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Fig. 1. The third level in an arrangement of lines. The vertice¥pére indicated by empty circles, and the
vertices ofV3 by black circles.

1. Introduction
Background

The k-set problems one of the most challenging open problems in combinatorial ge-
ometry. The simplest variant of the problem is: Given a$ef n points in the plane in
general position, and a parametex& < n— 2, what is the maximum possible number
of lines that pass through a pair of points®&nd have exactli points of Sin one of
the open half-planes that they defihé?a dual setting, we are given a s&of n lines
in the plane in general position, and want to bound the maximum possible number of
verticesv of the arrangement (L), so that exactlk lines pass below. We denote this
set of vertices byk. Thekth levelof the arrangement is defined to be the closure of the
set of points that lie on the lines and have exaktlipes below them. The set of vertices
of this level isVy U Vk_1. See Fig. 1 for an illustration.
Thek-set problem was first studied about 1970 bydsréf al. [14] and Loasz [22].
These papers have established an upper b&umd/k) and a lower bound? (n logk)
on the desired quantity, fér> 0, leaving a fairly big gap. The upper bound was slightly
improved toO(nvk/ log* k) by Pach et al. [25]. After the original submission of this
paper, significant progress has been made by Dey [8], who improved the upper bound to
O(nkY3), fork > 0. Dey’s proof is based on some of the ideas presented in this paper.
In the dual setting, the problem can be generalized in an obvious manner: In the plane,
we are given a collectioR of n x-monotone curves, each being the graph of a continuous
totally or partially defined function, and a parametet & < n, and wish to bound the
complexity(i.e., the number of vertices) of théh level in the arrangement(X), defined
exactly as in the case of lines. In this more general setting only two results are known:
A recent seemingly weak, but elegant analysis by Tamaki and Tokuyama [28] yields the
boundO(n?¥12) on the complexity of a level in an arrangemenngfseudoparabolas
which are graphs of total functions, each pair of which intersect at most twice. We also
mention the case gfseudolineswhich in this context are graphs of continuous totally

1 Actually, thek-set problem seeks bounds on the number of subsedobsizek that can be separated
from their complements by a line. This quantity and the one defined above are related but not identical (they
do have the same asymptotic worst-case behavior); see [2] for a recent survey that discusses this issue.
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defined functions, each pair of which intersect exactly once, where a slightly larger lower

bound ofQ(n - ZCM) for the complexity of the median level is established in [21].
Our proof techniques and upper bounds apply equally well to the case of pseudolines.
Recently, Dey’s techniques have also been extended to the case of pseudolines [9], [29].

Similar extensions apply in higher dimensions. In the primal setting, we are given
a setS of n points inRY in general position, and wish to bound the number of hyper-
planesr passing throughl of the points such that one of the half-spaces bounded by
contains exactlk points ofS.2 Ford = 3, the best-known upper and lower bounds are,
respectivelyO(n®3) andQ (n?logn) [4], [10]. Ford > 3, the best-known upper bound
is O(nd-%), for some exponentially small but positive consten{30]. Note that, in
contrast to the planar case, these bounds depend omiyaod not ork.

We can formulate the problem in an arbitrary dimension, in a dual setting: We con-
sider an arrangement of hyperplanes, or, more generally, of surfaces that are graphs of
continuous total or partial functions, and define kktelevel of the arrangement exactly
as in the planar case. We now seek bounds on the maximum possible number of vertices
(or of faces of all dimensions) of the level. Except for the case of hyperplanes, which is
equivalent to (a variant of) tHe-set problem mentioned in the preceding paragraph, no
nontrivial bounds for the entire range of valuekadre known.

In spite of the sorry state of the problem, even after Dey’s improvements, we can obtain
improved nontrivial bounds whehais small. The probabilistic analysis of Clarkson and
Shor [7] (see also [26]) yields fairly sharp bounds on the combined complexity of the
first k levels in arrangements. For the case of hyperplanes, for example, the bound is
®(nld/2kld/21y For sufficiently smalk, this gives a better upper bound on the complexity
of a single level than the general bound stated above.

New Results

In this paper we make several contributions to these problems.

In the preliminary version of this paper [1], we briefly reviewed and simplified some
old proofs of the upper boun@(n+/k) for the original planak-set problem (or, dually,
for the case of th&th level in an arrangement of straight lines in the plane). These
proofs are related to the proof technique of Gusfield [16], [17]. We also gave a simple
proof of the dual version of what is known as the “la®z’ lemma” that is used to prove
the bound. These techniques apply equally well to arrangements of pseudolines; see,
for example, [15]. For the sake of brevity, this part is not included in this version of the
paper.

