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On Least Squares Exponential Sum Approximation

With Positive Coefficients*

By John W. Evans, William B. Gragg and Randall J. LeVeque

Abstract.   An algorithm is given for finding optimal least squares exponential sum

approximations to sampled data subject to the constraint that the coefficients appear-

ing in the exponential sum are positive.   The algorithm employs the divided differences

of exponentials to overcome certain problems of ill-conditioning and is suitable for data

sampled at noninteger times.

1.  Introduction.  In this paper the following least squares approximation is con-

sidered:

Let y0, ...,yN be N + I real data points sampled at times 0 < t0 < • • • < tN,

and let w0, ..., wN > 0 be a set of weights.  For a compact subset S of the real num-

bers minimize

N I/   r
Z ai exPi-ait„)

subject only to ax, ...,ar>0 and ax, ..., ar E S and with no limitation on the

number of terms r.

An algorithm is given which extends that of [3], [10] so that noninteger times

are acceptable.  The algorithm uses the exponential [7], [9] of a certain triangular

matrix [8] to obtain divided differences of the exponential function.  For other work

on this topic the reader is referred to [1], [2], [5] and to the references in [10].

We begin by giving some definitions and results from [3] in Section 2 and then

present in Section 3 a modification of the numerical procedure of that paper which

applies to approximation by positive sums of exponentials.  The role of divided dif-

ferences in a linear least squares step of the numerical procedure is considered in Sec-

tion 4.  Section 5 contains the method of computing the divided differences of the

exponential and other functions that is the basis of this paper.  Computed examples

of approximation by positive exponential sums are presented in Section 6.   In Sec-

tion 7 the computation of the divided differences of powers (as used in [3], [10] ) is

considered.
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204 JOHN W. EVANS, WILLIAM B. GRAGG AND RANDALL J. LEVEQUE

2.  Preliminaries and Definitions.  In this section we give some of the definitions

and results of reference [3] with minor modifications to suit our present purpose.

Let E denote an expression of the form Tlri=laiexxT^-ait), where ax, ..., ar,

ax, ...,ar axe real. We call E an exponential polynomial.  If ax, ...,ar, the coeffi-

cients of E, are nonnegative, we say that E is positive; and if a15 ..., ctr, the time

constants of E, are in 5 for a fixed compact subset S of the real numbers, we say that

E is an 5-exponential polynomial.   For fixed times 0 < t0 < • ■ ■ < tN let Ein) de-

note the expression E evaluated at tn, and let E he the column vector with entries

EiO), ..., Ein).   For real a let Ea denote the expression exp(-ar) so that Eain) =

exp(-oi„).

Given weights w0, ..., wN > 0 let W ■= diag(w0, ..., wN), where := is used as

usual to indicate that the value on the right is assigned to the variable on the left.

Also, let H7II — (yTWy)1'2 define a norm ||-|| for a general N + 1 column vector y

where T denotes transpose.

Now for a fixed data vector y with entries y0, ..., yN let

(1) PE(a):=2(E-y)TWEa.

The importance of PE is seen in the following four propositions.

Proposition 1 (optimal coefficients).   If the coefficients ax, ..., ar in

E = SjLjflj-exrX-cr/) are such that \\E - y\\2 is minimized over all possible choices of

coefficients, then PE(a¡) = 0 for i = I, ..., r.

Proof. The expression \\E + xEa - y\\2 = \\Ë - y\\2 + xPE(a) + x2\\Ea\\2 must

have a minimum at x = 0 for a = a¡ under the above assumption and thus Pe(oí¡) = 0

for 1 = 1, ..., r.

We say that such coefficients a1, ..., ar are optimal for the time constants

ax, ..., ar.

Proposition 2 (improved approximation).   The expression \\E + xEa - y\\2

is minimized as a function of x when x = -PE(a)/2\\Ea\\2, where it takes on the value

\\Ë-y\\2 -PE(a)2/4\\EJ2.

Proof.   Using the identity in the proof of Proposition 1, set d\\E + xEa - y\\2/dx

equal to zero and solve for x.   Then evaluate at this value of x.

