .

3. Lift and drag optimized OIDs of cylinder wake flow

In this section, OID structures are identified that are most related to lift and to
drag fluctuation of a two-dimensional cylinder wake flow. The Reynolds number is
Re = UD/ν = 100, based on the cylinder diameter D and the oncoming flow U. For
the following empirical investigations, 570 velocity snapshots with an equidistant time
step of 0.1 convective time units are provided by a finite element Navier–Stokes solver.
Details of this solver are given in Morzyński (1987) and Afanasiev (2003).

The OID assumption (2.12) with τ = 0 is guaranteed by the definition of the
observable lift and drag fluctuation, which at least in a good approximation depend
linearly and instantaneously on the velocity fluctuations and its POD representations
– see Gerhard et al. (2003), Noack et al. (2003), Protas & Wesfreid (2003), Bergmann
et al. (2005) and Luchtenburg et al. (2009) for results of POD analyses.

As a result of each of the two OIDs of lift and drag fluctuation, only one OID mode
resolves approximately 100 % of the respective quantity. The obtained OID modes
represent mainly the first and the second flow harmonics (see Noack et al. 2003). This
is shown in figure 3, where the axis of the streamwise direction is denoted by x and
the axis of the transverse direction by y. Strikingly, these results are consistent with
the well-known empirical fact that the lift force consists only of contributions of the
odd harmonics and the drag force fluctuation consists only of contributions of the even
harmonics, which has been explained theoretically (see Protas & Wesfreid 2003). Lift
force and drag force fluctuations are most susceptible to variations of the amplitudes
of the first odd and even POD modes, which energetically dominate higher odd and
even POD modes, respectively (see e.g. Noack et al. 2003; Luchtenburg et al. 2009).

4. Acoustically optimized OID of a mixing layer

In this section, ‘loud’ structures of a two-dimensional mixing layer are distilled by
application of OID, optimized for an aeroacoustic goal functional. The mixing layer
configuration is sketched in figure 4. The goal functional of the mixing-layer noise
is given by the sum of variances of 74 density sensors in the far-field region (see
figure 4). For the following empirical analyses, an ensemble of 3691 snapshots of
velocity and density is employed with an equidistant time step of 1t = 1.68 δω/1U

(see caption of figure 4), provided by a direct numerical simulation. Details of the
direct numerical simulation are given in Freund (2001) and Wei & Freund (2006).

Physical evidence of the OID assumption (2.12) is confirmed from investigations
of the annular mixing layer arising at the end of the potential core of jet flows. The
predominant linearity of the relationship between the turbulent fluctuations and the
far-field pressure is shown in this region (see Lee & Ribner 1972; Scharton & White
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FIGURE 3. OID modes of a cylinder wake flow at Re = 100. The OID modes resolve almost
100 % of (a) lift and (b) drag fluctuations, respectively. In both panels, velocity streamlines
are shown. The grid unit is given by the cylinder diameter. The OID variant is not indicated,
because the results of LR-OID and of LE-OID coincide.

74 far-field sensors

74

FIGURE 4. Sketch of the mixing-layer configuration at Reu = 500. The Reynolds number
is defined by Reu = ρ∞1U δω/µ, employing the ambient density ρ∞ identical for both
streams, the velocity difference 1U across the layer, the inflow vorticity thickness δω =
1U/|du/dy|max of the initial hyperbolic tangent velocity profile and the constant viscosity
µ. The Mach numbers are given by Ma1 = U1/c∞ = 0.9 and Ma2 = U2/c∞ = 0.2, with the
ambient speed of sound a∞. Further configuration parameters can be found in Wei (2004)
and Wei & Freund (2006). The velocity data are evaluated on a Cartesian grid in the domain
(x, y) ∈ [0δω, 100δω] × [−20δω, 20δω], where the streamwise component is represented by
the x axis and the transverse component by the y axis. The observable is represented by
the density fluctuations, monitored by 74 density sensors. These sensors are equidistantly
arranged on a linear array situated at y = −70 δω in the Ma = 0.2 stream and parallel to the
y = 0 axis.

