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ON LEXICOGRAPHICALLY SHELLABLE POSETS
BY

ANDERS BJÖRNER AND MICHELLE WACHS1

Abstract. Lexicographically shellable partially ordered sets are studied. A new
recursive formulation of CL-shellability is introduced and exploited. It is shown that
face lattices of convex polytopes, totally semimodular posets, posets of injective and
normal words and lattices of bilinear forms are CL-shellable. Finally, it is shown
that several common operations on graded posets preserve shellability and CL-shel-
lability.

1. Introduction. A finite poset (partially ordered set) P is said to be shellable if all
maximal chains have the same length r and can be ordered mx, m2,... ,m, in such a
way that if 1 < i <j < t then there exist 1 < k <j and x G my such that m¡ n m- C
mk n wy = mj — {x}. A shellable poset enjoys several strong properties of a combi-
natorial, topological and algebraic nature. Let it suffice here to mention that the
order complex A(/>) has the homotopy type of a wedge of r-spheres and that a
naturally associated commutative ring is Cohen-Macaulay if P is shellable. The
papers [1, 2 and 8] and the further references mentioned there provide more details.

In [1] a simple method was described for showing that a graded poset P is
shellable. The method consists in labeling the covering relations of P in a certain
favorable way. When this is possible P is said to be EL-shellable (or, "edge
lexicographically shellable", cf. Definition 2.1). A slightly more general version of
the method was formulated in [2] leading to the concept CL-shellable (or, "chain
lexicographically shellable", cf. Definition 2.2). In this paper we continue the study
of lexicographic shellability, the main result being a new recursive formulation of
CL-shellability (§3). Using this tool we are able to prove that face lattices of convex
polytopes (§4), totally semimodular posets (§5), posets of injective words (§6) and
lattices of bilinear forms (§7) are CL-shellable.

In [1] the question was raised, whether face lattices of convex polytopes are
lexicographically shellable? It is shown in §4 that a polyhedral complex is shellable
(in a certain recursive sense, which is essentially that of Bruggesser and Mani [3]) if
and only if the dual of its face lattice is CL-shellable. Hence, somewhat surprisingly,
asking for the CL-shellability of a polytope's face lattice turns out to be equivalent
to asking for the shellability of the dual polytope's boundary complex.

In a final section (§8) we prove that a number of common poset operations on
graded posets preserve shellability and CL-shellability. The results complement
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324 ANDERS BJÖRNER AND MICHELLE WACHS

those of [1, §4]. For instance, it is shown that rank-selection preserves CL-shellabil-
ity. This fact, together with [2], implies that rank-selected infinite Bruhat orders and
posets of normal words are CL-shellable (§6).

2. Preliminaries. Let P be a finite poset. We say that P is bounded if there exist a
top element î G P and a bottom element Ô G P such that Ô < x < Î for all x G P.
Given any poset P, let P denote the bounded poset obtained from P by adjoining a
bottom element Ô and a top element 1. P is said to be pure if all maximal chains
x0 < x, < • ■ • < xr have the same length r. A finite poset P is said to be graded if it
is bounded and pure. Any element x of a graded poset P has a well-defined rank
p(x) equal to the common length of all unrefinable chains from 0 to x. By the length
of P we mean p(l). We say that y covers x in P and write x -> v if x < y and
x < z «s y implies that z = y. The set of all chains of a poset P will be denoted by
G(P) and the set of all maximal chains by 9H(/>). The dual of a poset P will be
denoted by P*.

Let A be a finite simplicial complex. The maximal faces of A are called facets. We
say that A is pure d-dimensional if all facets are of dimension d; that is, they contain
d + 1 vertices. A pure ¿-dimensional simplicial complex A is said to be shellable if its
facets can be ordered Fx, F2,...,F, in such a way that FjC\ U/",1 Fi is a pure
(d — l)-dimensional complex for j' — 2,3,...,/ (Fj denotes the set {G | G C Fj}).
Such an ordering of facets is called a shelling. The following equivalent formulation
of shellability will be used throughout this paper: A linear ordering ñ of the facets of
a pure simplicial complex is a shelling if and only if ß satisfies the following
property.

Property S. For all facets F and F' of A such that F' <ü F there is a facet F" with
F"<aFsuchthatFnFcF" nFand|F" HF\ = \F\ -1.

To a finite poset P one can associate the simplicial complex A(P) of all chains of
P, called the order complex of P. Clearly, the facets of A(i>) are the maximal chains
of P. Also, if P is a graded poset of length « then A(P) is pure «-dimensional. We
say that a finite pure poset P is shellable if its order complex A(P) is shellable. Note
that a finite poset P is shellable if and only if P is shellable.

The cardinality of a finite set A will be denoted by | A \ . For a positive integer «,
let[«] = {l,2,...,«}.

Let us now review the notion of lexicographic shellability, starting with the
simpler and original version defined in [1]. Let P be a graded poset of length «, and
let &(P) be the set of edges of the Hasse diagram of P, i.e., &(P) = {(x, v) G P X
P | x -» v}. An edge labeling of P is a map X: &(P) -* A where A is some poset
(usually the integers). Given an edge labeling A, each unrefinable chain c — (x0 -* xx
-» • • • -» xk) of length k can be associated with a /c-tuple a(c) = (A(x0, x,),
X(x,, x2),... ,\(xk_x, xk)). We say that c is an increasing chain if the ¿-tuple ct(c) is
increasing; that is, if A(x0, xx) < X(xt, x2) < • • • < X(xk_x, xk). The edge labeling
allows us to order the maximal chains of any interval of P by ordering the
corresponding /c-tuples lexicographically. If a(cx) lexicographically precedes o(c2)
then we say that c, lexicographically precedes c2 and we denote this by c, <L c2.
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LEXICOGRAPHICALLY SHELLABLE POSETS 325

Definition 2.1. An edge labeling is called an EL-labeling (edge lexicographical
labeling) if for every interval [x, y] in P,

(i) there is a unique increasing maximal chain c in [x, y], and
(ii) c <L c' for all other maximal chains c' in [x, v].

A graded poset that admits an EL-labeling is said to be EL-shellable (edge lexico-
graphically shellable).

An example of an integer EL-labeling of the face lattice of a square is given in
Figure 2.1.

Figure 2.1
For a graded poset P of length n let &*(P) be the set of edges of maximal chains

of P, i.e., &*(P) = {(c, x, v) | c G 91L(P), x, y G c, x -* y}. A chain-edge labeling of
P is a map X: &*(P) -* A, where A is some poset (usually the integers), that satisfies
the following condition.

Condition L. If two maximal chains c = (Ô = x0 -» x, -> • • • -» xB = 1) and c' =
(0 = x'0 -» x¡ -» • • ■ -* jc¿ = 1) coincide along their first d edges then their labels
also coincide along these edges; that is, if x, = x,' for i = 0,... ,d then X(c, x,_,, x,)
= X(c', x-_,, x'j) for / = \,...,d.

