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ON LEAST SQUARES COLLOCATION

P. D. Argentiero

ABSTRACT

It is shown that the least squares collocation approach to estimating geodetic parameters

is identical to conventional minimum variance estimation. Hence the least squares collocation

estimator can be derived either by minimizing the usual least squares quadratic loss function

or by computing a conditional expectation by means of the regression equation.

When a deterministic functional relationship between the data and the parameters to be

estimated is available, one can implement a least squares solution using the functional relation

to obtain an equation of condition. It is proved the solution so obtained is identical to what

is obtained through least squares collocation. The implications of this equivalance for the

estimation of mean gravity anomalies are discussed.



ON LEAST SQUARES COLLOCATION

INTRODUCTION

A characteristic of geodetic research is that numerous data types are available for esti-

mating parameters of interest. The problems of combining heterogeneous geodetic data types

to provide consistent estimates has lead some researchers to the belief that conventional least

squares methods are inadequate. An alternative approach to geodetic data reduction prob-

lems called least squares collocation has been suggested by Moritz [ 1 ]. Some authors have

claimed that least squares collocation is a more general and more powerful parameter estima-

tion procedure than the classical least squares method [ 1, 2, 3, 4, 5]. It has also been asserted

that least squares collocation is the only parameter estimation method which permits the

simultaneous and optimal processing of heterogeneous data types [6, 7]. Other authors have

disputed these claims [8, 9].

This note is an effort to settle what has become a confusing and contentious issue. It

will be demonstrated that least squares collocation is an estimator of a type which is well

known in conventional estimation theory. The presentation is elementary in content and

should be intelligible to anyone familiar with the rudiments of probability theory.



SOME PROPERTIES/OFaMINIMUM VARIANCE ESTIMATORS*

Let X be a finite dimensional..vector of parameters to;be estimated. Sinc,e*the'param-;

eters are not perfectly known it is legitimate to view X as a random vector. Also there is-no.

loss.in generality in assuming the zero vector to be the expectation of X: Let the:covariance

matrix of X be known. Thus:

= -C (1)

where C is positive definite. Assume the existence of a finite vector Y which defines a state

which iS'directly observable. Hence Y is a random vector which is sampled by a measuring

process. ; .'

„ : Lacking data, the minimum variance estimate of X is the zero-vector. Butdntuitively it

is clear that if random vectors Y and X are correlated and if, a realization Y' of Y is, available,
. A

it should be possible to obtain an improved estimate X of X. Several, criteria are available.-

Two of the most commonly used are ;

A . . ' • • . . - •

Criterion A - choose X as that vector which minimizes the conventional least

squares quadratic form.

A

Criterion B - choose X as the expectation vector of the conditional distribution

of X given a realization Y' of Y.

It will be shown that the application of either criterion leads; to the same estimator.
A

To'-obtain the improved estimate X,,itis necessary to precisely define the .correlation

between Y and X. This is commonly donesin two ways which we will describe as a model 1

and model 2. In model 1 the correlation is,described by a linear stochastic equation.

Y = SX + v,:, = Q (2)

In model 2 the correlation is described in.terms of across covariance matrix.

X

Y
v"v

A

BT

B

C
(3)



In fact, models 1 and 2 are alternative and equivalent ways of describing the second order

statistical properties of the joint distribution of Y and X. Model 1 can be transformed to

model 2 by defining the symbols A and B on the right side of equation 3 as

A - S C ST + Q B = SC (4)

Conversely, model 2 can be converted to model 1 as described in equation 2 with '

Q = A-BC' 1BT (5)

Arbitrarily, we choose model 1 as a description of the necessary correlation. The applica-

tion of criterion A implies the minimization of the quadratic loss function

L(X) = (Y' - SX)T Q-1 (Y' - SX) + XT C'1 X (6)

where Y' is a realization of Y. The solution to the minimization problem is

X = (ST Q-1 S + C"1)"1 (ST Q-1 Y') (7)

Equation 7 is known to represent a minimum variance estimator [10].

