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ON LIMIT ANALYSIS OF PLATES*
BY

WALTER SCHUMANN
Brown University

Summary. The bending of thin perfectly plastic plates of arbitrary shape under
transverse load is studied. The collapse load for a concentrated force on such a plate is
found to be 2w times the yield moment.

1. Introduction. In the following an attempt is made to generalize the work of
Hopkins and Prager [l]f on the load-carrying capacities of circular plates to non-sym-
metrical cases. The basic equations for this purpose have been given previously by
Hopkins [2] for a plate composed of a material obeying Tresca's yield criterion. We
now discuss in detail the different types of plastic regimes that can arise. After a brief
consideration of the discontinuities in the moment field, the technique of limit analysis
[3] is used to determine the limit load for a concentrated force. Upper bounds on the
limit loads in non-symmetrical cases have also been obtained by Rzhanitsyn [4]. Only
in very artificial examples has it been found possible to obtain the actual moment
distribution and deformation mode during collapse.

2. Equations of equilibrium in curvilinear coordinates. Let Mx , M2 be the principal
moments; Q, , Q2 the shearing forces; p the load per unit area; p, , p2 the radii of curvature
and s, , s2 the arc-lengths of the principal stress trajectories (Fig. 1). Then the equations
of equilibrium are
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We now introduce orthogonal curvilinear coordinates u, v such that the principal stress
trajectories are given by u = const, and v = const. Let

ds2 = Edu2 + 2F dudv + G dv (2)
be the first fundamental form of the net of stress trajectories.** We have then
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'Received March 28, 1957. The results presented in this paper were obtained in the course of re-
search sponsored by the Ballistic Research Laboratories of Aberdeen Proving Ground under Contract
DA-19-020-ORD-798. The author is indebted to Professors W. Prager and R. T. Shield for their helpful
advice.

fNumbers in square brackets refer to the Bibliography at the end of the paper.
**Because F = 0, it is not necessary to use here the tensor notation gu .
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where <p is the angle of inclination of the curves v = const, to the 2>axis, and subscripts
denote partial differentiation. Further, it is convenient to introduce the quantities
« = (M, + M2)/2 and 8 = (Mx — M2)/2. The first two of Eqs. (1) are then

(co -|- 8)u , 28-<p,
EW2 + Q1/2 "t" /-yl/2 Q1 — 0,

(4)
(<■> ~ &)<> , 28-<p,

G1/2 + E1/2 ~f" p 1/2 Q2 ~ 0,

and the third equation of equilibrium becomes

_i_ (Q»)« 1 n   1 n  Mi — (S')^ri/2 (j1/2 2G E1/2 (j1/2

To eliminate Qi , Qs we introduce (4) in (5) and get
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3. The yield condition. Tresca's yield condition is shown in Fig. 2. For this con-
dition only four essentially different types of regimes occur, namely two stress determined
regimes, represented for example by the points A and B, and two kinematically de-
termined regimes, represented for example by the sides AB and BC of the yield hexagon.

Regime A. As 8 = 0, the angle <p is indeterminate. This regime can occur in a finite
region only if the pressure p is zero (see also Prager [5]).
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Hencky-Prondtl net—.
for p = 0

isometric net-^^

Regime B. In this regime co = M0/2 and 5 = —M0/2, where Mn is the yield moment.
Equation (6) becomes

2M0<pu, = p (EG)1/2. (7)

For the special case p = 0, we have

<Pu, = o. (8)

This is the condition that the stress trajectories form a Hencky-Prandtl-net [6],
Regime AB. For this regime it is necessary to consider the velocity field. The principal

curvature-rates are denoted by and k2 . For moment states represented by points on
the side AB, the flow rule requires k, = 0. Thus the surface into which the plate is
deforming has parabolic curvature, and therefore one set of the principal lines of curvature
is straight (see for example, Blaschke [7], p. 112). Because of the isotropy condition
it follows that one family of the principal stress trajectories consists of straight lines.
As co — 5 = M2 = M0 the second of Eqs. (1) becomes