An example of a chain-edge labeling is given in Figure 2.2.< s ><•
Figure 2.2

Let X be a chain-edge labeling of P. Each maximal chain m = (0 = x0 -» x, -»
• • • -> x„ = 1) of P can be associated with a unique «-tuple

a(m) = (X(w,x0,x,), X(«i, x,, x2),.. .,X(m, xn_x, x„)).

Unrefinable chains of length k < n cannot however be directly associated with
unique /c-tuples as in the edge labeling case. If c is an unrefinable chain of length
k < «, then each maximal chain containing c induces a /c-tuple to be associated with
c. We overcome the problem of uniqueness by extending the concept of interval. If
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326 ANDERS BJÖRNER AND MICHELLE WACHS

[x, v] is an interval and r is an unrefinable chain from Ô to x, then the pair ([x, v], r)
will be called a rooted interval with root r, and will be denoted [x, y]r. If c is any
maximal chain of [x, v] then r U c is a maximal chain of [0, v]. By Condition L if m
and m' are maximal chains that contain r U c, then the first d entries of a(m) and
a(m') coincide, where d is the length of the chain r L> c. Hence all maximal chains
that contain r and c induce the same /c-tuple to be associated with c. This implies
that every maximal chain c in a rooted interval [x, v]r has a unique /c-tuple or(c)
associated with it.

We say that a maximal chain c in a rooted interval [x, y]r is increasing if the
/c-tuple ar(c) is increasing. If c, and c2 are maximal chains of [x, y]r then c, is said to
lexicographically precede c2 in [x, y]r if ar(cx) lexicographically precedes or(c2). We
denote this by cx <L c2 in [x, y]r.

Definition 2.2. A chain-edge labeling X is called a CL-labeling (chain lexico-
graphical labeling) if for every rooted interval [x, v]r in P,

(i) there is a unique increasing maximal chain c in [x, v]r, and
(ii) c <L c' for all other maximal chains c' in [x, y]r.

A graded poset is said to be CL-shellable (chain lexicographically shellable) if it
admits a CL-labeling.

Figure 2.2 shows an example of a CL-labeling. The notion of CL-shellability was
first used in [2]. For emphasis we will state the logical relationship between the three
notions of shellability for a graded poset. The first implication is obvious, the second
is proved in [2, Theorem 3.3]. See §9 for some additional remarks.

Proposition 2.3. EL-shellable => CL-shellable => shellable.

Some examples of EL-shellable posets are semimodular lattices (including all
modular and geometric lattices) and supersolvable lattices (see [1]). A class of
CL-shellable posets that are not in general known to be EL-shellable are the duals of
Bruhat order on finite Coxeter groups (see [2]).

We will call a poset P dual EL-shellable [CL-shellable] if its dual poset P* is
EL-shellable [CL-shellable]. Thus the Bruhat order on a finite Coxeter group is dual
CL-shellable.

In the next section we will see that the concept of CL-shellability is not made
more general by allowing A to be an arbitrary poset rather than the set of integers. It
is however useful in proving some results to allow A to be an arbitrary poset. It is
not known to us whether the concept of EL-shellability would be affected by
restricting the poset A to the integers.

3. Recursive atom orderings. The fact that every interval of a CL-shellable poset is
CL-shellable leads to the question of whether CL-shellability can be formulated
recursively. It turns out that the following recursive property is equivalent to
CL-shellability. Recall that the atoms of a graded poset are the elements which cover
0. Dually, the coatoms are the elements which are covered by 1.

Definition 3.1. A graded poset P is said to admit a recursive atom ordering if the
length of P is 1 or if the length of P is greater than 1 and there is an ordering
ax, a2,...,a, of the atoms of P which satisfies:
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LEXICOGRAPHICALLY SHELLABLE POSETS 327

(i) For all / = 1,2,...,*, [a-, Î] admits a recursive atom ordering in which the
atoms of [üj, 1] that come first in the ordering are those that cover some a, where
i <J-

(ii) For all /' </, if a¡, a- < y then there is a k <j and an element z such that ak,
üj-*z<>y.

If ax,a2,...,a, is an ordering of the atoms of P that satisfies (i) and (ii) then
a„ a2,... ,at is said to be a recursive atom ordering.

An example of a poset which admits a recursive atom ordering is given in Figure
3.1(a). It is easy to see that (i) and (ii) of Definition 3.1 are satisfied if the atoms are
ordered from left to right in the Hasse diagram. Figure 3.1(b) gives an example of a
poset that does not admit a recursive atom ordering, since for any ordering of the
atoms, (ii) cannot be satisfied.

(a)

Figure 3.1
We will also be considering recursive coatom orderings. A poset admits a recursive

coatom ordering if its dual admits a recursive atom ordering.

Theorem 3.2. A graded poset P admits a recursive atom ordering if and only if P is
CL-shellable.

Proof. We begin with the "only if' part. We will prove the following statement
by induction on the length of P: Any integer labeling X of the bottom edges of a
graded poset P which admits a recursive atom ordering ax,a2,...,a, extends to an
integer CL-labeling of P if X(Ô, a¡) < X(Ô, o,) for all i </. This clearly holds for
posets of length 1.

Now assume that P has length greater than 1. For each/, let F(a,-) be the set of all
atoms of [a., Î] that cover some a¡ where i </. By (i) of Definition 3.1, the atoms of
F(Oj) come first in some recursive atom ordering of [a,, 1]. We can thus label the
bottom edges of [a , Î] consistently with the atom ordering of [oj, Î] and satisfying,

(3.3)
x £ F(aj) ^\(aJt x) <\(Ô, a,),

x(£F(aJ)^X(aJ,x)>x(Ô,aj),

where X denotes the labeling of the bottom edges of [a7-, 1] as well as the original
labeling of the bottom edges of P.
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328 ANDERS BJÖRNER AND MICHELLE WACHS

By the induction hypothesis this labeling extends to an integer CL-labeling of
[üj, î]. Choosing such an extension at each ay we obtain a chain-edge labeling X of P
which is a CL-labeling of [a,, Î] for all / = l,...,r, and hence for every rooted
interval whose bottom element is not 0, and which extends the original labeling of
the bottom edges of P.

We need only show now that the unique lexicographically first maximal chain in
any interval [0, v] is the only increasing maximal chain in that interval. Let
c = (0 -> x, -> x2 -» • • • -» xk = v) be the lexicographically first maximal chain in
[Ô, y). Then (x, -» x2 -* • ■ • — x^) is the lexicographically first maximal chain in
[x,, y] and is therefore increasing. It is also true that x2&F(xx) since c is
lexicographically first. Thus, by (3.3), X(0, x,) < X(x,, x2) and hence c is increasing.

