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Abstract. We consider the problem of bounding the complexity of thekth level in an
arrangement ofn curves or surfaces, a problem dual to, and an extension of, the well-known
k-set problem. Among other results, we prove a new bound,O(nk5/3), on the complexity
of the kth level in an arrangement ofn planes inR3, or on the number ofk-sets in a set
of n points in three dimensions, and we show that the complexity of thekth level in an
arrangement ofn line segments in the plane isO(n

√
kα(n/k)), and that the complexity of

thekth level in an arrangement ofn triangles in 3-space isO(n2k5/6α(n/k)).
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Fig. 1. The third level in an arrangement of lines. The vertices ofV2 are indicated by empty circles, and the
vertices ofV3 by black circles.

1. Introduction

Background

Thek-set problemis one of the most challenging open problems in combinatorial ge-
ometry. The simplest variant of the problem is: Given a setSof n points in the plane in
general position, and a parameter 0≤ k ≤ n−2, what is the maximum possible number
of lines that pass through a pair of points ofS and have exactlyk points ofS in one of
the open half-planes that they define?1 In a dual setting, we are given a setL of n lines
in the plane in general position, and want to bound the maximum possible number of
verticesv of the arrangementA(L), so that exactlyk lines pass belowv. We denote this
set of vertices byVk. Thekth levelof the arrangement is defined to be the closure of the
set of points that lie on the lines and have exactlyk lines below them. The set of vertices
of this level isVk ∪ Vk−1. See Fig. 1 for an illustration.

Thek-set problem was first studied about 1970 by Erd˝os et al. [14] and Lov´asz [22].
These papers have established an upper boundO(n

√
k) and a lower boundÄ(n logk)

on the desired quantity, fork > 0, leaving a fairly big gap. The upper bound was slightly
improved toO(n

√
k/ log∗ k) by Pach et al. [25]. After the original submission of this

paper, significant progress has been made by Dey [8], who improved the upper bound to
O(nk1/3), for k > 0. Dey’s proof is based on some of the ideas presented in this paper.

In the dual setting, the problem can be generalized in an obvious manner: In the plane,
we are given a collection6 of n x-monotone curves, each being the graph of a continuous
totally or partially defined function, and a parameter 0≤ k < n, and wish to bound the
complexity(i.e., the number of vertices) of thekth level in the arrangementA(6), defined
exactly as in the case of lines. In this more general setting only two results are known:
A recent seemingly weak, but elegant analysis by Tamaki and Tokuyama [28] yields the
boundO(n23/12) on the complexity of a level in an arrangement ofn pseudoparabolas,
which are graphs of total functions, each pair of which intersect at most twice. We also
mention the case ofpseudolines, which in this context are graphs of continuous totally

1 Actually, thek-set problem seeks bounds on the number of subsets ofS of sizek that can be separated
from their complements by a line. This quantity and the one defined above are related but not identical (they
do have the same asymptotic worst-case behavior); see [2] for a recent survey that discusses this issue.
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defined functions, each pair of which intersect exactly once, where a slightly larger lower

bound ofÄ(n · 2c
√

logn) for the complexity of the median level is established in [21].
Our proof techniques and upper bounds apply equally well to the case of pseudolines.
Recently, Dey’s techniques have also been extended to the case of pseudolines [9], [29].

Similar extensions apply in higher dimensions. In the primal setting, we are given
a setS of n points inRd in general position, and wish to bound the number of hyper-
planesπ passing throughd of the points such that one of the half-spaces bounded byπ

contains exactlyk points ofS.2 Ford = 3, the best-known upper and lower bounds are,
respectively,O(n8/3) andÄ(n2 logn) [4], [10]. Ford > 3, the best-known upper bound
is O(nd−cd), for some exponentially small but positive constantcd [30]. Note that, in
contrast to the planar case, these bounds depend only onn and not onk.

We can formulate the problem in an arbitrary dimension, in a dual setting: We con-
sider an arrangement of hyperplanes, or, more generally, of surfaces that are graphs of
continuous total or partial functions, and define thekth level of the arrangement exactly
as in the planar case. We now seek bounds on the maximum possible number of vertices
(or of faces of all dimensions) of the level. Except for the case of hyperplanes, which is
equivalent to (a variant of) thek-set problem mentioned in the preceding paragraph, no
nontrivial bounds for the entire range of values ofk are known.

In spite of the sorry state of the problem, even after Dey’s improvements, we can obtain
improved nontrivial bounds whenk is small. The probabilistic analysis of Clarkson and
Shor [7] (see also [26]) yields fairly sharp bounds on the combined complexity of the
first k levels in arrangements. For the case of hyperplanes, for example, the bound is
2(nbd/2ckdd/2e). For sufficiently smallk, this gives a better upper bound on the complexity
of a single level than the general bound stated above.

