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ABSTRACT

"On Least Squares Estimation When the Dependent Variable is Grouped®

by

Mark B. Stewart

This paper examines the problem of estimating the parameters of an
underlying linear model using data in which the dependent variable is only
obse;ved to fall in a certain interval on a continuous scale, its actual
value remaining unobserved. A Least Squares algorithm for attaining the
Maximum Likelihood estimator is described, the asymptotic bias of the OLS
estimator derived for the normal regressors case and a "moment” estimator
presented. A "two-step estimator" based on combining the two approaches
is proposed and found to perform well in both an economic illustration and

simulation experiments.



1. INTRODUCTION

Models estimated from censored samples are now familiar in the eco-
nometrics literature. For many cases Least Squares approximations to the
Maximum Likelihood estimators are now well established. This paper is con-
cerned with a more general problem; that of estimating an equation on the
basis of data in which the dependent variably is only observed to fall in a
certain interval on a continuous scale, its actual value remaining unob-
served. The data are also censored in the usual sense in that both end
intervals are assumed to be open—ended.1 A number of Least Squares
estimators that approximate Maximum Likelihood are derived and compared
and the results of Greene (1981) on the asymptotic bias of OLS extended to
this case.

The latent structure of the model to be considered is assumed to be

given by
y, = xi g +u (1 =1,...,N) ,

where A is the unobserved dependent variable, x, and 8 are both J x 1

i
vectors, the former being regressors and the latter unknown parameters.

The u, are assumed to be independent identically normally distributed ran-—
dom variables with zero mean and variance 02 and to be independent of Xy

The conditional distribution of the unobserved dependent variable is given
by

yi|§i~N(5'i§ , 0%) 1=1,...,N8 .

The observed information concerning the dependent variable is that it falls
into a certain interval of the real line. The real line is divided into K

intervals, the k-th being given by (Ak—l’ Ak) and these K intervals exhaust



the real line. Thus Ao = —» and AK = 4o, j,e. the first and K-th intervals
are "open—ended”. The information on the dependent variable is which of
these K intervals it falls into, i.e. an indicator variable ki

(1 < ki < K) is observed for each 1i.

This type of problem is important in much applied work, such
variables being encountered in a number of data sets. The one which
prompted the investigation on which this paper is based is the earnings
variable in the National Training Survey. (See Manpower Services Com—
mission (1978) for details.) This survey, with its detailed employment,
occupational and training histories, is fast becoming a major source for
U.K. economists and its use will no doubt increase in the future as it
becomes even more widely available. Appropriate techniques for the analy-
sis of its earnings variable are thus urgently needed. A number of
variables in the General Household Survey (see Office of Population Cen-
suses and Surveys (1978) for details) also give rise to this type of
problem. 1In particular housing expenses, length of time with the present
employer and duration of unemployment are all grouped in that survey.2

Analysis of these large survey data sets is usually undertaken on
one of the commonly available general statistical packages, the range of
suitable software being severely restricted by the sample sizes involved.
(The National Training Survey, for example, contains approximately 54,000
observations.) Maximum Likelihood routines when available on these packa-
ges are generally ruled out by the sample size restrictions and the applied
researcher prepared to write special programs may well be discouraged by
the execution costs involved. Fast and easy Least Squares techniques that
approximate Maximum Likelihood are thus of great value and to be preferred

to the ad hoc methods that will be used in their absence. This paper pro-



vides and illustrates such techniques for the problem under consideration.
Ad hoc least Squares estimation might involve assignment of obser-
vations in any given group the midpoint (possibly after transformation of
the variable), with the open-ended groups being assigned values on some
even more ad-hoc basis. However, such methods do not in general result in
consistent estimates. Consistent estimates would be obtained by assigning

each observation its conditional expectation,

(7 ) - 52y
E(yg [A ) <y <8, %) =x18+0 Z) = F(Z )
[F(z, k=17

where Zk = (Ak - 5} g)/c and £ and F are the density function and cumula-
tive distribution of the standard normal respectively. Hence the requisite
estimation of the conditional expectations requires estimates of g and o.
However, as will be seen in the next section this approach provides a con-
vergent Maximum Likelihood algorithm and hence possibilities for Least
Squares approximations.

The remainder of this paper is laid out as follows. Section 2
defiﬂeé the Maximum Likelihood estimates of the parameters in the model
under consideration and demonstrates an algorithm based on Least Squares
that will attain these Maximum Likelihood estimates and converge mono-
tonically. Section 3 derives a "moment" estimator for the normal
regressors case, extending the recent work of Olsen (1980) and Greene
(1981). Section 4 then considers a Least Squares “"two-step estimator"
involving use of the moment estimator in conjunction with early termination
of the convergent algorithm. Alternative Least Squares approximations and
the full Maximum Likelihood are then illustrated and compared in Section 5

by the estimation of an earnings equation using NTS data. In Section 6 the



results of a number of simulation experiments on these methods are pre-
sented in an attempt to assess the sensitivity of the estimators to the
properties of the sample data and the underlying model. Section 7 presents

some conclusions.

2. MAXTMUM LIKELTHOOD ESTIMATION
The log likelihood function for the model outlined in the previous

section is given by

log L= Ty Ty Tog {F [Ca - 518)/01 - F [(A_, - xi8)/0]}
=y tog {F - R}

Hence the maximum likelihood estimates are defined by the set of equations

- f
k-1~ "k
Y. X, . = =0 §o= 1,000,d
iij Fk Fk—;]

g Ek—lfk-l ~ At -0
L[ R =R
The final first-order condition can be rearranged to give an estimate of

02 as follows. The conditional variances of the y, are given by

A number of different algorithms may be used to obtain these Maximum Like-
lihood estimates. This section concentrates on the derivation of one that
requires only OLS at each iteration.

The conditional means of the unobserved yy are given by

- f
k-1 k
m, = E [y ’k XV B +o [?“f?‘—_;q .
1 1150y Fe = Ty



Thus the first J of the first-order conditions can be written as

~ ) .
zi (Xijmi X1351§) 3j ly000,J

or in terms of the usual matrices and vectors as

X'm - X'X8 =0 .