If c' = (0 -» x¡ -» x2 -» • • • -» x'k = y) is another increasing maximal chain in
[0, y] then x'x ¥= xx because there is only one increasing maximal chain in [x,, v]. It
also follows that x¡ -» x2 -» • • • -» x'k is the lexicographically first maximal chain in
[x\, y]. Consequently, x2 is the first atom in the recursive atom ordering of [x{, 1]
that is less than y. Since 0 -» x'x -> x2 is increasing x2 £ ^(xj) by (3.3), and hence
F(x'x) has no elements which lie belowy. This contradicts (ii) of Definition 3.1, since
x, precedes x\ in the given recursive atom ordering of P. Therefore c is the only
increasing maximal chain in [0, y], and hence P is CL-shellable.

To prove the converse we let X: &*(P) -* A be a CL-labeling of P, where A is an
arbitrary poset. If X is applied to the bottom edges of P, a partial ordering of the
atoms of P is induced. We say that an atom ordering ax, a2,... ,a, is compatible with
the CL-labeling X if a,, a2,... ,a, is a linear extension of the partial ordering induced
by X, i.e., a,, a2,...,a, is compatible with X if X(0, a,) < X(0, ay) implies that / </.

We prove that if the atom ordering ax, a2,...,a, is compatible with X then
ax, a2,...,a, is a recursive atom ordering. The proof is by induction on the length of
P. The statement holds trivially if the length of P is 1. Let P have length greater than
1. For each/ = 1,2,...,/, [ay, 1] is CL-shellable with CL-labeling X inherited from
the CL-labeling of P. Hence by induction any atom ordering of [ay, 1] that is
compatible with X is a recursive atom ordering. We must now find an atom ordering
of [üj, 1] that is both compatible with X and satisfies Definition 3.1(i).

If x G F(a-) then 0 -» a; -» x is not the lexicographically first maximal chain in
[0, x], since a,, a2,... ,at is compatible with X. Hence, 0 -> aj, -» x is not increasing
and X(0, ay) 4 X(a-, x). If y £ ^(a^) then 0 -» a ■ -» y is the lexicographically first
maximal chain in [0, y] and hence is increasing. Thus X(0, af) < X(ay, y). The two
inequalities combine to X(ay, x) ^ X(a,, y). Therefore the atoms of [ay, Î] can be
ordered compatibly with X and satisfying (i) of Definition 3.1. By induction this
ordering is recursive.

To verify Definition 3.1(ii) we take / <j and a¡, aj <y and let c be the lexico-
graphically first maximal chain in [ay, y\. Since the atoms a,, a2,... ,a, are ordered
compatibly with X, 0 U c cannot be the lexicographically first maximal chain in
[Ô, y], and hence Ô U c has a descent which can occur only at a . Let z be the
element on c that covers ay. Since there is a descent at a7, z covers some ak where
k </, and (ii) of Definition 3.1 follows.
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LEXICOGRAPHICALLY SHELLABLE POSETS 329

In the last two paragraphs we have tacitly used the fact that if a,, a^ < z, a, ^ a ,
and the lexicographically first maximal chain in [0, z] contains a,, then X(0, a,) <
X(0, a •). This simple property of CL-shellability can be verified as in [1, Proposition
2.5].    D

A consequence of the preceding proof is that the labeling poset A for a CL-shella-
ble poset can always without loss of generality be taken to be the totally ordered set
of integers. This is because in the first part of the proof we produced an integer
labeling.

4. Face lattices of complexes. The recursive formulation of CL-shellability is well
suited to deal with posets which seem to lack natural (chain-) edge labelings but do
exhibit good recursive properties. The face lattices of simplicial and polyhedral
complexes illustrate this point. Other examples will be given in later sections.

By a (convex) poly tope is meant the convex hull of a finite set of points in
Euclidean space. A polyhedral complex is defined to be a finite set of polytopes in
some Euclidean space such that a face of a member is a member (including the
empty face) and the intersection of any two members is a face of each. The maximal
faces of a polyhedral complex are called facets. If the dimension of all the facets of a
polyhedral complex A is a" then A will be called simply a d-complex. Note that if all
the facets of a ¿-complex are simplices then we have (a geometric realization of) a
usual simplicial complex. The ¿-complex consisting of a ¿-dimensional polytope P
and all its faces will be denoted by P. The boundary complex dP is the (¿ — l)-complex
dP = P- {P}.

Definition 4.1. An ordering Fx, F2,... ,Ft of the facets of a ¿-complex A is said to
be a shelling if ¿ = 0 or if d > 0 and for/ = 2,3,...,*, F} f"l U/",1 Fi is a (¿ - 1)-
complex having a shelling which extends to a shelling of bFj (i.e., dFj has a shelling in
which the facets of F¡ n U/l,1 Fi come first). A is said to be shellable if it admits a
shelling.

It is easy to see that when A is simplicial this recursive definition reduces to the
usual nonrecursive definition of shellability stated in §2. Similar but slightly less
restrictive versions of shellability for ¿-complexes have been proposed by Bruggesser
and Mani [3] and Danaraj and Klee [5].

Proposition 4.2 (Bruggesser and Mani). The boundary complex of a polytope is
shellable.

Although in [3], Bruggesser and Mani present this result using a less restrictive
version of shellability, their proof carries through for our version.

The face lattice L(A) of a ¿-complex A is obtained by ordering the faces of A by
inclusion and adjoining a greatest element 1.

Theorem 4.3. Let A be a d-complex. The face lattice L(A) admits a recursive
coatom ordering if and only if A is shellable.

Proof. We will prove for all d by induction that a recursive ordering of the
coatoms of L(A) is a shelling order of the facets of A, and conversely. This is clearly
true for ¿ = 0.
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Assume that ¿> 1. Observe first that if Fx, F2,...,Ft is any ordering of the
coatoms of L(A) (i.e., the facets of A) then Definition 3.1(ii) applied to the coatoms
is equivalent to saying that Fj n U/",1 F¡ is a (¿ - l)-complex for/ = 2,..., t.

Now suppose that Fx, F2,... ,F, is a recursive coatom ordering. For any/ = 2,...,t,
the facets of F¡ n Uj~x Fi are precisely those coatoms of [0, Ff\ which are covered by
some F¡, i </. It follows from Definition 3.1(i) that these coatoms come first in a
recursive coatom ordering of [Ô, FA. Since by induction this recursive coatom
ordering of [Ô, Ff\ is a shelhng order of dFj, we can conclude that Fj D U/r,1 F¡ has a
shelling which extends to a shelling of dFj.

Conversely, let Fx, F2,...,Ft be a shelling of A. For any j = 2,...,r, since
Fj n U/^,1 F¿ has a shelling which extends to a shelhng of dFj, we can conclude by
induction that [0, Fj] admits a recursive coatom ordering in which the facets of
Fj n U/",1 F¡ are the coatoms that come first. These coatoms are precisely those that
are covered by some F¡, i </. Hence, part (i) of Definition 3.1 holds for/ = 2,...,t.
It follows from Proposition 4.2 that dFx is shellable, so also [0, Fx] admits a recursive
coatom ordering.    D

Corollary 4.4. The face lattice of a d-complex A is dual CL-shellable if and only if
A ¿s shellable.    □

Since there are several classes of simplicial complexes which are known to be
shellable, Corollary 4.4 provides a wide variety of CL-shellable posets. For instance,
finite Coxeter complexes, Tits buildings and matroid complexes are all examples of
shellable simplicial complexes. Hence the face lattices of these complexes are dual
CL-shellable.    D

Theorem 4.5. The face lattice of a polytope is both CL-shellable and dual CL-shella-
ble.

