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ON LIMIT BEHAVIOR OF SEMIGROUP ACTIONS
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Abstract. This paper is produced in response to the questioning of Morse
decomposition for semigroup actions on noncompact spaces. We show how the
limit behavior can be studied in arbitrary topological spaces by using powerful
tools such as the Stone-Čech compactification and shadowing semigroups. We
extend Conley’s characterization of chain recurrence in terms of attractors
from the setting of flows on compact metric spaces to the setting of semigroup

actions on any topological space.

1. Introduction

The concept of Morse decomposition for semigroup actions on topological spaces
has recently been reproduced in [3, 4]. Consistent results could be presented on
compact spaces, relating Morse decomposition to the concepts of attractor and
chain recurrence. Those theorems are extensions of certain results obtained by
C. Conley for dynamical systems on compact spaces. The main one characterizes
the chain recurrent set in terms of the attractors. The purpose of this paper is to
reproduce this theorem to semigroup action on arbitrary topological spaces.

Several papers dealing with flows and semiflows on noncompact spaces have been
produced. Hurley [8, 9, 10] has extended Conley’s characterization of chain recur-
rence in terms of attractors from the setting of flows on compact metric spaces to
the setting of flows and semiflows on any metric space. Theorems concerning the
relationship among attractors, chain recurrence, and Lyapunov functions for dis-
crete flows on arbitrary metric spaces have been presented in [11]. Choi–Chu–Park
in [6] have improved certain proofs of [10]. More recently, Patrão–San-Martin [13]
developed the concept of chain recurrence for semiflows on topological spaces and
described how their results on Lyapunov functions can be applied to noncompact
spaces via Stone–Čech compactification (we also refer to [12]). The present pa-
per follows this line of investigation to transfer results of semigroup actions from
compact spaces to noncompact spaces.

The concept of a shadowing semigroup is another powerful tool for studying
chain recurrence for semigroup actions. Braga Barros and San Martin [1] have
introduced shadowing semigroups to study chain control sets for semigroup actions
on compact metric spaces. This tool has earlier been used to describe the chain
transitivity of flows and semiflows on fiber bundles and topological spaces (see
[2, 13, 14]). We also apply this methodology in this paper. Semigroup actions on
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noncompact homogeneous spaces is the main setting where we obtain consistent
results.

In Section 2 we give the main definitions of semigroup actions and introduce the
notion of Morse decomposition on topological spaces not necessarily compact. For
studying Morse decomposition on noncompact spaces it is convenient to consider
its dynamical version since it does not depend on attractor-repeller pairs. Dynamic
Morse decomposition for semigroup action on compact spaces has been introduced
in [5], and it can be adapted to noncompact spaces (see Definition 4).

In Section 3 we study the limit behavior of semigroup action on topological spaces
via their compactifications. We illustrate how the results of [3] can be applied
to noncompact spaces in this way. Since limit sets in noncompact spaces may
be empty, we explore the actions extended to the Stone–Čech compactifications.
In this way we can link chain recurrence and attractors even on noncompactness
(compare Proposition 2 and Theorem 2).

In Section 4 we go into the investigation of the special case of semigroup actions
on noncompact homogeneous spaces. We can describe the chain recurrence from
another point of view by using the concept of a shadowing semigroup. This way of
describing chains is powerful whenever local transitivity exists. For a homogeneous
space G/H, where G is a topological group and H ⊂ G is a closed subgroup, we
define naturally an admissible family of open coverings of G/H from a basis of
symmetric neighborhoods at the identity e of G, and show that the group G is
locally transitive on G/H. Then, maximal chain transitive sets are described as
intersections of control sets of shadowing semigroups (see Theorem 5). It implies
a precise description for maximal chain transitive sets in regular adjoint orbits of
Lie groups, which are homogeneous spaces. We use the results of Verdi–Rocio–San
Martin [15] to show that the maximal chain transitive sets can be parameterized
by the Weyl group.

2. Semigroup actions

This section contains basic definitions and results of semigroup actions that are
treated in this paper. We emphasize the definition of Morse decomposition adapted
to topological spaces not necessarily compact.