We adapt our proof techniques to obtain the bo@@®?) on the complexity of
thekth level in an arrangement ofline segments (or “pseudosegments,” to be defined
below). The same bound also follows from a result by Katoh et al. [20]. We then describe
two simple approaches that reduce the boun®tov/ka(n/k)), wherea(n) is the
inverse Ackermann function.

2 Again, in the actuak-set problem we want to bound the number of subsets okstzat can be separated
from their complements by a hyperplane; see [2].
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We then proceed to study theset problem for higher-dimensional point sets (or,
dually, though not quite equivalently, to bound the complexity of khie level in a
hyperplane arrangement). In the preliminary version of this paper [1], we have observed
thattheO (n®3) bound inR? can be immediately brought down®(n2k?3), if we exploit
a simple improved version of the Lagz lemma in an arbitrary dimension derived in this
paper. However, using Clarkson and Shor’s technique, we improve this bound further to
O(nk¥3), in a manner that makes no use of the improveddsademma. Although the
improved lemma has so far no significant applications, we include it here because we
believe it to be of independent interest and an extension of it is needed for the case of
triangles inR3. Over the whole range & > 0, theO(nk®?) bound is stronger than alll
previous bounds, including the aforementior@ghk?) bound on the overall complexity
of the firstk levels. A similar improved bound, of the for@(nl9/2/k(d4/21-%) can be
obtained in any dimensioth > 3, for the same constanj > 0 obtained b)Zivanevié
and Vreica [30]. Again, this bound is the best-known upper bound, for all values of
k > 0.

Finally, we consider the problem of bounding the complexity ofktielevel in an
arrangement af triangles in 3-space. We first obtain a nontrivial boun®gh'”/¢) and
then improve it taO (n?k®%« (n/k)). Our bound strongly depends on an upper bound on
the complexity of a single level in an arrangement of line segments in the plane.

As discussed above, Dey’s results supersede some of the bounds obtained in this
paper, but they do rely on some of the machinery developed here. Some other, more
recent bounds derived here can be further improved by exploiting Dey’s results. We have
written this revised version of our paper in a manner that is mostly independent of Dey’s
progress. Nevertheless, for completeness, we conclude the paper with a brief overview
of the connections between Dey'’s results and ours.

2. Arrangements of Segments
2.1. AFirst Bound

Let Sbe a collection oh segments in the plane in general position.kef 0, ..., n—1,
thekth level in the arrangemend(S) of Sis defined to be the closure of the set of all
pointsw that lie on segments @&and are such that the open downward-directed vertical
ray emanating fromw intersects exactlk segments o§ (i.e., there aré& segments 06
beloww). Unlike the case of lines, a level gf(S) is not necessarily connected. It may
involve vertical jumps from a segment to the segment lying directly above or below it,
when a new segment starts or ends at a point below the levetdrplexityof a level

is the number of vertices 0(S) that lie on the level plus the number of discontinuities
of the level. Clearly, the number of such discontinuities is at mast/#e defineV,
fork =0,...,n— 2, to be the set of vertices of(S) (excluding segment endpoints
and points of discontinuity) that have exadkd\ysegments passing below them. The set
of vertices of thekth level, excluding segment endpoints and jump discontinuities, is
Vik—1 U Vk. The level bends to the left at vertices\df_; and to the right at vertices of
V. See Fig. 2 for an illustration.
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Fig. 2. The second level in an arrangement of segments; |Mefe= 1 and|V,| = 4.

Theorem 2.1. The complexity of any single level in an arrangement of n line segments
in the plane in general position is @%/?).

Proof. We first extend to the case of segments the notimootave chainsntroduced

in the preliminary version of this paper [1] for arrangements of lines. These chains are
not a new concept, and have been used in various earlier works, such as [16] and [17].
The chains are constructed as follows. We start a new chain:

(i) at the left endpoint of any segment (or, if the segment is a line or a leftward-
directed ray, at a point at = —oo on this line or ray) if that point lies below the
kth level; and

(ii) atany point of discontinuity of the level, when the level jumypsfrom a segment
s to a segmeng; (the chain is started along the lower segneht

As X increases, each chairfollows the segment that it lies on, except when one of the
following situations occurs:

() creaches the right endpoint of that segment, and thtenminates there;
(i) cfollows a segmeng and reaches a discontinuity of théh level, where the
level jumpsdownto s, in which case is terminated at that point; or
(iii) creaches a vertex € Vi_1, in which casec bends to the right, and continues
along the other segment incidentuto

We thus get a collection of at mosh 2oncave chains (if all the segments are lines,
we get exacthk chains). See Fig. 3 for an illustration in the case of lines.
It is easily seen that the resulting chains satisfy the following properties:

(&) The union of the chains is the closure of the portion of the union of the segments
that lies below thekth level. Except for the vertices ofy_;, the union of the
chains lies strictly below thkth level.
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Fig. 3. The concave chains associated with the third level in an arrangement of lines. The level itself is drawn
in bold; the dashed paths denote the concave cleairts, c3; and the circles denote the vertices\ef

(b) The chains are vertex-disjoint and have nonoverlapping edges, but they may cross
each other.

(c) Allthe vertices of the chains lie on the upper envelope of the chains. Indeed, each
chain, except for its vertices, lies fully below tkth level, so any vertex of any
chain lies above all the chains that are not incident to it.

Gusfield’s analysis [16], [17] can be adapted to obtain the following bound, which clearly
implies Theorem 2.1. The same result, for the case of lines, was obtained independently
by Halperin and Sharir [18], who were not aware of Gusfield’s earlier work.

Theorem 2.2. The overall number of vertices of t concave chains that have nonover-
lapping edgegand are thus vertex-disjoiptin an arrangement of n segments in the
plang is O(ny/1).

Proof. Inthe preliminary version of this paper [1], the theorem was proved first for the
case of lines and then extended to the case of segments. Two proofs were given there,
and we give here only one of them; see [1] for more details.

We use the followingpotential functiortechnique, which is a variant of the technique
of [16] and [17]. Letthe segments Bbes;, 5, . . ., S, sorted in the order of decreasing
slopes of their containing lines, andétenote the set of vertices of the chains (excluding
chain endpoints). For eache R, define

d(x) = Z{j | ¢; lies on one of the chains at.

We clearly haveb (—o00), ®(+00) = O(nt) (for bounded segments, both quantities are
zero; as a matter of fac® (x) = O(nt) for eachx). As we sweepd(S) with a vertical
line from left to right, the value o (x) can change only when either a chain starts or
ends alx, or x equals the abscissq of a vertexv € V (refer to Figs. 2 or 3). Suppose
thatv € V is the intersection point of segmergsands;, with j > i. Then, as easily
checked, the change® (vy) = ®(vx + €) — ©(vx — ¢), for a sufficiently smalk > 0,

isj —i > 0. If a chain starts or ends &t then|A®(x)| < n, and there are at most 2
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Fig. 4. These four arcs do not form an arrangement of pseudosegments.

such points. In other words,

Z AD(vy) = P(+00) — D(—00) + O(nt) = O(nt) ,
veV

with each of these changes being a positive integer.

The number of vertices at whichA® (vy) > 4/t is no more tharO(n+/1), as the
sum of Ad (vy) at these vertices i®(nt), and each term in the sum is larger thih
The set of vertices at which the change is at mogt consists of at most — 1 vertices
with corresponding pairs of indicég i + 1), n — 2 vertices with pairgi, i + 2), etc.,
so its total size is at most

M=D+MN=2+ ---+(—VI+1) <nVi.

Combining the two estimates, we conclude thét= O(n./t). O

Remark. The proof of Theorem 2.2 (as well as the other proof given in [1]) also
applies to the cases pkeudolinesind pseudosegment®Ve have already defined the
notion of a family of pseudolines. A collectid®of n x-monotone connected arcsas
family of pseudosegmerifeach of them can be extended to>amonotone connected
unbounded curve, so that this family of curves is a collection of pseudolines. (This is a
much stronger definition than just requiring each pair of pseudosegments to intersect at
most once; see Fig. 4.) We leave it to the reader to verify that the proof goes through in
the case of pseudosegments, with straightforward modifications.

2.2. Ak-Sensitive Bound

Theorem 2.1 does not yield an upper bound for kttelevel that depends ok For

k « +/n, the knownO(nka(n/k)) bound for the overall complexity of the firgt
levels [26] is actually smaller than th@(n®?) bound. We offer two approaches for
deriving bettek-sensitive bounds for thieth level, obtaining the following result:

Theorem 2.3. The complexity of the kth level in an arrangement of n line segments in
the plane in general position is @vka(n/k)), for k > 0.
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Proof. The first approach involves a bound on the complexity okthdevel in terms
of the complexity of higher levels. Recall that the complexity ofkttelevel, which we
will denote byN, is the total number of its (inner) vertices and discontinuous jumps.