~ ~

Hence given estimates of the conditional expectations, an estimate of the

B—vector is given by:

The final first-order condition can be rearranged to give an estimate of

02 as follows. The conditional variances of the y; are given by

2
£(zZ - 2, 5(2, (z - £(z,
TR SIS R Y E SRR

F(Z ) - F(Z m 1 LF(Z )y — F(Z

2
= o"v, , say.

Hence the final first-order condition can be written as

Lo v, + (m - x18) -0 =0
Thus given previous estimates of the conditional expectations and the

B—vector an estimate of 02 is given by
=T, - x'$)2/a
i1 ~is

where d = 21(1 - v;) . Hence the likelihood conditions can be solved by

iterating between é and (é, G ).3 This method of solving the likelihood

conditions can be seen to be an application of the EM Algorithm discussed



by Dempster et al. (1977).L+ Hence convergence 1s guaranteed, and the like-

. 5
lihood is increased at each iteration.

The main advantage of the method, over for example Newton~Raphson,
lies in its simplicity. It is purely a series of OLS estimations. 1In
addition, since the cross-—product matrix X'X does not change from one
iteration to the next, only one matrix inversion, or equivalent, is
required, in contrast to Newton-Raphson where evaluation and inversion of
the matrix of second derivatives is required at each iteration. The Maxi-
mum Likelihood estimates are consistent and asymptotically efficient and
asymptotic standard errors can be obtained by inverting the matrix of
second derivatives after convergence has been attained. These are given by
2

{Ml - M} /o

3210g L _ ) 2

AT AR T ) (K. LX,
3Bj 9B, i%ij"ih

8210g L _ Z
BBj do

2
d71log L 2y, 2
——z;g——-zi M - 20 - w}/o

3. A MOMENT ESTIMATOR FOR THE NORMAL REGRESSORS CASE
This section examines the inconsistency of OLS in the grouped depen-
dent variable model, and derives a moment estimator which is consistent in

the case when the regressors are normally distributed. The latent struc-—



ture of the model under consideration is rewritten as

vy, =@ + 5; Y + uy 1 =1,...,N)

where X, now excludes the constant term. It is assumed that x, is normally

i
distributed. Thus

2 4
Y., I o o]
ol I y y ~xy ~
5;:’ N EU ) ? (O' L )-’ ’ 1 =1,...,N)
g ~X ~XY ~XX_

Estimation of this equation by one Least Squares step would involve
assigning a value for the "dependent variable" for all observations in a
given group. Let the assigned values be 9 (k = 1,...,K) and let g be the

“dependent variable" defined in this way. Thus

gi=qk if A'l(_]-<yi< Ak (i =1,0-.,N) .

The OLS regression of g on x produces the following estimates:

c = S—1 S ; a = g - g’g ; 52 = -s!

S c
~ XX ~Xg gg ~xg ~

where S, S and S are the appropriate sample moments and tend in
~XX’ ~Xg gg
probability to their population equivalents.

To examine the inconsistency in the OLS estimates, the following

moments of the observed random variables are required.
E(g) = 4, P(A <y < A)
k=1 W (A A

= Zi=lqk {F(Bk) - F(Bk_l)} =X , say,

where Bk (Ak - uy)/oy .



B(g?) = Ix 9 (F(B) - KB} =4 , say.

B(x8) = Ty 0 EGlA,_| <y < ADR(A | <y < A) .

The conditional expectation here is given by

E(slay_y < v < &) =, + (g, /00) [E(yla, <y < &) -u)

gxy (f(Bk-l) - f(Bk)
+ -
Kx o, ‘F(BY - F(B_))

Thus
B(xe) = Deoy%y (0, (FBY = F(B_ ) + (g, /o) (£(B_ ) = £(B)]
=B+ g0
where 6 = Ix_ alf(8 ) - £(B)} /oy

Given these moments, the probability limits of the OLS estimates can be

found as follows

It

plim §Xg E(xg) - p FE(g) =g .8

and plim § I .
~XX  ~XX

Thus

plim ¢

L}
™
Q
@

I

=
fo)
+i-
-2

Y » in general.



Thus all the OLS slope coefficient estimates are inconsistent by the same

proportion. Turning to a,

. o .
plim a = E(g) O plim ¢
= -~ '

A B A

= A + (a - S
( uy)

Finally turning to sz,

2
lim S = Var = - A
P gz (g) =
and plim S =o¢ 8 .

Thus

2 2
lim s = -2 —-60g" lim ¢
P v LA OELY:

Sxy X

L]
<
I
)
1
@D

Yy - Az - 92(05 - 02) F 02 , in general.

Clearly the OLS estimates are in general inconsistent. However, consistent

estimates can easily be derived from them using the following simple

adjustments.
Y= g/b
a=n +222
y 8
2 - ~2
~2 _ s -y +A + O2
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where X, &, § are evaluated at consistent estimates Jy andAoy. Thus for

: . 2
any relevant choice of qk(k = 1l,...,K) consistent estimation of (l’ a, 0°)
requires only consistent estimation of uy and Oy in addition to the OLS

estimates.