Let X be a noncompact topological space and let S be a semigroup. An action
of S on X is a mapping

μ : S ×X → X
(s, x) �→ μ(s, x) = sx

satisfying s (tx) = (st)x for all x ∈ X and s, t ∈ S. We often indicate the semigroup
action as (S,X, μ), or simply (S,X). We denote by μs : X → X the map μs (·) =
μ (s, ·). In this paper we assume that μs is continuous for all s ∈ S.

For subsets Y ⊂ X and A ⊂ S we define

AY =
⋃
s∈A

μs (Y ) and A∗Y =
⋃
s∈A

μ−1
s (Y ) .

It is usual to say that Y is forward invariant if SY ⊂ Y , it is backward invariant
if S∗Y ⊂ Y , and it is invariant if it is forward and backward invariant.

For establishing a direction to asymptotic behavior of a semigroup action (S,X),
we choose a family F of subsets of S that is a filter basis on the subsets of S (that is,
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∅ /∈ F and given A,B ∈ F there is C ∈ F with C ⊂ A ∩ B) and satisfies the
following right translation hypothesis:

For all s ∈ S and A ∈ F there is B ∈ F with B ⊂ As.

We refer to papers [3],[4] for usual families satisfying these properties.

Definition 1. The ω-limit set of Y ⊂ X for the family F is defined as

ω (Y,F) =
⋂
A∈F

cls (AY ) .

The ω∗-limit set of Y ⊂ X is defined as

ω∗ (Y,F) =
⋂
A∈F

cls (A∗Y ) .

An important class of limit set consists of attractors and repellers, as follows.

Definition 2. An F-attractor for (S,X) is a set A that admits a neighbor-
hood V such that ω(V,F) = A. The neighborhood V is called an attractor
neighborhood of A. An F-repeller is a set R that has a neighborhood U with
ω∗(U,F) = R. The neighborhood U is called a repeller neighborhood of R. We
consider both the empty set and X as attractors and repellers.

The following important result has been proved in [3, Proposition 3.1].

Proposition 1. Assume that X is a compact Hausdorff space. For each F-attractor
A with attractor neighborhood V there is some A ∈ F such that cls (AV ) ⊂ int (V ).
For each F-repeller R with repeller neighborhood U there is some A ∈ F such that
cls (A∗U) ⊂ int (U).

Let A be an F-attractor in X. We define the set

A∗ = {x ∈ X : ω (x,F) ∩ A = ∅} .
We call A∗ the complementary repeller of A, and (A,A∗) an attractor-repeller
pair. Notice that A and A∗ are disjoint. From [3, Proposition 3.4], A∗ is invariant
and coincides with the set X \ {x ∈ X : ω (x,F) ⊂ A}.

Definition 3. A subset Y of X is called isolated invariant for the action of the
semigroup S if it is invariant and there is a neighborhood V of Y such that, for
x ∈ V , Sx ⊂ V and S∗x ⊂ V imply x ∈ Y .

Definition 4. A dynamic F-Morse decomposition for (S,X) is a finite collec-
tion M = {Ci, i = 1, ..., n} of nonempty, pairwise disjoint, isolated invariant and
closed sets such that:

(1) For all x ∈ X one has ω(x,F), ω∗(x,F) ⊂
n⋃

i=1

Ci.

(2) (No-cycle condition) Suppose there are Cj0 , Cj1 , ..., Cjl and x1, ..., xl ∈
X\

n⋃
i=1

Ci with ∅ �= ω∗(xk,F) ⊂ Cjk−1
and ∅ �= ω(xk,F) ⊂ Cjk , for k =

1, ..., l; then Cj0 �= Cjl .

We notice that the definition of dynamic Morse decomposition presented here
coincides with the one for semigroup actions on compact spaces introduced in [5].
Moreover, dynamic F-Morse decomposition can be obtained by means of attractors.
In fact, for an increasing sequence of F-attractors ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = X,
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let Ci = Ai ∩ A∗
i−1, i = 1, . . . , n. The ordered collection M = {C1, . . . , Cn} is a

dynamic F-Morse decomposition for (S,X), and each set Ci is called an F-Morse
set.

Let us see some examples of Morse decomposition for general semigroup action
on noncompact spaces.