Lemma 2.4. Ny = O(N;/]) forany k< j <n.

Proof. Divide the plane intdD(N;/j) vertical slabs so that each slab conta®j)
vertices/discontinuities of thgth level. Given one such slab, let S; be the set of
segments that contain a point on a lewej insider. Each segmert € S; is of one of
the following three types:

(i) sisonalevel j at the left wall ofz.
(i) sisonalevel> j atthe left wall. In this cases must cross thgth level within
7, SO it must contain a vertex or a discontinuity on fttle level.
(i) sdoes not intersect the left wall of If the left endpoint of lies below thejth
level, then the endpoint causes a discontinuity in the level; otheraiigesses
the jth level withint, so the argument for case (ii) applies.

The number of segments in the first case is clearly at megt. The number of segments
in the next two cases i©(j) by our construction of the slabs. We therefore conclude
that|S,| = O(j).

Ask < j, thekth level in A(S) coincides with thékth level in A(S;) when restricted
to . By Theorem 2.1, the complexity of theh level within each slab i©(j%?). The
total complexity of thekth level in A(S) is thusO((N; /j) - j3/?). O

The theorem can now be proved as follows:

Nk = 0(% > Njfi) = O(% > NJ-> = O(nvka(n/k)),

k<j<2k j<2k

since the first R levels have complexityD (nka(n/k)) [26].

The above proof uses the known upper bound on the combined complexity of the
first O(k) levels, which is actually proved using the probabilistic technique of Clarkson
and Shor [7]. We now describe a second proof that directly applies Clarkson and Shor’s
technique.

Take a random samplB C S of sizer = [n/2k]. Let LE(R) be the closure of
the region beneath the lower envelope (i.e., the Oth level§(iR). By inserting vertical
downward-directed rays at each vertex and discontinuity point, we obtain a decom-
position of LE(R) into “semi-unbounded” trapezoids (the “vertical decomposition”).
Each trapezoid is defined by at most three segments, and the number of trapezoids is
proportional to the complexity of the lower envelope, whichis) = O(ra(r)) [27].

We now estimatd=[ N], the expected number &th level vertices that lie iILE(R).

For each trapezoid, let S; be the set of segments &fthat intersect (the “conflict
list”). Inside z, thekth level in A(S) coincides with thekth level in A(S;) and thus has
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O(|S.|*/?) vertices by Theorem 2.1. It follows that

E[N] :O(E{me})'

The standard probabilistic analysis of Clarkson and Shor reveals that this quantity is
O (r) - (n/r)*?) = O(nvka(n/k)).
On the other hand, for a fixddh level vertexv, the probability thav ¢ LE(R) is
the probability that one of thie segments below is chosen in the random samgke
this probability is at moskr/n < 1/2. Therefore E[N] is at least half the number of
kth level vertices, and the second proof is completed. O

Remarks. (1) The ideas in both proofs apply to pseudosegments and other families of
curves in the plane. For instance, Tamaki and Tokuya®&is>'?) bound on thekth

level in an arrangement of pseudoparabolas [28], as mentioned in the Introduction,
improves toO(nk*Y1?) (for the first proof, we can use the knov@(nk) bound [26] on

the firstO(k) levels).

(2) The second proof of the theorem is fairly general, and we will apply the same
technique twice more later in this paper (in the proofs of Theorems 3.1 and 5.3). In
general, for analyzing the complexity of théh level in an arrangement of curves or
surfaces, we take a random sample of aboik of the surfaces, compute their lower
envelope, and construct the vertical decomposition of the region below the envelope.
Within each celk of the decomposition, theh level of the whole arrangement coincides
with thekth level of the subarrangement formed by the surfaces that erd$e number
of these surfaces is “on the average” oyk). Roughly speaking, we complete the
analysis by applying any insensitive bound on the complexity of the level within each
7, and by multiplying the bound by the number of cells of the decomposition. We hope
that this technique will find further applications on top of those obtained in this paper.

3. Arrangements of Planes

Let P = {m, ..., m} be a collection of planes in 3-space in general position, and let
A(P) denote the arrangementBf Thekth level of A(P) is defined as the closure of the

set of all points that lie in the union of the planes and have ex&gilgnes lying below
them. The complexity of the level, regarded as a polyhedral surface, is the number of its
vertices, edges, and faces. This is clearly proportional to only the number of vertices,
and we will focus on bounding this latter quantity.