4. A LEAST SQUARES TWO-STEP ESTIMATOR

A Least Squares two-step estimator that approximates Maximum Likeli-
hood will be valuable in applied work for the reasons outlined in
Section 1. 1In the case of non-normally distributed regressors the fact
that the moment estimator adjusts all the slope coefficient estimates by
the same proportion is likely to be a weakness since the proportional
inconsistencies will not in general be equal. The monotonic convergence
property of the algorithm outlined in Section 2 means that least Squares
approximations to the full Maximum Likelihood solutions can also be
obtained simply by early termination of this algorithm. However, this pla-
ces great emphasis on the starting point of the algorithm, particularly if
only one or two iterations are then performed to give the approximation.
Hence in both cases a combination of the methods from Sections 2 and 3 will
be beneficial. An iteration of the monotonically convergent algorithm will
improve the moment estimator (in the sense of increasing the value of the
likelihood). It is likely to be particularly useful when the regressors
are non—normal, but will also result in a more efficient estimator in the
nornmal regressors case. On the other hand the moment estimator can provide

the necessary starting values for the iterative method.
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The moment estimator adjustments can be applied to OLS estimates
based on any appropriate qk(k =1,...,K) satisfying Ak—l < 9 < Ak however
ad hoc the choice. However, given the consistent estimates of uy and
0, required for the adjustment factors, consistent estimates of the con-
ditional expectations of the marginal distribution for y can be obtained

and used for the Qs

£(8,_) - £(8)

)

q =nu_+a (k = 1,...,K)
k "y Y ea v opoa
F(B - F(B,_

where ék= (Ak - ﬁy)/ay. OLS estimation of B using these d is then
equivalent to one iteration of the algorithm described in Section 2 except
that the m, are evaluated on the basis of consistent estimates of the
parameters of the marginal distribution rather than those of the con~
ditional distribution.7 A weakness with these initial OLS estimates is
that, inevitably, the information contained in the explanatory variables
for any given observation is not utilised in the construction of the
estimated conditional expectations. Hence one iteration of the Maximum
Likelihood algorithm of Section 2 is likely to produce considerable impro-
vements in the approximation to the Maximum Likelihood estimates.

The proposed two-step approximation involves applying one iteration
of the Maximum Likelihood algorithm to the moment estimator based on the
initial iteration described above. The m, in this second iteration are
evaluated on the basis of the parameters of the conditional distribution as
described in Section 2. This estimator will be referred to as the
"two-step estimator"” and is compared with the Maximum Likelihood estimator
and a number of alternative approximations in the next section., The

required consistent estimates of Hy and oy are obtained by fitting a nor-
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mal distribution to the sample distribution of the partially observed
dependent variable. One simple and convenient way of doing this, a Least
Squares variant of the graphical method of Aitchison and Brown (1966), is
as follows. If Ck is the sample cumulative frequency, i.e. the proportion
of the sample with values of the dependent variable less than Ak’ then the
distribution is fitted by regressing F—I(Ck) on Ak' This provides con-

sistent estimates of uy and oy.

5. AN ILLUSTRATION - THE ESTIMATION OF EARNINGS EQUATIONS

This section illustrates the methods presented above in the context
of the estimation of earnings equations. The "two-step estimator” and some
others suggested by the previous sections together with two ad hoc Least
Squares estimators are compared both with one another and with the full
Maximun Likelihood estimates on a typical earnings equation. The data
source is the National Training Survey (NTS) and the sample used here con-
sists of 5352 full-time manual male employees in manufacturing. The
dependent variable is the logarithm of weekly earnings and the explanatory
variables are as listed at the foot of Table 1. The NTS earnings variable
is in ten groups each of width £10. The open-ended groups are <£25 and
>£105. The first ad hoc method used for comparison involves allocating to
all individuals in a given group the mean of the logarithm of weekly
earnings of the comparable sample of male workers in that interval in the
1975 General Household Survey. The second ad hoc method used involves
allocating arithmetic midpoints to the internal groups and arbitrarily
taking £15 p.w. for the open-ended group with weekly earnings <£25 and

£130 p.w. for the group at the other end with weekly earnings >£105.
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The results of this comparative exercise are presented in Table 1.8
The single iteration on the basis of the estimated marginal distribution
(Table 1(a)) is clearly superior, in the sense of giving a better approxi-
mation to the Maximum Likelihood estimates, to both of the ad hoc methods.
The mean absolute percentage difference in the coefficient estimates from
the Maximum Likelihood estimates is 3.7% compared with 26.3% and 12.1%7 for
the two ad hoc methods, the estimate of ¢ differs from the Maximum Likeli-
hood estimate by less than 1% compared with 34% and 157, and the likelihood
value attained differs from the maximum by 3 as compared with 418 and 112.

Comparing the moment estimates in Table 1(b) with the corresponding
columns of 1(a), there is a clear improvement in all three cases, despite
the non-normality of the regressors. However, the estimators based on the
two ad hoc starts are still poor. The relative improvement in the percen-
tage difference from M.L. is greatest for the moment estimator based on
adjusting the single iteration estimator. The mean absolute percentage
difference is now only 1.1%. 1In addition the estimate of ¢ differs by less
than 0.1% and the log likelihood is only 0.2 away from its maximum. It
woulé seem that in the non-normal regressors case the effectiveness of the
moment adjustments is sensitive to the initial choice of the 9

The improvement that results from an iteration of the Maximum Like-
lihood algorithm (Table 1(c)) is greater in each case than that from the
moment adjustments. This is particularly true for the two based on ad hoc
starts. These estimates are now reasonable approximations, but still
considerably inferior to the estimator based on the iteration start. That
gives a mean absolute percentage difference from the Maximum Likelihood
coefficient estimates of 0.3% and an estimate of g equal to 4 decimal

places and is within 0.1 of the maximum of the log-likelihood function.
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P CLermarisen of Aooroximatlons with Haximg: Likelihoced Estimaten,