Example 1. Let V be a family of vector fields on a noncompact n-dimensional
manifold X. Consider the control system on X determined by the set of vector
fields V , that is, the control system such that its trajectories are concatenations
of trajectories of vectors in V . These trajectories are determined by the system
semigroup

S =
{
etnYnetn−1Yn−1 ...et0Y0 : Yj ∈ V , tj ≥ 0, n ∈ N

}
,

which is a semigroup of diffeomorphisms of X. Then, the control system is the
semigroup action (S,X). For each t > 0 we define the set

U (t) =

⎧⎨
⎩etnYnetn−1Yn−1 ...et0Y0 : Yj ∈ V ,

n∑
j=0

tj ≥ t, n ∈ N

⎫⎬
⎭

and fix the family F = {U (t) : t > 0}. The limit behavior with respect to F
establishes the limit behavior of the system (see [3, 5]). The limit sets of a subset
V ⊂ X are

ω (V,F) =
⋂
t>0

cls (U (t)V ) and ω∗ (V,F) =
⋂
t>0

cls
(
U (t)−1 V

)
.

Consider, for instance, the special case V = {F,G}, where F = (F1, F2) , G =
(G1, G2) are two vector fields on X = R2 given by

F1 (x) = −x2 + x1 ‖x‖2 sin
π

‖x‖ , F2 (x) = x1 + x2 ‖x‖2 sin
π

‖x‖ ,

G1 (x) = α (x)x1 + (α (x)− β (x))x2 + x1 ‖x‖2
(
β (x) sin

π

‖x‖ − 4α (x)

)
,

G2 (x) = α (x)x2 + (β (x)− α (x))x1 + x2 ‖x‖2
(
β (x) sin

π

‖x‖ − 4α (x)

)
,

and F (0) = G (0) = 0, where

α (x) =

{
1 if ‖x‖ ≤ 1/2
0 if ‖x‖ > 1/2

, β (x) =

{
0 if ‖x‖ ≤ 1/2
1 if ‖x‖ > 1/2

.

In other words, for ‖x‖ ≤ 1/2, the vector field G is G1 (x) = x2 + x1

(
1− 4 ‖x‖2

)
and G2 (x) = −x1 + x2

(
1− 4 ‖x‖2

)
, and for ‖x‖ > 1/2, G coincides with F . The

sets C1 = {x : ‖x‖ ≥ 1} and C2 = {x : ‖x‖ ≤ 1/2} are isolated invariant and closed.
Furthermore, for x ∈ M \(C1 ∪ C2) we have ω∗ (x,F) ⊂ C1 and ω (x,F) ⊂ C2. Thus,
M = {C1, C2} is a dynamic Morse decomposition of the system (see Figure 1).

Example 2. Suppose that S ⊂ Rn is a cone and μ : S ×X → X is an action of S
on a topological space X. Consider an ordered basis u1, ..., un for Rn. We denote
this action by μ ((t1, ..., tn) , x) = (t1, ..., tn) · x. For an i ∈ {1, ..., n} and t > 0 we
consider the subset

Ai (t) = {(t1, ..., tn) ∈ S : ti ≥ t} ,
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Figure 1. Trajectories of F and G, and the Morse decomposition.

Figure 2. Orbits, limit sets, and the Morse decomposition of the
cone S.

and define the family Fi = {Ai (t) : t > 0}. The ω-limit set of a subset V ⊂ X is

ω (V,Fi) =

{
x ∈ X : there is a net

(
tk1 , ..., t

k
n

)
· xk with tki → +∞

such that
(
tk1 , ..., t

k
n

)
· xk → x

}
.

For instance, assume that S =
{
(x1, x2) ∈ R2 : x1, x2 ≥ 0

}
, X = R2, and (t1, t2) ·

(x1, x2) = (et1x1, e
t2x2). Fix the family F1 for limit behavior. The origin (0, 0) is

a fixed point of S. For x = (x1, x2) ∈ X, with x1, x2 �= 0, we have ω (x,F1) = ∅,
ω∗ (x,F1) = {0} × [0, x2] if x2 > 0, and ω∗ (x,F1) = {0} × [x2, 0] if x2 < 0. For
x = (0, x2) ∈ X, with x2 �= 0, we have ω (x,F1) = {0}× [x2,+∞) and ω∗ (x,F1) =
{0} × [0, x2] if x2 > 0; ω (x,F1) = {0} × (−∞, x2] and ω∗ (x,F1) = {0} × [x2, 0]
if x2 < 0. Finally, for x = (x1, 0) ∈ X, with x1 �= 0, we have ω (x,F1) = ∅
and ω∗ (x,F1) = {(0, 0)}. Thus, M = {{0} × (−∞,+∞)} is a dynamic Morse
decomposition of (S,X) (see Figure 2).