Proposition 3 (comparison of approximations).   Suppose that E =

'Lri=xai exp(-axt) has optimal coefficients ax, ..., ar as in Proposition 1 and that

F = Sí=lfj,.exp(-py), then \\E - y\\2 - \\F - y\\2 < -Zf=,b(PE(fy.

Proof.   Observe that 2(E - y)TwE = £JL,«^(0,) = 0, while 2(E - y)TWF =

tf=ibiPEÍPi)-  From mis i* follows that

\\F - y\\2 = ||(F -E) + (E- y)\\2 = \\F - E\\2 + \\E - y\\2 + ¿ b,PEißt).
1=1

Proposition 4 (best approximation).   The positive S-exponential polynomial

E = SjLj «j exp(-aff) with ax, ..., ar> 0 best approximates y in \\-\\ over all posi-
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least squares exponential sum APPROXIMATION 205

tive S-exponential polynomials if and only if PE(a) > 0 for all a £ S and PEia¡) = 0

fori= 1, ...,/•.

Proof.   The necessity of PE(ci{) = 0 follows from Proposition 1 and that of

PE(a) > 0 follows from Proposition 2.  The sufficiency of these conditions follows

from Proposition 3.

Remark.  We call the exponential polynomial E of Proposition 4 a best approxi-

mant.   That such a best approximant always exists is shown in [3] where a best ap-

proximant E is seen to be unique if ||£" - 7II > 0.

If S is an interval and E is a best (but not perfect) approximant, then a¡ is a

root of even multiplicity of PE for each time constant a¡ of E which is in the interior

of S.   Because of this, approximants F near E (in the sense that ||F - E\\ is small) with

optimal coefficients often have two time constants at simple roots of PF near a double

root inPE (see [3], [10]).

3. The Algorithm. In this section the main features are given of our algorithm

to find a best approximant among positive S-exponential polynomials to a data vector

7.  Details are given in subsequent sections.

The Algorithm.   0.  Given are the compact set S, W ■= diag(w0, ..., wN) for

weights w0, ..., wN> 0, times 0 < t0 < • • • < tN and the data 7 := (70, ..., yN)T.

Initialize r ■= 0 with the result that E ■= SJLj a¡ exp(-a,f) is the empty sum with

E(n) = 0fox0<n<N.

1. Suppose E = 2¿=1 a¡ exp(-a¿í) is known where r> 0, ax> ■••> ar and

ûj, ..., ar €. S and where ax, ..., ar axe optimal coefficients for the a¡, ..., cxr with

ax, ...,ar>0.

a. ip:=\\E-y\\2.

b. Exit if PE(a) > 0 for all a 6 S.   In this case E is a best approximant.

c. Find a0 G 5 to minimize PEia) for a G S.

d. a0-=-PE(<x0)l2\\Ea(\\2.

e. {äx, ...,är + x] ■= {a0.ar + x).

f. {a,, ...,a,+ 1} := {a0, ..., ar+1}.

g. r ■■= r+ 1.

h.  Renumber ax, ..., ctr and the corresponding ä~x, ..., ïïr so that ax > • • • >ar.

2. a.  Find optimal coefficients ax, ..., ar for the time constants ax, ...,ar.

h. If ax, ..., ar > 0, then

(i) Exit if r = N + I.  In this case E = ¿Zr¡= x a¡ expi-ajt) satisfies E = y

and E is a best approximant.

(if)  Go to 1 if r < N.

3. We now have some a- < 0 for some 1 < / < r.

a. r := min{¡^/(ä,- - a¡): 1 </ < r, a¡ < 0}.

b. [ïïx, ..., ïïr} *— {(1 - t)ïïx + rax, ..., (1 - T)âr + rar}.

c. Drop the zero coefficients a~¡ and the corresponding time constants oy.  Set r

equal to the number of remaining coefficients and renumber the remaining
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206 JOHN W. EVANS, WILLIAM B. GRAGG AND RANDALL J. LEVEQUE

terms to obtain time constants ax > • • ■ > ar with coefficients ax, ..., à~r

>0.

d. Go to 2.

Convergence.   On each iteration we start 1 with the approximant E; and if the

algroithm does not terminate, we finish with the approximant F ■= 2;=1 a¡ expi-c^r).