Proof. Dual CL-shellability is an immediate consequence of Corollary 4.4 and
Proposition 4.2. The (order) dual of the face lattice of a polytope is isomorphic to
the face lattice of the (polar) dual polytope. Hence, the face lattice is also CL-shella-
ble.    D

5. Totally semimodular posets. A finite poset P is said to be semimodular if it is
bounded and whenever two distinct elements u,v G P both cover x G P there is a
z G P which covers both u and v. Semimodular posets are graded but not necessarily
shellable. P is said to be totally semimodular if it is bounded and all intervals [x, y]
are semimodular. Totally semimodular posets are known to be shellable [1,§6], and
will now be shown to be CL-shellable. Semimodular lattices are actually EL-shella-
ble [1,§3], but the question of EL-shellability for nonlattice totally semimodular
posets remains open.

Theorem 5.1. A graded poset P is totally semimodular if and only if for every
interval [x, y] of P, every atom ordering in [x, y] is a recursive atom ordering.

Proof. We prove this by induction on the length of P. For posets of length 1, the
result is trivial.
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Let P be totally semimodular with length greater than 1. If [x, y]¥= P then [x, y]
is totally semimodular and by induction every atom ordering in [x, y] is a recursive
atom ordering.

Let a,, a2,... ,ar be any atom ordering in P. Since every atom ordering in [ay, Î] is
recursive, order the atoms of [Oj, Î] so that those that cover some a,, /' </, come first.
Let y > a¡, üj, i </. Since P is totally semimodular there is an element z *^y which
covers a, and ay. Thus (i) and (ii) of Definition 3.1 are satisfied by a,, a2,... ,a„ so
this atom ordering is recursive.

Conversely, to show that P is totally semimodular we must show that if u, v, x, y
G P where x -» u, x -» v and u,v<y then there is an element z <y which covers u
and v. Order the atoms of [x, y] so that u and v come first. Since every atom
ordering of [x, y] is recursive, it follows from Definition 3.1(ii) that u and v are
covered by an element z < y.    D

Corollary 5.2. A totally semimodular poset is CL-shellable.    D

6. Linguistic posets. Let A be a finite alphabet, | A \ > 2. By a word of length k>0
is meant a string of k letters drawn from A. Given two words wx and n>2 we say that

i is a subword of w>2,
1 <i

written w w ,, if w2 = axa2 a„ and w, = a, a,
9 ' 'l     '2

,<I2< ■ < ik < q. Any set of words is partially ordered by the subword
relation. A word is said to be injective if no letter occurs more than once, and normal
if no two consecutive letters are equal. Let IA and NA denote the posets of all
injective and normal words, respectively, and let NAk denote the poset of all normal
words of length at most k. NA is infinite but IA and NAk are finite. By convention we
exclude the empty word from these posets. Thus, IA and NAk are graded posets of
length | A | +1 and k + 1, respectively, and the word length l(w) coincides with the
poset rank. The posets I(a<b<c) an<l ̂ {a,b},3 are depicted in Figure 6.1.

abc acb bac be a cab cba aba

ab

bab

ba

abc ab

Figure 6.1
The linguistic posets IA and NAk were introduced and studied by F. Farmer in [7].

Theorem 6.1. (i) IA is dual CL-shellable.
(ii) NA¿ is dual CL-shellable, for all k> 1.

The two parts of this result will be proved by quite different methods. For part (i)
we will exhibit an explicit recursive coatom ordering, while part (ii) will be dealt with
using Coxeter group methods. Before we turn to the proofs, let us briefly discuss
some connections with Farmer's work.
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Suppose that | A |= «, and íet S C [«]. Define IA s = {w G IA | l(w) G S}, i.e.,
/,, s is the poset of injective words of length prescribed by S. We will derive an
expression for the Möbius function ¡x(IA s), i.e., jn(0,1) computed on IA s, and discuss
the homotopy type of IA s. For some basic facts concerning Möbius functions, see
e.g. [8, §5] and the further references found there. Given a sequence of integers
1 « kx < k2 < ■ • • < k¡, let 6í)(kx, k2,.. .,k¡) denote the set of permutations of [k¡]
having descent set {kx, k2,...,k¡_x}. In other words,

fy(kx,k2,...,*,) = [ireSlki]\iTj>iTj+] »j'6 {kx,k2,...,k¡_x}).

Thus, | ÖD<A:3> |^ 1 and |3>(l,2,...,i)| = 1. Using the natural EL-labeling of the
Boolean lattice $(£:,) of rank k¡, one sees from Stanley's formula [1, Theorem 2.7]
that (-1)' | tf)(ku k2,.. .,k¡) | equals the Möbius function of the {kx, k2,.. .,&,_,}-
rank-selected subposet of %(k¡). Rank-selected subposets are defined in §8 below.
Now, clearly every lower interval [0, w], w ^ 1, in IA is Boolean. Thus, if S =
{kx, k2,.. .,ks}, 1 < kx < k2< ■ ■ ■ < ks < «, we derive the following expression:

(6.2) /i(/4S) = _l+ Í(-\),+ l(n)k¡\q){kx,k2,...,k¡)\.
¿=i

Here, (n)k = «(« — 1) •••(« — k¡ + 1) is the number of injective words of length

Since rank-selection preserves shellabihty (cf. Theorem 8.1 below or [1, Theorem
4.1]) it follows from Theorem 6.1 that IA s is shellable. A shellable poset is known to
be homotopy Cohen-Macaulay (cf. [1, Appendix]). In particular, we may conclude
that (the order complex of) IAS has the homotopy type of a wedge of
2/=o(-l)s+i(fl)fc I ̂ (^i» ^2>- • • >£/) I (s ~ l)-spheres.This was shown by Farmer for
the case S — {1,2,... ,s}, s < n, cf. [7, Theorem 5 and Remark].

A similar discussion applies to the poset of normal words. Let S be any finite set
of positive integers and define NAS — {w G NA | l(w) G S}. In the same way it
follows from Theorem 6.1 that NAS is shellable, and hence has the homotopy type of
a wedge of (| S \ — l)-spheres. Again, the S = {1,2,... ,s) case is due to Farmer [7,
Theorem 4]. He also obtains in [7, Remark, p. 611]:

(6.3) n(NAtk) = -1 + I (-l)'-'«(« - I)'"1 = (-I)*'*(« -1)*.
(=1

We will later derive a slight generalization of this.
Proof of Theorem 6.1(i). We will show that IA admits a recursive coatom

ordering. It is clear that the maximal words of lA are the permutations of A. Choose
an ordering of A and order the permutations lexicographically. We claim that this is
a recursive coatom ordering of IA.