Note that the Morse decomposition in Example 2 consists of only one element.
This fact has occurred since there were empty limit sets. In general, it happens on
the setting of semigroup actions on noncompact spaces or on the setting of (S,X, μ)
where the maps μs : X → X are not surjective. However, a Morse decomposition
is useful to describe the limit behavior in any of those situations.

2.1. Chain recurrence. The concept of chain recurrence for the semigroup action
(S,X) depends on an admissible family of open coverings of X. Let U and V be
open coverings of X. We write V � U if V is a refinement of U . We write V � 1

2U
if for every V, V ′ ∈ V , with V ∩ V ′ �= ∅, there is U ∈ U such that V ∪ V ′ ⊂ U . For
an open covering U of X and a compact subset K ⊂ X, we denote

[U ,K] = {U ∈ U : K ∩ U �= ∅} .
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Let Y ⊂ X be an open subset and suppose that K ⊂ Y is a compact subset of
X. An open covering U of X is called K-subordinated to Y if for any U ∈ [U ,K]
one has U ⊂ Y .

Definition 5. A family O of open coverings of X is said to be admissible if it
satisfies the following properties:

(1) For each U ∈ O, there is an open covering V ∈ O such that V � 1
2U .

(2) Let Y ⊂ X be an open set and K a compact subset of X contained in Y .
Then there is an open covering U ∈ O that is K-subordinated to Y .

(3) For any U ,V ∈ O, there is W ∈ O such that W � U and W � V .

It is well known that the family of all open coverings is admissible if X is para-
compact (see [16, Section 20]).

Definition 6. For x, y ∈ X, an open cover U of X and A ⊂ S, we define a (U , A)-
chain from x to y as a sequence x0 = x, x1, ..., xn = y in X, a0, ..., an−1 ∈ A and
open sets U0, ..., Un−1 ∈ U such that aixi, xi+1 ∈ Ui, for all i = 0, ..., n− 1.

Definition 7. Let O be a family of open coverings of X and F a family of subsets
of S. Given a nonempty subset Y ⊂ X, A ∈ F , and U ∈ O we define the Ω-chain
limit set of Y as

ΩO,F (Y ) =
⋂

U∈O,A∈F
Ω (Y,U , A) ,

where Ω (Y,U , A) = {y ∈ X : there are x ∈ Y and a (U , A) -chain from x to y},
and define the Ω∗-chain limit set of Y as

Ω∗
O,F (Y ) =

⋂
U∈O,A∈F

Ω∗ (Y,U , A) ,

where Ω∗ (Y,U , A) = {y ∈ X : there are x ∈ Y and a (U , A) -chain from y to x}.
A subset Y ⊂ X is F-chain transitive if for all y ∈ Y , Y ⊂ ΩO,F (y). A

point x ∈ X is F-chain recurrent if x ∈ ΩO,F (x). We denote by R the F-chain
recurrence set, that is, the set of all F-chain recurrent points.

Remark 1. (1) It is not difficult to see that Ω (Y,U , A) and Ω∗ (Y,U , A) are
open sets of X.

(2) The maximal (with respect to set inclusion) F-chain transitive sets are
given by

Mx = ΩO,F (x) ∩ Ω∗
O,F (x)

with x ∈ R.
(3) The F-chain recurrence set R and the maximal F-chain transitive sets are

closed (see [3, Propositions 4.6 and 4.7]).

The next result has been proved in [3, Theorem 4.1]. It is the extension of
Conley’s characterization of chain recurrence in terms of attractors from the setting
of flows on compact metric spaces to the setting of semigroup actions on compact
spaces.

Proposition 2. Assume that X is a compact Hausdorff space. Then the F-chain
recurrence set R is the set⋂

{A ∪ A∗ : A is an F-attractor} ,
where A∗ is the complementary repeller of A.
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3. Stone-Čech compactification

In this section we show how the Stone-Čech compactification can be used to
study the limit behavior on noncompact spaces. The natural idea is to explore
the actions extended to the compactifications and to apply the results from the
semigroup action on compact spaces.