To apply criterion B, transform model 1 to model 2 by means of equation 4. The

well known regression equation [10] can then be employed on the right side of equation

3. The result is

X = E(XlY = Y') = BT A'1 Y' (8)

Again using equation 4, equation 8 can be transformed into

X = C ST(S C ST + Q)-1 Y' (9)

The Shure matrix identity can be used to translate equation 9 into the alternative form:

X = (ST Q-1 S + C'1 )~1 ST Q-1 Y' (10)

Equation 10 is identical to equation 7. We have established the following

Theorem 1 - Assume that Y and X are correlated random vectors and that a

realization Y' of Y is available. The correlation may be defined either in terms



of a linear stochastic equation given by. equation 2 or a cross.covariance.,matrix

given by equation 3. In each case the minimization of the least squares ̂ quadratic

loss function of equation 6 and the computation of the expected value of the

conditional distribution of X given Y' by means of the regression equation yield

the same minimum variance estimator.



LEAST SQUARES COLLOCATION

Let Y' be a set of geodetic observations. The problem is to obtain from such an obser-

vation set an estimate of a set of geodetic parameters X. The starting point of the least squares

collocation approach to the problem is the assumption that one has full knowledge of the

second order statistics of the anomalous potential. Let P (x-|) and P (x2) be the anomalous

potentials at points XT and x2 on or outside the reference geoid. We assume the possession of

a function K (XL x2) such that

E(P(x 1 )P(x 2 ) ) = K(x 1 ) x 2 ) (11)

Equation 1 1 defines the so-called covariance function. Let L be the countibly infinite set of

deviations of the spherical harmonic coefficients of the Earth's potential field from reference

values. A convenient way to define a covariance function is to specify the second order

statistics of £. Hence define

E(JC£T) = T (12)

The matrix T uniquely defines a covariance function. Algorithms for determining the right

side of equation 1 1 given the right side of equation 1 2 may be found in Moritz [ 1 ] or

Tscherning and Rapp [11]. Conversely, a given covariance function uniquely defines a

covariance matrix T [12] . Hence there is no loss in generality in assuming that the co-

variance function for the least squares collocation procedure is given in terms of a ma-

trix T as defined by equation 12. Let Y be the ideal observation state of which Y' is a reali-

zation. Since both Y and X are geodetic entities they are functions of the set of spherical

harmonic coefficients of the Earth's potential. First order Taylor series expansions of these

functions about a set of reference spherical harmonics will yield linear matrix equations

a, Y = /, £
(13)

b, X

where reference values of Y and X are assumed equal to the zero vector. In equations 1 3 and

in subsequent equations, whenever the matrix symbolism implies countible infinite summa-

tion it is the limiting value which is intended. Alternatively, the reader can assume that the



vector £ of deviations of spherical harmonic coefficients from reference valuesiis truncated

at a sufficiently high degree that errors in representation in equations 13 are negligible.

Equations 1 2 and 1 3 yield

a,

b, E(XXT) = C = /2T/T (14)

c, E(YXT) = B=/ 1 T/J

The actual observations Y' are corrupted by errors in the measuring system. Hence

Y' = GZ + Y + j> (15)

where

a,

b,

c, E(z) = 0,

d, E(zzT) = P,

The vector Z is interpreted as a set of parameters which determines the systematic part of the

errors in the measuring system. Define an augmented parameter set as

X
S= • (17)

Z

Equations 14, 15 and 16 define the correlation between random vectors Y' and S. In the

previous section it was demonstrated that given the correlation between two random vectors

and given a realization of one of the vectors, it was possible to construct a minimum variance

estimator for the other vector. This estimator can be obtained either by using the regression

equation to compute a conditional mean or by minimizing a conventional least squares quad-

ratic loss function. Arbitrarily we will obtain the minimum variance estimate -for S by comput-

ing the conditional mean of S given a realization of Y'. The covariance matrix for the joint

distribution of S and Y' is



lY'l

S

Y'
A + G P GT + Q

FT

(18)