1972; Seiner & Reetoff 1974; Juvé, Sunyach & Comte-Bellot 1980; Schaffar & Hancy
1982), which is moreover identified to be the dominant source of jet noise.

As a first result of OID, an optimally fitted time delay τ is identified by
the maximal OID resolution of the density fluctuations. As shown in figure 5, a
single maximum of the OID resolution for identification of a fitted time delay of
aeroacoustic propagation has been found. The nearly 90 % correlation at this time
delay corroborates the OID assumption (2.12).

Only four OID modes resolve 85 % of the aeroacoustic far field. In comparison,
the POD analyses of this flow and controlled counterparts extract a typical POD
dimension of 20 for a resolution of 75 % total kinetic energy as presented by Wei
(2004) and Wei & Freund (2006). Similar POD dimensions are obtained for three-
dimensional mixing layers as well (see Noack et al. 2005). In recent investigations, a

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

, o
n 

26
 O

ct
 2

01
7 

at
 0

6:
57

:3
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

2.
70

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2012.70


382 M. Schlegel and others

1500

80

R
e
so

lu
ti

o
n
 (

%
)

20

40

60

100

30 60 90 120

FIGURE 5. Percentage OID resolution of correlated noise over the propagation time delay τ
between hydrodynamics and aeroacoustic sensor array (see (2.12)). The optimal propagation
time is obtained by the maximum of 87.9 % at τ = 53.76 δω/1U. The propagation time
τ = 49 δω/1U, in which sound propagates along a distance of 70δω, is represented by the
vertical dashed line. The optimal propagation time is slightly larger due to sound propagation
non-perpendicular to the jet axis. The non-vanishing resolution far from the maximum is
ascribed to a dominant travelling wave character of the aeroacoustic observable. Thus, a
significant long-term correlation of the observable is represented, where phase information of
wave events is captured by a linear fit.

further dimension reduction is obtained using dynamic scaling of the modes and of the
base flow (see Wei & Rowley 2009).

POD, LR-OID and LE-OID modes are compared in figure 6 by their resolutions
of correlated noise and total kinetic energy. As expected, the optimality of POD for
the resolution of total kinetic energy and that of OID for the resolution of correlated
noise are confirmed. More surprisingly, less than 0.1 % total kinetic energy is resolved
by the LE-OID modes, meaning that only a small portion of the total kinetic energy
has to be manipulated for the purposes of noise control. In contrast, the amount of
total kinetic energy reconstructible from LR-OID exceeds this value by two orders of
magnitude.

The first four LR-OID modes are visualized in figure 7 and are reminiscent of noise-
producing events of vortex merging (see Jordan & Gervais 2008) and of wavepackets
that amplify and rapidly decay further downstream (see Crighton & Huerre 1990). The
respective LE-OID modes show significantly less coherence.

5. Acoustically optimized OID of jet flow

In this section, ‘loud’ structures of a three-dimensional, Ma = 0.9 jet are distilled
by application of OID, optimized for a similar aeroacoustic goal functional as in the
previous section. The jet configuration is sketched in figure 8. The Reynolds number
Re = UD/ν = 3600 is based on the jet diameter D and the inflow velocity U. The goal
functional of jet noise is given from the sum of the variances of pressure sensors in
the far field (see figure 8). For the following empirical analyses, an ensemble of 725
velocity snapshots is utilized with an equidistant time step of 0.2125 convective time
units, provided by a large-eddy simulation (LES; see Meinke et al. 2002; Gröschel
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FIGURE 6. Percentage resolution of (a) linearly correlated noise and (b) total kinetic energy
given by OID and POD modes, accumulated over the number of used modes represented by
index N on the x axis. Curves related to LR-OID modes (thick full line), LE-OID modes
(dotted line) and POD modes (thin full line) are displayed. In panel (a), the curves of LR-OID
and LE-OID coincide.

et al. 2007). The aeroacoustic far-field data are computed from the LES data by a
Ffowcs Williams–Hawkings solver for the Ma = 0.9 jet as described in Gröschel et al.
(2008).