Let (S,X, μ) be a semigroup action, where X is a Tychonoff space. Let βX
be the Stone-Čech compactification of X, with imbedding e : X → βX. For each
s ∈ S, there is a unique continuous extension βμs : βX → βX of μs such that
βμs ◦ e = e ◦ μs. Then we have the action βμ : S × βX → βX of S on βX such
that the following diagram is commutative:

S × βX
βμ→ βX

id � e ↑ e
S ×X �→

μ
X

Notice that the imbedding e is a homomorphism of (S,X, μ) into (S, βX, βμ).
Thus, if Y ⊂ X is an invariant set, then e (Y ) ⊂ βX is also an invariant set. On
the other hand, if Z ⊂ βX is an invariant set, then e−1 (Z ∩ e (X)) is an invariant
set in X.

It is usual to identify X with its homeomorphic image e (X) ⊂ βX.
We choose and fix a family F of subsets of S which is a filter basis and satisfies

the right translation hypothesis. For convenience, we denote by ωX (V,F) and
ω∗
X (V,F) the limit sets of V ⊂ X with respect to (S,X), respectively, that is,

ωX (V,F) =
⋂

A∈F clsX (AV ) and ω∗
X (V,F) =

⋂
A∈F clsX (A∗V ).

The following result shows that attractors and repellers from (S, βX) induce
attractors and repellers to (S,X), respectively.

Proposition 3. If A ⊂ βX is an F-attractor of (S, βX), then AX = A∩X is an
F-attractor of (S,X). If R ⊂ βX is an F-repeller of (S, βX), then RX = R ∩X
is an F-repeller of (S,X). Furthermore, (A ∩X)

∗
= A∗ ∩X.

Proof. The result is immediate if AX is empty. Suppose that AX �= ∅. Let U ⊂ βX
be an open attractor neighborhood of A. From Proposition 1 there is B ∈ F such
that clsβX (BU) ⊂ U . Then

ωX (U ∩X,F) =
⋂
A∈F

clsX (A (U ∩X)) =
⋂
A∈F

clsβX (A (U ∩X)) ∩X

⊂ clsβX (BU) ∩X ⊂ U ∩X.

Hence, ωX (U ∩X,F) is an F-attractor in X with attractor neighborhood U ∩
X. It remains to show that AX = ωX (U ∩X,F). Indeed, it is immediate that
ωX (U ∩X,F) ⊂ AX . On the other hand, take x ∈ AX and let V ⊂ X be an open
neighborhood of x in X. There is an open set N ⊂ βX such that V = N ∩ X.
For A ∈ F , we have AU ∩ N �= ∅, that is, U ∩ A∗N �= ∅. Since U ∩ A∗N is
an open set and X is dense in βX, it follows that U ∩ X ∩ A∗N �= ∅, that is,
A (U ∩X) ∩ V �= ∅. Hence, x ∈ clsX (A (U ∩X)), whence AX ⊂ ωX (U ∩X,F)
and AX = ωX (U ∩X,F). Now, suppose that R is nonempty. Let U ⊂ βX be
an open repeller neighborhood of R. We use Proposition 1 again to show that
ω∗
X (U ∩X,F) is an F-repeller in X. It is immediate that ω∗

X (U ∩X,F) ⊂ RX .
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On the other hand, take x ∈ RX and let V ⊂ X be an open neighborhood of
x. There is an open set N ⊂ βX such that V = N ∩ X. For A ∈ F , we have
N ∩ A∗U �= ∅. Since X is dense in βX and N ∩ A∗U is an open set, it follows
that N ∩X ∩ A∗U �= ∅. Hence, V ∩ A∗ (U ∩X) �= ∅, and x ∈ clsX (A∗ (U ∩X)).
Thus, RX ⊂ ω∗

X (U ∩X,F). Finally, if x ∈ (A ∩X)∗, we have ωX (x,F) � A∩X.
This means that ωX (x,F) � A. Hence, ω (x,F) � A, that is, x ∈ A∗. Thus,
(A ∩X)

∗ ⊂ A∗ ∩ X. On the other hand, if y ∈ A∗ ∩ X, then ω (y,F) ∩ A = ∅.
Hence, ωX (y,F)∩A∩X = ∅, that is, y ∈ (A ∩X)∗. Thus, A∗∩X ⊂ (A ∩X)∗. �

Now, we show that a dynamic F-Morse decomposition in βX induces a dynamic
F-Morse decomposition in X.