By Proposition 2 we have ||F - 7II2 = \\E - y\\2 - PEia0)l4\\Ea0\\ so the improvement

is at least as great as

(minfP^a): a E S})2/4(max{||£J|2: a G S}).

In 3 the variable r is increased from 0 until a coefficient in ¿Zr= x((l - r)fl. + Taj)Ea,

is zero.   This is movement in a straight line from (px, ... , â~r) toward the optimal

iax, ... , ar) and results in no worse approximation.    Along with the fact that

flj, ..., an axe optimal in 2 this guarantees that the improvement in 1 is not lost.

Now, if G = %m=x b¡ expi~ß/t) is a best approximant, we have on returning to 1

from 2 that

||f - 7II2 - ||G - 7II2 < I £ b\ i-xnin{PEio): a G S})

by Proposition 3 so that

11 m
\2\min{^(a): a G S} < (||G - 7II2 -||^-Tlr)/í Z bt

Thus, the assumption that y = \\E - y\\2 does not tend to ||G - 7II2 leads to an im-

mediate contradiction and theoretical convergence is proved.  Further details are given

in [3].

4.  Divided Differences and the Linear Least Squares Problem.  Initial implemen-

tations of the preceding algorithms for [3] revealed that the numerical aspects of the

solution to the linear least squares problem in step 2 of the algorithm required close

attention.   For A ■= iEax.Ear) we seek a = (ax.ar)T such that \\Aa - y\\2

is minimized.  By the remark at the end of Section 2 we often find that pairs of time

constants tend to common limits as E approaches a best approximant.  With standard

methods of solution [6] this results in an early termination of the algorithm due to

lack of improvement.  The replacement of close pairs of time constants with single

time constants is easily implemented, but this greatly slows the rate of convergence

presumably because of the reduction of the degrees of freedom in the approximants.

A solution was found in the use of divided differences to deal explicitly with the near

degeneracies in A.   Divided differences were used in the examples in [3].  The method

is described in [10].  In these studies the calculations used are appropriate only for

t0, ..., tN which are integer multiples of some fixed real number and the divided dif-

ferences are the divided differences of powers rather than of exponentials.  (See Sec-

tion 7.)

For k > 1 we define the divided differences [4] of vectors 6X, ..., 6k with
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respect to distinct real numbers ax, ..., ak as

(2) [«i,...,*»;«,;...,<%] ~ Efi/ H  (ai-«,)W

where the empty product when k = 1 is taken to be 1.

Note that for k > 2

[dx,...,dk;ax,...,ak]

(3) [fli.---,flfc-i;ai,---,ttfc-i] - [fla,...,flfc;a2,...,afc]

aj - afc

We define the divided difference of a vector valued function / with respect to ax,..., an

by

(4) /[«i.<**] := [/(«i )> • • •. /K); otx,...,ak].

From (2) and (4) we obtain the matrix equation

(5) (/[«!] • • • /K ,...,<*,]) = (A«i) • • • /K))c,

where C = (Cf.) is a right triangular matrix with

0, ]<i,

c" ¡i/ n («,-«*), />«,
\ /1 <fc</

for 1 < i, j < r.   Thus, the columns of B ■= AC axe the divided differences

iE[cxx] ■■■ E[cxx, ..., ar]) of Ea with respect to o¡j, ..., ar; and to find a such that

\\Aa - y\\2 is minimized, we may set a '■= Ca where a' is such that ||2?a' - 7II2 is mini-

mized.

Now assuming a method for calculating the entries of B which remains accurate

even when some of the | a¡ - a| are close to zero the problem of finding a ' is compu-

tationally stable and singularities enter only in the direct calculation a = Ca'.

We recommend the following method for solution [10].   Use the modified Gram-

Schmidt (see pp. 129-132 of [6]) method on the columns of W1,2B to obtain an

N + 1 by r matrix Q with orthonormal columns and an r by r right triangular matrix

R such that W1/2B = QR.   Now directly compute QTWll2y, and then solve Ra' =

iQTWll2y) by using back substitution on R.   Finally, set a = Ca'.

It is easily verified that this gives the correct a' and a.   In addition, for E =

SJ_ j a¡ exp(- a¡t) we have

W*I*E = Wll2Aa = Wl>2Ba' = QRR'1QTW1l2y.