New Results

In this paper we make several contributions to these problems.
In the preliminary version of this paper [1], we briefly reviewed and simplified some

old proofs of the upper boundO(n
√

k) for the original planark-set problem (or, dually,
for the case of thekth level in an arrangement ofn straight lines in the plane). These
proofs are related to the proof technique of Gusfield [16], [17]. We also gave a simple
proof of the dual version of what is known as the “Lov´asz lemma” that is used to prove
the bound. These techniques apply equally well to arrangements of pseudolines; see,
for example, [15]. For the sake of brevity, this part is not included in this version of the
paper.

We adapt our proof techniques to obtain the boundO(n3/2) on the complexity of
thekth level in an arrangement ofn line segments (or “pseudosegments,” to be defined
below). The same bound also follows from a result by Katoh et al. [20]. We then describe
two simple approaches that reduce the bound toO(n

√
kα(n/k)), whereα(n) is the

inverse Ackermann function.

2 Again, in the actualk-set problem we want to bound the number of subsets of sizek that can be separated
from their complements by a hyperplane; see [2].
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We then proceed to study thek-set problem for higher-dimensional point sets (or,
dually, though not quite equivalently, to bound the complexity of thekth level in a
hyperplane arrangement). In the preliminary version of this paper [1], we have observed
that theO(n8/3)bound inR3 can be immediately brought down toO(n2k2/3), if we exploit
a simple improved version of the Lov´asz lemma in an arbitrary dimension derived in this
paper. However, using Clarkson and Shor’s technique, we improve this bound further to
O(nk5/3), in a manner that makes no use of the improved Lov´asz lemma. Although the
improved lemma has so far no significant applications, we include it here because we
believe it to be of independent interest and an extension of it is needed for the case of
triangles inR3. Over the whole range ofk > 0, theO(nk5/3) bound is stronger than all
previous bounds, including the aforementionedO(nk2) bound on the overall complexity
of the firstk levels. A similar improved bound, of the formO(nbd/2ckdd/2e−cd), can be
obtained in any dimensiond > 3, for the same constantcd > 0 obtained by̌Zivaljević
and Vrećica [30]. Again, this bound is the best-known upper bound, for all values of
k > 0.

Finally, we consider the problem of bounding the complexity of thekth level in an
arrangement ofn triangles in 3-space. We first obtain a nontrivial bound ofO(n17/6) and
then improve it toO(n2k5/6α(n/k)). Our bound strongly depends on an upper bound on
the complexity of a single level in an arrangement of line segments in the plane.

As discussed above, Dey’s results supersede some of the bounds obtained in this
paper, but they do rely on some of the machinery developed here. Some other, more
recent bounds derived here can be further improved by exploiting Dey’s results. We have
written this revised version of our paper in a manner that is mostly independent of Dey’s
progress. Nevertheless, for completeness, we conclude the paper with a brief overview
of the connections between Dey’s results and ours.

2. Arrangements of Segments

2.1. A First Bound

Let Sbe a collection ofn segments in the plane in general position. Fork = 0, . . . ,n−1,
thekth level in the arrangementA(S) of S is defined to be the closure of the set of all
pointsw that lie on segments ofSand are such that the open downward-directed vertical
ray emanating fromw intersects exactlyk segments ofS (i.e., there arek segments ofS
beloww). Unlike the case of lines, a level ofA(S) is not necessarily connected. It may
involve vertical jumps from a segment to the segment lying directly above or below it,
when a new segment starts or ends at a point below the level. Thecomplexityof a level
is the number of vertices ofA(S) that lie on the level plus the number of discontinuities
of the level. Clearly, the number of such discontinuities is at most 2n. We defineVk,
for k = 0, . . . ,n − 2, to be the set of vertices ofA(S) (excluding segment endpoints
and points of discontinuity) that have exactlyk segments passing below them. The set
of vertices of thekth level, excluding segment endpoints and jump discontinuities, is
Vk−1 ∪ Vk. The level bends to the left at vertices ofVk−1 and to the right at vertices of
Vk. See Fig. 2 for an illustration.
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Fig. 2. The second level in an arrangement of segments; here|V1| = 1 and|V2| = 4.

Theorem 2.1. The complexity of any single level in an arrangement of n line segments
in the plane in general position is O(n3/2).

Proof. We first extend to the case of segments the notion ofconcave chains, introduced
in the preliminary version of this paper [1] for arrangements of lines. These chains are
not a new concept, and have been used in various earlier works, such as [16] and [17].
The chains are constructed as follows. We start a new chain:

(i) at the left endpoint of any segment (or, if the segment is a line or a leftward-
directed ray, at a point atx = −∞ on this line or ray) if that point lies below the
kth level; and

(ii) at any point of discontinuity of the level, when the level jumpsup from a segment
si to a segmentsj (the chain is started along the lower segmentsi ).