Q, = 0. (9)

"nix
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If we introduce p = p2 and <p as new coordinates (Fig. 3) the first of Eqs. (1) gives

d-^- - M0 = pQ, , (10)
dp

and the third of Eqs. (1) becomes

d(pQi) . flT*—— + vp — o. (11;dp

This is taken from a manuscript by R. T. Shield. The integration of (10) and (11) leads
to the expressions

Mx = M0 + A{») + + - f p2P dp - f Vp dP> (12)

Qt = am _ i r pp d (13)p p j
where A and B are functions of <p only. The evolute e and the functions A and B are
to be determined from the conditions of the problem, such as joining a region in regime
AB to regions in other plastic regimes.

Regime BC. In this case we have k, = — k2 which is the definition of a minimal
surface. On such a surface the lines of principal curvature form an isometric net (Weather-
burn [8]) and isometric coordinates u, v m<* / ' n introduced for which E = G. If x, y are
rectangular Cartesian coordinates, then z = x + iy is an analytic junction of x = « + iv
(see, for example [7] p. 179). Also <p = arg (dz/dx) = arg z' = Im (log z') is a harmonic
function (Fig. 4).

The equilibrium equation (6) becomes with E = G and S = — M0/2 (from the
yield condition)

A as — 2 M0<Pu, — ~vE> (14)

where A is the Laplace operator referred to u, v. As E = x\ + yl = | z' |2, and as
is the real part of the analytic function

z'z'" _ cz")2
(log z')" = (zy[Z ' ,

Eq. (14) may be written

Aco - 2M0 Re [^;-r)2] = -v\z' P- (15)

We remark that instead of the conjugated function ip may be used. Equation (14)
may be easily transformed to the principal shear-lines, which also form an isometric
net.

For the special case p = 0 one can find immediately two particular solutions of (14),

«i = iup,M0 = uM0-Ke

co2 = v<p,

M.
>UM0 = vM0- Im •

(16)
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The general solution is therefore

co = + u0 , or u = «2 i (17)

where co0 is any harmonic function.
4. Boundary conditions. We suppose that the plate is at yield in bending near the

boundary and discuss the three following types of boundary conditions: a) simply
supported edge, b) clamped edge, c) free edge.

a) The simply supported edge. For the velocity field we have W = 0 at the edge,
where W denotes the rate of normal deflection of the plate. For the moment field the
moment Mn , acting in the direction of the normal n to the boundary, vanishes. This
shows that at the edge either the two principal moments have opposite signs, or at
least one of them is zero. We are therefore in regime B when the boundary is a principal
stress trajectory, or in regime BC when the trajectories meet the boundary at an angle.
In the latter case w = \Ma cos 2a, a being the angle between the direction 1 and the
outwards-drawn normal.

b) Clamped edge. Along a clamped edge where deformation of the plate occurs the
edge is a principal stress trajectory.

To prove this let us suppose first that no hinge occurs along the edge. If u, v are
orthogonal parameters such that at the edge u = 0, and if

II = L du + 2M dudv + N dv2 (18)

is the second fundamental form of the surface into which the plate is deforming, we
conclude from Wu = W, = Wvv = 0 along the boundary u = 0, that

M = N = 0. (19)

This shows that the edge is a line of principal curvature and therefore a line of principal
stress. In the case L = 0 it follows from the fact that as u —» 0, N/L —> 0. If a hinge
occurs, then | Mn | = M0 is necessarily a principal moment. If the plate is bent down-
wards, then in the latter case w = — MJ2.

c) Free edge. As for the simply supported edge we have the condition w =
(M0/2) cos 2a. In addition the shearing force vanishes at the edge,

(«■ - dJtL. - "■
® y

Fia. 4.
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or

Q"= ~ f2 it(sin 2a) = -2w dft' (20)

where Qn can be calculated from (4), and where d/dt denotes differentiation along the
edge.