The physical validity of the OID assumption (2.12) is verified by known results: the
fast pressure term (sometimes referred to as ‘shear noise’) has been shown to dominate
in free jets in terms of the hydrodynamic, turbulent pressures, and to correlate better
with the far-field pressure than the quadratic slow pressure (‘self-noise’) (see Lee &
Ribner 1972; Scharton & White 1972; Seiner 1974; Seiner & Reetoff 1974; Schaffar
1979; Juvé et al. 1980; Schaffar & Hancy 1982; Panda et al. 2005). It has furthermore
been demonstrated in Cavalieri et al. (2011a,b,c) that coherent flow structures generate
noise by means of a wavepacket mechanism, while Rodriguez Alvarez et al. (2011)
show how these wavepackets can be modelled in the framework of linear stability
theory.

Moreover, a fitted time delay τ appropriate to (2.12) for modelling of the
aeroacoustic propagation is identified as in the previous section by minimization of
the OID residuum.

Employing OID, a reduction by one order of magnitude is achieved compared to
the POD dimension (see figure 9). It can be seen that 90 % of the correlated noise is
resolved by only 24 OID modes! In contrast, POD analysis extracts a large number
of dynamic degrees of freedom – more than 350 POD modes are needed to resolve
more than 50 % of the total kinetic energy (see Gröschel et al. 2007). In contrast,
in figure 9 the resolved accumulated noise of POD modes, estimated by the linear
mapping (2.12) from hydrodynamics to observable with fitted time delay τ instead of
by physical propagation of an aeroacoustic analogy, indicates an overoptimization of
the resolution. Similar POD results for this configuration have been found by Freund
& Colonius (2002).

In figure 10, the first six LR-OID modes and LE-OID modes are shown. Higher
LR-OID or LE-OID modes reveal variously disorganized, smaller-scale activity. The
first two LR-OID modes, resolving 48 % of the correlated noise, identify asymmetric
streaks in the region just downstream of the end of the potential core. These streaks
contain noticeable helical structures. Cavalieri et al. (2011b) observed how such helical
motions at the end of the potential core are important in increasing the acoustic
efficiency of an axisymmetric wavepacket upstream of this region. The next LR-OID
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FIGURE 7. The first four LR-OID modes of the mixing layer, i = 1–4 from (a) to (d),
visualized by streamlines. The grid unit is given by the vorticity thickness δω.

mode pair contributes 7 % of the correlated noise. It shows structures comprising
highly coherent, axisymmetric vortex-ring-like structures in the region upstream of
the end of the potential core, which resemble the wavy structure of the radiating
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30D

76D 

76 far-field sensors

FIGURE 8. Sketch of the three-dimensional jet configuration at ReD = 3600 and Ma = 0.9.
The velocity data are evaluated on a Cartesian grid in the domain (x, y, z) ∈ [0D, 14D] ×
[−2.5D, 2.5D] × [−2.5D, 2.5D], where again the streamwise direction is represented by the
x axis and transverse directions by the y axis and the z axis. The aeroacoustic observable is
represented by 76 pressure sensors. These sensors are equidistantly arranged along a straight
line 30D away from the jet axis and parallel to it in the zero plane of the z direction.
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FIGURE 9. Percentage resolution of linearly correlated noise by OID and POD modes,
accumulated over the number N of used modes. Curves related to both types of OID modes
(thick line) and to the POD modes (thin line) are displayed.

component of the Lighthill source term, as identified by Freund (2001), and the
aforesaid axisymmetric wavepacket structures observed and modelled by Cavalieri
et al. (2011a,b). The loud flow structures of both LR-OID mode pairs are in
qualitative agreement with experiments (see e.g. Juvé et al. 1980; Guj, Carley &
Camussi 2003; Hileman et al. 2004; Coiffet et al. 2006). In figure 10(g–l), the first
six LE-OID modes are shown. In comparison of the LE-OID modes with the LR-OID
modes, the axisymmetric vortex rings vanish. Here helical structures become more
dominant, corroborating the recent analysis of Freund & Colonius (2009).