As x increases, each chainc follows the segment that it lies on, except when one of the
following situations occurs:

(i) c reaches the right endpoint of that segment, and thenc terminates there;
(ii) c follows a segmentsi and reaches a discontinuity of thekth level, where the

level jumpsdownto si , in which casec is terminated at that point; or
(iii) c reaches a vertexv ∈ Vk−1, in which casec bends to the right, and continues

along the other segment incident tov.

We thus get a collection of at most 2n concave chains (if all the segments are lines,
we get exactlyk chains). See Fig. 3 for an illustration in the case of lines.

It is easily seen that the resulting chains satisfy the following properties:

(a) The union of the chains is the closure of the portion of the union of the segments
that lies below thekth level. Except for the vertices ofVk−1, the union of the
chains lies strictly below thekth level.
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Fig. 3. The concave chains associated with the third level in an arrangement of lines. The level itself is drawn
in bold; the dashed paths denote the concave chainsc1, c2, c3; and the circles denote the vertices ofV2.

(b) The chains are vertex-disjoint and have nonoverlapping edges, but they may cross
each other.

(c) All the vertices of the chains lie on the upper envelope of the chains. Indeed, each
chain, except for its vertices, lies fully below thekth level, so any vertex of any
chain lies above all the chains that are not incident to it.

Gusfield’s analysis [16], [17] can be adapted to obtain the following bound, which clearly
implies Theorem 2.1. The same result, for the case of lines, was obtained independently
by Halperin and Sharir [18], who were not aware of Gusfield’s earlier work.

Theorem 2.2. The overall number of vertices of t concave chains that have nonover-
lapping edges(and are thus vertex-disjoint), in an arrangement of n segments in the
plane, is O(n

√
t).

Proof. In the preliminary version of this paper [1], the theorem was proved first for the
case of lines and then extended to the case of segments. Two proofs were given there,
and we give here only one of them; see [1] for more details.

We use the followingpotential functiontechnique, which is a variant of the technique
of [16] and [17]. Let the segments inSbes1, s2, . . . , sn, sorted in the order of decreasing
slopes of their containing lines, and letV denote the set of vertices of the chains (excluding
chain endpoints). For eachx ∈ R, define

8(x) =
∑
{ j | `j lies on one of the chains atx}.

We clearly have8(−∞),8(+∞) = O(nt) (for bounded segments, both quantities are
zero; as a matter of fact,8(x) = O(nt) for eachx). As we sweepA(S) with a vertical
line from left to right, the value of8(x) can change only when either a chain starts or
ends atx, or x equals the abscissavx of a vertexv ∈ V (refer to Figs. 2 or 3). Suppose
thatv ∈ V is the intersection point of segmentssi andsj , with j > i . Then, as easily
checked, the change18(vx) = 8(vx + ε)−8(vx − ε), for a sufficiently smallε > 0,
is j − i > 0. If a chain starts or ends atx, then|18(x)| ≤ n, and there are at most 2t
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Fig. 4. These four arcs do not form an arrangement of pseudosegments.

such points. In other words,∑
v∈V

18(vx) = 8(+∞)−8(−∞)+ O(nt) = O(nt) ,

with each of these changes being a positive integer.
The number of verticesv at which18(vx) >

√
t is no more thanO(n

√
t), as the

sum of18(vx) at these vertices isO(nt), and each term in the sum is larger than
√

t .
The set of verticesv at which the change is at most

√
t consists of at mostn−1 vertices

with corresponding pairs of indices(i, i + 1), n− 2 vertices with pairs(i, i + 2), etc.,
so its total size is at most

(n− 1)+ (n− 2)+ · · · + (n−√t + 1) < n
√

t .

Combining the two estimates, we conclude that|V | = O(n
√

t).

Remark. The proof of Theorem 2.2 (as well as the other proof given in [1]) also
applies to the cases ofpseudolinesandpseudosegments. We have already defined the
notion of a family of pseudolines. A collectionS of n x-monotone connected arcs isa
family of pseudosegmentsif each of them can be extended to anx-monotone connected
unbounded curve, so that this family of curves is a collection of pseudolines. (This is a
much stronger definition than just requiring each pair of pseudosegments to intersect at
most once; see Fig. 4.) We leave it to the reader to verify that the proof goes through in
the case of pseudosegments, with straightforward modifications.

2.2. A k-Sensitive Bound

Theorem 2.1 does not yield an upper bound for thekth level that depends onk. For
k ¿ √n, the knownO(nkα(n/k)) bound for the overall complexity of the firstk
levels [26] is actually smaller than theO(n3/2) bound. We offer two approaches for
deriving betterk-sensitive bounds for thekth level, obtaining the following result:

Theorem 2.3. The complexity of the kth level in an arrangement of n line segments in
the plane in general position is O(n

√
kα(n/k)), for k > 0.
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Proof. The first approach involves a bound on the complexity of thekth level in terms
of the complexity of higher levels. Recall that the complexity of thekth level, which we
will denote byNk, is the total number of its (inner) vertices and discontinuous jumps.

