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Abstract. This paper gives efficient, randomized algorithms for the following prob- 
lems: (1) construction of levels of order 1 to k in an arrangement of hyperplanes in any 
dimension and (2) construction of higher-order Voronoi diagrams of order 1 to k in 
any dimension. A new combinatorial tool in the form of a mathematical series, called a 
0 series, is associated with an arrangement of hyperplanes in R d. It is used to study the 
combinatorial as well as algorithmic complexity of the geometric problems under 
consideration. 

1. Statement of the Results 

In this section we state our results precisely. 

1.1. Levels in Arrangements 

A level in an arrangement is a generalization of the extensively studied notion of a 

convex polytope. But the importance of levels in computational geometry extends 

well beyond this, mainly because several well-known problems regarding k-sets, 

higher Voronoi diagrams, half-space range queries can all be translated to 

problems concerning levels. Crudely speaking, a kth level in an arrangement of 

hyperplanes in R d is a polyhedral surface, such that each point on this surface is 

separated by roughly k hyperplanes from the origin. One simple method of 

constructing a level is to construct it, on an edge-by-edge basis, starting from a 

vertex on it. For d = 3 and d = 2 the cost per edge is O(x/~ log n), because of the 

external query results [10], but for d > 4 the only known method of constructing 

an edge is the obvious O(n)-time brute-force search, and this is quite inefficient. In 

this paper we give an efficient randomized algorithm for constructing levels of 



308 K. Mulmuley 

order 1 to k in an arrangement of hyperplanes in any dimension d. The expected 

running time of the algorithm for constructing levels of order 1 to k 
is O(krd/2]nLa/2j) for d > 4, O(k2n log n/k) for d = 3, and O(kn log n/k) for d = 2. 

For d > 4, these bounds are worst-case optimal. For d = 3 and d = 2, this is not 

known. 

Two extreme cases are worth mentioning. When k = 1, the first level is nothing 

but the convex polytope containing the origin. In this case, our algorithm is very 

similar to the algorithm of [8], but with a different definition of a conflict. When 

k = n, the problem reduces to constructing an entire arrangement of hyperplanes. 

In this case our algorithm is similar to the algorithm in [12]. In this sense, our 

algorithm can be seen as successfully interpolating between the two previously 

well-understood extremes. 

1.2. Hiyher-Order Voronoi Diagrams 

The construction of higher-order Voronoi diagrams is, in fact, a special case of the 

construction of higher-order levels in arrangements. This follows from a well- 

known connection [13], [3] between a kth-order Voronoi diagram in dimension d 

and (roughly) a kth level in dimension d + 1. An arrangement which arises in 

connection with Voronoi diagrams is, however, special because each hyperlane in 

this arrangement bounds the convex polytope surrounding the origin. We exploit 

this property in our algorithm for Voronoi diagrams. The problem of constructing 

higher-order Voronoi diagrams was much better understood in dimension 2. Lee 

[17] gave an O(nk 2 log n) deterministic algorithm for constructing Voronoi 

diagrams of order 1 to k in the plane and this bound was later refined to 

O(nk 2 + n log n) in [1]. The expected running time of our algorithm for construct- 

ing Voronoi diagrams of order 1 to k is O(nk2+  n logn )  for d = 2 and 
O(kF~d+l)/2]n L(d+I)/2j) for d > 3. This matches the bound in [1], when d = 2. 

Nothing comparable in dimension d > 3 was known before. 

On the other hand, our algorithm constructs all levels (or Voronoi diagrams) of 

order 1 to k. This leaves open the tantalizing question regarding the complexity 

of constructing the exact kth-order level (or Voronoi diagram). Edelsbrunner 

[10] and Clarkson [6] respectively give O(k(n - k)x/#n log n) and (randomized) 

O(n tl +~k) algorithms for constructing the kth-order Voronoi diagram in the plane 

and, for k = n/2, Chazelle and Edelsbrunner [4] give an O(n 2 log 2 n) algorithm. Of 

course, our algorithm can be used for constructing the exact kth-order Voronoi 

diagram too. For d > 3, this gives the most efficient algorithm so far. 

1.3. Complexity of Levels 

Finding bounds on the combinatorial  complexity of levels in arrangements (or k- 

sets dually speaking) has been a topic of much investigation [14], [2], [15], [5], 

[9], [23]. As far as a bound on the complexity of a general kth level is concerned, 
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the only known bound is O(nx/k  ) [14], for dimension 2, and k < n/2, and this 

bound seems to be far from tight. On  the other hand, investigations regarding a 

bound on the combinatorial  complexity of all levels of order 1 to k have been more 

successful. After initial results in dimensions 2 and 3, Clarkson [7] recently proved 

a tight bound for this problem in any dimension d. His bound  for the complexity of 

all levels up to the order k is O(kFd/ZTnLd/zJ). 

This paper generalizes Clarkson 's  result. The generalization is in terms of a new 

combinatorial  series, called a 0 series, that can be associated with any nondegener- 

ate arrangement  of hyperplanes. If A is any given arrangement,  O(s, A) is a function 

of a real variable s > 0. Let O(s)= max{O(s,A)lA},  where A ranges over all 

nondegenerate arrangements of n hyperplanes in R d. In terms of the 0 series, 

Clarkson 's  result then gets translated as 0(0) ~ krd/Zqn Ld/2j. (Here, as well as later, .~ 

denotes the asymptot ic  equality, with constant  factors ignored.) This naturally 

leads us to analyze the behavior of O(s) on the positive real axis. It is shown in this 

paper that the behavior  of O(s) can be analyzed as a function of the real variable s, 

and that s = [-d/2~ is a critical point on the real axis, where this behavior changes 

abruptly. Moreover,  this critical point also leads us to a conjecture regarding the 

complexity of the exact kth level. Because of the duality between k-sets and k-levels, 

our results immediately yield analogous results for k-sets. 

To state our  result precisely, we now define the 0 series. Let A be a fixed 

arrangement  of n hyperplanes in R d. For  any hyperplane H, we denote by H_ the 

open half-space bounded by H that contains the origin o. The other open half-space 

is denoted by H +. We say that a hyperplane H separates a point x from the origin 

o, if x e H +. For  a vertex v in the arrangement,  define the level of v to be the number  

of hyperplanes in the arrangement  which separate v from o. Thus the level of v is the 

number  of hyperplanes H in the arrangement  such that v e H +. Similarly, we can 

define the antilevel of v to be the number  of hyperplanes H in the arrangement  such 

that v e H _ .  Clearly, the sum of the level and the antilevel of  v is n - d. Let V t be the 

set of vertices in the arrangement  at level I - 1. Note  that V 1 is the set of vertices on 

the convex polytope of the arrangement  containing the origin o. When  the origin o 

is located at (0 . . . . .  0, - ~ ) ,  V k is closely related to the usual definition of a k-level 

in the arrangement  A. Let v(l) be the size of V~, i.e., the number  of vertices at level 

1 - 1. Similarly define v'(l) to be the number  of vertices at antilevel l - 1. Finally, let 

vP(l) = v(l) + v'(l). Define the affine 0 series as follows. For  1 < L < k < n, we 

let 

OL(S, k, A) = v(l) + v(l). 
/ = 1  l = L  

We denote 0l(s, k, A) by merely O(s, k, A). Thus O(s, k, A) = ~'~=l(v(1)/P). We can 

similarly define the 0' series by using v'(l) in place of v(1). Because of  the symmetry,  

we refer to the 0' series in this paper only rarely. Finally, we define the projective 0 p 

series by using vP(l) in place of  v(l). Thus, for 1 < L < k _< n, 

OPL(S, k, A) = vr(1) + vP(1). 
/ = 1  l = L  
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Intuitively, we give equal treatment to levels and antilevels in the projective 
definition. Projective setting is the one which naturally arises in the treatment of k- 

sets, because vP(k) is the number of k-sets of the points, that are dual to the 

hyperplanes under consideration. 
Henceforth, to simplify the notation, we adopt the convention of dropping 

references to the arrangement A, if it is clear from the context. Thus we write 

OL(s, k) instead of OL(s, k, A), etc. 
Define 0P(s, k ) =  max{0[(s, k, A)}, where A ranges over all nondegenerate 

arrangements of n hyperplanes in R a. We define 0L(s, k) similarly. Letting ~ and 

denote the asymptotic equality and inequality with constant factors ignored, we 

have 

Theoreml .  For any 1 < L < k <_ n, 

(a) O[(s, k) ~ LSk~d/27-Sn Ld/EJ / fs  < [-d/27. 

(b) Lra/2qn Ld/2j log(k/L) ~ 0[([-d/27, k) ~ Lrd/2qn Le/2J log(min{k, n/L}). 

(c) O~(s, k) ~ Lrd/2qnLn/2J for s > rd/27. 

Moreover, the lower bounds are achieved if the n hyperplanes form a dual cyclic 

polytope surrounding the origin. 

Note that, because O~(s, k, A) = OL(s, k, A) + O'L(s, k, A), the asymptotic upper 

bounds given by Theorem 1 obviously apply to OL(s, k, A) and 0}~(s, k, A), but we 

do not know, as yet, if the lower bounds apply as well. We also do not know how to 

close the gap in part (b) of Theorem 1. 

As a corollary, we get the following result, for L = 1: 

Theorem 2. For every l <_ k < n: 

(a) 0P(s, k) ~ nLd/EJkrd/23-Sfor s < [-d/27. 

(b) 0PCd/27, k) ~ n Ld/2j log k. 
(c) 0P(s, k) ,~ nLa/2Jfor s > rd/27. 

Note that a special case of part (a) of Theorem 2, for s = 0, says that 0P(0, k) = 
~k= 1 VP(l) = O(nLa/EJkFd/27), which is precisely Clarkson's result. The critical be- 

havior of the 0P-function in the neighborhood of rd/27 probably indicates that vP(k) 
is O(nLd/2]kFd/27-1+e) for every e > 0. 