Proposition 4. Let M = {C1, . . . , Cn} be a dynamic F-Morse decomposition for
(S, βX). Define MX = {C1 ∩X, . . . , Cn ∩X} where only those Ci ∩ X �= ∅ are
considered, and assume that MX �= {∅}. Then MX is a dynamic F-Morse de-
composition for (S,X).

Proof. It is immediate that MX is a finite collection of nonempty, pairwise disjoint,
isolated invariant and closed sets in X. For x ∈ X, we have ω∗

X (x,F) , ωX (x,F) ⊂
(
⋃n

i=1 Ci) ∩ X =
⋃n

i=1 Ci ∩ X. Suppose there are Cj0 , Cj1 , ..., Cjl and x1, ..., xl ∈
X\

⋃n
i=1 Ci∩X with ∅ �= ω∗

X (xk,F) ⊂ Cjk−1
∩X and ∅ �= ωX (xk,F) ⊂ Cjk ∩X for

k = 1, ..., l. It follows that ω∗ (xk,F) ⊂ Cjk−1
and ω (xk) ,F) ⊂ Cjk for k = 1, ..., l.

Hence, Cj0 �= Cjl , so they are disjoint, and so certainly Cj0 ∩X �= Cjl ∩X. Therefore,
MX is a dynamic F-Morse decomposition in X. �
3.1. Chain recurrence. Let O be the family of all open coverings of βX. The
family O induces naturally a family of open coverings in X, as follows. For each
U ∈ O, we define

UX = {U ∩X : U ∈ U} .
Then we have the family of open coverings in X,

OX = {UX : U ∈ O} .
Since O is an admissible family of open coverings of βX, OX is an admissible family
of open coverings of X (see [13, Proposition 3.19]).

The next result relates the maximal F-chain transitive sets for (S,X) and
(S, βX).

Theorem 1. A nonempty subset M ⊂ X is a maximal F-chain transitive set in
X if, and only if, there is a maximal F-chain transitive set N in βX such that
M = N ∩X.

Proof. Suppose thatN ⊂ βX is a maximal F-chain transitive set andM = N∩X �=
∅. For x, y ∈ M , A ∈ F , and UX ∈ OX , there are points u0 = x, u1, ..., un =
y in βX, elements a0, ..., an−1 ∈ A, and open sets U0, ..., Un−1 ∈ U such that
βμ (ai, ui) , ui+1 ∈ Ui, for i = 0, ..., n − 1. Then, ui ∈ Ui−1 ∩ βμ−1

ai
(Ui) for i =

0, ..., n − 1. Since X is dense in βX, the open sets Ui−1 ∩ βμ−1
ai

(Ui) intersect X.
Hence, there are x0 = x, x1, ..., xn = y in X, a0, ..., an−1 ∈ A, and U0∩X, ..., Un−1∩
X ∈ UX such that μ (ai, xi) , xi+1 ∈ Ui ∩X, for i = 0, ..., n− 1. Therefore, M is an
F-chain transitive set in X. Now, there is a maximal F-chain transitive set M ′ ⊂ X
with M ⊂ M ′. For x, y ∈ M ′, A ∈ F , and U ∈ O, there are x0 = x, x1, ..., xn = y
in X, a0, ..., an−1 ∈ A, and U0, ..., Un−1 ∈ U such that μ (ai, xi) , xi+1 ∈ Ui ∩ X,
for i = 0, ..., n − 1, that is, βμ (ai, xi) , xi+1 ∈ Ui, for i = 0, ..., n − 1. Hence, M ′
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is an F-chain transitive set in βX. It follows that there is a maximal F-chain
transitive set N ′ ⊂ βX with M ′ ⊂ N ′. Since M ⊂ N ∩ N ′, we have N = N ′,
and M ′ ⊂ X ∩ N = M . Therefore, M = M ′. Conversely, suppose that M ⊂ X
is a maximal F-chain transitive set in X. In the same way, we show that M is
an F-chain transitive set in βX. Hence, there is a maximal F-chain transitive set
N ⊂ βX with M ⊂ N . Since N ∩X is a maximal F-chain transitive set in X and
M ⊂ N ∩X, it follows that M = N ∩X. �

The main consequence of Theorem 1 is the required description for the chain
recurrence set of (S,X) in terms of attractors, as follows.