6. Conclusions

We propose a Galerkin expansion tailored towards a physical understanding of
aerodynamic and aeroacoustic aspects of shear flows. By POD, the modal expansion
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FIGURE 10. (a–f ) LR-OID modes and (g–l) LE-OID modes, modes 1–6 from top to bottom.
Displayed are isosurfaces of the streamwise component for positive (light) and negative (dark)
values. The grid unit is given by the jet diameter.

is optimized for resolution of turbulent kinetic energy. In the proposed generalization
of POD, termed ‘observable inferred decomposition’ (OID), the resolution of goal
functionals is maximized, which are defined by the fluctuation level of linearly related
observables. The OID is applied to three configurations to perform goal-oriented
dimension reduction:
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(i) In the case of a two-dimensional cylinder wake flow with Re = 100, the
fluctuation levels of the observable lift and drag fluctuation are completely
resolved by only one velocity OID mode.

(ii) In a two-dimensional mixing layer with a Reynolds number of 500, four velocity
OID modes resolve 85 % of the fluctuation level of an aeroacoustic observable that
is monitored by 74 density sensors in the aeroacoustic far field. Thus, a reduction
of relevant degrees of freedom is constituted by one order of magnitude as against
the typical POD dimension.

(iii) In a three-dimensional Ma = 0.9 jet with a Reynolds number of 3600, 24 velocity
OID modes resolves 90 % of the fluctuation level of an aeroacoustic observable
that is monitored by 76 pressure sensors in the aeroacoustic far field. Again, a
data compression by one order of magnitude is achieved.

For the cylinder wake flow, a subspace of odd and even harmonics is identified by
the significant OID mode, respectively, for lift and drag fluctuation. Thus, the well-
known empirical fact that only the odd harmonics correlate with the lift force while
only the even harmonics correlate with the drag force fluctuation is thus confirmed
by our mathematically rigorous OID approach. For the mixing layer and jet, the most
loud flow events due to shear noise are captured by OID. These events qualitatively
resemble effects of vortex pairing and amplifying and decaying wavepackets in the
case of the mixing layer. In the case of the jet flow, those effects are reminiscent of
helical structures, wavy wall mechanisms and vortex rings.

The capability of OID to derive this desired physical understanding fitted for flow
control purposes is enabled by a strong coherence of the observable and a dominant,
linear coupling of the hydrodynamics with the observable. The OID modes are defined
by application of the pseudoinverses of the corresponding linear operator to the POD
modes of the observable, such that the efficiency of OID of the hydrodynamic
field corresponds to the efficiency of POD of the field of the observable. The
well-posedness of this definition is ensured by additional constraints in the form
of variational properties, proposing two OID mode variants: for a given resolution
of the goal functional, the residual of the flow state attractor and the total kinetic
energy is minimized, respectively, in the least-residual OID version (LR-OID) and the
least-energetic OID version (LE-OID).

The desired physical understanding benefits reduced-order modelling strategies
for control of the aerodynamic and aeroacoustic quantities by systematic flow
manipulation. Control goal examples are drag reduction or lift enhancement of wake
flows and noise reduction of shear flows. The two OID mode variants are tailored
for the purposes of noise control design. A reconstruction of the most probable flow
state is supplied by the LR-OID subspace preprocessing efficient observer design. The
suppression of the fluctuations of the observable is enabled by strategies pursuing the
reduction of the total kinetic energy in the LE-OID subspace, which quantifies the
smallest displacement in phase space that a controller has to perform for reduction of
the goal functional. Thus, the application of LE-OID to effective control for shear flow
noise suppression is encouraged by one of the major OID results of the mixing-layer
configuration. Here, only 0.2 % total kinetic energy, identified in the LE-OID subspace,
contributes to 85 % of aeroacoustic density fluctuations.