Lemma 2.4. Nk = O(Nj
√

j ) for any k< j ≤ n.

Proof. Divide the plane intoO(Nj /j ) vertical slabs so that each slab containsO( j )
vertices/discontinuities of thej th level. Given one such slabτ , let Sτ be the set of
segments that contain a point on a level≤ j insideτ . Each segments ∈ Sτ is of one of
the following three types:

(i) s is on a level≤ j at the left wall ofτ .
(ii) s is on a level> j at the left wall. In this case,s must cross thej th level within

τ , so it must contain a vertex or a discontinuity on thej th level.
(iii) s does not intersect the left wall ofτ . If the left endpoint ofs lies below thej th

level, then the endpoint causes a discontinuity in the level; otherwise,s crosses
the j th level withinτ , so the argument for case (ii) applies.

The number of segments in the first case is clearly at mostj +1. The number of segments
in the next two cases isO( j ) by our construction of the slabs. We therefore conclude
that|Sτ | = O( j ).

As k < j , thekth level inA(S) coincides with thekth level inA(Sτ ) when restricted
to τ . By Theorem 2.1, the complexity of thekth level within each slab isO( j 3/2). The
total complexity of thekth level inA(S) is thusO((Nj /j ) · j 3/2).

The theorem can now be proved as follows:

Nk = O

(
1

k

∑
k< j≤2k

Nj

√
j

)
= O

(
1√
k

∑
j≤2k

Nj

)
= O(n

√
kα(n/k)),

since the first 2k levels have complexityO(nkα(n/k)) [26].
The above proof uses the known upper bound on the combined complexity of the

first O(k) levels, which is actually proved using the probabilistic technique of Clarkson
and Shor [7]. We now describe a second proof that directly applies Clarkson and Shor’s
technique.

Take a random sampleR ⊆ S of size r = bn/2kc. Let LE(R) be the closure of
the region beneath the lower envelope (i.e., the 0th level) inA(R). By inserting vertical
downward-directed rays at each vertex and discontinuity point, we obtain a decom-
position ofLE(R) into “semi-unbounded” trapezoids (the “vertical decomposition”).
Each trapezoid is defined by at most three segments, and the number of trapezoids is
proportional to the complexity of the lower envelope, which isη(r ) = O(rα(r )) [27].

We now estimateE[N], the expected number ofkth level vertices that lie inLE(R).
For each trapezoidτ , let Sτ be the set of segments ofS that intersectτ (the “conflict
list”). Insideτ , thekth level inA(S) coincides with thekth level inA(Sτ ) and thus has
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O(|Sτ |3/2) vertices by Theorem 2.1. It follows that

E[N] = O

(
E

[∑
τ

|Sτ |3/2
])

.

The standard probabilistic analysis of Clarkson and Shor reveals that this quantity is
O(η(r ) · (n/r )3/2) = O(n

√
kα(n/k)).

On the other hand, for a fixedkth level vertexv, the probability thatv 6∈ LE(R) is
the probability that one of thek segments belowv is chosen in the random sampleR;
this probability is at mostkr/n ≤ 1/2. Therefore,E[N] is at least half the number of
kth level vertices, and the second proof is completed.

Remarks. (1) The ideas in both proofs apply to pseudosegments and other families of
curves in the plane. For instance, Tamaki and Tokuyama’sO(n23/12) bound on thekth
level in an arrangement ofn pseudoparabolas [28], as mentioned in the Introduction,
improves toO(nk11/12) (for the first proof, we can use the knownO(nk) bound [26] on
the firstO(k) levels).

(2) The second proof of the theorem is fairly general, and we will apply the same
technique twice more later in this paper (in the proofs of Theorems 3.1 and 5.3). In
general, for analyzing the complexity of thekth level in an arrangement of curves or
surfaces, we take a random sample of aboutn/k of the surfaces, compute their lower
envelope, and construct the vertical decomposition of the region below the envelope.
Within each cellτ of the decomposition, thekth level of the whole arrangement coincides
with thekth level of the subarrangement formed by the surfaces that crossτ . The number
of these surfaces is “on the average” onlyO(k). Roughly speaking, we complete the
analysis by applying any insensitive bound on the complexity of the level within each
τ , and by multiplying the bound by the number of cells of the decomposition. We hope
that this technique will find further applications on top of those obtained in this paper.