S. Discontinuities. The question of discontinuities in the moment field has been
discussed previously by Prager [9] for the von Mises yield condition. In the following
we investigate a discontinuity separating two regions which may or may not be in the
same plastic regime. Figure 5 shows the plane of Mohr's circles and the image of Tresca's
yield condition which is an oval of diameters M0 and 2M0 . Looking at the possible
intersection of two circles, we see that three essentially different possibilities of strong
discontinuities can arise, namely a jump of type "BC —» BC", which can be BC —> BC,
BC —* EF, EF —> EF (see notation of Fig. 1), or a jump of type "BC —> AB", or finally
a jump of type "BC —> B".

a) Jump o/ type "BC —> BC". Denoting by Mn , M„, the moments acting on an
element of the line of discontinuity and by aa , a,- the angles of the stress trajectories
on both sides with respect to the normal, we conclude from Fig. 5 that

Fig. 5.

at = ~ — aa (or a, = 7T — aa), (21)

because M„ , Mnt are continuous. When there is deformation of the plate near the discon-
tinuity and assuming that a„ ^ 0, ir/2, both of the curvature-rates k, and k„, must be
continuous. This requires

k[ cos 2<Xi = k° cos 2a„ ,1

kI sin 2cti = k° sin 2a„ , J
(22)

because /cj = — k2 on both sides of the line. From this and from (21) it follows that
Kj = <c2 = 0 on the line of discontinuity which would therefore be a rigid fiber and a line
of principal curvature. Thus a, , a„ = 0, ir/2, but then ^ , k2 can have any value.



1958] ON LIMIT ANALYSIS OF PLATES 67

A moment discontinuity between two regions which are both in the plastic regime
BC is not permissible, but can take place between BC and EF.

b) Jump of type "BC —* AB". It is sufficient to consider the two cases of a jump
from BC to AB and the case of a jump from BC to AF, all other cases being similar.
Let us start with the first one.

The continuity of Mn and M„, requires

Ml cos2 a'i + M0 sin2 aj = M\ + M0 sin2 a'a ,1

(M0 — Ml) sin 2a'i = M0 sin 2a'a , J

index i belonging to AB, index a to BC. The velocity field satisfies the conditions

*2 cos2 a'i = *2 cos 2a'a ,1

«2 sin 2a'i = 2k% sin 2a'a .J

From (24) we get, k*2 , kI supposed non-zero,

tg 2a'a = tg a'i , |

2a'„ = a'i + mir,}

where m is 0 or 1. Equations (23) are now

M{ cos2 + M0 'in2 = i;+^(l¥ cosaO,

2(M0 — Ml) cos a\ = ± M0 ,

(23)

(24)

(25)

(26)

where the upper sign refers to the case m = 0. Taking either sign we get from (26)
Ml = Mo/2, which is not true. The assumption k2 , k°2 ̂ 0, is therefore false. Again we
conclude that a' , a'a = 0, tt/2. Similar considerations for the angles can be made for
jumps between BC and AF.

From regime BC we pass to AB over a line of principal curvature which is in regime
B. If this line is not straight it must be a line of the set 2 of the stress trajectories and
M„ = Mi = 0. The discontinuity is then a weak discontinuity in the terminology of

(isometric net)

Fig. 6.
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Prager [9]. Figure 6 shows the behavior of the fields when we suppose that regime B
does not hold throughout a finite region.

The evolute e is connected with the regime-B-line by the condition

1 Eu
'3/2 )Pi 2 E

where E is the scale factor of the isometric net at the regime-5-line.
For the moments we have the conditions

(27)

M0 + A -\ 1 f p\p dpi — f Pip dpi = 0, u — , (28)
Pi Pi J J i

and for the normal component of the shear-force to be continuous,

ih f . 1 _ co° MqE„ .— J ppi apij — ̂ ,i/a — OPt3/2" (29)2 E3

Until now, no non-trivial examples of such a weak discontinuity have been found.
Further the jumps of type "BC — B" have not yet been studied.
6. Concentrated loads. The following consideration is not a direct application,

but shows how useful the discussed fields are for the determination of the limit load.
Let us take a plate with a convex boundary which is simply supported at its edge and
which is loaded by a concentrated force (Fig. 7).