The 0 series has an algorithmic significance as well. Indeed, the expected running 

times of our randomized algorithms are bounded in terms of the affine 0 series. 

Theorem 3. The expected running time of our algorithm for constructing levels of 

order 1 to k in a d-dimensional arrangement A is bounded by O(Ok(d -- l, n, A)). 

It follows, from Theorem 1, that 

Corollary 1. The expected running time of our algorithm for constructing levels 
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is also bounded by O(krd/Z7n Ln/2J) for  d > 4, O ( k Z n l o g n / k )  for  d = 3, and 

O(kn log n/k) for  d = 2. 

Consider two special cases: k = 1 and k = n. When k = n, the worst-case bound 

is always tight for any nondegenerate input and nothing can be proved. The 

expected running time of our algorithm in this case is O(nd), as to be expected. The 

case k = 1 corresponds to the construction of a convex polytope. The expected 

running time of our algorithm in this case is O ( O ( d -  1, n)). This bound also 

applies to the algorithm in [8], which differs from our algorithm in the defini- 

tion of a conflict, and thus improves, in a general situation, the Clarkson-Shor 

bound for the same algorithm which is O(n Ld/2J) for d > 4 and O(n log n) for 

d = 2 , 3 .  

Theorem 4. The expected running time of  our algorithm for  constructing Voronoi 

diagrams of  order 1 to k in dimension d - 1 is O(O(d - 1, n, A) + Ok(d, n, A)), where 

A is the arrangement of  hyperplanes in dimension d, that corresponds, through a 

geometric transformation, to the collection sites in dimension d - 1. 

It follows from Theorem 2 and Theorem 1 that 

Corollary 2. The expected running time of  our algorithm for  constructing higher- 

order Voronoi diagrams of  order 1 to k in dimension d is also bounded by 

O(nk 2 + n log n) for d = 2 and O(k r~a+ 1)/27nL(d+ 1)/2J) for d > 3. 

It is clear that the bounds based on the 0 series, as in Theorems 3 and 4, are 

stronger than the bounds for the worst-case scenario, as in Corollaries 1 and 2. 

Indeed, for a typical arrangement A, Ok(n -- 1, A) is much smaller than Ok(n -- 1). 

The 0-series-based analysis has one advantage over the conventional average-case 

or worst-case analysis, because, unlike the average-case analysis, it does not assume 

anything about  the input and at the same time it does not give a pessimistic 

estimate as in the worst-case analysis. The use of 0 series as a tool to study 

combinatorial properties of geometric configurations and also as a measure of 

algorithmic complexity is one of the key ideas in this paper. It is also possible to 

associate a 0 series with a configuration of polytopes in any dimension. For  this 

extension and its use see [20] and [21]. 

1.4. Probabilistic Geometric Games 

The probabilistic geometric games were introduced in [18] and [19] as an aid 

in the analysis of randomized geometric algorithms. More precisely, these games 

were used for the purpose of analysis of randomized evolutions of certain 
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two-dimensional geometric configurations. In this paper these games are 

extensively generalized to higher dimensions. It turns out that the analysis of these 

games gets intimately linked with the 0 series. We believe that these games will also 

find applicability in other problems of computational geometry, which involve the 

study of random evolutions of geometric configurations in some form. 

We now describe one such typical game. Suppose that we are given a universe 

set N of some elements. The game we are going to play consists in drawing the 

elements of N in a random order without replacement. An integer I > 0 is going to 

be fixed throughout. 

Fix two disjoint subsets S and T of N. Let t = b T] and s = ]SI be their sizes. Let 

us associate an observer with this pair of sets S and T. The following rule will 

determine the active phase of the observer during the game. The observer is active 

at any instant of the game if (1) all elements from T and (2) at the most I elements 

from S have been chosen at that instant. If s < l, the second condition becomes 

redundant; in effect this means that l has to be replaced by s throughout. If the 

observer does indeed become active during the game, he will go into the inactive 

phase the moment  the second condition is violated. 

Now assume that we are given one more subset M of the universe N, and let 

m = IMI. Subset M need not be disjoint from either S or T. But we assume that M is 

linearly ordered. Imagine, for the sake of visualization, putting the elements of M 

on the positive real axis, according to the ordering of M, with the ordering 

increasing in the positive direction. Place the observer o, associated with the pair of 

sets S and T, at the origin. Assume that the observer can "see" only along the 

positive real axis. We shall soon make this notion precise. We say that an element 

b e M was observed by o at some instant of the game, if b was chosen at that instant 

and no element c ~ M, subject to c < b, was chosen before this instant. The idea is 

that the chosen elements in M are supposed to act as barriers to the sight of the 

observer. Let O be the number of elements observed by o in his active phase. If the 

observer never became active in the game, O is defined to be zero. 

The visibility span of the observer at any instant during the game is defined as 

follows: Let b be the least element in M chosen at or before this instant. Then the 

visibility span of the observer at this instant consists of all elements in M less than 

b. Notice that none of the elements in the visibility span at a given instant could 

have been chosen before that instant. Thus the visibility span at any instant 

consists of the elements in M, not yet chosen, which lie within the extent of visibility 

of the observer o. Let V be the number  of elements in the visibility span of the 

observer at the instant he became active. Vis defined to be zero, if the observer does 

not become active at all. 

Finally we define one more random variable as follows. Every time the observer 

observes in his active phase some element of M, say b, we charge the observer a cost 

equal to the number of elements _< b. (Thus the cost is equal to the length of the 

visible span at the instant b was observed.) Let W be the total cost charged to the 

observer. 
In the following theorem and the rest of the paper, we denote by [x],  the 

generalized rth factorial x ( x  - 1). . .  (x - r + 1). 
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Theorem 5. 

~/[1 + t]A 
E(O) = O~[s+ t ]J  ( f o r t  > 1) 

- 0(1 4- ln(m + 1) 4- ln(1 + I)) (_for s = O, t = O) 

E(V) and E ( W ) =  0 ( ~  + t - +  t 1]t=L'~l]t_l] ( f o r t > 2 )  

= 0(1 + ln(rn + 1) + ln(1 + l)) (for s = O,t = 1) 

=0(I +ln(l +l)+In(l + sin)) (fors>O,t=l). 

I f  s < l, 1 has to be replaced by s in the above estimates. 

A special case of the above theorem for the random variable O, and for 1 = 0, 
was proved in [19]. In the above game, the line of sight of the observer was 

"straight." It is also possible to let the line of sight "bend," in a bounded number of 

ways and a bounded number of times, at obstacles; here the obstacles are geometric 
elements, such as hyperplanes and polytopes. This generalization is given in 

Section 4. 

1.5. Complexity of Zones 

Given an arrangment A = A(S) formed by a set S of hyperplanes in R e, and a 

hyperplane H r S, a zone in A(S) incident to H is defined to be the set of all faces in 

A(S) adjacent to some face f ~ A(S) intersecting H. It was proved in [12] that the 
total complexity of all zones in A(S) incident to a fixed hyperplane is O(s e- 1), 

where s = tSI. In this paper we generalize this result to arbitrary closed subcom- 

plexes of A(S). 

Fix a closed subcomplex (I) of A(S), and denote by I(1)] the underlying space, 

which is the union of all faces in ~. An (open) j-face f in A(S u {H}), that is 

adjacent to H, is called an upper j-zone o f ~  with respect to H, i f f  _ IOl c~ H+. A 
lower j-zone is defined similarly. For  any subset U _ R e, we define corn(U, ~), the 

complexity of U with respect to ~, as the number of faces in (I) intersecting the 

closure O of U. Thus com(H, ~)  is the proportional to the number of edges in 

intersecting H. For 1 < j < d, let us define the total complexity of upper j-zones of 

with respect to H as corny(H, (I)) = ~ I corn(f, ~), where f ranges  over all upper 
j-zones of �9 with respect to H. Note that, for an arbitrary subcomplex ~, it is not 

necessarily true that com'~(H, O) < com~(H, (I)) < ... < corn,](H, ~). 
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Now we define various kinds of boundaries of a set U __%_ R n. A point p e U is said 

to be in the interior of U, if there is an open d-ball D _ U surrounding p. Note that 
our definition of the interior is not with respect to the relative topology of U. We 

denote by d(U) the boundary of U, i.e., the set of points of the closure 17 not 

belonging to its interior. If U has dimension less than d, then O(U) = U, by our 
definition. Given a set U ~_ IO[, let us define thej th interior of U as follows. We say 

that a point p e U belongs to the jth interior of U if, for every choice of d - j 
hyperplanes in S containing p, there is an open j-ball B ~ U surrounding p which 

completely lies in the intersection of those d - j hyperplanes. If there are no d - j 
hyperplanes in S containing p e U, p trivially belongs the jth interior of U. The jth 

interior contains the ith interior i f j  < i. Let the j th boundary, Oj(U), be the set of 

points in the closure 0 not belonging to itsjth interior. Clearly Od(U) = O(U). Also 

al(U) ~_ a2(U). . .  --_ ~d(U). 

Theorem 6. com~(H, O) = O(com(gi(H+ n IOI), O)). 

As a special case, if �9 = A(S), then Oj(H+ c~ IOf) = H and corn(H, ~)  = O(s n- 1), 
where s = ISI, and we get as a corollary the zone complexity result of [12]. All our 

results can be readily translated in terms of the lower j-zones as well. 

2. The 0 Series 

In this section we prove Theorem 1. The asymptotic lower bounds on 0/, as given 
in the theorem, easily follow from the fact that, when the hyperplanes in the 

arrangement form a dual cyclic polytope surrounding the origin, v~(k) 
k ra/2q- lnLd/2j for 1 < k <_ n/2 [11]. In the rest of this section we prove that 

OL(s,k),~Lskrd/27-'n Ld/2j if s < (~ ] ,  

OL(Fd/27, k) ~ Lrd/2]nL:/2Jlog(min{k,L} ),  

OL(S,k)~.LFd/2qn Ld/2J for s > [~ ] .  