D

where

a, F =

b, D

B, GP}

C 0

0 P
(19)

Let Sc be the conditional distribution of S given a realization of Y'. By assuming either that

the random vectors are normally distributed or that the expectation of Sc is a linear function

of the measurements, we can resort to the regression equations for the mean and co-

variance of Sc as

E(SC) = S = '1 'Q)'1 Y

E fec - S) (Sc - S)T) = D - FT (A + G P GT + Q)'1 F

(20)

(21)

Equations 17, 19, and 20 permit us to separately write the conditional expectations of X and

Zas

a, X = BT (A + G P GT + Q)"1 Y'

b, Z = P GT (A + G P GT + Q)-1 Y'

A straightforward application of the Shure matrix identity converts equations 22 into

(22)

a, )-1 ( Y ' - G Z )

b, Z = (G(A + Q)'1 GT + P'1)"1 GT (A + Q)'1 Y'
(23)

Equations 23 represent the least squares collocation solution for geodetic parameters X and

measuring system parameters Z given a realization of observation vector Y'. We have proved

the following.

Theorem 2: The least squares collocation splution for geodetic parameters X and

measuring system parameters Z given a realization of an observation vector Y' is



identical to the conyentionataihirnum variance solution. Hence the collocation

solution can be obtained either by determining the conditional expectations of X

and Z by means of the regression equation or by minimizing the usuaHeast squares

quadratic loss function.

Tapley [8] provides a somewhat longer proof of the equivalence of least squares collo-

cation to the conventional minimum variance estimator. Tapley's proof is interesting because

it relies entirely on elementary matrix operations.



APPLICATIONS

The previous sections show that the techniques of conventional minimum variance esti-

mation have considerable power and generality. With the appropriate use of these techniques,

one can obtain a minimum variance estimate of any set of parameters which are functions

of the anomalous potential given a realization of any observation set which is also a function

of the anomalous potential. In many cases it is possible to augment the parameter set in

question in such a way that the laws of Mathematical Geodesy provide a deterministic func-

tional relationship between the augmented parameter set and the ideal or noiseless represen-

tation of the data set. For this situation two different estimation procedures are available:

Estimation Procedure 1) Use the postulated covariance matrix for the anomalous spherical

harmonic coefficients to construct the covariance matrix for the joint distribution of the

data set and the parameter set to be estimated. The regression equation can then be used to

compute the conditional mean of the parameter set. (least squares collocation)

Estimation Procedure 2) Use the postulated functional relationship between the augmen-

ted parameter set and the data set to construct an equation of condition for a conven-

tional least squares with a priori estimation of the parameter set.

It will be shown that the two procedures are equivalent. Again let T represent the co-

variance matrix for the anomalous spherical harmonic coefficients £. Let Y be the ideal or

noiseless representation of the data and let X-|be the parameter set to be estimated. Assume

that XT is part of a larger parameter set. Hence

S= (24)
2

The vectors Y and S are functions of the anomalous potential. First order Taylor series ex-

pansions of the appropriate functions yield linear matrix equations



a,

(25)

Equations 25b and 25c can be rewritten as

where

(26)

/2,
(27)

For simplicity assume that there are no systematic errors in the measuring system. Then'the

observation equation is

Y' = Y + v, E(v) = 0, E(wT) = Q (28)

Equations 25 and 28 permit us to write

a, E(Y'Y') = / , T / [ + Q

b,
(29)

The least squares collocation solution for X-\ is

,-1
(30)

To implement estimation procedure 2, assume that the laws of Mathematical Geodesy

provide a deterministic functional relationship between Y and S. A first order Taylor series

expansion of the function will yield

Notice that from equations 25a, 26 and 31 we have

/1 = /3/2

(31)

(32)

10



Given equations 28 and 3 1 , the usual least squares solution for S is given by

S= (/3Q-1/I + (/2T/T)- iy1/lQ-1Y' (33)

Transform equation 33 to the equivalent form

S = h T fl fT
3 (/3 /2 T fT/l + Q)-1 Y' (34)

Withe the aid of equation 32, equation 34 can be rewritten as

sU/sT/f^T/j + Q^Y' (35)

Hence

X^/2.1 T /TOM/T + Q)-1Y' (36)

Equation 36 is identical to equation 30 and this proves the equivalence.