Theorem 3.1. The number of vertices of the kth level&fP) is O(nk®3), for k > 0.

This theorem improves the bou@{n®?) established in [10] (see also [3]) fork n,
and is also better than the bou@dnk?) on the overall complexity of the firgtlevels.

Proof. We follow the second proof of Theorem 2.3 and consider a random sample
R € P of sizer = [n/2k]. The analysis by Clarkson and Shor [7] implies tB&t(R),
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the region beneath the lower envelopeRfcan be decomposed in©(r) vertical
triangular prismgz;} so that each prism is defined by a constant number of planes, and

E {DPT. |8/3} = O(r - (n/1)®®) = O(Nk*?), @

whereP,, denotes the set of planes®fintersecting: . Inside each prism , thekth level

of A(P) coincides with théth level of A(P;, ), because any plane i\ P, passes above
7. Hence, the number ddth level vertices (ofA(P)) inside eachy; is O(|P, |8/®) by
Dey and Edelsbrunner’s bound [10]. The expected nuntbéy], of kth level vertices
inside LE(R), is thusO(nk®2) by (1). The proof is completed by observing, as in the
proof of Theorem 2.3, tha[N] is at least half the total number kth level verticesd

Instead of the above probabilistic argument, an alternative proof can be obtained from
results on geometric cuttings, specifically, the shallow cuttings of Mato{23]:

Let H be a collection of hyperplanes iiRY in general position. A1/r)-cutting of
the first k levelss a collection of simplice$z;} covering all points of levels k, such
that|H, | < n/r for eachi, whereH,, is the set of all hyperplanes &f that intersect
the interior ofz;.

Lemma 3.2(Matowsek’s Shallow Cutting Lemma).Letr < n and q= k(r/n) + 1.
There exists &1/r)-cutting for the first k levels ofi(H), consisting of @r 9/2gld/2T)
simplices

Second Proof of Theorethl. We can prove our theorem by settohg= 3,r = n/K,

andqg = 2 in the above lemma. We obtain a collection®@fn/k) simplices, each of
which is intersected by (k) planes and consequently contaidgk®3) vertices of the

kth level of A(P). (This follows from the fact that the intersection of tkih level with

a simplexy; lies at a fixed level€ k) of A(P;,), where, as abové?;, is the set of planes
crossingr; .) Hence, the total number kfh level vertices i©O((n/k) -k¥3) = O(nk®3).
However, we prefer the earlier proof, as the proof of the shallow cutting lemma itself
requires actually more involved probabilistic techniques, including an argument similar
to one of the previous proofs [23]. O

Remark. As before, any improvement in the worst-cdsesensitiveupper bound
would imply an improvement in ouk-sensitive bound. Extensions tbdimensional
arrangements of hyperplanes are also immediate: if we ha@atr %) bound on the
complexity of a single level, then the complexity of #ib level isO(r [9/2).(n/r)d-%) =
O(nl4/2Kld/21-¢) "as the number of simplices used in either proddig 19/2)).

4. Improved Lovasz Lemma in Higher Dimensions
In the preliminary version of this paper [1], we have obtainedkfs=nsitive bound

of O(n%k?/?), which is weaker than the one in Theorem 3.1. The proof follows the
techniques of [3] and [10], which exploit a generalization of thedswlemma to three
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dimensions. We present here an improved version of this lemma, in arbitrary dimension,
that has a simple proof and may be of independent interest. So far, the improved lemma
has no significant applications because the best upper bounds, derived above, are not
based on it. We, however, believe that the lemma deserves exposition because it has been
one of the very few tools for attacking theset problem so far and a generalization of
the lemma is needed in Section 5.

Let H be a collection of hyperplanes ifkY in general position, and let8 k < n—d.
Let Vi denote the set of those verticesf .A(H) for which exactlyk hyperplanes oH
pass below. For eactw € Vi, we denote byH, the set of thed hyperplanes incident
tov, and letR, denote the closed region (“corridor”) lying between the upper and lower
envelopes of the hyperplanesidf.

Lemma 4.1(Dual Lovasz Lemma in Arbitrary Dimension).For any (d — 2)-flat f in
RY, we have

v eVl f c R =0K"™.