And on setting p ■■= QQTW1/2y - W1/2y, we have

PEia) = 2pTWl l2Ea    and    ||f - 7II2 = pTp.

Thus, as a by-product of the above method we have that PEia) and ||£" - 7II2 are
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208 JOHN W. EVANS, WILLIAM B. GRAGG AND RANDALL J. LEVEQUE

computed without reference to ax, ..., ar and so without the use of the matrix C

which contains the singularities.  The result is that only in step 3 is there a direct role

for ax, ..., ar. The practical outcome is a substantial increase in the number of itera-

tions in the program that can be carried out with continued improvement in the ap-

proximation.

Next the direct computation of the divided differences appearing in the matrix B

is considered.

5.  Computation of Divided Differences.  The nth row of the matrix B is equal

to igt [a, ],..., gt [a., ..., a,] ) for gt(a) '•— exp(-ia). We seek a method of cal-
ln ln

culating these terms which does not lose significance as (a,- - a.) —► 0. We first state

a proposition about divided differences in a matrix setting, and then use this proposi-

tion as the basis for our computation.

Proposition 5. Let

Z =

and let f be any analytic function represented by a convergent power series.   Then

/[a,]       8/[a,,a2]        ■     ■     ■        S'^/K.a,]

f[a2] 5/[a2,a3]

5f[as_x,as]

/tel

fiz)

Proof   iOpitz [8]).   Let F = f(Z) = (Ft¡).  Clearly, F„ = f(a¡) = /[a,.].  Since

F is a power series in Z, it follows that FZ = ZF.   Equating the (/, /) elements of

these products gives

5Ftt~x + ajFij = aiFij + 8Fi + lj

,(Fi + xi-Fii_x)

ox

P,-8-
a- — a-j      i

and the proposition is proved by induction on the successive superdiagonals of F us-

ing (3).

We have employed this proposition using the (p, p) Padé approximation ([7]

and [9] ) with p = 12 for the exponential function restricted to the interval [-1, 0]

in the following manner for a fixed t > 0:

For cíj > • ■ • > ar > 0 choose an integer k > 0 so that tax/k < 1 ; then set
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-a.

Z =

and set Z = t/kZ. The (p, p) Padé approximation to exp(Z) is given by R (Z) =

Npp(Z)(ppp(Z))-\ where Npp(Z) = ^=0ef2> and Dpp(Z) = ^=0cfrZy with

cj = i2p-j)\p\li2p)\j\ip-i)\.

Since the ay are nonnegative, all terms summed in computing D   (Z) have the

same sign.

Once we have R   (Z) approximating exp(Z), we approximate exp(fcZ) =

exp(rZ ) by (Rpp(Z))k. Of course, the top row of exp(rZ ) is (gt [ax ] • • ■ gt [ax,..., ar] )

as desired.  The relation exp(fZ) exp(sZ) = exp((i + s)Z) can be exploited to reduce

the number of times the above approximation is carried out; and if not all atj,..., ar

are nonnegative, the relation

■00)exp(fZ) = exp(/3r) exp(f(Z

for / the r by r identity matrix can be used.

We have found that better numerical results are obtained when ax > • • ■ > ar as

above.

6.  Examples.  The set S was chosen as [0, 64] and a set of test data was gener-

ated by the model

Tx(t) = 0.6 exp(-O.lf) + 0.3 exp(-0.01f) + 0.1 exp(-0.001f)

= ax exp(-aji) + a2 exx^-o^t) + a3 exp(-a3r).

Twenty data points were generated by setting t0, ..., tx9 equal to 0, 1, 2, 3, 4, 5, 10,

30, 60, 150, 300, 400, 500, 1000, 1500, 2000, 3000, 4000, 5000, 6000 and setting

7 := Tx(tn) rounded to four significant digits.   The weight wn was given the value

l/Tx(tn) for n = 0, ..., 19.  Each of these time values t0, ..., tx9 was represented in

seconds, minutes and hours and exp(Z), exp(60Z) and exp(3600Z) were estimated

separately in step 2 of the procedure where

a,       1

-a,

as before.  Suitable powers were then multiplied to give exp(i"„Z) for n = 0, ..., 19.

