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Abstract : We construct the law of Lévy processes conditioned to stay positive under general

hypotheses. We obtain a Williams type path decomposition at the minimum of these processes.

This result is then applied to prove the weak convergence of the law of Lévy processes con-

ditioned to stay positive as their initial state tends to 0. We describe an absolute continuity

relationship between the limit law and the measure of the excursions away from 0 of the un-

derlying Lévy process reflected at its minimum. Then, when the Lévy process creeps upwards,

we study the lower tail at 0 of the law of the height of this excursion.
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1 Introduction

In [6] it was shown how, given the measure P of a Lévy process satisfying some
weak assumptions, one can construct for each x > 0 a measure P↑x corresponding,
in the sense of Doob’s theory of h-transforms, to conditioning the process starting
at x to stay positive. Using a different construction Bertoin [3] had shown the
existence of a measure P↑0 under which the process starts at 0 and stays positive.
A natural question is whether P↑x converges to P↑ := P↑0 as x ↓ 0. Recently, it has
been proved by Tanaka [15] that this convergence in law holds in the sense of
finite dimensional distributions, under very general hypotheses, but here we are
interested in convergence in law on Skohorod’s space of càdlàg trajectories. Since
it was also shown in [6], extending a famous result for the 3-dimensional Bessel
process due to Williams, that under P↑x the post-minimum process is independent
of the pre-minimum process and has law P↑, this essentially amounts to showing
that the pre-minimum process vanishes as x ↓ 0. Such a result has been verified
in the case of spectrally negative processes in [2], and for stable processes and for
processes which creep downwards in [6].

In the third section of this paper, we give a simple proof of this result for
a general Lévy process. This proof does not use the description of the law of
the pre-minimum process which is given in [6], but is based on knowledge of the
distribution of the all-time minimum under P↑x, which was also established in [6].
However these results in [6], and also some results from [9] which we need, were
established under what can now be seen to be unnecessary assumptions, such as
the existence of an absolutely continuous semigroup, regularity of both half-lines,
etc. We therefore devote the second section to a self-contained account of Lévy
processes conditioned to stay positive. In it we give improved proofs of the basic
existence and decomposition results (Proposition 1 and Theorem 1) under the
sole assumption that our Lévy process is not Compound Poisson.

As a consequence of our convergence reult Theorem 2, we are able to extend
the description of the excursion measure of the process reflected at its minimum
(see Proposition 15, p. 202 of [1] for the spectrally negative case) to the general
case. This description has recently been used in [8] to perform some semi-explicit
calculations for the reflected process when X has jumps of one sign only, and
our result suggests the possibility that such calculations could be performed in
other cases. However a key fact in the calculations in [8] is that, in the spectrally
negative case, the harmonic function h used in conditioning to stay positive and
the excursion measure n of the reflected process satisfy

n(H > x)h(x) = 1,

where H denotes the height of a generic excursion. This leads us to wonder
whether this relation could hold asymptotically as x ↓ 0 in other cases. Intu-
itively it seems obvious that this should be the case when the reflected excursion
creeps upwards. This is what we establish in Theorem 3.
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2 The process conditioned to stay positive

2.1 Notation and Preliminaries

Let D denote the space of càdlàg paths ω : [0,∞) → R ∪ {δ} with lifetime
ζ(ω) = inf{s : ωs = δ}, where δ is a cemetery point. D will be equipped with
the Skorokhod topology, with its Borel σ-algebra F , and the usual filtration
(Fs, s ≥ 0). Let X = (Xt, t ≥ 0) be the coordinate process defined on the space
D. We write X and X for the supremum and infimum processes, defined for all
t < ζ by

X t = sup{Xs : 0 ≤ s ≤ t},

X t = inf{Xs : 0 ≤ s ≤ t}.