(1) 

(2) 

(3) 

The above results regarding 0L(S, k), together with the symmetric results for 

/~i(s, k), prove Theorem 1. Our proof makes use of the following two well-known 

results: 

Chernoff Bound. Let fl(m, N, p) denote the probability of m successful trials in a 

sequence of N independent Bernoulli trials, each with probability p. Then, if 

m > Np is an integer, 

N 

~_, fl(k, N, p) <_ et,,,-N j,,. 
k = m  
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Relat ionship Between the Beta and the G a m m a  Functions.  

B(x, y) for x, y > 0, is defined as 

Io B(x, y) = t x-  1(1 _ t ) y -  1 dt. 

Then 

The beta function 

r(x)F(y) 
B(x, y) = 

V(x + y)' 

where F denotes the well-known gamma function. 

Proof  of  Theorem 1. Given an integer r > 0, perform the following experiment. 

For  each hyperplane in the arrangement,  independently toss a coin having the 

probabili ty of success 1/r. If the toss is successful we retain the hyperplane, 

otherwise it is discarded. Let r be the number  of  vertices with level < L - 1 in the 

resulting arrangement.  

" l = L e m m a  1. ~l_<L (lira)v(l) + ~t>L 7(,  r)v(l) E(~o~), where 

L - 1  

7 ( / , r ) =  ~ 7( j , l , r )  
j=o 

with 
- 1 - j  

5 
Proof  Fix a vertex v with level I - 1. If I > L, then the probabili ty that v occurs at 

level < L - 1 in the arrangement,  that  results at the end of the experiment, is Ur n, 

which is the probabil i ty that each of the d hyperplanes containing v is chosen. 

Otherwise, if l > L, v occurs at level L - 1 in the resulting arrangement  iff all d 

hyperplanes containing v are chosen and some j < L - 1 hyperplanes among  the 

l -  1 hyperplanes separating v from o have been chosen, and this occurs with 

probabil i ty 7(l, r). [ ]  

Now we estimate E(~o, L) in another  way. 

L e m m a  2. E(tp~) --= O(Lrd/23(n/r) Ld/2j) if  r = O(n). 

Proof  For  the sake of simplicity, we only prove the special case of  the lemma, for 

L = 1 ; the general case being very similar. Let us denote q~) by simply tp,; thus (p, is 

the number  of vertices on the convex polytope surrounding o in the resulting 

arrangement.  We have to prove that E(q~) = O((n/r) L~/Ej) if r = O(n). 

By the well-known upper bound on the size of a convex polytope, E(q~,) = 

O(Y',7= 1 iL~/2Jfl( i, n, I/r)), where fl(i, n, I/r) is the probabil i ty of i successes in n 

independent Bernoulli trials with the probabil i ty of success 1/r in each trial. 

Let c = 2e. Then 

n, = O,rL~7~- . .  (4) 
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On the other hand, for an integer p > cn/r 

fl(i, n, lr)iLn/2J< ~ nLa/ZJfl(i, n, ~) 
i_p i>__p 

n P 
~ ( - - ~  eP-n/rVl Ld/23 

\pr,/ 

< a s  > 

K. Mulmuley 

(5) 

(by Chernoff's bound) 

If r < (c/Ld/2J)(n/ln n), then clearly cn/r > Ld/2J ) In n, and we conclude from (4) 
and (5) that E(~o,) is O((n/r)Ld/ZJ), because r = O(n). 

If r > (c/Ld/2_J)(n/ln n), it remains to estimate 

6= ~ (i, !-]i 
nc/r<i<Ld/2j In n fl  r / /  

But when i ~ (nc/r, Ld/2_J In n) the Poisson approximation 

1 fl(i,n,!)~e-"/'(7)ii] 

applies, because i <  v/r,  as r > ((c/Ld/2J)(n/ln n)) [16]. Hence, using Stirling's 

approximation, 

( ! )  e-"/" \~i(ne]',/ fl i, n, ,~ ~ <_ (�89 

as i > nc/r = 2en/r. And it easily follows that 6 is O(1). This proves the theorem for 

L = I .  

To prove the lemma in general, notice that, by Clarkson's theorem, 

E(tp,)= O( ~=, fl(i,n, lr)Lrn/2]iLd/2J). 

The rest of the proof is similar to the proof for L = 1. [] 

Lemma 2 can be generalized slightly: 

Lemma 3. E(q3~) = O(min{Lrd/2](n/r) t-d/2j, (n/r)d}). 

The proof is omitted. 
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U s i n g  L e m m a s  1 a n d  2, 

(Lkl ) / / n \ L d l 2 J \  

or r e a r r ang ing ,  for s > 0, 

1 k (Li 1 ) 
r~+ l (1) + ~(j,  I, r) v(l) = O(LVd /23nka /2dr  V a / 2 ~ - s -  1), 

I<L I>L \j=0 
where  

1 (/~. 1)( !)t-l-j 
~(j, l, r) - rS+J+l 1 -- 

317 

(6) 

(7) 

where  ~(j, l) = ~k'= 1 ~(j, l, r). Thus  

(:) ( )( 'r) s+j+l 1 - 1 1 
"](j, 1) = r=l J (8) 

J ~) { 1 - : ) z  ~ dx .  (9) 

The  e r r o r  t e rm in the  las t  a p p r o x i m a t i o n  can  be s h o w n  to be smal l .  The  i n t eg ra l  

can  be e s t i m a t e d  as fo l lows:  

fk'(~)s+j+l( ~)l-l-j f l  
1 - -  d x  = t~+J- l (1  --  t ) l - l - J d t  

1 1/k' 
= B ( s  + j ,  l - j )  - 6,  

F(s  + j ) F ( I  - j )  

F( I  + s) 
- 6 ,  

where  

fi = t s + J - l ( 1  --  t ) l - l - J d t  ~_ t s+ j -1  dt  = 
~o ~o \ k ' ]  s + j '  

k (L~I / ( k / v(l) + ~(j, l) v(1) = 0 Lrd127ri kd/2l r r-d/27-s-1 , 

l<L l>L \j=O r= 1 

W e  sum b o t h  s ides  of (6) over  r r a n g i n g  f rom 1 to  k' = ak, where  a is to  be a 

su i t ab ly  chosen  cons t an t ,  a n d  we get, af ter  r e a r r a n g e m e n t ,  
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and can be neglected, for l < k, if k' = ak is a large enough constant multiple of k. 

Thus we conclude that 

~ ( j , l ) ~ ( l - j  1) F(s+j)F(I-J)F(I + s) 

_ ( l -  1)! F(s + j )  ( l -  1)! ,-,, , f s  - 1 +j'~ 

j! r(l  + s) - r d  + s) - t s ) (  j ) ,  

using a generalized binomial coefficient [16]. Summing over j, 

L-1 ( l -  1)! 

j=O 

( 1 -  1)! 

V(l + 

F(s) L i t ( s - I + j ) s )  i=o J 

( ) ((')) F(s) s + L --1 = • 

s) L - -  1 1 " 

It follows that the left-hand side of (7) is f~(0L(s, k)). Now (3) follows from (7). It 
also follows from (7) that OL(rd/27, k) ~ Lr~/21n Ld/2j log k. To prove (2), it remains 

to be shown that OL([-d/27, k )~  LVa/Zqn ka/2j log(n/L). This can be proved in a 

similar fashion as above, but using Lemma 3 instead, and breaking the sum on the 

right-hand side, after rearrangement, into two parts corresponding to r <_ n/L and 

r > niL. 
It remains to prove (1). Notice that this follows from the asymptotic upper 

bound given by part (a) of Theorem 2. But this in turn follows from (7), by letting 
L = 1, and summing the right-hand side. [] 

Remark. Clarkson [7] proves his theorem using random sampling. For a special 

case when k = n (or a constant multiple of n) it is possible to mimic the above proof 

of part (c) of Theorem 1 using random sampling instead of Bernoulli trials. We 

simply have to replace the beta function by a Van der Monde sum. In general, 

however, this approach runs into some technical difficulties. 

2.1. Average-Case Behavior of the 0 Series 

It is well known that if s points in R a are uniformly chosen from the interior of a 

fixed hypersphere the expected size of the convex hull is sublinear, O(s ~ -0 ,  where 
c > 0 is a suitable constant. A similar result also applies when the points are chosen 

from other nice distributions [22]. By duality, we conclude the same for the 

expected size of a convex polytope when hyperplanes (more precisely, the dual 

points) are chosen from such a distribution. In this case it is easy to prove [7] that 

the expected total size of the first l levels is O ( Y - l s l - 0 .  Now Lemma 1 and an 

analogue of Lemma 2 yield 

1 
v(l) + i i ,(J, 1, r) = 0 . 

l>L \ j = O  
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The right-hand side, when summed over r ranging from 1 to a suitable multiple of 
n, yields O(L d- in) and the left-hand side sums to ff~(OL(d- 1, n)). Hence, we 
conclude: 

Theorem 7. When the hyperplanes of the arrangement are chosen from a distribu- 

tion, such as the one discussed above, the expected value Of OL(d -- I, n) is O(L d- in). 

As we have seen in Theorems 3 and 4, the value of the 0 series at s = d - 1 has a 

special algorithmic significance. 
The above theorem, in conjunction with Theorem 3, yields 

Corollary 3. When the hyperplanes are chosen from such a distribution, the average 

running time of our algorithm for constructing levels of order 1 to k, in dimension d, is 

O(k d- in). The same also holds for our algorithm for constructing Voronoi diagrams of 

order l to k in dimension d - 1. 