The procedure was coded in ALGOL using double precision (23 digits of signifi-

cance) on the Burrough 6700 computer.  The program was terminated after 80 itera-

tions through step 1. The results are shown in Table 1, where the sum of the coeffi-

cients related to recovered time constants near each of the original time constants is

given along with the sum of the coefficients of recovered time constants not near any

of the original time constants.
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These numerical results are comparable to those in [10] in the accuracy of param-

eter recovery.

Table 1

Original Term Recovered Term

coefficient       time constant coefficient time constant

0.6 0.1

Tot;Total

0.47104.

0.12850.

0.59955.

0.10043...

0.098566...

0.3 0.01      Total . 0.29980. 0.0099970.

0.1 0.001 0.071507.

0.028408.

Total ■ 0.099916.

0.0010002...

0.00099877..

iïotal

0.0000049429

0.000038098.

0.000081093.

0.00051111.

0.000089554

0.00072480.

63.999...

0.43078...

0.036176--

0.035195..

0.0015239.

The residual sum of squares is tp = \\E - y\\2 = 4.3987 x 10~5.

Table 2

Coefficient

(a.20 ' ,.,)'

0.00014348.

0.00016511.

0.00018732.

0.00054122.

0.00038451.

0.0013188..

0.0024410-■

0.00077901-

0.0033551 ••

0.0045757..

0.0071382..

0.014811...

0.031608...

0.075988...

0.11649-•■

0.20203- ■'.

0.27628...

0.19675-■■

0.036293...

0.028701...

Cumulative   Sum

(... . ai + ...+a20.

0.00014348

0.00030859

0.00049591

0.0010371

0.0014216

0.0027404

0.0051814

0.0059604

0.0093155

0.013891

0.021029

0.035840

0.067448

0.14343-

0.25992.

0.46195.

0.73723.

0.93398.

0.97027.

0.99898.

Time Constant Comparison term

(a20,

»20" 0

a19= 0.

au = 0

»17* 0.

«•«• o,
"15= 0

«u= 0.

013« 0,

a12 = 0

«ir 0.

aio= 0.

a9   = 0.

o8   ■ 0,

a7   = 0.

o6   = 0,

a5   ■ 0,

a„   ■ 0,

a3   ■ 1,

a2   • 2.

O)   «64,

)' (■

000062625

00021750

00040736

00072805

0012662

0019696

0039520

0050879

0079146

011017.

017920.

027290.

051293.

10536

22314

43078

91629

8971.

9957.

000-•

f da = 1-e

0.000026231

0.00021747.

0.00040727.

0.00072778.

0.0012653..

0.0019676..

0.0039442..

0.0050749..

0.0078833..

0.010956...

0.017760...

0.026920...

0.049999...

0.099999...

0.19999...

0.34999...

0.59999...

0.84999...

0.94999...

0.99999...

The residual sum of squares is y = \\E - y\\2 = 2.3985 x 10
-2 3
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We note that with the computational methods given above the value of \PE(a¡)\

which is theoretically equal to zero was generally 10-22 and never larger than 10 ~19

for i = 1, ..., r in each iteration.

As a second example with S = [0, 64] and the same r0, ..., 119 data was gen-

erated by the model

T2(t)=i;e^e-^da = T\-t.

With yn ■■= T2(tn) at full significance and w„ := l/T2(tn) for 0 < n < 19.  Here the

program terminated after 38 iterations in step 2.b(i) with r = 20.   The recovered time

constants and coefficients are given in Table 2 along with the cumulative sums
ct.   _

a¡ + ••• + a20 and the term f0'e    dot for a rough comparison for i = 1, ..., 20.

This example gives a clear demonstration of the power of the algorithm.

7.  Approximation by Powers.  The matrix method of divided difference calcula-

tion is also useful for approximation by sums of powers of the form E = 2£ _ x afi\

for t = integer t0, ..., tN.  It follows from Proposition 5 that the top row of the rwth

power of

"i       l.

■     ' 1

gives the divided differences of the rnth power of u with respect toux, ..., ur. Con-

siderable savings can result from the use of powers of this matrix if there are large gaps

in the series t0, ..., tN.  (If tn = n, 0 < n <N, the method in [10] is preferred.)
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