We write τA for the entrance time into a Borel set A, and m for the time at which
the absolute infimum is attained:

τA = inf{s > 0 : Xs ∈ A}, (2.1)

m = sup{s < ζ : Xs ∧Xs− = Xs}, (2.2)

with the usual convention that inf{∅} = +∞ and sup{∅} = 0. (Note that the
definition of m here reduces to that in [6] when 0 is regular for both half-lines,
which was assumed in [6], because then there can be no jump at the minimum.)

For each x ∈ R we denote by Px the law of a Lévy process starting from x, and
write P0 = P. We assume throughout the sequel that (X,P) is not a compound
Poisson process. It is well known that the reflected process X − X is Markov.
Note that the state 0 is regular for (−∞, 0) under P, if and only if it is regular
for {0} for the reflected process. In this case, we will simply say that 0 is regular
downwards and if 0 is regular for (0,∞) under P, we will say that 0 is regular
upwards.

Let L be the local time of the reflected process X −X at 0 and let n be the
measure of its excursions away from 0. If 0 is regular downwards then, up to a
multiplicative constant, L is the unique additive functional of the reflected process
whose set of increasing points is {t : (X −X)t = 0} and n is the corresponding
Itô measure of excursions; we refer to [1], Chap. IV, sections 2-4 for a proper
definition of L and n. If 0 is not regular downwards then the set {t : (X−X)t = 0}
is discrete and we define the local time L as the counting process of this set, i.e. L
is a jump process whose jumps have size 1 and occur at each zero of X−X. Then,
the measure n is the probability law of the process X under the law P, killed at
its first passage time in the negative halfline, i.e. τ(−∞,0), (see the definition of
Q0 below).

Let us first consider the function h defined for all x ≥ 0 by:

h(x) := E
(
∫

[0,∞)

1I{Xt≥−x} dLt

)

. (2.3)
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It follows from (2.3) (or (2.5) below) and general properties of Lévy processes
that h is finite, continuous, increasing and that h−h(0) is subadditive on [0,∞).
Moreover, h(0) = 0 if 0 is regular downwards and h(0) = 1 if not (in the latter
case, the counting measure dLt gives mass 1 to the point t = 0).

Let e be an exponential time with parameter 1, which is independent of (X,P).
The following identity follows from Maisonneuve’s exit formula of excursion the-
ory when 0 is regular downwards and is obtained by direct calculations in the
other case. For all ε > 0,

Px(τ(−∞,0) > e/ε) = P(Xe/ε ≥ −x) = E
(
∫

[0,∞)

e−εt1I{Xt≥−x} dLt

)

n(e/ε < ζ) ,

(2.4)
so that, by monotone convergence, for all x ≥ 0:

h(x) = lim
ε→0

Px(τ(−∞,0) > e/ε)

n(e/ε < ζ)
. (2.5)

In the next lemma, we show that h is excessive or invariant for the process
(X,Px), x > 0 killed at time τ(−∞,0). This result has been proved in the context of
potential theory by Silverstein [13] Th. 2, where it is assumed that the semigroup
is absolutely continuous, 0 is regular for (−∞, 0), and (X,P) does not drift to
−∞; see also Tanaka [15], Th. 2 and Th. 3. Here, we give a different proof which
uses the representation of h stated in (2.5). For x > 0, we denote by Qx the law
of the killed process, i.e. for Λ ∈ Ft:

Qx(Λ, t < ζ) = Px(Λ, t < τ(−∞,0)) ,

and by (qt) its semigroup. Recall that Q0 and qt(0, dy) are well defined when 0
is not regular downwards, and in this case we have Q0 = n.

Lemma 1 If (X,P) drifts towards −∞ then h is excessive for (qt), i.e. for all
x ≥ 0 and t ≥ 0, EQ

x (h(Xt)1I{t<ζ}) ≤ h(x). If (X,P) does not drift to −∞, then
h is invariant for (qt), i.e. for all x ≥ 0 and t ≥ 0, EQ

x (h(Xt)1I{t<ζ}) = h(x).