3. An Algorithm for Higher-Order Voronoi Diagrams 

As we have already remarked, the construction of higher-order Voronoi diagrams 

is, in fact, a special case of the construction of higher-order levels in arrangements 

of hyperplanes. An arrangement which arises in connection with the Voronoi 

diagrams is, however, special [13] because each hyperplane in this arrangement 

bounds the convex polytope surrounding the origin. Hence, it suffices to give an 
algorithm for constructing levels of order 1 to k in an arrangement of hyperplanes 

with this property. 

Let N be a given set of n hyperplanes in R ~. We denote by A(N) the arrangement 
(the cell complex) formed by these hyperplanes. We assume that all hyperplanes are 

in general position; this assumption can be removed by the general perturbation 

arguments. We also assume, for the sake of simplicity, that the origin (i.e., the point 

with respect to which the levels will be defined) is located at (0 . . . . .  0, - or). (This 

assumption is not really required, but the geometric transformation in [13] already 
ensures this property.) Thus the level of any point p e  R n is the number of 

hyperplanes below p in the x d direction. The level of any (open)j-face f, level(f), is 
defined to be the number of hyperplanes below any point in that face; it is easy to 

see that this definition is consistent. 

Consider the subcomplex Ck(N) of A(N) consisting of those faces having 
level < k - 1. We are interested in constructing this subcomplex. The subcomplex 

corresponding to the upper boundary of Ck(N ) is denoted by .~k(N). Subcomplex 

~k(N) is generally called the kth level in A(N). 

Consider the subcomplex Dk(N ) of Ck(N ) consisting only of 0, 1, and 2-faces in 

Ck(N). Subcomplex Dk(N) is called the 2-skeleton of Ck(N). It is easy to recover 

Ck(N) from Dk(N) by a simple geometric search in linear time as follows: Starting 
from the 2-skeleton we get a 3-skeleton, then a 4-skeleton and so on until we get the 

d-skeleton, which is precisely Ck(N). It is easy to show that, for any j < d, we can 
recover a ( j  + 1)-skeleton from a j-skeleton in linear time. Hence it suffices to 

construct the 2-skeleton Dk(N). 
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The outline of the algorithm is very simple. Initially, we choose a random subset 

Nd = {H1 . . . . .  Hd} o fd  hyperplanes from N, and build Dk(Nd). Next we "add"  one 

hyperplane at a time in a random order to get a sequence of complexes Dk(Nd), 

Dk(Na+ 1),.. . ,  Ok(N'), Dk(Nm+l) . . . . .  Ok(Nn) : Dk(N), where N m denotes the set 
{H1 . . . . .  Hm} of the first m randomly chosen hyperplanes, and DR(N ) is precisely the 

complex we wanted to build. Here we are following the randomized-incremental 

paradigm introduced in [18] and [19] and independently in I-7] and 1,-8]. 

To speed up the process of addition of a randomly chosen hyperplane Hm + 1 to 

DR(N'), we associate with DR(N,, ) some additional information, called conflict 

information; for previous uses of such information see [8], [18], 1-19], and 1,,7]. 

Basically, we want to be able to find the intersection of Hm§ with Dk(Nm) 
efficiently. 

Theorem 8. H ' +  1 n ]Dk(Nm) [ is connected, where IDk(Nm)[ denotes the underlying 

space of the complex Dk(N" ). 

This follows from the following slightly more general result. Let R be any set of 

hyperplanes in R d. Let conv(R) = (~x~RH_ be the convex polytope containing the 

origin. 

Theorem 9. For any hyperplane H that intersects conv(R), IDk(R)I n H is 

connected. 

Proof We use induction on the dimension. Consider the basis case when the 

dimension is 2. In this case H is just a line. Assume [Dk(R)I n H is not connected. 

Let c, d e IDk(R)E n H be two points such that no point in the open interval (c, d) on 

H belongs to IDk(R)I n H. As Zak(R) is connected, there is a polygonal path 

(c, a o . . . . .  a j, d) in Z~'k(R) connecting c and d. As Z, ak(R ) is monotone, any vertical 

line can intersect this path but once. Let P and Q be the lines in R containing (c, ao) 

and (a i, d), respectively. It is easy to see that H cannot intersect P_ n Q_,  which 

contradicts our assumption that H intersects conv(R). 

Inductively assume that the theorem holds for dimensions less than d. Fix a 

point t in conv(R) n H. Let x be any point in [Dk(R)[ n H. We show that there is a 

path in IDk(R) I n H from t to x. There exists a vertical hyperplane P containing x 

and t. Let T be the set of ( d -  1)-dimensional hyperplanes consisting of the 

intersections of the hyperplanes in R with P. Consider the arrangement A(T)  = 

A(R) n P. It is clear that Dk(T) = Dk(R) n H. The hyperplane H'  = H n P con- 

tains t and hence intersects conv(T). Moreover, x ~ ]Dk(T)I n H'. It follows from 

the inductive hypothesis that there is a path from t to x which lies entirely in 

[Dk(T)I n H' and hence in [Dk(R)[ n H. [] 

By the above theorem, it follows that we only need to be able to find 

H ' + I  n conv(N ' )  efficiently, where conv(Nm) denotes the convex polytope 

Nn~umH_. Once Hm+l n cony(N ' )  is found, H ' + I  n IDk(N')l can be found by a 

geometric search. With this in mind, we maintain, for each hyperplane H in 
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N - N,., a conflict list of l-faces of conv(N.,) that it intersects and, for each 1-face 

of conv(N,.), a conflict list of  the hyperplanes in N - N,. that  it intersects. We also 

associate with every face in Dk(N,,,) its current level. 

Let us now sketch how we can get Dk(N,,,+ 1) from Dk(N,,,), when a randomly  

chosen hyperplane H = H.,+I  is added. 

Split Dk(Nm). Starting with the 1-faces of conv(N,,)  that  conflict with H,,+ x, and 

using a certain geometric search, that  is discussed below, we "split" the complex 

Dk(N,. + 1) along H,, + 1- This also entails splitting the appropriate  conflict lists, and 

formation of the new conflict lists for the newly created 1-faces. However,  some care 

needs to be exercised in the above geometric search. Consider a 2-face f ~ Dk(N,, ) 

that is split by H = H,,+ 1 and let e = f c~ H. Suppose we already know one 

endpoint  of e. In that case, we can find the second endpoint  of e by visiting only 

those vertices of  f that lie in H + .  In this way, we ensure, while splitting Dk(N,, ), 

that only those vertices that are adjacent to the upper 2-zones of  Dk(N,,) with 

respect to H are visited. This, as we shall see later, is very crucial. Similarly, the 

conflict list of e is formed by searching the conflict lists of only those 1-faces of f 

that intersect H +. This implies that a conflict that  is visited during this step is either 

going to be destroyed, when the addit ion of H is over, or belongs to a 1-face of 

Dk(N,, ) that  intersects H. 

Finally, we also need to form, while splitting Dk(Nm), new 2-faces that corre- 

spond to the intersection of H with the 3-faces of Ck(N,,). Though  we do not  

explicitly maintain the 3-faces of  Ck(Nm), this step is easily carried out as we already 

know the 1-faces adjacent to these new 2-faces. This is because these 1-faces are 

formed by intersecting H with the 2-faces of  Dk(Nm). 

Mountain Climbing. In this step we remove those faces whose level has exceeded 

k - 1. If m < k + d - 1, this step is redundant.  Otherwise it is easy to see that all 

these faces, that  need to be removed, are contained in ~k(N) c~ H +. Thus it suffices 

to visit all faces contained in ~k(Nr,) C~ H + by a geometric (breadth first) search 

starting at ~k(Nr,) C~ H. (A special case arises when ~k(N,,) c~ H is empty. In this 

case we visit all faces in ~k(Nm).) When mounta in  climbing is over, we have 

Dk(Nr,+ 1), and we are ready to add the next hyperplane. 

This finishes the description of the algorithm. 

The expected running time of the above algori thm satisfies bounds  given in 

Theorem 4 and Corol lary  2. We now show how Theorem 4 can be proved using the 

results regarding the probabilistic geometric game (Theorem 5) and the complexity 

of  zones (Theorem 6). Theorem 6 is proved in Section 5. In the present case of  

Voronoi  diagrams, we only need the special case ! = 0 of Theorem 5, and this has 

already been proved in [19]. Theorem 5, in general, is proved in Section 4. 

Let us say that a vertex v in the ar rangement  A(N) is created during the 

algori thm if it occurs as a vertex of  some complex Dk(N,.) in the course of the 

algorithm. Fix a vertex v ~ A(N). Let T be the set of  d hyperplanes in N containing 

v and let S be the set of  s hyperplanes in the arrangement  below v. If  s < k - 1, v is 

always created, i.e., with probabili ty 1, in the course of the algorithm, Otherwise it 

is easy to see that v is created in the course of  the algori thm iff the first (k - 1 + d) 
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elements chosen from S w T contain all elements of T. This happens with 

probability 

( s  )/( s+, ) + + 

Summing over all vertices in A(N), it follows that the expected number of vertices 

created during the algorithm is O(Ok(d, n)). This gives us O(1) credit for each vertex 

of the arrangement A(N)  created during the algorithm. 

Let us now estimate the cost of splitting the complex Dk(N,,,) along H = Hm + 1, 

ignoring, for a moment,  the cost of updating the conflict lists. We already have 

enough credits to cover creation of the vertices in H n Dk(N,,,). So we only need to 

worry about  the vertices adjacent to the upper 2-zones of Dk(N,,) with respect to H 

that we visited during the geometric search. By Theorem 6, the cost of this 

operation is proportional  to com,~(H, Ck(N,,,)) = com(8(H + ~ l f k ( N m ) l )  , Ck(Nm) ). 