3. Arrangements of Planes

Let P = {π1, . . . , πn} be a collection ofn planes in 3-space in general position, and let
A(P) denote the arrangement ofP. Thekth level ofA(P) is defined as the closure of the
set of all points that lie in the union of the planes and have exactlyk planes lying below
them. The complexity of the level, regarded as a polyhedral surface, is the number of its
vertices, edges, and faces. This is clearly proportional to only the number of vertices,
and we will focus on bounding this latter quantity.

Theorem 3.1. The number of vertices of the kth level ofA(P) is O(nk5/3), for k > 0.

This theorem improves the boundO(n8/3) established in [10] (see also [3]) fork¿ n,
and is also better than the boundO(nk2) on the overall complexity of the firstk levels.

Proof. We follow the second proof of Theorem 2.3 and consider a random sample
R⊆ P of sizer = bn/2kc. The analysis by Clarkson and Shor [7] implies thatLE(R),
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the region beneath the lower envelope ofR, can be decomposed intoO(r ) vertical
triangular prisms{τi } so that each prism is defined by a constant number of planes, and

E

[∑
i

|Pτi |8/3
]
= O(r · (n/r )8/3) = O(nk5/3), (1)

wherePτi denotes the set of planes ofP intersectingτi . Inside each prismτi , thekth level
ofA(P) coincides with thekth level ofA(Pτi ), because any plane inP\Pτi passes above
τi . Hence, the number ofkth level vertices (ofA(P)) inside eachτi is O(|Pτi |8/3) by
Dey and Edelsbrunner’s bound [10]. The expected number,E[N], of kth level vertices
insideLE(R), is thusO(nk5/3) by (1). The proof is completed by observing, as in the
proof of Theorem 2.3, thatE[N] is at least half the total number ofkth level vertices.

Instead of the above probabilistic argument, an alternative proof can be obtained from
results on geometric cuttings, specifically, the shallow cuttings of Matouˇsek [23]:

Let H be a collection ofn hyperplanes inRd in general position. A(1/r )-cutting of
the first k levelsis a collection of simplices{τi } covering all points of levels≤ k, such
that |Hτi | ≤ n/r for eachi , whereHτi is the set of all hyperplanes ofH that intersect
the interior ofτi .

Lemma 3.2(Matoušek’s Shallow Cutting Lemma).Let r ≤ n and q= k(r/n) + 1.
There exists a(1/r )-cutting for the first k levels ofA(H), consisting of O(r bd/2cqdd/2e)
simplices.

Second Proof of Theorem3.1. We can prove our theorem by settingd = 3, r = n/k,
andq = 2 in the above lemma. We obtain a collection ofO(n/k) simplices, each of
which is intersected byO(k) planes and consequently containsO(k8/3) vertices of the
kth level ofA(P). (This follows from the fact that the intersection of thekth level with
a simplexτi lies at a fixed level (≤ k) ofA(Pτi ), where, as above,Pτi is the set of planes
crossingτi .) Hence, the total number ofkth level vertices isO((n/k) ·k8/3) = O(nk5/3).
However, we prefer the earlier proof, as the proof of the shallow cutting lemma itself
requires actually more involved probabilistic techniques, including an argument similar
to one of the previous proofs [23].

Remark. As before, any improvement in the worst-casek-insensitiveupper bound
would imply an improvement in ourk-sensitive bound. Extensions tod-dimensional
arrangements of hyperplanes are also immediate: if we have anO(nd−cd) bound on the
complexity of a single level, then the complexity of thekth level isO(r bd/2c·(n/r )d−cd) =
O(nbd/2ckdd/2e−cd), as the number of simplices used in either proof isO(r bd/2c).

4. Improved Lovász Lemma in Higher Dimensions

In the preliminary version of this paper [1], we have obtained thek-sensitive bound
of O(n2k2/3), which is weaker than the one in Theorem 3.1. The proof follows the
techniques of [3] and [10], which exploit a generalization of the Lov´asz lemma to three
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dimensions. We present here an improved version of this lemma, in arbitrary dimension,
that has a simple proof and may be of independent interest. So far, the improved lemma
has no significant applications because the best upper bounds, derived above, are not
based on it. We, however, believe that the lemma deserves exposition because it has been
one of the very few tools for attacking thek-set problem so far and a generalization of
the lemma is needed in Section 5.

Let H be a collection ofn hyperplanes inRd in general position, and let 0≤ k ≤ n−d.
Let Vk denote the set of those verticesv ofA(H) for which exactlyk hyperplanes ofH
pass belowv. For eachv ∈ Vk, we denote byHv the set of thed hyperplanes incident
to v, and letRv denote the closed region (“corridor”) lying between the upper and lower
envelopes of the hyperplanes ofHv.

Lemma 4.1(Dual Lovász Lemma in Arbitrary Dimension).For any(d− 2)-flat f in
Rd, we have

|{v ∈ Vk | f ⊂ Rv}| = O(kd−1).