Proof : From (2.5), monotone convergence and the Markov property, we have

EQ
x (h(Xt)1I{t<ζ}) = lim

ε→0
Ex

(PXt
(τ(−∞,0) > e/ε)1I{t≤τ(−∞,0)}

n(e/ε < ζ)

)

= lim
ε→0

Ex

(

1I{τ(−∞,0)>t+e/ε}

n(e/ε < ζ)

)

= lim
ε→0

eεt
(

Px(τ(−∞,0) > e/ε)

n(e/ε < ζ)

−

∫ t

0

εe−εuPx(τ(−∞,0) > u)

n(e/ε < ζ)
du

)

= h(x)−
1

n(ζ)

∫ t

0

Px(τ(−∞,0) > u) du , (2.6)
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where n(ζ) =
∫∞

0
n(ζ > t) dt. It is known that for x > 0, Ex(τ(−∞,0)) < ∞ if

and only if X drifts towards −∞, see [1], Prop. VI.17. Hence, since moreover
for x > 0, 0 < h(x) < +∞, then (2.5) shows that n(ζ) < +∞ if and only if
X drifts towards −∞. Consequently, from (2.6), if X drifts towards −∞, then
EQ

x (h(Xt)1I{t<ζ}) ≤ h(x), for all t ≥ 0 and x ≥ 0, whereas if (X,P) does not drift
to −∞, then n(ζ) = +∞ and (2.6) shows that EQ

x (h(Xt)1I{t<ζ}) = h(x), for all
t ≥ 0 and x ≥ 0.

2.2 Definition and path decomposition

We now define the Lévy process (X,Px) conditioned to stay positive. This notion
has now a long history, see [3], [6] , [9], [15] and the references contained in those
papers.

Write (pt, t ≥ 0) for the semigroup of (X,P) and recall that (qt, t ≥ 0) is the
semigroup (in (0,∞) or in [0,∞)) of the process (X,Qx). Then we introduce the
new semigroup

p↑t (x, dy) :=
h(y)

h(x)
qt(x, dy), x > 0, y > 0, t ≥ 0 . (2.7)

From Lemma 1, (p↑t ) is sub-Markov when (X,P) drifts towards −∞ and it is
Markov in the other cases. For x > 0 we denote by P↑x the law of the strong
Markov process started at x and whose semigroup in (0,∞) is (p↑t ) . When (p↑t )
is sub-Markov, (X,P↑x) has state space (0,∞) ∪ {δ} and this process has finite
lifetime. In any case, for Λ ∈ Ft, we have

P↑x(Λ, t < ζ) =
1

h(x)
EQ

x (h(Xt)1IΛ1I{t<ζ}) . (2.8)

Note that when 0 is not regular downwards then definitions (2.7) and ( 2.8) also
make sense for x = 0. We show in the next proposition that P↑x is the limit as
ε ↓ 0 of the law of the process under Px conditioned to stay positive up to an
independent exponential time with parameter ε, so we will refer to (X,P↑x) as the
process “conditioned to stay positive”. Note that the following result has been
shown in [6] Th. 1 under the same assumptions that Silverstein [13] required for
his Th. 2, but here we only assume that X is not a compound Poisson process.

Proposition 1 Let e be an exponential time with parameter 1 which is indepen-
dent of (X,P).

For any x > 0, and any (Ft) stopping time T and for all Λ ∈ FT ,

lim
ε→0

Px(Λ, T < e/ε |Xs > 0, 0 ≤ s ≤ e/ε) = P↑x(Λ, T < ζ) .