Via OID, a unifying framework of low-order empirical Galerkin expansions is
provided. For instance, the capability of the extended POD (EPOD) approach is
completely absorbed by the LR-OID variant and upgraded by the additional OID
variant of LE-OID, furthermore enabling control design. Moreover, the balanced POD
approach (BPOD) enabling the empirical computation of the balanced truncation

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

, o
n 

26
 O

ct
 2

01
7 

at
 0

6:
57

:3
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

2.
70

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2012.70


388 M. Schlegel and others

Bijective

LE-OID

LR-OID
Surjective

Unique OID

Identity
POD

Linear mappings Least-order decompositions(a) (b)

FIGURE 11. Principle of OID design. Any goal-oriented, least-order decomposition (b)
is derived from the respective linear mapping (2.12) (a) via the optimally resolved goal
functional (2.13). Thus, the basic design parameter is represented by the linear mapping.
Surjective mappings exclude any dependence of the observable on quantities other than the
(hydrodynamic) attractor. OID is uniquely defined for any linear, bijective mapping. This
includes POD as a special case of OID based on the identity map. Additional variational
properties can be chosen as a further intrinsic design option for each linear, surjective but
not bijective mapping. Here, two OID variants are tailored for purposes of observer design
(LR-OID) and control design (LE-OID).

follows a similar goal to the OID method: to identify structures most related to
observer and control design. The potential advantage of BPOD relies on the additional
premise that the flow dynamics can essentially be represented by a stable, linear
input–output system. In contrast to BPOD, the OID approach is based solely on
kinematic considerations, which can also deal with nonlinearities of the flow dynamics.
Like in the OID approach the flow is decomposed effectively via BPOD, enabled
by a modification of the inner product and an error-optimal projection for mode
construction. Of course, a meaningful linear coupling of hydrodynamics and the
observable (output) is assumed in both approaches, in BPOD as well as in OID.

It should be noted that a large class of least-order decompositions is based on
the design of a bilinear form serving as an inner product – at least in a suitable
attractor subspace. This decomposition class is completely integrated in the OID
technique. These bilinear forms are identified by OID products (2.20), defining the
optimal property of the decomposition. Here, the OID induces weights in the bilinear
form via the standard inner product of the linearly related observables. Alternatively,
these weights can be chosen directly (see Rowley, Colonius & Murray 2004; Rowley
2005) or by design of optimal control functionals (see Tröltzsch 2005). Via the null
space of the bilinear form, design flexibility of the ‘observable’ OID subspace is
provided, enabling OID variants like LR- and LE-OID tailored for purposes of flow
control.

OID contains a broad design flexibility, as demonstrated in figure 11: the
(hydrodynamic) attractor and the observable may be replaced by any physical
quantities fulfilling the OID assumptions for definition of the linear mapping (2.12).
This makes OID attractive for future applications to a wide variety of physical
problems beyond the application range of POD.

In summary, the OID possesses the following advantages compared to POD:
(i) design flexibility, owing to the choice of the observable and the variational property;
(ii) extraction of goal-related attractor subspaces with dimensions representing only a
fraction of the number of modes necessary for POD; (iii) physical intuition of the
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key processes indicated by the resulting OID modes; (iv) preprocessing for efficient
observer and control design; and (v) many conditional sampling techniques (see e.g.
Hileman et al. 2005) can be formulated with less bias in OID. As the main OID
assumption, linear modelling enables the identification of the attractor subspaces most
related to the observables, in a similar spirit to the BPOD approach for stable, linear
input–output systems.