The previous bound wasO(nd−1) (see [4] and [22]). It will be more convenient to
state and prove the primal version of this lemma. Fix a setSof n points inRd, in general
position. Ak-facetis a(d − 1)-dimensional simplex spanned byd points ofSwith the
property that its affine hull has preciselyk points ofSon one side of it.

Lemma 4.2(Primal Lovász Lemma in Arbitrary Dimension).Let S be a finite point
set inRd. Then, for any line`, the number of k-facets meeting` is O(kd−1).

Proof. Note that this formulation of the lemma is independent of the choice of the
coordinate system. Construct a coordinate system in which` coincides with thexd-
axis. DualizeS to a systemS∗ of n hyperplanes, using the standard duality that maps a
point (a1, . . . ,ad) to the hyperplanexd = −a1x1 − a2x2 − · · · − ad−1xd−1 + ad, and a
hyperplanexd = b1x1+ b2x2+ · · · + bd−1xd−1+ bd to the point(b1, . . . ,bd) (see, e.g.,
[11]); this duality preserves incidences and above–below relationships between points
and hyperplanes (i.e., a pointp lies below, on, or above a hyperplaneh if and only if the
dual hyperplanep∗ of p lies below, on, or above the pointh∗ dual toh). An application of
such a duality also shows that this lemma and the preceding one are indeed dual versions
of each other. It suffices to count the number ofk-facets whose affine hulls havek points
of S strictly below them. The remaining class ofk-facets is handled by a symmetric
argument.

The properties of the duality imply that the affine hull of ak-facet1 as above is
mapped into a vertex1∗ of the arrangement ofS∗ that has preciselyk hyperplanes
below it (andd hyperplanes passing through it). Hence1∗ is a vertex of thekth level of
A(S∗). Moreover,1meets thexd-axis` if and only if the horizontal hyperplane through
1∗ is contained inR1∗ , i.e.,1∗ is a local maximum of thekth level ofA(S∗).3 Indeed,1

3 The connection between the local extrema ofkth levels and the Lov´asz lemma was first observed by
Clarkson, as briefly remarked in the Introduction of [5].



326 P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir

meets̀ if and only if every hyperplane that contains` does not have all vertices of1 on
one side. The set of these hyperplanes is mapped by our duality to the set of all the points
at infinity in horizontal directions. Hence1meets̀ if and only if every point at infinity in
a horizontal direction lies inR1∗ , which is equivalent to the condition that the horizontal
hyperplane through1∗ is contained inR1∗ , as asserted. As shown by Clarkson [5], the
number of local extrema of thekth level in an arrangement of hyperplanes ind-space is
O(kd−1), and this completes the proof of the lemma.

5. Arrangements of Triangles

Let T = {11, . . . , 1n} be a collection ofn triangles in 3-space in general position, and
letA(T ) denote the arrangement ofT . Thekth level ofA(T ) is defined, again, as the
closure of the set of all points that lie in the union of the triangles and have exactlyk
triangles below them (i.e., the relatively open vertical downward-directed ray emerging
from such a point intersects exactlyk triangles). As in the case of segments, thekth
level is not necessarily connected, and may have jump discontinuities at points that lie
vertically above or on some triangle edge. The complexity of the level, regarded as a
polyhedral surface, is the number of its vertices, edges, and faces. Assuming general
position, this is clearly proportional to the number of vertices only, and we will focus
on bounding the number ofinner vertices, which are contained in the interiors of three
distinct triangles. Any other “outer” vertex of the level lies in the vertical planeHe

spanned by some triangle edgee. Moreover, if we intersect all the triangles withHe, we
get a collection of at mostn segments, and the vertices of thekth level ofA(T ) that lie
in He are vertices of thekth level of any of the two-dimensional arrangements of these
segments withinHe, wheree itself is either included or excluded. By Theorem 2.1, the
number of such vertices isO(n3/2). Repeating this analysis for each triangle edgee, we
conclude that the number of outer vertices of the level isO(n5/2).

We bound the number of inner vertices using a variant of the dual version of the
Lovász lemma in 3-space. The bound that we obtain is considerably weaker than the one
given in Lemma 4.1, but is still nontrivial. The proof of this version of the lemma is also
different and somewhat more involved.

Letv be an inner vertex of thekth level, incident to three triangles11,12,13; v can be
classified into three categories, depending on whether thekth level in the neighborhood
of v coincides with

(a) the lower envelope of11,12,13;
(b) the first level of the arrangementA({11,12,13}); or
(c) the upper envelope of11,12,13.

Note that vertices of type (b) have the property that all six edges ofA(T ) incident to
the vertex lie on thekth level, whereas for vertices of type (a) or (c), only three of these
edges lie on the level, one edge on each segment of intersection of two of the triangles
11,12,13.