r*j.c°*za

Fig. 7.

a) In order to get a statically admissible stress field [3] let us cut out a small circular
region of radius e around the force and consider the isometric net indicated in the figure.
The corresponding isometric coordinates u, v are chosen such that v = <p = const, are
straight lines, and u = log r, r being a measure of distance from the point of application
of the load P. At the simply supported edge to = §M0 cos 2a, and at the small
circle w = \M0 . If we assume that the plate is in regime BC then Eq. (14) becomes

Aw = 0. (30)

As — M0/2 < oj < M0/2 on both boundaries, we conclude from a principal theorem
on harmonic functions (Courant and Hilbert [10]) that co satisfies the inequality
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Mq > > Mq /Q 1 \2" - w - "2~ (31)

in the region between the boundary and the small circle. The stress point therefore lies
between the two points B, C on the yield curve, and as the harmonic function w exists
we have found a statically admissible stress field.

Let us now calculate the shearing force across the small circle. From (4) we get

Eu* - <p,M0 , v, = 1, -P = [ Eu2 Qi dv = f Uu dv - 2wM,
Jo Jo

(32)

As a>„ is of the order 1/log e the limit of this equation, when e —* 0, will be

P = 2ttM0 , (33)

which is a lower bound for the limit load.
b) In order to find a kinematically admissible velocity field we take the isometric

net of Fig. 8 which is given by the analytic function

* = m. (34)
w = o

Fig. 8.

The function / is such that the transformation f = f~1(z) maps the boundary of the
plate into the unit circle and the point of application of the load into the origin f = 0.
The parameter u is then zero on the boundary and negative inside, and u has a log-
arithmic singularity at the loaded point. The velocity field W = — uW0 satisfies the
boundary conditions and the conditions of regime BC and is therefore a kinematically
admissible velocity field. As the rate of work done by the concentrated load would be
infinite, we replace the area inside the small "circle" u = u0 = const, by a flat area,
for which the rate of dissipation is zero. It remains to calculate the dissipation outside
this "circle" and at the hinge on u — u0 . As

_ — (L2 + M2)1/2 _ -TTofr; + 2
Kl E E
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(this net does not represent the lines of curvature),

(£>.„u.)out.id. = M0-Wo [" dv [° (<ol + <piyn du
JO Juo (35)

< 27tM0Wq | M0 I + M0W0 f dv f \ <pu\ du.
JO Ju o

At the hinge Fig. 9 shows that

-dW ~WU Wo
tg 7 ~ dSl " E1'2 ~ Ein '

r> _ _As, As,FJ1/2
K-tgy~"W0 '

(Dxota.)hi„ge = Mo £^-2*E1/2 = 2irMaWo . (36)

The second fundamental theorem of limit analysis gives therefore

PW0 < 2tMoWo + 27r|M°7° + T^J r dv f \vu\ du, (37)
I Wo I I Wo | Jo Ju.

and in the limit

P < 2irM0 , (38)

which is an upper bound on the limit load. The exact value of the limit load is therefore
2irM0 .

We remark that this result is also true for a concentrated load on a clamped plate.
The same statically admissible stress field can be used, and for the velocity field we
must only take into account the dissipation at the hinge produced at the clamped edge.
This gives in Eq. (37) an additional term, which is of order 1/| u0 | and which is zero in
the limit. However as R. M. Haythornthwaite pointed out, the statement can be proved
in this case in a more elementary way.

7. Saint-Venant's principle in plasticity. The application of the concentrated load
is only of theoretical value, because in practice the load will always be distributed over
a small area. However the examples of circular plates given by Prager and Hopkins show
that the following conjecture may be true:

If the diameter of the area, where the load acts, is small in comparison with the-
distance from the edge, the limit load will be near the value 2ttM0 , and 2irM0 is the lowest
limit load for the plate.
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