This result also holds for x = 0 when 0 is not regular downwards.
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Proof : According to the Markov property and the lack-of-memory property of
the exponential law, we have

Px(Λ, T < e/ε |Xs > 0, 0 ≤ s ≤ e/ε) =

Ex

(

1IΛ1I{T<(e/ε)∧τ(−∞,0)}

PXT
(τ(−∞,0) ≥ e/ε)

Px(τ(−∞,0) ≥ e/ε)

)

. (2.9)

Let ε0 > 0. From (2.3) and (2.4), for all ε ∈ (0, ε0),

1I{T<(e/ε)∧τ(−∞,0)}

PXT
(τ(−∞,0) ≥ e/ε)

Px(τ(−∞,0) ≥ e/ε)
≤

1I{T<τ(−∞,0)}E
(
∫

[0,∞)

e−ε0t1I{Xt≥−x} dLt

)−1

h(XT ) , a.s. (2.10)

Recall that h is excessive for the semigroup (qt), hence the inequality of Lemma
1 also holds at any stopping time, i.e. EQ

x (h(XT )1I{T<ζ}) ≤ h(x). Since h is
finite, the expectation of the right hand side of (2.10) is finite so that we may
apply Lebesgue’s theorem of dominated convergence in the right hand side of
(2.9) when ε goes to 0. We conclude by using the representation of h in (2.5) and
the definition of P↑x in (2.8).

Remark 1 In the discrete time setting, that is for random walks, another char-
acterization of the harmonic function h has been given by Bertoin and Doney
[4], Lemma 1. Using similar arguments, one can show that a continuous time
equivalent holds. For Lévy processes, such that lim supt Xt = +∞, this result is

lim
n→+∞

Px(τ[n,∞) < τ(−∞,0))

Py(τ[n,∞) < τ(−∞,0))
=

h(x)

h(y)
, x, y > 0.

Then, as in discrete time, a consequence is the following equivalent definition of
(X,P↑x):

lim
n→+∞

Px(Λ | τ[n,∞) < τ(−∞,0)) = P↑x(Λ) , t > 0, Λ ∈ Ft .

Note that a similar conditioning has been studied by Hirano [10] in some special
cases.

In the case where 0 is regular downwards, definition (2.7) does not make sense
for x = 0, but in [3] it was shown that in all cases, the law of the process

((X −X)gt+s, s ≤ t− gt), where gt = sup{s ≤ t : (X −X)s = 0}

converges as t → ∞ to a Markovian law under which X starts at 0 and has
semigroup p↑t . Similarly, under additional hypotheses, Tanaka [15], Th.7 proved
that the process

(X −X)bλ+s, s ≤ aλ − bλ), where

{

aλ = inf{t : (X −X)t > λ}
bλ = sup{t ≤ aλ : (X −X)t = 0}
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converges as λ → +∞ towards the same law. We will denote this law by P↑.
Thm 3 of [6] gives the entrance law of the process (X,P↑), (see (3.2) below).
Note that Doney [7], extending a discrete time result from Tanaka [14], obtained
a path construction of (X,P↑). Another path construction of (X,P↑) is contained
in Bertoin [3]. These two constructions are quite different from each other but
coincide in the Brownian case. Roughly speaking, we could say that Doney-
Tanaka’s construction is based on a rearrangement of the excursions away from
0 of the Lévy process reflected at its minimum whereas Bertoin’s construction
consists in sticking together the positive excursions away from 0 of the Lévy
process itself.

The next theorem describes the decomposition of the process (X,P↑x) at the
time of its minimum. It is also well known in the literature under various hy-
potheses: in [6] Th. 5 and in [9] Prop. 4.7, Cor. 4.8, the state 0 is supposed to be
regular both downwards and upwards, moreover in [6], the process does not drift
towards −∞ and its semigroup is absolutely continuous, and in [9], the process
X creeps both downwards and upwards (see (4.1) for a definition of creeping).
Here, we only assume that X is not a compound Poisson process.

Theorem 1 Define the pre-minimum and post-minimum processes respectively
as follows: (Xt , 0 ≤ t < m) and (Xt+m − U , 0 ≤ t < ζ − m), where U :=
Xm ∧Xm−.

1. Under P↑x, x > 0, the pre-minimum and post-minimum processes are in-
dependent. The process (X,P↑x) reaches its absolute minimum U once only
and its law is given by:

P↑x(U ≥ y) =
h(x− y)

h(x)
1{y≤x} . (2.11)

2. Under P↑x, the law of the post-minimum process is P↑. In particular, it is
strongly Markov and does not depend on x. The semigroup of (X,P↑) in
(0,∞) is (p↑t ). Moreover, X0 = 0, P↑-a.s. if and only if 0 is regular upwards.