We need only establish part (ii) of Definition 3.1 since the intervals below the
maximal words are Boolean, and by Theorem 5.1 every coatom ordering of a
Boolean lattice is recursive. For each w = axa2 • • • ak let w1- be the word formed by
the letters not in w arranged in increasing order. There is a unique maximal word
&(w) above w and w1- such that if x is any letter in h>x then x is greater than all its
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predecessors and less than its immediate successor in S(w). For example, if
A = {1,2,...,9} and w = 4285 then w1 = 13679 and &(w) = 134267859. It is not
difficult to verify that &(w) is the lexicographically first maximal word above w.

Now, suppose that w<mi,rrij, where w, and m • are maximal words and m¡
precedes my lexicographically. Then wy ¥= &(w). Thus there is a letter x of wy and
not in w such that x is less than a predecessor or greater than its immediate
successor. Remove such an x from wy to get the word z > w. By letting mk — S(z)
^ mj we obtain what is needed to satisfy Definition 3.1(ii).    □

In the sequel the notion of a Coxeter group (W, S), its Bruhat ordering and basic
properties will be considered known. We adhere to the terminology and notation of
[2, §2], and readers desiring further details are advised to consult [2] and the
references cited there.

Lemma 6.4. Let (W, S) be a Coxeter group, J QS. Then WJ is a directed poset, i.e.,
every two elements have a common upper bound.

Proof. Our principal tool will be the following lifting property, due to Verma [10,
p. 395]: if v, v' G W, s G S, and v < v', vs > v and v's < v', then vs < v' and
v < v's.

Suppose first that w, w' G W. We will prove that UB(w, w') = {u G W | w, w' <
u) ¥= 0 by induction on l(w) + l(w').

The case /(w) + l(w') < 1 is clear. In general, choose s G 5 so that ws < w. By
induction there exists u G W such that ws, w' ^ u. If us < u, then by the lifting
property w < u. If us > u, then by the lifting property w < us. Hence, in either case
we are done.

Now suppose that w, w' G WJ. Let u be a minimal element of UB(w, w'). If
u G WJ we can find s G J such that us < u. Since ws > w, w's > w', the lifting
property gives w, w' < us, which contradicts the minimality of u. Hence, u G WJ.
D

When WJ is finite the lemma amounts to the known fact that WJ has a greatest
element Wq. We will here however be primarily concerned with the case when WJ is
infinite.

Let (W, S) be a Coxeter group, | S\< oo, / C S, and let 7 be a finite set of
positive integers. Define (WJ)Y — {w G WJ | l(w) G Y}. Since S and Y are finite
(WJ)y is finite, and (WJ)Y is a graded poset.

Theorem 6.5. (WJ)Y is dual CL-shellable.

Proof. It follows from the lemma by induction that (WJ)Y has an upper bound
u G WJ. Hence, (WJ)Y is simply the rank-selected subposet [e, u]Y. Since [e, u]J is
dual CL-shellable [2, Theorem 4.2], and this property is preserved under rank-selec-
tion (Theorem 8.1 below) the result follows.    □

Proof of Theorem 6.1(h). Given the finite alphabet A, let (WA, A) be the Coxeter
group whose Coxeter graph is the complete graph on vertex set A with all edges
labeled "oo". Equivalently, WA is the group generated by A subject only to the
relations a2 = e for all a G A. Then every w G WA clearly has a unique reduced
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expression, and this expression is a normal word in the alphabet A. Conversely,
every normal word in A is a reduced expression in WA. Hence, NA can be identified
with WA, and because of the subword property (cf. [2, 2.3]) the subword ordering of
NA coincides with the Bruhat ordering of WA. If W — WA, J= 0 and Y =
{1,2,...,k) then (WJ)Y = NAk, so the result follows as a special case of Theorem
6.5.    D

The proof suggests the following generalization. Given a finite alphabet A and a
nonempty subset J C A, let NAJk denote the poset of all normal words of length at
most k which end in a letter from /.

Corollary 6.6. NA<Jik is dual CL-shellable, for all k> 1.

This follows because, in the notation of the preceding proof, NAJJc = (WA~J)Y. If
w G WA~J then by the Deodhar-Verma theorem n(e, w) = (-1)/(M,) if [e, w]A~J is
full, and = 0 otherwise (cf. [2,5.3]). In the particular Coxeter group (WA, A) it is
easy to see that [e, w\A~J is full if and only if all letters in the unique reduced
expression for w come from J. Thus, if \J\ = j, since there are/(/ — 1)'_1 normal
words in J of length i, we obtain

(6.7)      ANAJ,k) = -i + 2 (-ir'X; - i)'"1 = (-i)fc"'(; - i)'.
i=i

It can be shown that NJ¡k is a strong deformation retract of NAJk, so (6.7) can also
be deduced from Farmer's formula (6.3).

Finally we remark that the corresponding poset IAJ of injective words which end
in a letter from J, 0 ¥= J C A,is not necessarily shellable when J ¥= A. For instance,
if A = {a, b, c) and J = {a, b), then IAJ has the homotopy type of a circle.

7. Lattices of bilinear forms. Let V and W be finite-dimensional vector spaces over
GF(q). Consider the poset whose elements are {(A, f) | A is a subspace of V and
/: A -» Wis a linear mapping} and whose order relation is given by (A, f) < (B, g)
if A C B and g restricted to A is /. This poset was suggested to us by D. Stanton,
who calls it the (lower) semilattice of bilinear forms [9, p. 278]. Its definition goes
back to work by Delsarte [6]. We adjoin a top element î to obtain a lattice Lq(V, W).
The lattice of bilinear forms Lq(V, W) is clearly graded, and if x — (A, f) then
p(x) = dim A and the lower interval [0, x] is isomorphic to the lattice of subspaces
of A. The crucial recursive property of L (V, W) is that the upper interval [x, Î] is
itself isomorphic to a lattice of bilinear forms.

Lemma 7.1. Suppose x = (A, f) G Lq{V,W), and let B be a complementary
subspace to A, so that V = A® B. Define a map <px B: [x, Î] -> Lq(B, W) by <p(C, g)
— (C n B, g \cnB) and <p(î) = 1. Then <p is a poset isomorphism.

Proof. The verification is straightforward and will be omitted.    □

Theorem 7.2. Lq(V, W) is CL-shellable.

Proof. Again we rely on the recursive formulation of CL-shellability (cf. §3). We
prove the following assertion by induction on « = dimK: In Lq(V, W) any atom
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ordering in which all the atoms of the form ((m),0) come first is a recursive atom
ordering. Here and in the sequel, if «,, u2,...,ukG V then (ux, u2,...,uk) denotes
their hnear span in V.