Note that 8(H + c~ Ifk(Nr,,)]) is precisely (Y'k(N,,) n H + ) u (H n Ck(N,,,)). The cost 

com(H, Ck(N,,,)) is covered by charging O(I)  cost to each new vertex 

v ~ H n Ck(Nr,,) created in this step. The other cost is equally distributed among all 

vertices in ..~k(Nm) n H+. But notice that each vertex charged in this fashion has 

level at least k - d. When the addition of H is over, this vertex is either destroyed 

because its level exceeded k - 1, or its level has increased by one. It follows that 

each created vertex can be charged in this fashion only d times. As we already have 

O(1) credit for each vertex created in the course of the algorithm, we have covered 

the cost of splitting Dk(N,,). In addition, this also covers the cost of mountain 

climbing, because all vertices visited in mountain climbing belong to 

(&#k(N,,,) n n + ) u ( n m  Ck(Nr,,) ). 

It remains to estimate the cost of updating the conflict information. Ignoring a 

cost proport ional  to the number of destroyed conflicts, as we surely can, the 

remaining cost is proportional  to the total size of the conflict lists of those 1-faces of 

conv(Nm) that intersect H = Hm+ 1. Hence, it suffices to charge O(1) cost to each 

vertex v of the arrangement A(N),  that occurs in the form of a conflict with some 1- 

face, say g ~ conv(Nm). For a fixed vertex v ~ A(N) ,  we now estimate the total 

expected cost that is charged to it in this fashion. Note  that when the vertex v is 

charged in this fashion, some set T of d - 1 hyperplanes through v, that contains a 

1-face such as g above, has already been added in the algorithm. If S is the set of s 

hyperplanes below v, it is also clear that none of the hyperplanes in S could have 

been added so far, as v lies on conv(N~). Now we are ready to apply Theorem 5. 

Note that an observer situated at v can clearly "observe"  the hyperplane H being 

added along the line of sight determined by the intersection of the hyperplanes in T, 

because there is no other hyperplane, added so far, which intersects the line of sight 

between v and H. Let M 1 be the set of hyperplanes in N which transversally 

intersect this line of sight on one side of v and let M 2 be the set of hyperplanes in N 

which transversally intersect this line of sight on the other side of v. Theorem 5 is 

clearly applicable to the sets T, S, and M1 (and similarly to the sets T, S, and M2), 

with l = 0 in that theorem. Corresponding to the d choices of the set of d - 1 

hyperplanes through v, we have d different lines of sight at v. If we apply Theorem 5 
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for every line of sight through v, it follows that the expected cost charged to a fixed 

vertex v e A(N)  in this particular step of the algori thm is O(1/[s  + d -  1]d_l), 

where s = ISI is the level of v. Summing over all vertices of the arrangement,  it 

follows that the expected value of the total work done in updat ing the conflict lists 

is O(O(d - 1, n)). 

This proves Theorem 4. [ ]  

In the next two sections we prove the results regarding probabilistic games and 

zone complexity that we used in the above analysis. 

4. Probabilistic Games 

Let us now go back to the probabilistic game considered in Section 1.4. We first 

prove a very simple result regarding this game; compare  it with Theorem 5. 

Lemma 4. I l l  ~_ s, the probability that the observer will ever become active in the 

game is [I + t]J[s  + t],. 

Proof. The observer will become active iff the first (l + t) elements chosen from 

S w T contain all elements of T. This happens with probabili ty 

E,+tl 

k l + [s + t], 
[ ]  

Now we prove Theorem 5. 

Proof of  Theorem 5. It is easy to see that, to calculate E(O), we can confine 

ourselves to the set M w S w T. (Formally,  this is a consequence of the principle of  

restriction [18].) Hence, for the purpose of this proof, we can assume that the 

universe N is replaced by the universe M w S u T. We often use in this and the 

latter proofs the following well-known identity from the calculus of  finite differ- 

ences: 

1 1 
~=1 [x + k]h+ 1 -- h[k]h for h > O. (10) 

We consider two special cases first. 

Case 1 .' M and S A re Disjoint. Define a r andom variable Os,, i as follows (0 < s' < l): 

Os, i = 1 if the ith element in M was observed by the observer when all elements 

of T and exactls s' elements of S were chosen. 

Os, g = 0, otherwise. 
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Also, E(Os,.~) is precisely the probabi l i ty  that  the Notice that  O = ~7'= 1 ~ , =  o 0~, i. 

ith element in M was observed when all elements in T and exactly s' elements in S 

were chosen, Denote  the ith element in M by m~, and let M~ be the subset of M 

consisting of all elements in M less than or equal  to m~. If Mic~ T ~ ~Z~, 

E(Os,.i) = 0. Otherwise,  O~, i = 1 iff: 

1. The  first s ' +  t elements chosen from M~ w S w T contain all elements 

in T and s' elements in S. The probabi l i ty  of this happening is (~,)(t + s')!/ 

[i + t + sl+~,.  

2. The (s' + t + 1)st element chosen from Mi w S w T is ml. The probabi l i ty  of 

this happening  is 1/(i + t + s - (t + s')). 

Thus  

(;),,+s,, 
E(O~,,i) = when M i c~ T = (~. 

[-i + t + s],+~,+x 

Hence  we conclude that, in general, 

(11) E(O~"i) <- [i + t + s],+~,+l 

Let Os, be the number  of elements in M observed by the observer  when all elements 

in T were chosen and exactly s' elements in S were chosen. Then Os, = ~m= 10~,  ~. 

Case t > 1. 

E(Os,) = i=1 E ( O s " i )  <- ( t  + s')! i=1 [i + t + s]t+s,+l 

(:) + ,) 
(t + s')! 1 t -- 1 

[ t + s ] t + s , ( t + s ' ) t ( s + t ) t  

E ( o )  _< - -  

0 = ~ l ,=  o Os', hence 

1 + t )  

Case t = O. It  follows f rom (11) that  

E(Os, i ) < ( s )  s'! 
- s' [ i + s ] s , + l "  
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For s' >_ 1 : 

(:)s, 
i=z" k s ' / z " i  i= 1 [i + s],,+ 1 s'[s]~, s'" 

l Hence ~s,= 1 E(O,,) _< ~,,= t (1/s') ~ 7 + ln(1 + l), where 7 is the Euler's constant. 
For s' = 0: 

1 

E(Oo.,) <_ (s~  i~)" 

Hence 

E(O~ = E(O~ <- (s-+ i) <- In 1 + + 7 
i = l  i = 1  

_<ln(m+ 1 ) + 7  

if s > 0 ,  

if s = 0 .  

As E(O) = (~t~,= 1 E(Os,)) + E(Oo), it follows that 

E(O)<ln(rn+ 1 ) + 7  ( i f s = 0 ,  t = 0 )  

< l n ( 1  + m ) +  7 ( i fs>O, a n d l = O , t = O )  

<In(1 + / ,  + ln(1 + m ) + 2 7  ( i f s > O , l > O , t = O ) .  

Case 2: M c_ S. We define Os,,i as before. Then E(O,,,i)= 0 if Mi n T ~ ~ .  
Otherwise E(O~,,3 is the probability that the ith element ml in M was observed 
when all elements in T and exactly s' elements in S were chosen. The event in 

question happens when: 

1. The first s' + t element chosen from S u T contain s' elements from the set 
S -  Mi and all t elements from T. The probability of this happening is 

( s - - i )  ( t + s ' ) ' / [ t + s ] ' + S ' ' s '  

2. The (s' + t + 1)th element chosen is mi. The probability of this happening is 

1/(t + s -  (t + s')). 

Hence, in general, 

s s' i) (t + s')! 
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Summing  over  i, we get 
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E(O,,) _< 

_< 

(s,) 
Is +t] t+, ,+,  ~'['=' S' <-- Is + t I +,,+, s' 

Is 

t + S') 

( s ) .  : , ( , ) .  
+t],+,,+l s ' + l  s ' + l  7 

t 

,(;+;) 

1 

- s ' + l  

( i f t  > I) 

(if t = 0). 

Summing  over  s' we get 

t + / + l )  

1 t 
E(O) <_ (,;s) (for t > 1) 

< ln(1 + I) + Y (if t = 0). 

Case 3: The General Case. This easily follows f rom the first two cases as follows. Let 

M '  = M - S and M" = M r S. It  is easy to see that  the number  of elements from 

M'  observed by o is bounded  by the bounds  obta ined by applying Case 1 to the set 

M'. Similarly, the number  of elements in M" is bounded  by the bounds  given in 

Case 2. This proves  the general case. 

We now sketch briefly how the bound  on E(W) is proved;  the bound  on E(V) is 

obta ined similarly and hence its p roof  is omitted.  As an example,  we only consider 

the case when M and S are disjoint, and t > 2. The  case when M c S and also the 

general case, which a combina t ion  of the two, are omitted.  

Define a r a n d o m  variable Ws,,i(0 < s' < l) as W~,,i = i0r where O~,i is the 

r a n d o m  variable defined above. It  is then clear that  W =  ~ ,  ~ i  W,,~. It  follows 

f rom the bound  for E(Os, ,~) that  

(') i (t + s')! 
S ~ 

E(Ws"i) < [i + t + s-[t+~,+l" 
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Summing over i, we get 

i = 1  

< t 
- -  S r 

+ s')! 
i=1 [i + t + S]t+s,+l 

+ s ' ) !  - - 

i : l [ i + t + s - -  1]t+s, 

t + s  

[i + t + s],+~,+l 

(:,) ' 
= ( t  + s ' ) !  s '  1 ] , + ~ , - 1  t +  - l ) [ t + s -  

s' ( t + s ' ) ! [ t + s  1],+~,_ 1 t + s ' - - I  

( s ) ( t + s ' ) ,  1 

C § 
1 t - - 2  

,,C+,, ) , ,  

- (t  + s ' ) ( t  + s ] ,+ , i  

,) 
t + S '  

Hence summing over s' = 0 to l we conclude that  

E ( W )  <_ - [] 

( ) t - 1  f s + t - l ' ~  t - 1  s + t - 1  

k t - 1  

In the above game, the line of sight of the observer was "straight ."  It  is also 

possible to let the line of sight "bend,"  in a bounded  number  of  ways and a 

bounded number  of times, at obstacles; here the obstacles are geometric elements, 

such as hyperplanes and polytopes. We now see how such a generalization is 

obtained. For  the sake of  simplicity, we confine ourselves to the case when the 

obstacles are hyperplanes. Proofs for the other cases, when the obstacles are 

polytopes and so on, are verbatim the same, after some initial technicalities. 