Proof : Denote by Pe/εx the law of the process (X,Px) killed at time e/ε. Since
(X,P) is not a compound Poisson process, it almost surely reaches its minimum
at a unique time on the interval [0, e/ε]. Recall that by a result of Millar [11], pre-

minimum and post-minimum processes are independent under Pe/εx for all ε > 0.
According to Proposition 1, the same properties hold under P↑x. Let 0 ≤ y ≤ x.
From Proposition 1 and (2.5):

P↑x(U < y) = P↑x(τ[0,y) < ζ) = lim
ε→0

Px(τ[0,y) < e/ε | τ(−∞,0) > e/ε)

= lim
ε→0

(

1−
Px(τ[0,y) ≥ e/ε, τ(−∞,0) > e/ε)

Px(τ(−∞,0) > e/ε)

)

= 1− lim
ε→0

Px−y(τ(−∞,0) ≥ e/ε)

Px(τ(−∞,0) > e/ε)
= 1−

h(x− y)

h(x)
,

954



and the first part of the theorem is proved.
From the independence mentioned above, the law of the post-minimum pro-

cess under Pe/εx ( · |U > 0) is the same as the law of the post-minimum process

under Pe/εx . Then, from Proposition 1 or from [3], Corollary 3.2, the law of the
post-minimum processes under P↑x is the limit of the law of the post-minimum

process under Pe/εx , as ε → 0. But in [3], Corollary 3.2, it has been proved that
this limit law is that of a strong Markov process with semigroup (p↑t ). More-

over, from [11], the process (X,Pe/εx ) leaves its minimum continuously, (that is

Pe/εx (Xm > Xm−) = 0) if and only if 0 is regular upwards. Then we conclude
using Proposition 1.

When (X,P) has no negative jumps and 0 is not regular upwards, the initial law
of (X,P↑) has been computed in [5]. It is given by:

P↑(X0 ∈ dx) =
xπ(dx)

∫∞

0
uπ(du)

, x ≥ 0 , (2.12)

where π is the Lévy measure of (X,P). It seems more difficult to obtain an
explicit formula which only involves π in the general case.

3 The convergence result

We can now state our convergence result. Recall that it has been proved in [6]
Th. 6 in the special cases where (X,P) is either a Lévy process which creeps
downwards (see the next section for the definition of the creeping of a stochastic
process) or a stable process. Note also that from Bertoin [1], Prop. VII.14 this
convergence also holds when (X,P) has no positive jumps. Then Tanaka [15],
Ths 4 and 5 proved the finite dimensional convergence in the very general case.

Theorem 2 Assume that 0 is regular upwards. Then the family (P↑x, x > 0) con-
verges on the Skorokhod space to P↑. Moreover the semigroup (p↑t , t ≥ 0) satisfies
the Feller property on the space C0([0,∞)) of continuous functions vanishing at
infinity.

If 0 is not regular upwards, then for any ε > 0 , the process (X ◦ θε,P↑x)
converges weakly towards (X ◦ θε,P↑), as x tends to 0.

Proof : Let (Ω,F , P ) be a probability space on which we can define a family
of processes (Y (x))x>0 such that each process Y (x) has law P↑x. Let also Z be a
process with law P↑ which is independent of the family (Y (x)). Let mx be the
unique hitting time of the minimum of Y (x) and define, for all x > 0, the process
Z(x) by:

Z
(x)
t =

{

Y
(x)
t t < mx

Zt−mx
+ Y

(x)
mx t ≥ mx .
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By the preceding theorem, under P , Z (x) has law P↑x.
Now first assume that 0 is regular upwards, so that limt↓0 Zt = 0, almost surely.