The previous bound wa®(n%-1) (see [4] and [22]). It will be more convenient to
state and prove the primal version of this lemma. Fix &5s#ftn points inRY, in general
position. Ak-facetis a(d — 1)-dimensional simplex spanned bypoints of S with the
property that its affine hull has precisédypoints of Son one side of it.

Lemma 4.2(Primal Lovasz Lemma in Arbitrary Dimension).Let S be a finite point
setinRY. Then for any line¢, the number of k-facets meetings O(k4-1).

Proof. Note that this formulation of the lemma is independent of the choice of the
coordinate system. Construct a coordinate system in whictincides with thexy-

axis. DualizeSto a systents* of n hyperplanes, using the standard duality that maps a
point(ay, ..., ag) to the hyperplangy = —ai;x; — axXo — -+ — ag_1X4_1 + 84, and a
hyperplanexy = byxy + baXo + - - - 4+ bg_1Xq_1 + by to the point(by, . .., by) (see, e.g.,

[11]); this duality preserves incidences and above—below relationships between points
and hyperplanes (i.e., a poiptlies below, on, or above a hyperplané and only if the

dual hyperplang* of plies below, on, or above the point dual toh). An application of

such a duality also shows that this lemma and the preceding one are indeed dual versions
of each other. It suffices to count the numbekdécets whose affine hulls hakgoints

of S strictly below them. The remaining class kffacets is handled by a symmetric
argument.

The properties of the duality imply that the affine hull okdacet A as above is
mapped into a vertex\* of the arrangement o®* that has preciselk hyperplanes
below it (andd hyperplanes passing through it). Hengeis a vertex of theth level of
A(S"). Moreover,A meets the-axis? if and only if the horizontal hyperplane through
A* is contained irRy-, i.e.,A* is a local maximum of thith level of A(S%).3 Indeed A

3 The connection between the local extreméaif levels and the Loasz lemma was first observed by
Clarkson, as briefly remarked in the Introduction of [5].
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meet< if and only if every hyperplane that contaifisloes not have all vertices af on

one side. The set of these hyperplanes is mapped by our duality to the set of all the points
atinfinity in horizontal directions. Henae meetg if and only if every point atinfinity in

a horizontal direction lies ifR,+, which is equivalent to the condition that the horizontal
hyperplane throughA* is contained inR,-, as asserted. As shown by Clarkson [5], the
number of local extrema of tHah level in an arrangement of hyperplaneslispace is
O(k?1), and this completes the proof of the lemma. |

5. Arrangements of Triangles

Let7 = {A4, ..., An} be a collection of triangles in 3-space in general position, and

let A(7) denote the arrangement ®t Thekth level of A(7) is defined, again, as the
closure of the set of all points that lie in the union of the triangles and have eXactly
triangles below them (i.e., the relatively open vertical downward-directed ray emerging
from such a point intersects exactytriangles). As in the case of segments, ke

level is not necessarily connected, and may have jump discontinuities at points that lie
vertically above or on some triangle edge. The complexity of the level, regarded as a
polyhedral surface, is the number of its vertices, edges, and faces. Assuming general
position, this is clearly proportional to the number of vertices only, and we will focus
on bounding the number @finer vertices, which are contained in the interiors of three
distinct triangles. Any other “outer” vertex of the level lies in the vertical pl&he
spanned by some triangle edgeMoreover, if we intersect all the triangles wikh, we

get a collection of at most segments, and the vertices of tta level of A(7) that lie

in He are vertices of th&th level of any of the two-dimensional arrangements of these
segments withirHe, wheree itself is either included or excluded. By Theorem 2.1, the
number of such vertices 9(n®?). Repeating this analysis for each triangle edgee
conclude that the number of outer vertices of the lev€ {8%/?).

We bound the number of inner vertices using a variant of the dual version of the
Lovasz lemma in 3-space. The bound that we obtain is considerably weaker than the one
given in Lemma 4.1, but is still nontrivial. The proof of this version of the lemma is also
different and somewhat more involved.

Letv be aninner vertex of theh level, incident to three triangles;, A, Az; v canbe
classified into three categories, depending on whethéktthievel in the neighborhood
of v coincides with

(a) the lower envelope of1, Ay, As;
(b) the first level of the arrangemedi({A1, A,, As}); or
(c) the upper envelope @f1, Ay, As.

Note that vertices of type (b) have the property that all six edge4(af) incident to
the vertex lie on thé&th level, whereas for vertices of type (a) or (c), only three of these
edges lie on the level, one edge on each segment of intersection of two of the triangles
A1, As, As.