Assume that we are given a set N of  hyperplanes in R d. Let c be some constant.  

With every point  in R a we associate a fixed ( <  c) set valid directions of sight. For  

example, the following is one way of doing this. For  any point p, let Np be the set of 

hyperplanes in N passing through p. In addition, let Hp be the hyperplane 

x a = Xd-COord(p ) passing through p. Let N~, = Np w {Hp}. We stipulate that  a valid 

direction of sight is contained in the line of intersection of some d - 1 hyperplanes 
t t in Np. If Np has cardinality < d - 1, the set of  valid directions at p is empty. The 

idea in associating valid directions of  sight with a point  in R d is that  if we position 

ourselves at that  point, we are allowed to "see" only along one of  the valid 
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directions of sight. Thus  if we are located at p, we can see along a line of intersection 

of d - 1  hyperplanes  in N, or  along a "hor izon ta l "  (i.e., parallel to the Xd 

hyperplane)  line contained in a two-dimensional  plane formed by the intersection 

of d - 2 hyperplanes  in N. The rule given above  is the one that  is used in the 

analysis of the a lgori thm in Section 6 for construct ing levels. However ,  it is just one 

way of associating valid directions of sight with points in R a. We can come up with 

many  others;  the only requirement  is that  the number  of valid directions at any 

point  be bounded.  Also the rule must  be fixed before the game begins. 

Let us number  arbitrarily,  once and for all, the valid directions of sight at 

each point  p E R d, by distinct numbers  between 0 and c. A simple sequence 

= (Po . . . . .  Pa) of points  in R a is called a valid pa th  if: 

1. Fo r  every i < a, Pi, P~+ 1 is a valid direction of sight at pi; let d~ be the number  

assigned to this direction. 

2. Pi+l is the intersection of some hyperplane  H~+I e N with the line p~, p~+ 1. 

We say that  ~ originates at Po, ends at Pa, and has signature tr = (d o . . . . .  da_ 1). 

Both ( and tr are said to have length a. We also say that  the sequence H1 . . . . .  Ha 

defines the path  ( originating at Po- Indeed, if we know the sequence H1 . . . . .  H a, the 

initial point  Po, and a, then the path  (, if it exists, is uniquely defined. A length 

vector  i, associated with (, is defined to be the sequence (i o . . . . .  ia-1), where i,, 

0 < r < a, is the number  of hyperplanes  in N intersecting the (half open)  segment 

(P,, P,+ 1] transversally (i.e., in one point),  but  not  the pa th  (Po . . . . .  p,). A valid path  

is uniquely specified by its signature and the length vector. However ,  there need 

not  exist a valid path  for every choice of  a s ignature and a length vector. 

Now let us play the game of successively choosing the hyperplanes  in N in a 

r andom order  without  replacement.  Consider  any given instant in the game when a 

subset R ~ N of hyperplanes  has been chosen. We make  following definitions with 

respect to this instant. 

Given any two points  p, q ~ R d, we say that  q is visible from p (at this instant)  if: 

1. N o  hyperplane  in R intersects the open interval (p, q) transversally. 

2. (p, q) lies on a valid direction of sight at p. 

A valid pa th  ( = (Po . . . . .  Pa) is said to be visible at this instant  ifpl + 1 is visible from 

pi, for 0 < i < a, and all hyperplanes  H1 . . . . .  Ha defining ~ are chosen. We say that,  

at  this instant, Pa is at a visible distance a from Po. At any given instant, there can 

exist m a n y  visible paths,  of different lengths, which originate at a point  p and end at 

a point  q. We say that  a point  q is within a visibility distance a f rom a point  p, at 

some given instant, if there exists, at tha t  momen t ,  a visible pa th  of length < a 

which originates at p and ends at q. Given some hyperplane  H in R, we say that  H is 

within a visibility distance a f rom a point  p, at some instant, if there exists, at  that  

instant, a visible pa th  of  length < a originating at p and ending on H. 

Fix an integer I for the rest of  this section. Also fix a point  o in R a and place an 

observer  at o. Let  T and  S be some disjoint subsets of  N. Let  t = I TI and s = ISI. 

The  observer  at o is said to be active at  any given instant  of  the game if (1) all 

elements of  T and (2) at  the mos t  I elements of  S have been chosen at that  instant. 

The  observer  becomes inactive the m o m e n t  the second condi t ion is violated. For  
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example, if o is a point of intersection of hyperplanes HI  . . . . .  Hd in N, one possible 

choice of  T and S is the following: Let T = {HI . . . . .  Ha} and let S be the set of  

hyperplanes below o in the xd direction. Thus the point  o will be active in the game 

when all "defining" hyperplanes H1 . . . . .  Hd have been chosen and the "cur ren t"  

level of p is < I. This is the choice that is used in the analysis of  the algori thm in 

Section 6. But many other choices are possible. We say that  a hyperplane H (when 

it was chosen) was observed by o from a visibility distance < a, if there existed a 

visible path of  length < a originating at o, and ending on H, at the moment  H was 

chosen. 

Fix a constant  a, and let Oa be the number  of hyperplanes that were observed by 

o, in his active phase, from a visibility distance < a. 

We say that, at a given moment  in the game, a hyperplane H, not  yet chosen, lies 

within a visibility distance a from o, if it transversally intersects some visible path of  

length < a originating at o, at that moment .  Let Va be the number  of  remaining 

hyperplanes within a visibility distance a from o, when the observer at o became 

active. If the observer at o never became active in the game, V a is defined to be zero. 

Finally, let us define one more  r andom variable Wa as follows. Every time o 

observes a newly chosen hyperplane H from a visibility distance of length < a, we 

charge o a cost equal to the number  of the remaining hyperplanes that transversally 

intersect the corresponding visible path of  length < a that starts at o and ends on 

H. Let Wa be the total cost charged to o in this fashion. 
( 

Theorem 10. 

E(O a) : 0 ~ [ / §  !]-~'~ ( f o r t  > 1) 
\ [s + t ] , /  

= O(1 + ln(m + 1) + ln(1 + l)) (for s = O, t = O) 

(for s > O, t = 0), 

= O(1 + ln(m + l) + ln(1 + l)) (for s = O, t = 1) 

l f  s < l, l has to be replaced by s in the above estimates. 

Note  that the theorem is an immediate consequence of Theorem 5, when a = 1 : 

apply Theorem 5, for every valid direction, and, for a fixed direction of  sight at o, let 

M, in Theorem 5, be the set of hyperplanes transversally intersecting that  direction 

of  sight. 
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Proof. The proof  of  this theorem is an inductive generalization of the proof  of 

Theorem 5. We demonstra te  this inductive process only for the r andom variable V, 

as we have not treated V in the previous proof  of Theorem 5. We only consider the 

case t >_ 2. 

All paths in the proof  are assumed to originate at o, and the observer is assumed 

to be located at o. 

Consider a fixed signature o of  length < a. Note  that, at any given instant of the 

game, if there exists a visible path of signature tr, it is unique. Define Vo to be the 

number  of  remaining hyperplanes transversally intersecting a visible path ( of  

signature a, when the observer at o becomes active. If  a visible path of signature o 

did not exist when the observer became active, Vo is defined to be zero. Similarly, if 

the observer did not  become active th roughout  the game, Vo is defined to be zero. 

As there are only a bounded  number  of  signatures of length < a, it sufficies to show 

that  

+ i ~  1],_ - 

So fix a signature tr in the rest of  the proof. Let b < a be the length of a. 

Case 1 : M and S Disjoint. For  a given length vector i, and s' < l, define a r andom 

variable V ~ i.s, as follows: If  there does not  exist a valid path of signature a and 

length vector i, V ~ is defined to be zero. Otherwise, let ( = (a o . . . .  ab) be the i ,S'  

unique such path. Let H1 . . . . .  H b be the sequence of  hyperplanes defining (. Then 

V~, s, = 1, iff: 

1. At the instant the observer at the origin o became active, exactly s' elements 

from S, and all elements f rom T were chosen. 

2. The path (a o . . . . .  ab- 1) is visible (i.e., for 0 < i < b - 1, ai+ 1 is visible from ai, 

and Hi + 1 is chosen) and a b is visible from ab- 1; but H b should not  have been 

chosen before this instant. 

Vies, = 0, otherwise. 

It  is clear that V ~ = ~ i  ~ , '  V ol,,,. Let M~ be the set of hyperplanes transversally 

intersecting the path (. If  M~ ~ T r ~ ,  V ~ = 0. Otherwise V" = 1 i f f among  the | ,S '  I,S' 

first (s' + t - 1 + b - 1) entries chosen from the set Ml w S w T: 

1. Some t - I elements from T and s' elements of S are chosen. 

2. The first b - 1 hyperplanes, H1 . . . . .  Hb-  1, defining the path ( are chosen. 

3. The (s' + t + b - 1)th element chosen from M~ u S u T is the remaining 

element of T. 

The probabil i ty of  this happening is 

t ( ~ , ) ( t + s ' + b - 2 ) !  