We are going to show that the family of processes Z (x) converges in probability
towards the process Z as x ↓ 0 for the norm of the J1-Skorohod topology on the
space D([0, 1]). Let (xn) be a decreasing sequence of real numbers which tends to
0. For ω ∈ D([0, 1]), we easily see that the path Z (xn)(ω) tends to Z(ω) as n goes

to ∞ in the Skohorod’s topology, if both mxn(ω) and Z
(xn)

mxn
(ω) tend to 0. Hence,

it suffices to prove that both mx and Z
(x)

mx
converge in probability to 0 as x→ 0.

In the canonical notation (i.e. with (m,P↑x) = (mx, P ), where m is defined in
(2.2) and (X,P↑x) = (Z(x), P )), we have to show that for any fixed ε > 0, η > 0,

lim
x↓0

P↑x(m > ε) = 0 and lim
x↓0

P↑x(Xm > η) = 0. (3.1)

First, applying the Markov property at time ε gives

P↑x(m > ε) =

∫

0<y≤x

∫

z>y

P↑x(Xε ∈ dz,Xε ∈ dy, ε < ζ)P↑z(U < y)

=

∫

0<y≤x

∫

z>y

Qx(Xε ∈ dz,Xε ∈ dy, ε < ζ)
h(z)

h(x)
P↑z(U < y)

=

∫

0<y≤x

∫

z>y

Px(Xε ∈ dz,Xε ∈ dy)
h(z)− h(z − y)

h(x)
,

where we have used the result of Theorem 1 and the fact that Qx and Px agree on
Fε ∩ (Xε > 0). Put h̃ := h− h(0), and recall from Section 2 that h̃ is increasing
and subadditive, hence we have h(z)− h(z − y) ≤ h̃(y), and so

P↑x(m > ε) ≤
1

h(x)

∫

0<y≤x

∫

z>y

Px(Xε ∈ dz,Xε ∈ dy)h̃(y)

=
1

h(x)

∫

0<y≤x

Px(Xε ∈ dy)h̃(y) ≤
h̃(x)

h(x)
Px(Xε > 0) .

When 0 is not regular downwards h(0) = 1 (see Section 2), hence h̃(x)
h(x)

→ 0 as

x→ 0, and we obtain the result in that case. When 0 is regular, h̃(x)
h(x)

= 1, but in

this case, we clearly have Px(Xε > 0)→ 0 as x→ 0, so the result is also true.
For the second claim in (3.1), we apply the strong Markov property at time

τ := τ(η,∞), with x < η, to get

P↑x(Xm > η) =

∫

z≥η

∫

0<y≤x

P↑x(Xτ ∈ dz,Xτ ∈ dy, τ < ζ)P↑z(U < y)

=

∫

z≥η

∫

0<y≤x

P↑x(Xτ ∈ dz,Xτ ∈ dy, τ < ζ)
h(z)− h(z − y)

h(z)
.

We now apply the simple bound

h(z)− h(z − y)

h(z)
≤

h̃(y)

h(z)
≤

h̃(x)

h(η)
for 0 < y ≤ x and z ≥ η
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to deduce that

P↑x(Xm > η) ≤
h̃(x)

h(η)
→ 0 as x ↓ 0 .

Then, the weak convergence of (P↑x) towards P↑ is proved. When 0 is regular
upwards, the Feller property of the semigroup (p↑t , t ≥ 0) on the space C0([0,∞))
follows from its definition in (2.7), the properties of Lévy processes and the weak
convergence at 0 of (P↑x).

Finally when 0 is not regular upwards, (3.1) still holds but we can check
that, at time t = 0, the family of processes Z (x) does not converge in probability
towards 0. However following the above arguments we can still prove that for
any ε > 0, (Z(x) ◦ θε) converges in probability towards Z ◦ θε as x ↓ 0.