Part of our current research is focused on modelling of the dynamics in the OID
subspaces and the implementation of actuation, targeting strategies for closed-loop
control for several shear flow configurations. These considerations are based on POD
Galerkin models extracted from experimental and numerical flow data and calibrated
to the flow attractor. We are currently pursuing flow control using a reduced-order
model based on turbulence closure (see Noack et al. 2008, 2010; Noack & Niven
2012) and OID for noise control design (see Schlegel et al. 2009).
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Appendix. OID mode variants and OID structures

The purpose of the appendix is twofold. Firstly, OID variants are mathematically
rigorously introduced using optimal properties of projections onto OID subspaces. For
reasons of simplicity, the OID variants are first introduced for the Euclidean space
of the POD coefficients in § A.1 before they are defined for unfiltered fields of
hydrodynamics and observable in § A.2. Secondly, OID structures resulting from OID
analysis are proposed in § A.3, the kinematic counterparts of observable structures that
are defined in control theory as eigenstructures of the observability Gramian.

A.1. OID mode variants in POD representation

The starting point of this subsection is the non-uniqueness of the pseudoinverse (see
§ 2.3). Hence, the OID modes uA

i and the vector-valued au
i are not well defined at first.

For a unique definition of the OID modes, OID subspaces representing the linear span
of the OID modes (i.e. the subspace of all linear combinations of the OID modes) are
specified using optimal properties. In this subsection, the OID method is formulated
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Sa 

‘hydrodynamic’ 

state space

State space 

of observable

Projection

Pseudoinverse

PSa 

OID 

subspace 

Linear mapping

C
–
C aC

–
b

P aC
–
C a

C ab

CSaSb

FIGURE 12. Projections onto OID subspaces. The observable is determined from the
hydrodynamic data via the linear mapping (2.8) at any time (left arrow). In the case of a
dimension defect, only a part of the hydrodynamic quantity is reconstructible by application
of a pseudoinverse to the observable (right arrow). This part is specified by the choice of OID
subspace: the pseudoinverse is uniquely determined by a particular projection onto this OID
subspace (bottom arrow).

in the Euclidean spaces Sa and Sb of the POD coefficients a and b defined via the
representations (2.2) and (2.4).

The OID subspace PSa := C
−Sb represents the subspace of Sa reconstructible from

the observable using a given pseudoinverse C
− (see figure 12), which is one-to-one

related to the projection P,

P := C
−

C. (A 1)

The idempotence of P (i.e. P
2 = P) is directly proven by the definition of the

pseudoinverse C
−.

Once the projection P is chosen, the pseudoinverse, the OID subspace and the OID
modes are uniquely determined. The most important property of P is constituted by
the conservation of the observable via the linear mapping (2.8) applied to the projected
parts of the hydrodynamic quantity

CPa = CC
−

Ca = Ca = b. (A 2)

The projection P is not necessarily orthogonal, i.e. usually the angle between the
projection direction and the OID subspace is oblique (see Example A.1 and figure 13).

In the following, OID subspaces of the hydrodynamic state space are distilled
by projections, each defining a respective OID variant. Two projections are selected.
While the residual of the projected part of the hydrodynamic ensemble is minimized
by the first projection, the vector length of the projection representing the ‘total kinetic
energy’ is minimized by the second projection.