Table 1(a) : l-step estimators without morent adjustment.,

T T
Method Haximl.xm linitial iterat- 1% ¢§ff-{1st ad hoc method % dif- | 2nd ad hoc rethosls differ-
bikelihood ion only crence (see text) ferena (gre text) ence from
from 1 from rl) & (1L
Const, 3.0720 (.0795) 3.1078  (.0977) 1.2 2.9074  (.1058) -5.4 2.9895 (.0913) -2.7
X L0239 (.0014) .0226  (.0017) =5,13 .0348  (.0019) 45.6 .0289  (.col6) 21.2
x2 =.00045 {,00002) | -.00042 (,00003)| -5,0 |=.00063 {.00003) 41.9 -.00054 (.00003) 19.7
S 0252 (.0047) L0242  (.005€) -4,2 L0250 (.0063) -0.8 L0253  (,0054) 0.2
F 0543 (.0039) .0524  (.0l107) -3,5 ,0491 (,0118) -9.6 L0531 (,0102) -2.4
A 0214 (.0C85) .0212 (.0l04) 0.4 .0038  (.0113) -82.3 0143 (.c097) -33.2
M .1024  (.0125) L0985 (.0153) ~-3.8 .1256  (,0166) 22.7 L1149 (.0143) 12.3
Sw -.1235 (.0162) =.1161 (.0199) -6,0 |[-.1613 (.0216) 30.7 ~.1410 (.01806) 14.2
R .1244  (.0095) 1211 (.0l117) ~2.6 <1285 (.0126) 3.3 L1283 (.0109) 3.2
T .0796 (.0085) .0768  {.0105) -3.4 .1016  (.0113) -27.8 0910 (.0098) 14.4
u L1654 {.0086) L0999 (.0106) ~5.3 | .1261 (.0115) 19.6 L1157  (.0099) 9.7
c; .2601 L2622 .34%0 ! 3003
log L -6966.2 -8969.6 -9384.5 -92078.5
R2 .364 .362 335 357
nean
absolute
percen= 3.7 26.3 12.1
tage
differ=-
ence
from 1L g
Variables: X = Experience, S = Age completed full-time education, F = Any further education since initial finishirg,
A = Taken apprenticeship, M = married, SW = secondary worker, R = job involves respensibility for the work
of others, T = Training need to get a job of this type, U = tiember of Trade Union.
Samnle: Hale manual workers in manufacturing, Samnle size = 5352

Fyoxtama e
éhtandard errors are given in parentheses,

Table 1 (b),,

l-step estimators

e poment adjustment

T
iMet:hod Maximum Initjal § i £ ’
. terat- 1 -
: Likelihood fon s ‘ ra Y diff-|1st ad hoc method|a dif- (2nd ad hoc methog]y differ~
: ov moment erence | + moment adjust- |ferena |4 Loment adjust-
: adjustment from M| mene oo me;t. jus ::ce from

Const. 3.0730 (.0795) 3.0743  (.0794) 0.1 3.0027 (.0885) -2.3 3.0450 (.0827) -0.9

x2 0229 (.0014) .0236  (.0014) ~1l.0 .0316  (.0016) 32,3 .0273  (.0014) 14.4

X ~.00045 (.00002)| ~.00044 (,00002) -0.7 -=.00058 (.00003) 28.9 [ ~.00051 (.00003) 13.1

s 0252 (.0047) 0253 (.0047) 0.1 .0227  (,0053) -9.9 .0239  (.0049) -5.4

F .C543  (,0089) .0548  (,0089) 0.9 L0447 (L0099) ~-17.8 .0501  (.0092) -7.8

A .?214 (.0085) L0222 (,0085) 3.7 0034 {,0095) -83.9 .0135  {,0048) ~36.9

[ .1024  (.0125) .1030 (.0125) 0.6 L1141 (,c139) 11,5 1085 (,0130) 6.0

SW =.1235 (.0162) =.1211  (.01G62) =L.7 [ «,146G  (.0100) 18.8 =.1332  (.0169) 7.9

R <1244 (Lcuds) .1266  (LoMws) 1.8 <1167 (,0105) -6.1 £1212 (L0o9) ~2.5

T 0796 (.008?) L0003 (.o0n5) 0.9 24 (,0095) 16.1 L0060 (L oonn) 8.1

u .1054  (.00H0) 1044 (.COUG)I ~-l.0 L1116 (Lo096) 0.7 102 (Lowo) J.b

v .2601 . 2601 .2907 .2711

Log L -8966.2 -8966.,4 -9084.6 -89808.7

° .

R . 364 . 364 .350 .363

mean

absolute

percen=

tage 1.1 21.5 9.7
differ-

ence )

from ML i
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2-step estimators without moment adjustrent”

1
Method Maximun Two consecuclva v ALiff~ fist ad hoc nethod T diff- 2nd ad hce method {& Aiff-
Likelihood fterations erence + ¢ne iteratien erence + one itcration evence
astimator from ML from HL from 1]
ionst. 3.07§? :.0795) 3.0748  {0.794) 0.1 3.0331 (.0830) 4.3 30526  (.c311) -0.,6
LC23 .0014) .0238 . .5 ) » ; :

, ( 00}41 ~-0.5 .0259 (.00l4) 8.6 .0248 (.0014) 3.9
X =.00045 (.00002) -.00045 (.,00002) ~0.4" =.00048 (.Cc0003) 7.9 -.00046 (.00002) 3.6
S 20252 (.0047) -0252  (.0047) -0.3 .0255  {,0049) 1.0 .0254  {,0048) 0.5
F L0543 (.0089) .0542  (.c089) ~0.2 0547 (.0093) 0.6 L0546 (.0000) 0.4
A .0214  (.0C85) ..0213  (.00-5) c.3 L0186 (.o0u9) -13.2 .0202  (.0086) -5.4
M .1024  (.c125) -1021  (.o0125) -0.2 .1064  (,0130) 4.0 1014 (.0127) 2.0
sw =.1235 (.0162) -.1228 (.0162) ~0.6 =.1308 (.016Y) 5.9 ~.1268 (.0165) 2.7
R .1244  (L0)5) <1242 (.0095) ~0.1 1261 (.0099) 1.4 L1252 (.0097) 0.7
T .079€  (.0085) £0724  (.,0085) -0,2 L0839 (.0089) 5.4 L0816 (.0087). 2.6
u 1054 (.0086) 1050  (.0086) ~0.4 .1106  (.0mm0) 4.9 .1078  (,00886) 2]
o .2601 .2601 .2723 .2656
log L -8966.2 -8966.2 ~8981.4 ~-8969.5

2
R .364 .364 .364 . 364
mean
absolute
percen-
tage 0.3 4.9 2.2
differ-
ence
from ML
Table 1(d): 2-step estimators with moment adjustment,