Theorem 2. The F-chain recurrence set of (S,X) is the set RX = R ∩X, where
R is the F-chain recurrence set of (S, βX). In particular, one has

RX =
⋂

{A ∪ A∗ : A is (an induced) F-attractor in X} .

Proof. Since the F-chain recurrence set of (S,X) is the union of all maximal F-
chain transitive sets in X, the theorem follows from Propositions 2, 3, and Theo-
rem 1. �

Corollary 1. There is a finite number of maximal F-chain transitive sets for
(S,X) if there is a finite one for (S, βX). The semigroup action (S,X) is F-
chain transitive if, and only if, the extended semigroup action (S, βX) is F-chain
transitive.

An F-chain control set for (S,X) is a maximal F-chain transitive set with
nonempty interior. Chain control sets for semigroup actions have been introduced
in [1]. They considered the specific case where S is a subsemigroup of a Lie group
G and X is a homogeneous space of G. The notion of a chain control set for a
control system has been extensively studied by Colonius and Kliemann (see [7] and
the references therein).

Let M ⊂ X be an F-chain control set for (S,X) and U ⊂ βX an open set such
that intX (M) = U ∩X. Let N ⊂ βX be the maximal F-chain transitive set such
that M = N ∩X. Then, U ∩X ⊂ N . Since N is closed and X is dense in βX, it
follows that U ⊂ N . Hence, N is an F-chain control set for (S, βX). On the other
hand, ifN ⊂ βX is an F-chain control set, we have ∅ �= int (N)∩X ⊂ intX (N ∩X).
Hence, N ∩X is an F-chain control set in X. Thus, we have the following specific
version of Theorem 1.

Theorem 3. A nonempty subset M ⊂ X is an F-chain control set for (S,X) if,
and only if, there is an F-chain control set N for (S, βX) such that M = N ∩X.
In particular, there is a finite number of F-chain control sets in X if, and only if,
there is a finite one in βX.

4. Shadowing semigroups

Another way of describing maximal chain transitive sets of a semigroup action
(S,X) is provided in terms of the action of shadowing semigroups. The methodology
considers control sets of shadowing semigroups, since their orbits reproduce the
chains of (S,X). We use this methodology to study chain recurrence on noncompact
homogeneous spaces.
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Let S be a local semigroup on a topological space X, that is, a semigroup of
maps defined on open sets of X. Assume that the orbits of S are open sets of X.
A subset D ⊂ X is a control set for S if

(1) int (D) �= ∅,
(2) D ⊂ cl (Sx) for all x ∈ D and
(3) D is maximal satisfying the last two properties.

The open set

D0 = {x ∈ D : x ∈ Sx}
is called the transitivity set of D. When D0 is nonempty, D is called an effective
control set for S. In this case, D0 = Sx ∩ S∗x, for all x ∈ D0, and it is dense in
D.

Given an open covering U of X, we define the S-neighborhood of the identity
map of X relative to U as

NS,U = {φ ∈ S : ∀x ∈ domφ, ∃U ∈ U such that x, φ (x) ∈ U} .
Let (S,X, μ) be an action of a semigroup S on X. The shadowing semigroups

are perturbations of (S,X) by S, as follows.

Definition 8. For all open coverings U of X and A ⊂ S, we define the set

NS,UA = {φμs : φ ∈ NS,U , s ∈ A} .
The (U , A)-shadowing semigroup SU,A is the local semigroup generated by
NS,UA.

The orbits of the shadowing semigroups describe trajectories with jumps in open
sets of a covering, which are just chains of (S,X).

Definition 9. Let O be an admissible family of open coverings of M . We say that
S is O-locally transitive if given a covering U ∈ O and U ∈ U , for every x, y ∈ U
there is φ ∈ NS,U such that φ (x) = y.

For example, given U ∈ O, U ∈ U and x ∈ U , define φU,x : U → M by
φU,x (y) = x. Then the local semigroup S = {φU,x : U ∈ U ,U ∈ O, x ∈ U} is O-
locally transitive. In particular, the local semigroup Cl (M) of all continuous maps
defined on open subsets is O-locally transitive.