The residual of the hydrodynamic quantity is minimized by the ‘least-residual
projection’ P

Z , the argument of the minimization problem

min
P : P=C−C

〈‖a(t) − Pa(t)‖2〉, (A 3)

where the Euclidean vector norm is denoted by ‖ · ‖. ‘Least-residual’ OID modes (LR-
OID modes) are defined by definition (2.15) using the pseudoinverse given by (A 1)
with P = P

Z .
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y

x

1

y

id

x

1

a
A
LR

y

x

a(t)

1

1–1

–1

a(t)

1–1

–1

a
A
LE

a(t)

–1

1–1

(a)

(b)

(c)

FIGURE 13. Principle of Example A.1. The ensemble of the hydrodynamic data is
represented by the ellipse (dashed-dotted line). The observable is represented by the x
coordinate of this ellipse. (a) By any projection of the form P = C

−
C, the ellipse is projected

onto an OID subspace in the vertical direction, thus conserving the observable. (b) Under the
latter side constraint, the linear least-squares fit is determined from the projection onto the
OID subspace of LR-OID, which is given by the line of identity. (c) Similarly, the Euclidean
vector norm is minimized by the orthogonal projection onto the abscissa representing the OID
subspace of LE-OID.

The norm of the projection is minimized by the ‘least-energetic projection’ P
C, the

argument of the minimization problem

min
P : P=C−C

〈‖Pa(t)‖2〉. (A 4)
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392 M. Schlegel and others

‘Least-energetic’ OID modes (LE-OID modes) are obtained again from
definition (2.15) and (A 1) employing the projection P = P

C.

EXAMPLE A.1. Let the hydrodynamic flow data and the (one-dimensional) observable
be given by

a =
[

x(t)

y(t)

]

=
[

sin(2πt)

sin(2πt) + cos(2πt)

]

, b = sin(2πt), (A 5)

for all t ∈ R. Identification of the linear mapping (2.8) determines the linear mapping
C = [1, 0]. Any projection fulfilling the constraint P = C

−
C is educible by

P =
[

1 0

β 0

]

(A 6)

with arbitrary β ∈ R. Hence, the corresponding pseudoinverse and OID subspace are
given by

C
− =

[

1

β

]

and [x, y]C− = 0,

respectively. Thus, all straight lines crossing the origin except the ordinate represent
candidates for the selection of an OID subspace (see figure 13).

The least-residual projection P
Z is computed from minimum problem (A 3). Using

(A 6) it is transformed to the minimum problem

min
β∈R

(1 − β)2, (A 7)

which is solved at β = 1. Thus,

P
Z =

[

1 0

1 0

]

and C
− =

[

1

1

]

.

The OID subspace is represented by the line of identity (see figure 13). Hence QA(a)
is completely resolved by one LR-OID mode, given, after normalization, by the vector

aA
LR = 1√

2

[

1

1

]

.

Similarly,

min
β∈R

( 1
2
+ β2) (A 8)

is derived from the minimum problem (A 4). The minimum is reached at β = 0.
Thus, the least-energetic projection operator and its corresponding pseudoinverse are
obtained as

P
C =

[

1 0

0 0

]

and C
− =

[

1

0

]

.
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Su 

hydrodynamic 

state space

State space  

of observable

Linear mapping 

of fluctuations

Projection

Pseudoinverse

PSu 

OID 

subspace 

Sq
CASu

CAuq

CAu Pu

q CAuC
–

C
–

C
–

FIGURE 14. Projections onto OID subspaces as an OID principle. Same as figure 12, but
based on the generalized formulation for fields.

The OID subspace is represented by the abscissa in figure 13. Thus, the corresponding
LE-OID mode is given by the vector

aA
LE =

[

1

0

]

.

A.2. OID mode variants

For a unique definition of the OID modes uA, the concept of the OID subspace of
the previous subsection is generalized to subspaces of the hydrodynamic attractor,
represented again by the linear span of the OID modes. The OID subspace
PSu := C−

AS
q represents the subspace of Su reconstructible from the observable using

a given pseudoinverse C−
A (see figure 14), which is one-to-one related to a projection

operator P similar to that in (A 1) via

P = C−
ACA. (A 9)

Analogously to the arguments of (A 2), the conservation of the fluctuations of the
observable under application of any projection of the form (A 9) is shown.