The assertion is trivial for « = 1. Let « > 1 and assume that ß is any atom
ordering for which the atoms of the form ((w),0) come first. For each atom x of
Lq(V, W), let F(x) be the set of all atoms of [x, 1] which cover some atom of
Lq(V, W) which precedes x in ß. Let G(x) be the set of atoms of [x, 1] whose image
under <px B is of the form ((w),0). The definition of G(x) depends on how B is
chosen (cf. Lemma 7.1), but the following arguments are independent of that choice.
We want to find an atom ordering of [x, 1] for which (i) the atoms in F(x) come
before the atoms that are not in F(x) and (ii) the atoms in G(x) come before the
atoms that are not in G(x).

Case 1. Assume that x is of the form ((m),0). We claim that in this case
F(x) C G(x). If (C, g) G F(x) then C contains a vector v for which g(v) = 0 and
(v)¥= (u). This implies that g — 0 since v and u generate C. Now we have that
<px<B(C, g) = (C n B,0) and hence (C, g) G G(x). Thus .F(x) Ç G(x).

Case 2. Assume that x is not of the form ((h), 0). This time we assert that
G(x) Ç F(x). If (C, g) G G(x) then <px<B(C, g) = (<w>,0) where (w)= C D B.
Hence«w>,0) precedesx in ß. Since«w>,0) < (C, g) it follows that (C, g) G F(x).
Thus G(x) Ç F(x).

For Case 1, we can order the atoms of [x, 1] so that the atoms of F(x) come first,
then the atoms of G(x) — F(x), and finally the remaining atoms. Similarly, for Case
2, we can order the atoms so that G(x) comes first, then .F(x) — G(x), and finally
the remaining atoms. Therefore in both cases it is possible to order the atoms of
[x, 1] so that those in F(x) precede those not in F(x) and those in G(x) precede
those not in G(x). Consequently by the induction hypothesis and Lemma 7.1, this
atom ordering is recursive and Definition 3.1(i) is satisfied.

To complete the proof that ß is a recursive atom ordering it remains only to verify
part (ii) of Definition 3.1. Let x, = ((«),/) and x7 = ((«'),/') be atoms in
LAV, W), and suppose that x, precedes xy in ß.

Case 1. (u)= («') and f^f. If x,, xy <y, then clearly y = 1. Since x, precedes
Xj, f # 0. Now let xk = (<«">,0) where (m">^ (u') and let z = «h', u"), g)
where g(u') = /'(«') and g(u") = 0. Then xk precedes xy in ß and xk, x}, -» z =s y.

Case 2. (u)¥= («')• If x,, x, <y = (C, A), then u,u'GC, h(u) - f(u) and
A(w') =/'(«')• Let z = ((u,u'),g) where g{u) = f(u) and g(u') = f'(u'). Then
x,-, Xj^z<y.    □

Let X and Y be finite nonempty sets, and consider the poset P = {(^4, /) | 0 ^
A Ç X, f: A -> Y} with order relation (A, f) < (B, g) if A Q B and g\A=f. Then
¿(A', y) = P is a lattice. A simple modification of the proof of Theorem 7.2 yields
the following.

Theorem 7.3. L(X, Y) is CL-shellable.

It is also possible to show that L(X, Y) is dual CL-shellable. We omit the details.
Figure 7.1(a) shows the proper part of L([2], [2]). As an aside, consider the subposet
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IL(X, Y) consisting of Ô, î and all (A, f) in L(X,Y) such that / is injective.
IL(X, Y) is a lattice, and actually a sub-lower-semilattice of L(X, Y). The lattices
IL ([«],[«]) have been investigated by Cameron and Deza [4] under the name of
permutation geometries. Unfortunately, injectivity here seems to destroy the shellabil-
ity property, as can be seen from IL([2], [2]), the proper part of which is depicted in
Figure 7.1(b).

(1,1) (1,2) (2,1) (2,2) (1,2) (2,1)

(IT-) (2,-) (M) (-,2) (1,-) (2,-) (-,1) (-,2)

(a) (b)

Figure 7.1

Suppose now that \X\= n,\Y\= m, and let S = {kx, k2,...,ks), 1 < kx < k2<
• • • <ks<n. Consider n(L(X, Y)s), i.e., the Möbius function ju(0,1) computed on
the rank-selected subposet L(X, Y)s = {(A, f) G L(X, Y) \ \A |G S) U {Ô, Î}.
Since there are (nk)mk> elements of rank k¡ in L(X, Y) and if x is one of them then
ii(0, x) = (-1)' | <$(£,, k2,... ,k¡) | computed in L(X, Y)s (cf. the discussion preced-
ing formula (6.2)), we obtain the following expression:

(7.4) (í(L(X,Y)s) = -l+Í(-l)i+l(l)mk'\^(kx,k2,...,k¡)\.

A similar formula exists for the lattice Lq(V, W) of bilinear forms. Suppose that
dim V = «, dim W — m, and let S be as before. There are [l¡]qqmk¡ elements of rank
k¡ in Lq(V, W), where [k ]  denotes the Gaussian coefficient

(q" - l)(a«-' - 1) • • ■ (a"-*.+ 1 - l)/(a - l)(a2 - l) ■ ■ • (a*< - l).

Furthermore, if p(x) = k¡ then [0, x] is isomorphic to the subspace lattice of a
/c,-dimensional space over GF(q). Hence, by a formula of Stanley [8, p. 155] the
Möbius function [t(Ô, x) computed in Lq(V, W)s = {(A, f) G Lq(V, W) \ dim A G
S) U {Ô, î} is /i(0, x) = (-l)'2„<7inv('r), the sum extending over all permutations
it G 6i)(kx, k2,...,kj) and inv(7r) denoting the number of inversions in m. We
deduce

(7.5) »{Lq(V,W)s) = -\+ ¿(-1)'+1
i=i

8. Operations that preserve shellability. In [1, §4] poset operations that preserve
either shellability or EL-shellability are considered. In this section we extend all the
results of [1, §4] to both shellability and CL-shellability. The operations considered
are rank-selection, direct products, ordinal sums, cardinal powers and interval
posets.

7m^i

J </
2 jinv(9r)
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Let P be a graded poset of length n and with rank function p. For any
S C [n - 1] the rank-selected subposet, Ps, is defined to be Ps = {x G P | p(x) G S
U{0,«}}.

Let P and Q be posets. The direct product P X Q is the poset defined on the
product set by (x, y) < (x', y') if x < x' in P and y < y' in Q. The ordinal sum
P © g is the poset defined on the disjoint union of P and Q by x < y in P © g if (i)
xjEf and x < y in P, (ii) x, y G Q and x < y in Q, or (iii) x G P and y G Q. The
cardinal power Qp is the set of orderpreserving maps/: P -» Ö, partially ordered by
/ < g if/(x) < g(x) for all x G P.

The interval poset Int(P) of a poset P is the set of intervals (including the empty
interval) ordered by containment.