The following absolute continuity relation between the measure n of the process
of the excursions away from 0 of X −X and P↑ has been shown in [6]: for t > 0
and A ∈ Ft

n(A, t < ζ) = kE↑(h(Xt)
−1A), (3.2)

where k > 0 is a constant which depends only on the normalization of the local
time L. Relation (3.2) was established in [6] Th. 3 under the additional hypothe-
ses mentioned before Theorem 1 above, but we can easily check that it still holds
under the sole assumption that X is not a Poisson process. Then a consequence
of Theorem 2 is:

Corollary 1 Assume that 0 is regular upwards. For any t > 0 and for any Ft

-measurable, continuous and bounded functional F ,

n(F, t < ζ) = k lim
x→0

E↑x(h(Xt)
−1F ).

Another application of Theorem 2 is to the asymptotic behavior of the semigroup
qt(x, dy), t > 0, y > 0, when x goes towards 0. Let us denote by jt(dx), t ≥ 0,
x ≥ 0 the the entrance law of the excursion measure n, that is the Borel function
which is defined for any t ≥ 0 as follows:

n(f(Xt), t < ζ) =

∫ ∞

0

f(x)jt(dx) ,

where f is any positive or bounded Borel function f .

Corollary 2 The asymptotic behavior of qt(x, dy) is given by:

∫ ∞

0

f(y)qt(x, dy) ∼x→0 h(x)

∫ ∞

0

f(y)jt(dy) ,

for t > 0 and for every continuous and bounded function f .
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Note that when 0 is not regular downwards, the measure n is nothing but Q0 and
h(0) = 1, so in that case Corollaries 1 and 2 are straightforward. In the other
case, they are direct consequences of Theorem 2, (2.7) and (3.2), so their proofs
are omitted.

4 On the asymptotic behaviour of the function

h

We end this paper by a study of the asymptotic behaviour of the function h at
0 in terms of the lower tail of the height of the generic reflected excursion. We
define the height of a path ω with finite lifetime ζ(ω) as follows:

H(ω) := sup
0≤t≤ζ

ωt .

The equality n(H > x)h(x) = 1 is proved in [1], Proposition VII.15 in the
spectrally negative case, i.e. when (X,P) has no positive jumps. However, this
relation does not hold in general.

Example: First note that, using Corollary 1, one has in any case

n(H > x) = n(τ[x,∞) <∞) = lim
y↓0

1

h(y)
Qy(τ[x,∞) < τ(−∞,0])

= lim
y↓0

1

h(y)
Py(X(τ(−∞,0]) > x) .

Moreover, Th. VII.8 in [1] implies that when the process has no negative jumps,

Py(X(τ(−∞,0]) > x) =
ĥ(x+ y)

ĥ(x)
,

where ĥ is the harmonic function defined as in Section 2 with respect to the dual

process X̂
(def)
= −X. Then in this case, one has h(y) = y, so that from above,

n(H > x) = ĥ′(x)/ĥ(x). We conclude that the expression n(H > x)h(x) can
be equal to a constant only when ĥ is of the form ĥ(x) = cxγ, for some positive
constants c and γ, but this is possible only if (X,P) is stable. Note that the
equality n(H > x)h(x) = 1 has recently been noticed independently by Rivero
[12] for any stable Lévy process, in a work on the more general setting of Markov
self-similar processes.

In the spectrally positive case discussed above, we can check that the expres-
sion n(H > x)h(x) tends to a constant as x goes to 0 if the process is also in the
domain of attraction of a stable process, i.e. if there exists α ∈ (0, 2] such that
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((t−1/αXst, s ≥ 0),P) converges weakly to a stable process with index α, as t goes
to 0. This raised the question of finding some other conditions under which this
property holds. The creeping of (X,P) is one such condition.

In the rest of the paper, we suppose that (X,P) does not drift towards −∞.
We say that the process (X,P) creeps (upwards) across the level x > 0 if

P(X(τ[x,∞)) = x) > 0 . (4.1)

It is well known that if X creeps across a positive level x > 0, then it creeps
across all positive levels. Moreover this can happen if and only if

lim
x↓0

P(X(τ[x,∞)) = x) = 1 . (4.2)

We refer for instance to [1], chap. VI for a proof of this equivalence.
Define for all x > 0, σx = sup{t : Xt ≤ x}. Then it is easy to see from propo-

sition 1 that when Px(lim supt→+∞Xt = +∞) = 1, we have P↑(limt→+∞Xt =
+∞) = 1, hence P↑(σx < ∞) = 1, for any x ≥ 0. We need the following lemma
for the proof of the next theorem.