The results of this section have important consequences for the estimation of mean

gravity anomalies. Stokes' formula provides a representation of the anomalous potential on

or outside of a reference geoid as [ 1 3]

= ̂ | j
(37)

where r, 0, and X are the spherical coordinates of the computation point, R is the value of the

Earth's radius, S(r,i//) is the Stokes function with i// the spherical distance between the inte-

gration point and the projection of the computation point on the reference geoid. The

symbol 6g is the point gravity anomaly referenced to the nominal field and measured on the

reference geoid. The integration is over the entire geoid. The discrete approximation to

Stokes' formula is

U(r, 0, X) = |b V S(r,i//i) 5gj dag (38)

where 5gj is interpreted as a mean gravity anomaly averaged over a non-zero surface area

da,. The summation of equation 38 is finite and encompasses the entire reference geoid.

Let Y be a vector which is determined by the anomalous potential field. Assuming the

11



validity of the discrete form offStokes' formula^ equation 38 provides a relationship be-

tween Y and a globally distributed set 5g of mean gravity anomalies which;; after suitable,

linearization can be written as . . • .

Y = /5g" (39)

Equation 39 can be used as an equation of condition for a least squares with a priori

estimate of a global set of mean gravity anomalies. On any subset of the globally dis-

tributed mean gravity anomalies the solution so obtained will agree with the least squares

collocation solution.

12



COMMENTS

The least squares collocation algorithm can be exhibited as a conventional minimum

variance estimator. Hence, the algorithm can be derived either as an application of the

regression equation or by minimizing the usual least squares quadratic form. In some

cases a geodetic parameter set to be estimated can be augmented in such a way that the
!

laws of Mathematical Geodesy provide a deterministic relation between the augmented

parameter set and the available data. For this case the deterministic relation can be used

to obtain an equation of condition for a conventional least squares with a priori estimate.

The solution so obtained must agree with the least squares collocation solution.

For estimating mean gravity anomalies, both least squares collocation and the con-

ventional least squares approach utilizing Stokes' formula are applicable. Each procedure

must employ a certain approximation. With the conventional least squares approach an

integral representation (equation 37) is replaced by a finite sum (equation 38). With least

squares collocation, covariance and cross covariance representations for point gravity

anomalies must be averaged to obtain similar representations for mean gravity anomalies.

In each case the approximations can be performed so that the errors of representation

are less than any preassigned value. The results of this paper show that if the two esti-

mation procedures are implemented in such a way that corresponding errors of representa-

tion are negligible, resulting estimates of mean gravity anomalies will be equal. Hence,

the choice between estimation procedures should be mode on the basis of computational

convenience.

A disadvantage of the conventional least squares approach to estimating mean gravity

anomalies which relies on a discrete form of Stokes' formula is that its rigorous implemen-

tation implies the simultaneous estimation of a global set of anomalies. With the least

squares collocation approach it is convenient to estimate anomalies on a one by one ba-

sis. However, it can be shown that for many data types and with proper estimation strat-

egies [14, 15, 16, 17], it is possible to estimate local blocks of mean gravity anomalies

without serious aliasing.

A serious computational problem associated with least squares collocation is that its

implementation implies the inversion of a matrix whose dimension is the size of the data

13



se't. The conventional Mast''square's' approach implies the inversion of a-matrix- wtfefce dimen-

sion is the size of the parameter set to be estimated. Hence, when large and derTse data

distributions are available for estimating mean gravity anomalies a conventional least squares

technique utilizing Stokes' formula is a more logical choice for an estimation' procedure.

14
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