For each inner vertexv of the kth level of type (a) or (c), letRv be the closed
region enclosed between the upper envelope and the lower envelope of the three planes
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Fig. 5. (a) Cross-section of a regionRv in H ; the line` just becomes contained inRv ; (b) cross-section of
A(T ) by π ; the intersections ofRv, Ru with π are shaded near the respective vertices.

containing the three triangles incident tov; see Fig. 5 for a cross-section of such anRv.
We have the following weaker version of the Lov´asz lemma:

Lemma 5.1. Any line inR3 is fully contained in at most O(n5/2) regions Rv of vertices
of types(a)and(c).

Proof. Let `1 be a line inR3, and letH be the vertical plane containing̀1. For a
triangle4 ∈ T , let π4 be the plane containing4 andσ4 = π4 ∩ H . LetAH be the
arrangement inH of the lines{σ4 | 4 ∈ T }. Let `0 be a line contained inH , parallel
to `1, and lying below all vertices ofAH . It is easily checked that no regionRv contains
`0. We will move a line` within H upward, parallel to itself, from the position when
it coincides with`0 until it coincides with`1. We estimate the change in the number of
regionsRv that contaiǹ as it moves. Summing these changes yields the bound on the
desired quantity for̀1.

The set of regionsRv that fully contain` can change only wheǹpasses through a
vertex ofAH . Clearly, the vertexχ = σ41 ∩σ42 has to be such that there is an inner type
(a) or type (c) vertexv in A incident to41 and42. Under these assumptions, for` to
become newly contained in a regionRv, or to stop being contained inRv, as it sweeps
past such a vertexχ , it is necessary and sufficient that the slope of` lies between the
slopes ofσ41 andσ42; see Fig. 5(a). Letχ be such a vertex (where this latter condition
also holds). Putλ = π41 ∩ π42. Let s ⊂ λ be the segment41 ∩ 42. For all regionsRv
that either start or stop containing` as it sweeps overχ , v is contained ins, so it suffices
to concentrate only on such regionsRv.

We mark ons all the inner vertices of thekth level ofA(T ) of types (a) and (c), and
consider the set of maximal subintervals ofs notcontained in thekth level. Each such
subintervalI is delimited by two pointsu, v, each of which is an inner vertex of the
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level of type (a) or (c) (it cannot be a vertex of type (b) because all six edges incident
to a type (b) vertex lie on thekth level), a point of jump discontinuity of the level, or an
endpoint ofs. Letqs be the number of jump discontinuities of thekth level alongs. Note
that each such discontinuity is an outer vertex of thekth level. If an inner vertexv is an
endpoint of an interval alongs whose other endpointv′ is either a jump discontinuity or
an endpoint ofs, we changev to v′. The number of such inner vertices (and therefore
the change in the number of regions that contain`, corresponding to such vertices) is at
mostqs + 2.

Next, consider an intervalI , both of whose endpoints are inner vertices, sayu and
v. Consider the vertical planeπ containingλ, and the cross-section ofA(T ) within π
(refer to Fig. 5(b)). Clearly, thekth level of this cross-section is contained in thekth level
of A(T ), so it either lies fully aboveI or fully below I . In the former case bothu and
v are of type (c), and in the latter case they are both of type (a). Letγ be the vertical
line H ∩ π , and letδu = Ru ∩ γ andδv = Rv ∩ γ . If χ 6∈ I , then it is easily checked
that δu andδv lie on opposite sides ofχ alongγ and thus are disjoint except at their
common endpointχ . This fact, and our assumptions that the slope of` is between the
slopes ofσu = 4u ∩ H andσv = 4v ∩ H , imply that one ofRu, Rv must be added, and
the other one removed, from the set of regions containingf , as` sweeps overχ . Hence,
as` sweeps overχ , Ru andRv “cancel” out each other, in terms of containment of`.

To summarize, we have shown that as` passes throughχ , the change in the number
of regionsRv containing` is at most 4+ qs. This implies that the number of regions
Rv that contain` in its final position`1 is at most

∑
s(4 + qs), where the sum is

over all O(n2) intersection segments between pairs of triangles inT . Since the number
of outer vertices on thek-th level is O(n5/2), as argued above, and each is counted
at most three times,

∑
s qs = O(n5/2). The number of regions containing̀is thus

O(n2)+ O(n5/2) = O(n5/2), as asserted.
What if`1 actually passes through a vertexχ = σ4i∩σ4j ofAH ? Then the cancellation

does not occur, which adds fewer thann regionsRv that can contaiǹ—each such region
corresponds to some vertex ofA(T ) on the segment4i ∩ 4j .

Theorem 5.2. The complexity of any single level in an arrangement of n triangles in
3-space is O(n17/6).