Lemma 2 If (X,P) creeps upwards, then limx↓0 P↑(X(σx) = x) = 1.

Proof: In the case where, 0 is regular for both (−∞, 0) and (0,∞), it is a direct
consequence of (4.2) and Th. 4.2 (i) in [9].

However the regularity of 0 is not needed. Indeed, the main argument of the
proof is the identity

(X(σx),P↑) = (X(τ[x,∞)) + [X(gx)−X(τ[x,∞)−)],P) , (4.3)

where gx = sup{t ≤ τ[x,∞) : X t = Xt∨Xt−}. This identity can be checked through
Doney-Tanaka’s construction of Lévy processes conditioned to stay positive (see
Doney [7]). Although the author in [7] also supposes the regularity of 0, it is
easily checked that this construction (and thus identity (4.3)) still holds in the
very general case.

Then observe that X(τ[x,∞)) ≥ x and X(gx)−X(τ[x,∞)−) ≥ 0, P-a.s. Moreover
since (X,P) creeps upwards, it is not a compound Poisson process, hence it cannot
reach a positive level for the first time by a jump. In particular, on the event
{X(τ[x,∞)) = x}, the process is P-a.s. continuous at time τ[x,∞) and on this event,
X(gx) = X(τ[x,∞)−) = X(τ[x,∞)) so that

{X(τ[x,∞)) = x} = {X(τ[x,∞)) + [X(gx)−X(τ[x,∞)−)] = x} , P-a.s.

We conclude with (4.3) and (4.2).

In the following result, without loss of generality, we make the convention that
the normalization constant k in relation (3.2) is 1.
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Theorem 3 If (X,P) creeps upwards, then n(H > x)h(x)→ 1, as x→ 0.

Proof : Recall that under the hypothesis of the theorem, the lifetime of (X,P↑) is
almost surely infinite. Then fix x > 0. Since {H > x} = {τ(x,∞) < ζ}, from the
identity (3.2) applied at the stopping time τ(x,∞), we have

h(x)n(H > x) = h(x)n(τ(x,∞) < ζ) ≤ n(h(X(τ(x,∞))), τ(x,∞) < ζ) = 1 . (4.4)

From the Markov property applied at time τ(0,x], and since h is increasing, we
have for any 0 < x ≤ y,

P↑y(X(σx) = x) = E↑y
(

P↑X(τ(0,x])(Xσx = x)1I{τ(0,x]<∞}

)

=
1

h(y)
EQ

y

(

h(X(τ(0,x]))P↑X(τ(0,x])(Xσx = x)1I{τ(0,x]<ζ}

)

≤
h(x)

h(y)
. (4.5)

On the other hand, from the Markov property at time τ(x,∞) and (3.2), we have
under P↑:

P↑(X(σx) = x) = E↑
(

P↑X(τ(x,∞))
(Xσx = x)

)

= nh(X(τ(x,∞)))P↑X(τ(x,∞))
(Xσx = x)1I{τ(x,∞)<ζ}). (4.6)

But since X(τ(x,∞)) ≥ x, inequality (4.5) gives

P↑X(τ(x,∞))
(Xσx = x) ≤ h(x)/h(X(τ(x,∞))), a.s.

Hence, from (4.6) we have

P↑(X(σx) = x) ≤ h(x)n(τ(x,∞) < ζ) . (4.7)

Finally, we deduce the result from (4.4), (4.7) and Lemma 2.
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[12] V. Rivero: Recouvrements aléatoires et processus de Markov auto-
similaires. PhD Thesis. Université Paris 6, (2004).
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