In [1, Theorem 4.1] it is shown that rank-selection preserves shellability. We will
prove the corresponding result for CL-shellability. Whether rank-selection preserves
EL-shellability remains open.

Theorem SA. If P is a CL-shellable poset of rank n then Ps is CL-shellable for all
S Q [« - 1].

Proof. We shall prove the result for 5 = [« — 1] — {r} where r G [« — 1]. The
general result follows by induction. Let X:S*(P)->Abea CL-labeling of P. Define
a labeling Xs: S*(PS) -*AXA as follows. If c — (0 = x0 -» X! -» ■ • ; -» xr_, -*
xr+, -» ■ • • -> x„ = Î) is a maximal chain in Ps and if xr is the element of rank r on
the lexicographically first maximal chain in the rooted interval ([xr_,, xr+1], 0 -> x,
-> ••• -*xr_,)ofPthenlet

Xs(c, x,_,,x,) = (X(c U xr,x,_,,x,),X(c U xr,xl_x,xt))   if /' = 1,...,/•- 1,

Xs(c, xr_x, xr+x) = (X(c U xr, xr_x,xr), X(c U xr, xr, xr+x)),

and

Xs(c, x,_,,x,) = (X(c Uxr,xr_,,xr),X(c U xr,x,_,,x,))    if/ = r+ 2,...,n.

Now order A X A lexicographically (this ordering is stronger than direct product
order). It is then straightforward to verify that Xsis a CL-labeling of Ps.

Before considering the remaining operations we need to recall the following fact,
whose proof can be found in [1, Proposition 4.2].

Proposition 8.2. If P is a shellable poset then all intervals of P are shellable.

In [1, Theorem 4.3] it is shown that direct products preserve EL-shellability. The
corresponding result is true also for CL-shellable and shellable bounded posets. For
CL-shellable posets the proof in [1] requires no significant modification. For
shellable posets we have the following.

Theorem 8.3. Let P and Q be bounded finite posets. Then P X Q is shellable if and
only if both P and Q are shellable.

Proof. The product P X Q is clearly graded if and only if both P and Q are
graded. By Proposition 8.2 since P s [(Ô,Ô),(Î,Ô)] and Q s [(Ô, Ô), (Ô, î)], P and Q
are shellable if P X Q is shellable.
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Suppose that P and ß are bounded shellable posets of lengths m and « respec-
tively. The length of P X ß is then m + n. A covering relation (x, y) -» (x', y')
occurs in P X ß if and only if x = x' and y -» y ' or x -* x' and y = y'. The edges of
P X Q can therefore be labeled as follows:

M(*,y),(*',/))={? f = /;(.1      if X = X .

Now, corresponding to each maximal chain c = (0 = z0 ^ z, -► ■ • • -»zm+n = 1)
there is an (« + w)-tuple a(c) of «r O's and « l's defined by

o(C) = (X(Ô, z,),X(z,,z2),...,X(zm+„_1,zm+j).

We define two projection maps np: 91t(P X Q) - 91t(P) and nß: 91t(P X ß)
-» 9lt(ß) by UP(c) = {x, | i = 0, l,...,w + «} and nß(c) = {y,. | i = 0, l,...,w+
«} for c = (Ô = (x0, y0) -> (xj, y,) ->-► (xm+„, ym+n) = Î).

Each maximal chain c in P X Q can now be uniquely represented by the triple
(a(c), TlP(c), nß(c)). If ÜP and ßß are the shelhng orders of P and Q, respectively,
then the triples can be lexicographically ordered by using the lexicographical
ordering, denoted by <L, on the (« + m)-tuples of O's and l's and the shelling
orders QP and ßß on {Il¿c) \ c G 91t(P X Q)} = 91t(P) and {nß(c) | c G
<31t(P X Q)} = 91t(ß), respectively. Let ß be the induced linear ordering of
9H(PX Q).

We now show that ß is a shelhng order of 91L(P X Q) by establishing Property S.
Suppose that c — (Ô = z0 -> z, -» ■ • • -» zm+n = I) and c' = (Ô = z'0 -» z¡ -> • • • -»
z'm+n = h are two maximal chains of P X ß such that c' <ac. Let 7= {/ G
[m + «] | zr ^ z,'}. There are two cases to consider.

Case 1. Assume that a(c) has a descent at î G T, i.e., X(z,_,, z,) > X(zt, z1+x). Let
z,_| = (a,, a2) and zI+1 = (A,, A2). Since there is a descent at /, z, = (a„ A2). Let
c" = c- {z,} U {(A,, a2)}. Clearly c" is a chain of P X ß and a{c") <La(C),
which implies that c" <n c. It is also clear that c' (~) c Ç c" n c since t G T.

Case 2. Assume that a(c) has no descents in T. It is not difficult to see that in this
case o(c') — o(c), since c' <n c. We will show that a(c) cannot have ascents in T
either. (By having an ascent in T we mean that X(z,_,, z,) < X(z(, z(+l) for some
t g r.)

Suppose that a(c) has an ascent at t G 7". Let / be the largest integer and u the
smallest integer such that I < t < u and /, u G [wi + «] — T. Clearly, 0 < / < u < m
+ n since z'0 — z0 and z'm+n = zm+„. Let z, = (a,, a2) and zu = (A,, A2). Since there
are no descents in a(c) between / and u and there is an ascent at t, z, = (A,, a2).
Since a(c') = a(c), z\ = z,, and z'u = zu, we also have that z't = (A,, a2). Hence
z, = z,', which contradicts the assumption that t G T. Thus there are no ascents of
a(c) in T.

Since a(c) = a(c'), either nP(c') <n" nf(c) or nß(c') <ße nß(c). Without loss
of generality we can assume the former. Let y be a maximal chain of P such that
y <0' UP(c) and UP(c') D lJP(c) Cyfl np(c) = UP(c) - {x} where x G UP(c).
Let u be the element on np(c) that is covered by x and let t G [m + n] be such that
z, = (x, y) and z,_, — (u, y) for somey G ß. Clearly z,' ^ z, since x £ np(c'). This

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LEXICOGRAPHICALLY SHELLABLE POSETS 339

imphes that t G T, which in turn implies that a(c) has no ascent (or descent) at t.
Hence, by letting c" be the maximal chain of P X ß represented by the triple
(a(c), y, nß(c)), we have that c" D c = c — {(x, y)} = c — {z,}. It follows that
c' n c C c" n c and c" <a c.    D

Theorem 8.3 is not stated in maximum generality. For the proof to go through it
suffices to assume merely that P has a greatest element and ß a least element. If we
instead assume that both P and ß have least elements, then the "only if part holds,
and we expect that the "if part also holds but leave this open. Notice that if P and
ß are shellable posets, one of which is nonacyclic, then P X ß is in general not
shellable for topological reasons. For instance, let P and ß be the two shellable
posets of Figure 8.1(a) and (b). The direct product P X ß is depicted in Figure
8.1(c), and its order complex A(P X Q) triangulates the topological product of a
circle and an interval, so it is a two-dimensional complex having the homotopy type
of a circle. Such a complex cannot be shellable. Another quick way to see that this
P X Q cannot be shellable is to compute the Möbius function fi(Ô, x) in (P X Q)
and see that it fails to satisfy the necessary condition (-l)p<x)/i(Ô, x) > 0 for x = Î.