Proof. Lemma 5.1 implies that no linè is contained in more thanO(n5/2) regions
Rv. Passing to the dual space, we obtain the following equivalent formulation, similar
to the case of planes: The planes containing the triangles inT are mapped to a set ofn
points. Each inner vertexv of thekth level is mapped to a triangle spanned by the three
points dual to the planes containing the triangles incident tov. The line` is mapped to
another linè ∗, and` is contained inRv if and only if `∗ crosses the triangle dual tov.
We now have a system ofX triangles in 3-space, spanned by a total ofn points, whereX
is the number of inner vertices of thekth level of types (a) and (c). By the result of [10],
there exists a line that crosses at leastÄ(X3/n6) such triangles. On the other hand, by
Lemma 5.1, this number is at mostO(n5/2). Combining these two inequalities yields
X = O(n17/6). We still need to bound the number of vertices of type (b). However, these
vertices are vertices of type (a) of the(k − 1)st level, so, repeating the above analysis
for this level, we obtain the bound asserted in the theorem.
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Theorem 5.3. The complexity of the kth level in an arrangement of n triangles in
3-space is O(n2k5/6α(n/k)), for k > 0.

Proof. Take a random sampleR ⊆ T of size r = bn/2kc. The result of Pach and
Sharir [24] (see also [12] and [27]) implies that the region beneath the lower envelope
of R can be decomposed intoη(r ) = O(r 2α(r )) vertical triangular prisms{τi }, each
defined by a constant number of triangles ofT . Clarkson and Shor’s analysis [7] can be
applied to show that

E

[∑
i

|Tτi |17/6

]
= O(η(r ) · (n/r )17/6) = O(n2k5/6α(n/k)),

whereTτi denotes the set of triangles ofT intersectingτi . The rest of the proof now
proceeds as in the second proof of Theorem 2.3 or the first proof of Theorem 3.1.

Remark. An open problem is to extend Lemmas 4.1 and 5.1 to the respective cases of
pseudohyperplanes and pseudotriangles, under appropriate definitions of these objects,
and then to extend the proofs of Theorems 5.2 and 5.3 to these cases. Note that there
are two different problems to address: One is to extend the Lov´asz lemma, and the other
calls for a dual and more general version of the analysis technique of [10] (that yields a
line that stabs many triangles).

6. Dey’s Improvements

As promised, we conclude this paper with a brief discussion of Dey’s recent results and
their interconnections to the results of this paper; we refer to Dey’s paper [8] for more
details.

The Case of Lines

Dey’s proof for the case of lines (the standard planark-set problem) uses the concave
chain structure developed in this paper. His proof essentially shows that the complexity of
k concave (unbounded) chains in an arrangement ofn lines, which have no overlapping
edges, isO(nk1/3). His original proof caters only for the case where the chains arex-
monotone and unbounded, but a slightly refined argument shows that the complexity of
anyk convex chains (or convex polygons) in an arrangement ofn lines, which do not
have overlapping edges, isO(nk1/3) for k = O(n) and O(n2/3k2/3) for larger values
of k. Both bounds can be shown to be tight in the worst case: A matching lower bound
for the former case is given by Eppstein [13], and a matching lower bound for the latter
case is immediate from the known tight bound on the maximum complexity ofk faces
in an arrangement ofn lines [6]. Earlier work [18], [19] has established the bound
O(k2/3n2/3 + n) for the restricted case in which the concave chains are not allowed to
cross each other; in this restricted case, the bound also holds fork = O(n).



330 P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir

The Case of Segments

Dey has improved the bound in Theorem 2.1 toO(n4/3). This is an immediate conse-
quence of the extension of his result concerning the complexity of an arbitrary collection
of convex chains with nonoverlapping edges in an arrangement of lines (or of segments),
as just mentioned.

Concerning thek-sensitive bound (Theorem 2.3), it follows from our proofs that
any improvement on the worst-case bound over allk leads to an improvement on the
k-sensitive bound. Thus, combining our analysis with Dey’sO(n4/3) bound implies a
new bound ofO(nk1/3α(n/k)) for the complexity of thekth level in an arrangement of
segments.

The Case of Pseudolines and Pseudosegments

Following the recent results of [9] and [29], Dey’s technique can also be extended
to the cases of pseudolines and pseudosegments (in the sense defined above). Thus
all the bounds just stated also apply to the corresponding cases of pseudolines or of
pseudosegments.

The Case of Triangles in3-Space

The analysis of the case of triangles relies strongly on bounds for the complexity of a level
in a planar arrangement of segments. Thus Dey’s results can be “plugged into” the analy-
sis, and improve the bounds in Theorems 5.2 and 5.3 toO(n25/9) andO(n2k7/9α(n/k)),
respectively, as is easily checked.
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