Maxi mum Proposed 2-step % diff- 1st ad hoc % diff- 2nd ad hoc s diff-

Me thod Likelihood estimator erenca mathod + hoth erence method + both erence

from ML from ML from ML

Const, 3.0720 (.0735) 3.0725  (.0794) 0.02 3.0529 (.0810) -0.6 3.0644 {.0800) =-0.2
X .0239 (.0014) ,0233  (.0014) ~0.1 .0250 (.0014) 4.7 .0244  (.0014) 2.0
)(2 =.0C045 (.00002) -.00045 (.00002) -0.1 ~-.00C47 (.,00002) 4.3 =.0004€ (.00C02) 1.8
s L0252 (,0047) L0252 (,0047) -0.02 .0253  (,0048) 0,2 0252 (.,0048) 0.0l .
F .0543 (.0089) .0544 (.0089) 0.04 .0541 (.0090) ~0.4 0542  (,0089) ~0.2
A 0214  (.0085) .0214  (.0085) C.3 .0195 (.0086) ~8.9 .0206 (,0085) ~3.7
M .1024  (.0125) .1024  (,0125) 0.02 .1043 (.0127) 1.9 1032 (.ol126} c.8e
W -.1235 (.0162) -.1232 (.0162) ~-0,2 =.1277 (.0165) 3.4 -.1252 (.0163) 1.4
R <1244  (.0095) .1245  (.,0095) 0.1 21248  (.0097) 0.3 1245  (.0095) 0.1
T .0796  (.0085) .0726 (.0085) 0.01 .0818 (.0087) 2.8 L0805 (.0086) 1.2
u .1054 (.0086) .1053 (.008G6) -0.1 .1080 (.0088) 2.4 .1064 (,0087) l.0
o .260% L2600 .2654 .2621
Log L -8966.,2 -8966,2 -8969.9 ~-8966.8
Rz .364 .364 . 364 . 364
mean
absolute
percent- 0.1 2.7 - 1.1
age dif-
ference
from ML
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Finally, interspersing the two iterations with the moment estimator
adjustments to give the "two-step estimator" proposed in Section 4
(Table 1(d)) gives a yet further improvement. The mean absolute percentage
difference from the Maximum Likelihood coefficient estimates is now less
than 0.1% and for no single coefficient does it exceed 0.3%. Thus in this
illustration the proposed "two-step estimator” provides highly satisfactory
approximations to the Maximum Likelihood estimates and is superior to the
various alternatives considered. Whilst the convergence of the algorithm
of Section 2 is monotonic, the improvements in estimates are much smaller
in all cases for the remaining iterations. (An additional four iterations
are required for convergence when the largest proportional change permitted

in a parameter estimate is 10—5

.) The computational savings are
considerable: the "two-step estimator” takes less than 40% of the time of
the Maximum Likelihood estimator (and less than one quarter of the time
needed to attain the M.L. estimator by N‘ewton—Raphson).9

When data from the General Household Survey were utilised to compare
the Maximum Likelihood estimates on artificially grouped data (using the
NTS grouping) with the estimates from using the original (ungrouped) data,
there was fairly close agreement between the Maximum Likelihood estimates
and the OLS estimates using the original ungrouped data and the correlation
between the complete earnings data and the final Maximum Likelihood estima—
tes of the conditional expectations was .97. The consequences of grouping

do not appear to be too severe in this particular case.lo



-17-

6. SENSITIVITY TO SAMPLE PROPERTIES — A SIMULATION EXERCISE

In order to ascertain how dependent are the favourable results of
the previous section on the particular sample involved a number of Monte
Carlo experiments were conducted examining the sensitivity of the estima-
tors to non-normality in the underlying distribution, the proportion of
observations in the open-ended groups, the multiple correlation and the
extent of asymmetry in the grouping (relative to the distribution of ).

The underlying model used in all the experiments is given by

+ BR.x%x,. + u

11 9% A =1,...,N)

y., = o + le

i i

with Bl = 82 = 1.0. The grouping was performed with ten groups and Ak =k
(k = 1,...,9). Hence the centre of the grouping is at 5.0. The charac-
teristics of the experiments conducted are given in Table 2. 1In all cases
samples of 1000 were generated, this being regarded as a typical medium-
sized sample for the type of work and data sets that the estimation me thods
are likely to be employed upon. The values of x, were generated throughout
from a standard normal distribution. The distributions generating X, and u
were‘standardized in each experiment to have zero mean and prescribed
variances (denoted cg and 02 respectively). Fifty replications were per-
formed for each experiment.

In the base experiment (experiment 1) x, is generated by a standard

2
normal and u by a normal distribution with g = 2 (giving a multiple cor-
relatioﬁ of .5). The resultant marginal distribution of y is normal and
the grouping symmetric about its mean with on average approximately 217 of
the observations in each of the open-ended groups. The estimators are then