I t  -~- S + i 0 + "'" + ib_l]s ,+t+b_ 1" 
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Hence 

E(vL,) _< 

S) Sr t (t + + b - 2)! 
S' 

It + s + i o + -.. + ib-x]~'+t+b-X 

Summing over i we get 

E(V~, , , )< t  ( t +  + b - 2 ) !  
t -- s' [ t  + s + i o + - .-  + i b - 1 ] ~ ' + t + b - 1  

where in the last summat ion  the entries o f i  range from 1 to oe. This last summat ion 
can be evaluated by iteratively applying (10). Thus 

i E(V~'~')< t ( ] , ) ( t + s ' + b - 2 ) !  
( s ' + t + b - 2 ) . . . ( s ' + t -  l ) [ t + s ] , , + , _ l  

, ( : ?  + s ( ) C  ) s' + t - 2  + t  2 

s - s ' + l  t - 2  t - 2  
- <2 

C +'), C+ 1) [t + s],+s,-1 ( t -  1) 

Summing over s' from 0 to 1 we conclude that 

~ ( s ' + t - - 2 )  ( / + t - l )  

~'=Ok t - - 2  \ t - - 1  
E(V~ < 2 - 2 (  ) 

- ( s + t - 1 ) t _ l  s + t - 1  " t _ l  

Case 2." M c__ S. Define V~,s, as before. If Mt n T # ~Z~ or if ( does not  exist, 
E(V~,s,) = 0. Otherwise the event under consideration occurs iff: 

1. The first s' + t - 1 elements from S u T contain some t - 1 elements from T, 

the first b -  1 hyperplanes, H1 . . . . .  Hb_ 1, defining ~, and the remaining 

s' - (b - I) elements belong to S. 
2. The (s' + t)th element chosen from S w T is the remaining element from T. 

The probabil i ty of this happening is 

t ( s  - io . . . . .  ib-l"~(. + s" 
s ' - ( b -  1) ,].t - 1)! 

Is + t]t+s' 
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Hence 

s -- i o . . . . .  it,-t) s' 
E(V~,,,) < t s' -- (b - 1) (t + - 1)!/[s + t],+,,. 

Summing  over  the i vector, and using the inequality 

~ ( s - - i o  . . . . .  i b - , ~ <  s 

s ' - ( b - 1 )  J (s'  + l ) '  

where the entries of  the i vector  range from 1 upward,  it follows that  

t (t + - 1)! 
s ' +  1 

E(v~,) = Y~ E(v~,~,) <_ 
i Is + t],+~, 

( ) ( s  ) s ' + t  1 + t - - 1  

(s - s') t - -  2 t -- 2 
< 2  ,,1, C+,,),, 

Summing  over  s', we get 

E ( V  o) = L e ( v ~ , )  _< 2 - 2 

The General Case. This easily follows by combining  the first two cases. 

K. Mulmuley 

[]  

5. Complexity of Zones 

In this section we prove  T h e o r e m  6. We follow the same terminology as in Section 

1.5. O u r  p roof  is a general izat ion of the p roof  in [12];  familiarity with [12] is 

assumed. We first prove  the theorem fo r j  = d. We call this a full-dimensional case. 

Let us make  a few definitions. A couple is defined to be a pair  (f, c) of  faces, 

where c is a d-cell in �9 and f is adjacent  to it; as ~ is closed, it follows that  f too 

belongs to (I). A couple (f, c) is said to be active, if c intersects H. We say that  a 

couple (f,  c) is incident to a vertex v ~ ~,  if v is incident to f 

Given a vertex v in A(S), a sector at v is defined to be a poly tope  bounded  by the 

d hyperplanes  in S passing th rough  v. There  are exactly 2 a sectors si tuated at any 

vertex v E A(S). We say that  a sector  faces upward  (with respect to H)  if it is 

conta ined in H + .  
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We prove the theorem by sweeping the hyperplane H vertically. More precisely, 

let H(0), the sweep plane at " t ime" 0, be the hyperplane H, and let H(t), the sweep- 

plane time t, be the hyperplane obtained by translating H in the x d direction by a 

distance t. We denote by A(S, t) the complex obtained by intersecting A(S) with the 

open region between H(0) and H(t). At any time t, we say that a couple (f, c) 

intersects H(t) if f intersects H(t). Let (f, c) be a couple that intersects H(t). We 

make the following definitions: 

1. We say that (f, c) is active at time t if c intersects H. 

2. We say that (f, c) is dead at time t if there is an upward facing sector D 

containing c situated at a vertex v ~ A(S, t), such that the j-face f is contained 

in the intersection of some d - j  hyperplanes bounding D. Note that the 

vertex v need not belong to ~;  this is crucial to the proof. 

3. Otherwise (f, c) is said to be sleeping at time t. 

Let n,(t), na(t) be the number of sleeping and active couples intersecting H(t), 

respectively. Let n(t) be the number vertices in A(S, t) adjacent to the upper d-zones 

with respect to @. Define the potential at time t by ~(t) = ns(t) + 2na(t ) + n(t). It is 

clear that ~(t) > 0 and that ~,(t) can change only at a vertex in O. 

Let us first investigate what happens when the sweep plane passes through a 

vertex v contained in the interior of H+ n Ir at time t. This means v ~ H(t). A 
couple (f, c) incident at v is said to be incoming if f E H(t)_. It is said to be 

outgoing if f ~ H(t)+. It is shown in [12] that the set of incoming and outgoing 

couples at v can be partitioned into a collection of sets with the following property. 

Each set contains precisely two incoming couples and precisely two outgoing 

couples. If the incoming couples in the set are Pl, P2, and the outgoing couples are 

q 1, qz, exactly one of the following holds (the states of p 1, P2 refer to their states just 

before the time t, and the states of ql, q2 refer to their states immediately after the 

time t): 

1. p~ active, P2 sleeping or active, ql active, q2 dead. 

2. Pl sleeping, P2 sleeping, ql sleeping, q2 dead. 

3. pa dead, P2 active or sleeping, ql sleeping, q2 dead. 

4. All couples dead. 

Using the above rules, it is straightforward to verify that the potential cannot 

increase at a vertex contained in the interior of H+ n [r 

Next we examine what happens when the sweep plane passes through a vertex 

that belongs to the boundary of H+ n [~[. But notice that the change in potential 

at any vertex is bounded. Hence, the total change in potential contributed at the 

boundary of H+ n Ir is bounded in magnitude by O(com(t3(H+ n I~1),~)). 

(Note that the operators ~ and dd are one and the same.) 

By the very definition of the potential, it cannot change at a vertex not contained 

in r It follows that ~(oo) < ~(0) + O(com(O(H+ n I~1), ~)). 

But notice that r  O(com(H, ~)) and com,~(H, @ ) <  O(~k(oo)). Also the 

term com(H, ~ )  is taken into account by the term O(com(d(H+ n Ir r as 

n n r ~_ ~(n  + n Ir This proves the theorem for the full-dimensional case. 
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Consider now the case when j r d. Let R be a subset of d - j hyperplanes in S 

and let U R be the j-dimensional linear space obtained by intersecting the hyper- 

planes in R. Let SR be the set ( j - 1 ) - d i m e n s i o n a l  hyperplanes obtained by 

intersecting the hyperplanes in S with U R. Let A(S)R be the arrangement obtained 

by intersecting A(S) with UR. Let @R be a similarly obtained subcomplex of A(S) R. 

Finally, let H R be the (j  - 1)-dimensional hyperplane obtained by intersecting H 

with UR. We can now apply the full-dimensional version of the theorem to bound 

the upper zone complexity of tl)s with respect to H e in U R. Next we sum these 

estimates together. When we sum the estimates, we only need to remember that any 

/-dimensional face of @, i < j, can be contained in only a bounded number of the 

linear varieties UR. [] 

6. An Algorithm for Constructing Levels 

Assume that we are given a set N of n hyperplanes in R a. Unlike in Section 3, this 

time we are not going to assume that all hyperplanes in N bound the convex 

polytope surrounding o. In this section we give an algorithm for constructing levels 

of order 1 to l in such a general arrangement A(N). 

We follow the terminology of Section 3. As in that section, it suffices to construct 

the 2-skeleton Dk(N ). In fact, we construct a complex D~,(N), which is a trapezoidal 

decomposition of D~(N): more precisely, we divide each 2-face f of Dk(N) into 

trapezoids (possibly triangles) by passing through every appropriate vertex v of f a 

"horizontal"  segment which is the intersection of f with the hyperplane xd = 

xd-coord(v). An edge in a complex is called horizontal if it is parallel to the Xd = 0 

plane. 

The basic idea of the new algorithm is same as that in Section 3. Initially, we 

choose a random subset N d = {H 1 . . . . .  Ha} of d hyperplanes from N, and build 

D'k(Nd). Then we add the remaining hyperplanes in a random order to get a 

sequence of complexes D'k(Nd) , D'k(Na+ O, . . . ,  DI,(Nm), D'k(NI+ a) . . . . .  D'k(N,) = 
D'k(N). We also associate with each complex D'k(Nm) a certain conflict information: 

we maintain, for each hyperplane H in N - Nm, a conflict list of 1-faces of D'k(Nm) 

that it intersects and, for each 1-face of Dj,(Nm), a conflict list of the hyperplanes in 

N - Nm that it intersects. In contrast, we only maintained conflicts with the 1-faces 

of conv(Nm) in Section 3. Elements of the above conflict lists are called conflict 

nodes. We also associate with every face in D'~(Nm) its current level. 

Let us now specify in detail how we can get D'E(Nm+a) from D'k(Nm), when a 

randomly chosen hyperplane H = H ,  + 1 is added. 

1. Split the Faces of  D'k(Nm). Using the conflict list of the H, split the l-faces and 

the 2-faces (trapezoids) of D'k(Nm) that H intersects. Some split 1-faces have to be 

removed, causing the adjacent trapezoids to merge. This happens if none of the 0- 

cells adjacent to the split 1-face is a vertex of the arrangement A(N). Get the conflict 

lists for the new split 1-faces by splitting the conflict lists of the original 1-faces. In 

addition to the 1-faces obtained by splitting, we also have new 1-faces which are 

contained in the hyperplane H. The conflict list for each such 1-face f can be found 
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by searching the conflict lists of the other 1-faces adjacent to the trapezoid 

conta in ingf  (None of these other 1-faces are contained in H, so we already have 
conflict lists for them.) 