‘Observable’ OID subspaces of the hydrodynamic state space are distilled by one of
the two projections from the previous subsection obeying the following two variational
properties. Two OID mode variants are defined by the latter, tailored for purposes of
observer and control design. As in the previous subsection, these variants are termed
‘LE-OID’ and ‘LR-OID’ in the following.

The flow attractor residual is minimized by the ‘least-residual projection’ P
Z , and P

Z

is defined as in the minimization problem (A 3) but using the norm ‖ · ‖Ω induced by
the inner product (·, ·)Ω instead of the Euclidean vector norm ‖ · ‖. The reconstruction
of the most probable flow state from a given observable is enabled by the ‘least-
residual’ OID modes (LR-OID modes), given from (2.14) using the pseudoinverse,
which is uniquely defined by (A 9) with projection P

Z . Thus, LR-OID modes provide a
basis for observer design.

The level of the projected hydrodynamic fluctuations is minimized by the ‘least-
energetic projection’ P

C, and P
C is defined by the minimization problem (A 4), using
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OID subspace OID residuum

LR-OID correlated structures uncorrelated structures

uO = P
Zu′: ∀ x ∈ Ω, y ∈ Γ ; uN : ∀ x ∈ Ω, y ∈ Γ ;

〈uO(x, t), q′(y, t + τ)〉 〈uN (x, t), q′(y, t + τ)〉 = 0
= 〈u′(x, t), q′(y, t + τ)〉

LE-OID generating structures non-generating structures

uO = P
Cu′∀ t; CAu

O(t) uN : ∀ t; CAu
N (t) = 0

= CAu
′(t) = q′(t + τ)

TABLE 2. Properties of OID structures and their residuals in LR-OID and LE-OID. In
LR-OID, only the OID structures contribute to the correlation of hydrodynamic fluctuations
and the fluctuations of the observable (correlated structures), while the OID residuals
are uncorrelated to the fluctuations of the observable (non-correlated structures). In LE-
OID, only the OID structures contribute to the linear mapping (2.12) from hydrodynamic
fluctuations to fluctuations of the observable (generating structures), while the OID
residuals are situated in the null space of the linear mapping (non-generating structures).

again the norm ‖ · ‖Ω instead of ‖ · ‖. ‘Least-energetic’ OID modes (LE-OID modes)
are obtained from the least-energetic projection P

C.

A.3. Filtering OID structures

POD is well known to act as a filter to separate coherent structures, represented by the
POD approximation (2.2), from their residuum of stochastic structures. Analogously in
OID, hydrodynamic fluctuations are decomposed into OID structures and their residual.
As an illustration, OID for an aeroacoustic observable distils ‘noisy’ and ‘silent’ flow
structures and filtered counterparts ‘loud’ and ‘quiet’ flow structures to provide a
physical understanding for noise control.

First of all, the OID subspace and its orthogonal complement decompose the
hydrodynamic fluctuations orthogonally into an OID part (the ‘noisy’ part) and its
residual (the ‘silent’ part) u′ = uO + uN , where uO(t) = Pu′(t) represents the OID
structures, and uN (t) = (I − P)u′(t) the OID residual. The physical meanings of this
decomposition are outlined in table 2 for both OID variants.

Commonly, only a small subset of modes is utilized in POD, e.g. the smallest subset
needed to resolve 90 % total kinetic energy (see Holmes et al. 1998). Analogously, we

consider only a subset of the set of OID modes {uA
i }

M

i=1, e.g. the smallest subset to
resolve 90 % of the correlated goal functional. Thus, we define a filtered counterpart of
the OID structures (the ‘loud’ part) by

uM (x, t) =
L
∑

i=1

aA
i (t)u

A
i (x, t), (A 10)

with L 6 M, and a filtered counterpart of the OID residual (the ‘quiet’ part) by

uH (x, t) = u′(x, t) − uM (x, t). (A 11)

The properties of OID structures and OID residual shown in table 2 can be transferred
to the filtered equivalents.
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