examined in a number of different situations. Experiments 2 and 3, by

varying 02 and 6;, vary 92 and the proportion in the open-ended groups



pRes Ov e N

, -18-
Table A (haracteristtes of Ux—esiyerge
Exnari- Distrilution ‘2 Pistribution 03 . 02 riean rean
D H =
nent of X 2 of u v » vrorortion nre-ortion
: ;“. 7 ;‘:.—l
1 lerral 1 Liormal 2 5 .5 .023 ' .023
2 lormal { 0.2 Lormal [ 2.3 5 .3 023 L0235
3 normal ‘ 3 liormal ‘ 4 5 .5 t .07) <72
B} Hormal 1 Hormal ! 2 3 5 s .157 ‘ .00l
5 i) 1 liormal 2 s N 013 ' 023
. |
- Loznormal . 5 3 V26
s e | omal ? g P
oy
7 tiormal 1 X (2) 2 5 .5 , NAd L3530
3 ormal 1 Loanormal 2 5 -3 - 00h .c2c
(r=.5,5=1.0)
Notes: 1. Xy generated by 1i(0,1) distribution in all experiments.
2. -Sample size 1000 in all exveriments.
3. 50 reolications nerforred for each exoneriment.
9. In oxrerinents 5 and & distribution of 5 standardiced to have rean zero and variance 1.
S. In ex eriments 7 and 8 distribution «.f i5 stancardised to have mean zero and variance 2.
6. Xy and u have mean zero in all experiments.
Table A: Mean Biases
¢
r Initial Initial Two The Fully
Iteration Iteration Iterations "Two-step Iterated OLS on
Only + Moment Estimator" Maximum Ungrouped
Adjustments Likelihood Data
Experiment 1:
gy -.0315 -.0068 -.0080 -.0067 -.0068 -.0030
84 -.0213 .0037 . 0019 .0032 L0032 .0038
a .0233 .0087 0069 0067 0066 . 0082 4
Experiment 2:
B8y ~.0305 .~,0058 -.0066 -.0056 -,0057 -.0048
Bs -.0029 .0225 .0214 ,0224 .0223 L0172
[o] .0042 -.0020 -.0043 -.0043 -.0045 .00l1
Experiment 3:
B)_ -.0308 .0027 -.0009 ..0018 L0015 0044
B2 -.0271 . 0065 .0028 . 0055 .0051 L0051
a .0222 -.0079 -.0102 -.0102 -.0l10 -.0033
Experiment 4:
jorrmriment 4.
81 =-.0477 L0014 -.0037 .0014 L0012 .0016
52 -.0474 L0017 -, 0032 .0019 L0017 .0020
o L0351 .0033 .0013 0003 .0003 ~.0002
Experiment 5:
dl -.0289 -.0040 -.0027 -.0012 =.0002 ~.0003
B2 -.0538 -.0296 ~.0067 -.0037 .0016 .0029
a .0147 -.0002 -.0018 ~.0020 -.0012 .,0022
Experiment 6:
L rnent o
Bl -.0430 ~.0l8o -.0166 ~.0151 -.0127 ~.0l00
By -.1758 -.1542 -. 0674 ~,0608 .0070 L0097
g .0208 .0080 -.0048 ~.0052 ~.,0059 -.0027
Experiment 7:
81 -.0354 -.0101 -.0106 -. 0001 -.009) L0012
82 -.0414 -.0162 -.0161 -.0146 -.0148 -.0049
a -.0733 -.0902 -.1002 -.1005% -.1015 -.0066
Exreriment 8:
Lo nt o
Bl -.0383 -.0102 -.0126 -.01C6 ~-.0108 .0072
82 -.0399 " -.0125 -,0142 -.,0122 =.0124 ~.0019
(<] -.2912 -.3144 -.3262 -.3271 .Q016

L -. 3256




.5(}\»\\»):»}1'.0\,\ -19~
Table 6'* Maan Bias to/Standard Deviatibn Ratios
/\
Inttial Inttial ™o The Fully
Iteration Iteration lterations "Two-step Iterated OLY on
Only + Homent Estimator” Hax Lmum Unagrouped
Ad justments Likelihood Data
Experiment 1:
By -0.68 -0.,14 -0.17 -0.14 014 -0.06
82 ~0.46 0.08 Q.04 0.07 0.07 0.08
o] 0.73 0.27 0.21 0.21 0.20 0.29
Exveriment 2:
81 -0.66 -0.12 -0,14 -0.12 ~0.12 -0.10
B2 -0.02 0.17 0,16 0.17 0.17 C.13
g 0.14 ~0.07 -0.14 ~0.14 -0,15 0.03
Experiment 3:
81 -0.47 0.04 -0.01 0.02 0.02 0.07
82 ~0.89 0.20 0.09 0.17 0.16 0.16
o ©.58 -0.21 -0.28 -0.28 ~-0.30 ~0.08
Experiment 4:
B1 -1.05 0.03 .08 0.03 0.03 0.04
62 -1.07 0.04 -0.07 0.04 0.04 0.05
[} 1.09 0.10 Q.04 0.03 0.01 -0.01
Exreriment 5: A
Bl -0.69 -0.073 -0.06 -0.03 -0.01 -0.01
82 -1.40 ~0.75 ~0.16 -0.09 0.04 0.07
a 0.46 ~0.01 -0.06 -0.,06 -0.04 0.07
Experiment 6:
81 ~0.97 ~0.40 -0.138 ~0. 34 -0.29 ~0.23
82 -1.93 -1.65 -0.93 -0.85 0.14 0.26
¢} 0.56 0.21 -0.13 -0.14 ~0.16 ~0.08
Exveriment 7:
By -0.92 -0.23 ~-0.24 -0.20 -0.21 0.03
By ~0.96 -0.37 -0.36 ~0.33 ~0.33 =0.11
q -1.58 -1.90 -2.15 -2.16 -2,18° ~-0.10
Exreriment 8:
8y -0.99 -0.28 ~-0.33 ~0.27 ~0.28 0.14
82 -0.89 -0.27 -0.31 -0.27 ~0.27 -0.04
g -5.57 -5.79 -6,26 -6.27 -6.31 0, Qv
Table 5: Root Mean-Square Errors
Initial Initial Two The Fully
Iteration Iteration Iterations "Two-step Iterated OLS cn
Only + Moment Estimator" Maximum Ungrouped
Adjustments Likelihood Data
Experiment 1:
By .0562 .0480 .0485 .0484 .0484 LQ869
[:P) .0514 .0478 .0474 .0476 .0476 .0488
a .0397 .0338 .0334 .0334 .0333 .0301
Experiment 2:
83 .0550 .0472 .0476 .0475 .0475 .0484
B4 L1312 .1363 1357 .1360 .1359 .1378
a .0307 .0308 L0311 L0312 .0312 .0342
Experiment 2:
8y .0720 L0681 L0674 L0677 L0676 0622
82 .0409 L0331 .0319 .0324 .0324 .0316
a <0440 .0385 ,0378 .0379 .0379 .01397
Expeviment 4:
8y L0658 .0481 0165 L0467 L0465 L0431
82 L0649 L0466 0148 L0449 0447 L0433
a .0476 .0321 L0326 .0327 .0328 .0289
Experiment 5:
8y .0510 L0432 L0427 L0127 .0427 L0123
B2 L0662 .0493 .0427 L0427 L0442 .0lol
o] L0351 .0322 L0313 .0313 L0312 L0317
Experiment 6:
81 .0618 .0487 ,0170 .04365 .0456 L0855
[:P) .1980 . 1804 .0u88 L0940 .0506 .03y
a’ L0427 .0388 .0370 ,0371 L0376 .0355
Experiment 7: .
ﬁl .0559 <0454 .045%06 L0454 L0455 .ONBO
82 .0599 L0471 0473 L0169 L0470 L0129
g .0866 .1019 .1105 1108 L1116 .0Oo76
Bxperiment 8: -
B .0544 .0408 .0107 .0401 L0401 0513
B2 .C592 .0473 L0476 L0172 L0472 .0535
o .2958 .319¢ .3298 L3303 L3312 .1396