(a) (b) (c)

Figure 8.1

In [1, Theorem 4.5] it is shown that cardinal powers preserve EL-shellability of the
base poset. Again, the extension of this result to CL-shellable posets is routine. We
will prove the extension to shellable posets.

Theorem 8.4. Let Q be a finite poset. Then PQ is a shellable bounded poset if and
only if P is a shellable bounded poset.

Proof. First note that PQ is graded if and only if P is graded. By Proposition 8.2,
if PQ is shellable and bounded then P is shellable and bounded, since P = [/, g] in
PQ, where fix) — Ô for all x G ß and g(x) = Ô for all x G ß with the exception of a
maximal element q G ß for which g(q) — 1.

We prove the converse by induction on the cardinality of Q. It clearly holds for
| ô | — L It is not difficult to verify that if q is any element of ß then pß"(<?> X P is
isomorphic to the poset of maps from ß to P which are orderpreserving everywhere
in ß except at q, ordered by /< g if fix) < g(x) for all x G ß. Hence PQ is a
subposet of ¿>ß-<«> X P. By induction and Theorem 8.3 we have that pQ~W X P is
shellable.

Let a be a minimal element of ß and let ß be the shelling order of pß ^> x P
described in the proof of Theorem 8.3. Clearly the maximal chains of PQ are
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maximal chains of PQ {<?) X P. To show that PQ is shellable we will show that ß
restricted to PQ is a shelling. To do this we need only show that if c, G 91L(Pe),
c2 G 91t(Pö~(<?) X P), c2<acx, and | c, nc2| = |c,| - 1, then c2 G <31t(Pß).

Let cx = (Ô = f0 -> fi -> ■ ■ ■ -» fm = Î) be a maximal chain of Pe and let c2 = c,
- {/,} U {g} be a maximal chain of PQ~{q) X P such that c2 <ü cx. We must show
that g is orderpreserving on all of ß in order to show that c2 G (Üt(P<3). Since
g G P0-*9' X P and a is minimal we need only show that g(x) > g(q) for all x > a.

Recall the labeling X of edges of pß-^} X P described in the proof of Theorem
8.3: ¥oid^emPQ-{q) X P

0   if¿(a) = e(a),
X(d'e)='l    Ma)-(a).

Also, recall that o(cx) = (X(/0, /,), X(/„ f2),... ,X(/m_„ fm)). To show that g(q) <
g(x) for all x > q, we need to consider 2 cases.

Case 1. Suppose X(/r_,, g) = 0. This means that f,-x(q) = g(q). Hence if g < x
then g(q) — f,-X(q) ^f,^x(x) < g(x), since/,_, is orderpreserving and is less than g.

Case 2. Suppose X(f_x, g) — 1. We will show that in this case X(g, /(+1) = 1 also.
Assume X(g,/f+1) = 0. It follows that f,-X(q) -* g(q) — f,+ x(q)- Consequently
f,-x(q) =/,(a) -» f,+ x(q). This means that X(/,_,, /,) = 0 which implies that o(cx)
<L a(c2). Since this contradicts c2 <n c,, we can conclude that X(g, fl+x) = 1. Thus
we now have that g(q) -»/r+1(a). Hence if a < x then g(a) </,+ i(<?) ̂ /i+iix) =
*(*)•    □

We now extend [1, Theorem 4.6] which deals with interval posets. Again, the
extension to CL-shellable posets requires no significant modification.

Theorem 8.5. The poset Int(P) is a bounded shellable poset if and only if P is a
bounded shellable poset.

Proof. Int(P) is clearly graded if and only if P is graded. Since P s [[Ô, Ô], [Ô, î]],
P is shellable if Int(P) is shellable by Proposition 8.2.

To establish the converse, note that the elements of Int(P) of rank 1 are of the
form [x, x] where x G P. We consider the intervals of Int(P) above the rank 1
elements, [[x, x], [0,1]]. Since these intervals are isomorphic to the direct product
[Ô, x]* X [x, Î], they are shellable by Theorem 8.3 and Proposition 8.2.

The shelling of [[x, x], [Ô, Î]] induces an ordering ßx of <31t;t, the set of maximal
chains of Int(P) that contain [x, x]. By extending the partial ordering of P to a
linear ordering, xx, x2,...,xk, and letting the chains of 911^ ordered by ßx , precede
the chains of 91tx, ordered by ßx, for all i <j, we obtain a linear ordering ß of
9H(Int(P)).

We now establish Property S for ß. Let c and c' be maximal chains of Int(P) such
that c' <n c. Let c G °f[Lx and c' G 9HX.. If x = x' then we are done since the
restiction ßx of ß to 9HX is a shelling.

Now assume x ^ x'. Let [u, v] be the smallest common element of c and c' that is
greater than 0, the empty interval. If c is not the first chain in the ordering ß that
contains [x, x], [u, v] and every element of c greater than [u, v], then by the
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shellability of [[x, x], [Ô, Î]] there is a c" G 9HX such that c" <a c and c' n c C c" n
c = c — {z} where z G [[x, x], [u, v]].

Assume that c is the first chain in 91tx that contains [u, v] and every element of c
greater than [u, v]. Since [x', x'] < [u, v] and [x, x] < [u, v], it follows that u *£ x,
x'. If a = x then x < x', which contradicts the fact that x' precedes x in the linear
extension of P. Therefore, « < x. Recall that the ordering ßx of 91tx corresponds to
the shelling order of [0, x]* X [x, 1] which was described in the proof of Theorem
8.3. This ordering and the fact that u < x implies that the element that covers [x, x]
on c must be [y, x] where y -> x and y > u. Clearly the chains of 911 precede the
chains of 9ltx in ß. If c" = c - {[x, x]} U {[y, y]} then c" G 911^ and hence
c" <n c. It is also clear that c' n c Ç c" n c = c - {[x, x]}.    D

In [1, Theorem 4.4] it is shown that ordinal sums preserve shellability and
EL-shellability. This result extends easily to CL-shellable posets. Because of Theo-
rem 8.1 we can in fact state a more complete result for CL-shellable posets than for
EL-shellable posets.

Theorem 8.6. The ordinal sum P © ß is CL-shellable if and only if both P and Q
are CL-shellable.    D

9. Note added in proof. It is a consequence of Corollary 4.4 that if A is an
unshellable complex whose barycentric subdivision is shellable, then the face lattice
of A is shellable but not dual CL-shellable. Using this idea, A. Vince and M. Wachs
and (independently) J. Walker have constructed shellable posets which are not
CL-shellable. It is not known to us whether there exist CL-shellable posets which fail
to be EL-shellable.
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