For each inner vertex of the kth level of type (a) or (c), leR, be the closed
region enclosed between the upper envelope and the lower envelope of the three planes
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Fig. 5. (a) Cross-section of a regidR, in H; the line¢ just becomes contained R,; (b) cross-section of
A(T) by r; the intersections oR,, R, with 7 are shaded near the respective vertices.

containing the three triangles incidentupsee Fig. 5 for a cross-section of suchRin
We have the following weaker version of the la®Z lemma:

Lemma5.1. Any line inR3is fully contained in at most %) regions R of vertices
of typeg(a) and(c).

Proof. Let ¢; be a line inR3, and letH be the vertical plane containing. For a
triangleA € 7, let 7, be the plane containing ando, = 7, N H. Let Ay be the
arrangement irH of the lines{o, | A € 7}. Let ¢y be a line contained i, parallel

to ¢1, and lying below all vertices ofly. It is easily checked that no regid®, contains

£o. We will move a line¢ within H upward, parallel to itself, from the position when

it coincides with¢g until it coincides with¢;. We estimate the change in the number of
regionsR, that contair¢ as it moves. Summing these changes yields the bound on the
desired quantity fof;.

The set of region®, that fully contain¢ can change only whefipasses through a
vertex of Ay . Clearly, the verteyy = o, No,, has to be such that there is an inner type
(a) or type (c) vertex in A incident toA; and A,. Under these assumptions, foto
become newly contained in a regi®y, or to stop being contained iR,, as it sweeps
past such a vertey, it is necessary and sufficient that the slopé diEs between the
slopes oo, ando,,; see Fig. 5(a). Lek be such a vertex (where this latter condition
also holds). Put = o, Nma,. Lets C A be the segment; N A,. For all regionsR,
that either start or stop containifi@s it sweeps ovey, v is contained irs, so it suffices
to concentrate only on such regioRs.

We mark ons all the inner vertices of thkth level of A(7) of types (a) and (c), and
consider the set of maximal subintervalssofiotcontained in theth level. Each such
subintervall is delimited by two pointsl, v, each of which is an inner vertex of the
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level of type (a) or (c) (it cannot be a vertex of type (b) because all six edges incident
to a type (b) vertex lie on thieth level), a point of jump discontinuity of the level, or an
endpoint ofs. Letqgs be the number of jump discontinuities of tkid level alongs. Note
that each such discontinuity is an outer vertex ofktrelevel. If an inner vertex is an
endpoint of an interval alongwhose other endpoint is either a jump discontinuity or
an endpoint ok, we change to v’. The number of such inner vertices (and therefore
the change in the number of regions that confaicorresponding to such vertices) is at
mostqs + 2.

Next, consider an intervdl, both of whose endpoints are inner vertices, sand
v. Consider the vertical plane containingi, and the cross-section of(7) within
(refer to Fig. 5(b)). Clearly, thkth level of this cross-section is contained in ktle level
of A(T), so it either lies fully abové or fully below I . In the former case both and
v are of type (c), and in the latter case they are both of type (a)y Ls the vertical
lineHNm,and lety, = RyNy ands, = R, Ny.If x &€ |, thenitis easily checked
thaté$, ands, lie on opposite sides of alongy and thus are disjoint except at their
common endpoing. This fact, and our assumptions that the slopé isf between the
slopes oby, = Ay N H ando, = A, N H, imply that one ofR,, R, must be added, and
the other one removed, from the set of regions contaitfiras? sweeps ovey . Hence,
ast sweeps ovey, R, andR, “cancel” out each other, in terms of containment of

To summarize, we have shown that/gsasses through, the change in the number
of regionsR, containing? is at most 4+ gs. This implies that the number of regions
R, that contain¢ in its final position¢, is at mostd (4 + 0s), where the sum is
over all O(n?) intersection segments between pairs of triangles.iSince the number
of outer vertices on th&-th level is O(n®?), as argued above, and each is counted
at most three timesy (gs = O(n*?). The number of regions containingis thus
O(n?) + O(n*?) = O(n%?), as asserted.

Whatif¢, actually passesthrough averfex= o, No s, of Ay ? Thenthe cancellation
does not occur, which adds fewer tharegionsR, that can contaifi—each such region
corresponds to some vertex.d{7) on the segmem; N A;. O

Theorem 5.2. The complexity of any single level in an arrangement of n triangles in
3-space is @n'"/®).