2. Form New 2-Faces and Their Trapezoid Decompositions. In addition to the 2- 

faces obtained by splitting, there are also new 2-faces formed by the intersection of 

H with the 3-faces in Ck(N,. ). Though none of these 3-faces are maintained, it is 

easy to obtain the new 2-faces as follows. Note that the 1-faces adjacent to these 

faces are the intersection of H with the 2-faces of Ck(Nm) and we already know 

them. So we only need to do a geometric search, starting from these 1-faces, to 

construct the new 2-faces. Let f be one such 2-face. We have to d e c o m p o s e f  into 

trapezoids. This will split the 1-faces adjacent to f ;  we also appropriately split their 

conflict lists. Next we need to form the conflict lists of the horizontal edges of the 
trapezoids. This is done as follows: For each hyperplane H'  that is contained in the 

conflict list of a nonhorizontal edge of some trapezoid within f, we traverse the 

trapezoidal decomposition of f to find out which horizontal edges it intersects. 

When we have done this for every such hyperplane H', we are done. 

3. Mountain Climbing. In this step we remove, just as in Section 3, those faces 
whose levels have exceeded k - 1. 

Now we have D'k(N,,+I), and we are ready to add the next hyperplane. This 

finishes the description of the algorithm. 

Now we prove Theorem 3, which gives a bound on the expected running time of 

the above algorithm. The basic idea in the proof  is the following. Consider the 

complete arrangement A(N) formed by the given set N of hyperplanes. We 

amortize the running time of the algorithm by distributing the cost among the 

vertices of the complete arrangement A(N). For  a given vertex v of A(N), having 

o (Ek  + d Z..._!]d - s 
level r, it turns out that the expected cost charged to v is \ [ r  + d -  1]~_lJ 

if r_> k and 0(1)  if r < k. Summing over all vertices of the arrangement 

A(N), it immediately follows that the expected running time of the algorithm is 

O(Ok(d -- 1, n)). 
For every vertex v of A(N), we need to apply Theorem 10 as follows: let the 

origin in this theorem be the vertex v, let T be the set of d hyperplanes defining v, let 

S be the set of r hyperplanes below v in the arrangement A(N), and finally let I in the 

theorem be k - 1. The idea is that the vertex v will become active in the course of 

the algorithm, i.e., will occur as a 0-cell of some complex D'k(Nm), iff all hyperplanes 

in T and at the most k - 1 hyperplanes in S are chosen. A valid direction of sight at 

any point x in R d is defined as in Section 4: it is either along a line of intersection of 

d -  1 hyperplanes in N (if any) passing through x, or along a horizontal line 

contained in a two-dimensional plane formed by the intersection of some d - 2 

hyperplanes in N passing through x. 

We now estimate the expected cost of the various steps of the algorithm. 

1. Splitting the Trapezoids of D'k(N,.). Consider a 2-face f of D'k(N.,), which is cut 

by the hyperplane H -- H,. + 1- What  we maintain in D'k(N.,) is actually a trapezoi- 

dal decomposition of f. Let a and b be the vertices of the arrangement A(N) created 
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by the intersection of H with the boundary of f It is clear that the whole operation 

of splitting the trapezoidal decomposition of f, together with updating the conflict 

graph, can be done in time proportional to the sum total of the conflict sizes of 

those trapezoids within the trapezoidal decomposition of f, that are intersected by 

H. Let R be one such trapezoid in the decomposition of f There must be two 

vertices of the arrangement A(N), say v and w, that are adjacent to R. It is easy to 

see that any conflict located on the border of R lies on a visible path of length < 2 

from either v or w to the hyperplane H. This allows us to charge the cost of visiting 

this conflict to either v or w, using Theorem 10 for the random variable WE. 

2. Creation of New 2-Faces and Their Trapezoid Decompositions. Consider a new 

2-face 9 created by the intersection of H with a 3-cell of Ck(Nm). When we 
decompose g into trapezoids, we need to spit every edge (u, v) adjacent to g into 

appropriate edges (u, xx), (xl, x2) . . . . .  (x j, v). This entails splitting the conflict list 

of (u,v) appropriately. Let Yl . . . . .  y~ be the vertices of g such that 

(yl,  x~), . . . ,  (y j, x~) are the horizontal edges ending on (u, v). Notice that each 

y,, 1 < r < j, is a newly created vertex of the arrangement A(N), and that each 

conflict node on (u, v) lies within a visibility distance of 2 from every y,. Applying 

Theorem 10 for the random variable V 2, we can charge each y, a cost equal to the 

conflict size of (u, v). This more than covers the cost of splitting the conflict list of 

(u, v). 
We also need to form the conflict lists of the horizontal edges in the trapezoidal 

decomposition of 9. This can be done in time proportional to the number of newly 

created conflicts. But each newly created conflict with a horizontal edge (v, w) lies 

within a visibility distance of 1 from both v and w. As one of the newly created 

vertices v, w belongs to the arrangment A(N), we can cover this cost by applying 

Theorem 10 for the random variable I/1. 

3. Mountian Climbing. This cost is covered very much as in Section 3. 

This proves Theorem 3. [] 

7. A Special Case of Convex Polytopes 

Finally let us make a few remarks regarding the special case k = 1 of the algorithms 

in Sections 3 and 6, which correspond to the construction of a convex polytope. 

Actually, in Section 3 we had made an assumption that all hyperplanes in the input 

bound the convex polytope containing the origin. But it is easy to see that, for this 

special case, the algorithm given there works even in the general situation, when all 

hyperplanes need not bound the convex polytope containing the origin. In this way 

we obtain two algorithms for constructing convex polytopes. The expected running 

time of both these algorithms is O(O(d - 1, n)). 

The algorithm of Section 3, for this case, namely for k = 1, is very similar to the 

algorithm in [8]. One difference, however, is the definition of a conflict. By our 

definition, a 1-cell f conflicts with the hyperplane H if f intersects H. Whereas, 

according to [8], f conflicts with H if f intersects H +. Our 0-series bound can be 

shown to apply to the algorithm in [8], too. However, because of the efficiency 
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considerat ions ,  only our  definit ion of  a conflict works  when k is higher. C la rkson  

and Shor  showed in I-8] how their  a lgor i thm for d = 3 can be modified,  so as to 

make the space requi rement  of the a lgor i thm O(n). They accompl ish  this by 

maintaining,  for every unadded  hyperp lane  P, jus t  one conflict node. Every t ime a 

conflict node cor respond ing  to P is des t royed dur ing  the add i t ion  of some other  

hyperplane,  they have to relocate this conflict to an edge which is not  destroyed.  

We can do a similar  thing, but  we have to be more  careful in higher  dimensions.  

We, in fact, prove a general  theorem for every dimension.  We prove that  the 

s torage requi rement  of the convex po ly tope  a lgor i thm of Section 3 can be b rought  

down to O(O(d, n)). When  d = 2, 3, then O(d, n) = O(n), as to be expected. As noted  

above,  at any stage of  the a lgor i thm we store only one conflict  for every unadded  

hyperplane.  Cons ider  the add i t ion  of a hyperp lane  H = H,, + 1. Assume that  we are 

going to des t roy  in this add i t ion  a conflict of a hyperp lane  P not  yet added.  We 

now do a search a long P n H+ until we cross H and find the first edge in 

conv(N, ,  + ~) that  P intersects. In this search, however,  we have to visit all vertices of 

the 2-faces intersect ing P n H +. We cannot  afford to do this. We  can get a round  

this difficulty by decompos ing  the 2-faces of conv(Nm) n H + into t rapezoids  before 

carrying out  the movement  of the conflicts. This in t roduces  a new difficulty, 

because we visit all hor izonta l  edges intersect ing P n H+ when we relocate  a 

conflict of the hyperp lane  P. In any case, it is easy to see that  the running  t ime of 

this a lgor i thm is no more,  up to a cons tant  factor, than  the running  time of  the 

a lgor i thm in Section 6, for k = 1. And, of course, the a lgor i thm in Section 6, which 

mainta ins  t r apezo ida l  decompos i t ions  of the 2-faces in DI(N, ,  ) = conv(N,,) ,  also 

takes O(O(d - 1, n)) time. In this fashion we can br ing down the s torage require- 

ment  in general,  wi thout  increasing the expected running  time. 

In the same fashion, the space requirement  of the Voronoi  d i ag ram a lgor i thm in 

Section 3 can be b rough t  down to O(Ok(d, n)). 
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Note added in proof The proof of  Theorem 6 in Section 5 has an error. A correct 

definition of the potential function is: O(t) = n'(t) + n(t), where n'(t) = n.,(t) + na(t ) 

is the number of nondead couples intersecting H(t). We only need to see what 

happens when H(t) passes through a vertex v belonging to the interior of H+ ~ h@], 

the rest of the proof being essentially the same. If v is not adjacent to a d-cell in @ 

that intersects H, then n(t) does not change and n'(t) can only decrease (because 

death is irreversible [12]). If v is adjacent to a d-cell in @ that intersects H, then we 

distinguish between two cases. We call v trivial if it is the top vertex of some cell c of 

@ intersecting H; this means that H(t) becomes tangential to c at v. The number of 

such trivial vertices is O(com(H,  @)). Thus the total increase in q~(t) (if any) at 

trivial vertices is O(com(H,  @)). If v is nontrivial, then n(t) increases by one at v. To 

show that O(t) does not increase we must show that n'(t) decreases by at least one. 

But this follows because in this case there is at least one active incoming couple at v 

which comes out as a dead outgoing couple. (The dead incoming couples come out 

as dead outgoing couples.) 