——————————
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respectively. In experiment 4 the grouping is asymmetric relative to uy'
Experiments 5 and 6 use two convenient skewed distributions to generate Xns
while experiments 7 and 8 use the same two distributions to generate non-
normal disturbances.11 In both cases the distributions are standardised to
give the same mean and variance as experiment 1.

Results for the eight experiments are given in Tables 3 to 5 for
five estimators using grouped data and, for purposes of comparison, for OLS
using ungrouped data. Table 3 gives the mean biases of the estimates of
81, 82 and ¢, and Table 5 gives the equivalent root mean—sq?are errors. If
the estimates obtained from each experimental replication are assumed to be
asymptotically normal, the ratio of the mean bias to its simulation stan-—
dard deviation will be distributed approximately as t with 49 degrees of
freedom. These ratios are presented in Table 4.12

Compare first the Maximum Likelihood estimates with the results from
applying OLS to the ungrouped data. When the disturbances are normally
distributed (both estimators are then consistent), the mean biases are all
small and none are significantly different from zero (see Table 4., In
addi;ion the root mean-square errors for the two estimators are very simi-
lar, suggesting that the loss of precision due to the grouping is relati-
vely small and confirming findings with non-experimental data. 1In the case
of non-normal disturbances (only OLS on ungrouped data consistent) the mean
biases in the slope coefficients for both estimators are again insignifi-
cantly different from zero and the root mean-square errors are very similar
both to one another and to those in the earlier experiments. However, the
Maximum Likelihood estimate of o has a mean bias that is much larger and

significantly different from zero in both experiments and the root mean-

square error is much increased. Hence, not unexpectedly, the accuracy of
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the estimation of ¢ is much reduced when the disturbances have a skewed
distribution, i.e. when the wrong conditional distribution has been
assumed.

The "two-step estimator” performs well in these experiments. The
root mean-square errors are very similar to those for the Maximum Likeli-
hood estimator in all experiments (including those where u is non-normal)
and the mean biases are only significantly different from zero in the cases
where those for Maximum Likelihood are. The relative performance of the
"two~-step estimator” does not appear to be impaired by a reduction in pz,
an increase in the proportion of observations in the open-ended groups or
asymmetric grouping. When X, is generated by non-normal distributions, the
mean bias and root mean-square error of the estimate of 62 are somewhat
increased, but the mean bias is still not significantly different from
zero. When u is generated by non-normal distributions, the mean biases and
root mean—-square errors move in parallel with those for the Maximum Likeli-
hood estimator. The comments made earlier on the performance relative to
OLS on ungrouped data apply equally here, but the performance of the
"two;step estimator” relative to the Maximum Likelihood estimator is as
good as before.

Comparing the other estimators considered, the moment estimator, as

expected, performs equally well in the experiments where x, is generated by

2
a normal distribution, but less well in the remaining two, where the
"two-step estimator” does, as expected, provide a considerable improvement
in the estimation of 82. The mean bilas and root mean-square error in
experiments 5 and 6 are much larger for the moment estimator and the mean

bias 1s bordering on significance in the case of the more skewed of the two

distributions. The two iterations (without moment adjustments) estimator
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results in root mean-square errors very similar to those for the "two-step
estimator” in all experiments. The mean biases are only significant in the
experiments where those for the "two-step estimator” and Maximum Likelihood
estimator are; and they also are fairly similar. Whilst use of the moment
adjustments reduces the mean biases in some cases, the improvements are not
major. Finally, the root mean-square errors and mean biases for the ini-
tial iteration only estimator tend to be larger than those for the other
estimators. In general either the moment adjustments or a second iteration

or both appear to give substantial improvements.

7. CONCLUSIONS

This paper has examined the problem of estimating the parameters of
an underlying linear model on the basis of data in which the dependent
variable is grouped. An algorithm for attaining the Maximunm Likelihood
solutions has been described. This algorithm has been shown to be a spe-
cial case of the EM algorithm and hence to have the property of monotonic
convergence. The results of Greene (1981) on fhe asymptotic bias of OLS
have been extended to the grouped dependent variable model and a "moment"
estimator derived for the normal regressors case. A Least Squares two-step
estimator which approximates Maximum Likelihood is proposed. It involves a
particular application of the "moment” estimator in conjunction with early
termination of the monotonically convergent algorithm and is constructed as
follows:

(1) calculate the sample cumulative frequency distribution of

k, Ck’ and estimate uy and cy by regressing F—l(Ck) on

Ak (k. = l’noo,K—l);
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(ii) comstruct L (k = 1,...,k) as the conditional expectations
of the marginal distribution (see Section 4), construct
g by allocating Qe to all observations in group k, and
regress g on X (saving (5'5)—1) to give the one-step
estimates of 3 and o;
(1ii) calculate X, @, § as defined in Section 3 and use them to
adjust the one-step estimates to give the moment estimates.
(iv) construct ﬁi as the conditional expectations 5;@ + GMO
(see Section 2) and regress m on X (using the already
extant (5'%)—1) to give the two-step estimate of 3.
Adjust the moment estimate of ¢ according to footnote 3
to give the two-step estimate of ¢.