Proof. Lemma 5.1 implies that no ling is contained in more tha®(n%2) regions

R,. Passing to the dual space, we obtain the following equivalent formulation, similar
to the case of planes: The planes containing the trianglésare mapped to a set aof
points. Each inner vertex of thekth level is mapped to a triangle spanned by the three
points dual to the planes containing the triangles incident fthe line¢ is mapped to
another linet*, and¢{ is contained iR, if and only if £* crosses the triangle dual to

We now have a system &f triangles in 3-space, spanned by a totat pbints, whereX

is the number of inner vertices of théh level of types (a) and (c). By the result of [10],
there exists a line that crosses at le@$X2/n®) such triangles. On the other hand, by
Lemma 5.1, this number is at moS(n®?). Combining these two inequalities yields

X = O(n'"/®). We still need to bound the number of vertices of type (b). However, these
vertices are vertices of type (a) of tile — 1)st level, so, repeating the above analysis
for this level, we obtain the bound asserted in the theorem. |
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Theorem 5.3. The complexity of thetk level in an arrangement of n triangles in
3-space is @n%k>8«a(n/k)), for k > 0.

Proof. Take a random sample € 7 of sizer = |[n/2k]. The result of Pach and
Sharir [24] (see also [12] and [27]) implies that the region beneath the lower envelope
of R can be decomposed inigr) = O(r2«(r)) vertical triangular prismgr; }, each
defined by a constant number of trianglegofClarkson and Shor’s analysis [7] can be
applied to show that

E[Zmﬁ”e} = O(() - (/)% = OM*k¥°a(n/k)),

where7; denotes the set of triangles @f intersectingr;. The rest of the proof now
proceeds as in the second proof of Theorem 2.3 or the first proof of Theorem 31.

Remark. Anopen problem is to extend Lemmas 4.1 and 5.1 to the respective cases of
pseudohyperplanes and pseudotriangles, under appropriate definitions of these objects,
and then to extend the proofs of Theorems 5.2 and 5.3 to these cases. Note that there
are two different problems to address: One is to extend thasolémma, and the other

calls for a dual and more general version of the analysis technique of [10] (that yields a
line that stabs many triangles).

6. Dey’s Improvements

As promised, we conclude this paper with a brief discussion of Dey’s recent results and
their interconnections to the results of this paper; we refer to Dey’s paper [8] for more
detalils.

The Case of Lines

Dey’s proof for the case of lines (the standard plakaet problem) uses the concave
chain structure developed in this paper. His proof essentially shows that the complexity of
k concave (unbounded) chains in an arrangementlioies, which have no overlapping
edges, iSO(nkY3). His original proof caters only for the case where the chainxare
monotone and unbounded, but a slightly refined argument shows that the complexity of
any k convex chains (or convex polygons) in an arrangememt lofes, which do not

have overlapping edges, @(nk?) for k = O(n) and O(n?3k??3) for larger values

of k. Both bounds can be shown to be tight in the worst case: A matching lower bound
for the former case is given by Eppstein [13], and a matching lower bound for the latter
case is immediate from the known tight bound on the maximum complexiyfates

in an arrangement afi lines [6]. Earlier work [18], [19] has established the bound
O(k?3n?/® + n) for the restricted case in which the concave chains are not allowed to
cross each other; in this restricted case, the bound also holds£fdD (n).
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The Case of Segments

Dey has improved the bound in Theorem 2.1am*?2). This is an immediate conse-
guence of the extension of his result concerning the complexity of an arbitrary collection
of convex chains with nonoverlapping edges in an arrangement of lines (or of segments),
as just mentioned.

Concerning thek-sensitive bound (Theorem 2.3), it follows from our proofs that
any improvement on the worst-case bound ovekd#ads to an improvement on the
k-sensitive bound. Thus, combining our analysis with De&y&*?) bound implies a
new bound of0 (nk'3« (n/k)) for the complexity of théth level in an arrangement of
segments.

The Case of Pseudolines and Pseudosegments

Following the recent results of [9] and [29], Dey’s technique can also be extended

to the cases of pseudolines and pseudosegments (in the sense defined above). Thus
all the bounds just stated also apply to the corresponding cases of pseudolines or of
pseudosegments.

The Case of Triangles i&Space

The analysis of the case of triangles relies strongly on bounds for the complexity of a level
in a planar arrangement of segments. Thus Dey'’s results can be “plugged into” the analy-
sis, and improve the bounds in Theorems 5.2 and 5&(t%>°) andO (n’k”/%a(n/k)),
respectively, as is easily checked.
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