This "two-step estimator” should be of considerable value in applied
work. In an application to the estimation of earnings functions from NTS
data it was found to be superior to all the alternatives considered and to
provide a very good approximation to the full Maximum Likelihood estimator.

These findings were confirmed by a number of simulation experiments.
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FOOTNOTES

An important difference from the Tobit and related models is the
absence of any completely observed data. This prevents direct exten-
sion of the methods of, for example, Heckman (1979) or Fair (1977) to
this problem from being useful.

In addition there are many other surveys where it is possible to
obtain only grouped data and instances of this may increase in the
future with the Privacy Act. When government departments allow access
to individual data they may be reluctant to provide information on the
exact values of certain variables and prepared to produce them only in
ranges. Much income data, for example, comes in this form.

In terms of the M defined at the end of this section the updating

~

rule for o° 1is gigen by
~2(n+1) _ ~2(n) 2 _
a =9 ziM?)/zi(MO M)

(n) ~2(n) .

the M, and Ml being evaluated at é and o

0

Note that 82 satisfies

2 . n2 a2
+ No© = ) E(y] Iki’i‘i)

,a
Zi(EiE)

as required for the M-step of the EM algorithm. Note also that the

computer algorithm presented by Wolynetz (1979) based on the EM

algorithm is not directly applicable here since no completely observed
data are available, ’

‘Convergence to a local maximum is guaranteed by the EM algorithm. The

log likelihood for this problem is concave and hence this local maxi-
mum is the global maximum. See Burridge (1981).

Since } ,x, .M = 0 (for all i) and } .M. = 0 at the maximum of the like-
lihood %uﬁ%t?on, the middle terms in %hese last two can be omitted
when they are evaluated at the Maximum Likelihood solution. Note that
theaasymptogic variance-covariance mgtrix of B alone can beAwritten

as 07 (X'GX) where the elements of G are functions of the Mr alone.

The adjustment factors for the moment estimator described in Section 3
are applied direct to the OLS estimates. Hence the OLS estimate of ¢
should be used in this step rather than the iterative estimate derived
in Section 2. TIf however the initial iteration estimates are to be
used on their own, or with additional iterations without the moment
adjustments, then the estimate of Section 2 should be used.

The standard errors presented are calculated by inversion of the
information matrix and hence are only approximate. In the case of the
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"two-step estimator” they should be fairly good approximations given
the proximity of the estimates to the Maximum Likelihood estimates.
The fact that the updating rule for g can be written as

E(n+1) RGO I 5 2(n) (g'z)—l {8 log L/5§}(n)

>

suggests the use of 82(5'5)—1 as an alternative approximation. (This

is equivalent to approximating G by I). This produces standard errors
which are smaller than those given by 2.4% to 3.5%. The derivation of
the asymptotic variance-covariance matrix of the "two-step estimator"”

and the comparison of alternative approximations to it remains a task

for future research.

The "two-step estimator” took 4.7 seconds to execute on an IBM 3081 as
compared with 12.0 seconds for the fully iterated Maximum Likelihood
estimator (by the algorithm of Section 2). The use of this algorithm
itself exhibits a saving over Newtown-Raphson due to only requiring
one matrix inversion: Maximum Likelihood estimation by Newton-Raphson
with the moment estimates as initial estimates took 19.5 seconds
despite requiring two less iterations, whilst the moment estimator
plus one Newton-Raphson step took 8.4 seconds. All times are of
course notional and differ considerably from machine to machine. The
ratios given in the text should however be fairly similar across
machines,

Details, reported in an earlier version of the paper, are available
from the author on request.

The NAG function GOSDDF was used to generate normal pseudo-random
variables. (See Numerical Algorithms Group (1981) for details.)
X (d) variates were generated by summing d squared standard normal

-pseudo-random numbers from GO5DDF, and the lognormal variates were

generated as L = m.exp(s.N) where m is the median, s the shape para-
meter and N a standard normal pseudo-random number from GOS5DDF. FEach
sample was initialised from the real-time clock.

These ratios can of course be generated easily enough from the entries
in Tables 3 and 5. However, they provide convenient summary
statistics.



-26—

REFERENCES

Aitchison, J. and J. A. C. Brown (1966) - The Lognormal Distribution:
with Special Reference to its Uses in Economics (Cambridge
University Press).

Burridge, J. (1981) - "A Note on Maximum Likelihood Estimation for
Regression Models Using Grouped Data," Journal of the Royal
Statistical Society, Series B, 43, 41-45.

Dempster, A. P., N. M. Laird and D. B. Rubin (1977) - "Maximum Likelihood
from Incomplete Data via the EM Algorithm,” Journal of the Royal

Statistical Society, Series B, 39, 1-38.

Fair, R. C. (1977) - "A Note on the Computation of the Tobit Estimator, "
Econometrica, 45, 1723-1727.

Greene, W. H. (1981) ~ "On the Asymptotic Bias of the Ordinary Least
Squares Estimator of the Tobit Model," Econometrica,
49, 505-514.

Heckman, J. J. (1979) - "Sample Selection Bias as a Specification Error,”
Econonmetrica, 47, 153-162.

Manpower Services Commission (1978) ~- People and their Work, Technical
Report.

Numerical Algorithms Group (1981) - NAG Library Manual (Oxford).

Office of Population Censuses and Surveys (1978) - The General Household
Survey 1975 (HMSO, London).

Olsen, R. J. (1980) -~ "Approximating a Truncated Normal Regression with
. the Method of Moments," Econometrica, 48, 1099-1105.

Wolynetz, M. S. (1979) - "Maximum Likelihood Estimation in a Linear Model
from Confined and Censored Normal Data,” Applied Statistics,
28, 196-206.