The following result presents the link between the chains of (S,M) and the
action of the shadowing semigroups. It has been done in the setting of semiflows on
topological spaces (see [13]). Here, we reproduce that result to semigroup actions.

Proposition 5. Given x ∈ X, an open covering U of X and A ⊂ S, one has
SU,Ax ⊂ Ω (x,U , A) and (SU,A)

∗x ⊂ Ω∗ (x,U , A). Let O be an admissible family
of open coverings of X. If S is O-locally transitive, then SU,Ax = Ω(x,U , A) and
S∗
U,Ax = Ω∗ (x,U , A), for all U ∈ O and A ⊂ S.

Proof. Take y ∈ SU,Ax and ψ ∈ SU,A such that ψ (x) = y. Write ψ =
φnσan

. . . φ0σa0
, with φi ∈ NS,U and ai ∈ A, i = 0, ..., n. Denote x0 = x, x1 =

φ0 (a0x0) , x2 = φ1 (a1x1) , ..., xn = φn (anxn) = y in X. Then, for each i there
is Ui ∈ U such that aixi, φi (aixi) ∈ Ui, that is, aixi, xi+1 ∈ Ui. Hence, y ∈
Ω (x,U , A), whence SU,Ax ⊂ Ω (x,U , A). Now, if z ∈ (SU,A)

∗x, then x ∈ SU,Az.
Hence, x ∈ Ω (z,U , A) and z ∈ Ω∗ (x,U , A). Thus, (SU,A)

∗x ⊂ Ω∗ (x,U , A). For
the second part of the proposition, assume that S is O-locally transitive. Let
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y ∈ Ω (x,U , A). Take x0 = x, ..., xn = y ∈ X, a0, ..., an−1 ∈ A and U0, ..., Un−1 ∈ U
such that xiai, xi+1 ∈ Ui, i = 0, ..., n − 1. For each i there is φi ∈ NS,U such that
φi (aixi) = xi+1. Then, y = φn−1σan−1

...φ0σa0
(x) ∈ SU,Ax. Hence, Ω (x,U , A) ⊂

SU,Ax. Now, if z ∈ Ω∗ (x,U , A), then x ∈ Ω (z,U , A) ⊂ SU,Az. Hence z ∈ (SU,A)
∗x,

whence Ω∗ (x,U , A) ⊂ (SU,A)
∗x. The proposition is proved. �

From Proposition 5 we have the characterization of the maximal chain transitive
sets as intersections of transitivity sets for the actions of shadowing semigroups.

Theorem 4. Let O be an admissible family of open coverings of X and F a family
of subsets of S. Assume that S is O-locally transitive. Let M ⊂ X be a nonempty
subset. Then the following condition is necessary and sufficient for M to be a
maximal F-chain transitive set:

• For all shadowing semigroups SU,A, U ∈ O and A ∈ F , there is an effective
control set DU,A of SU,A such that

M =
⋂

U∈O,A∈F
(DU,A)0 =

⋂
U∈O,A∈F

DU,A =
⋂

U∈O,A∈F
cls (DU,A) .

Proof. Take x ∈ M. Then SU,Ax = Ω(x,U , A) and S∗
U,Ax = Ω∗ (x,U , A), for all

U ∈ O and A ⊂ F . Since the sets Ω (x,U , A) and Ω∗ (x,U , A) are open in X, the
orbits SU,Ax and S∗

U,Ax are open in X. Hence

M = ΩO,F (x) ∩ Ω∗
O,F (x)

=

⎧⎨
⎩

⋂
U∈O,A∈F

Ω (x,U , A)

⎫⎬
⎭ ∩

⎧⎨
⎩

⋂
U∈O,A∈F

Ω∗ (x,U , A)

⎫⎬
⎭

=
⋂

U∈O,A∈F
SU,Ax ∩ S∗

U,Ax

=
⋂

U∈O,A∈F
(DU,A)0 .

The other equalities follow since (DU,A)0 is dense in DU,A. �

4.1. Noncompact homogeneous spaces. Shadowing semigroups are very spe-
cial tools for studying semigroup actions on homogeneous spaces. This is due to
the fact that the topology of a homogeneous space is especially appropriate for
constructing shadowing semigroups.

Let G be a topological group, with V a basis of symmetric neighborhoods at the
identity e of G. For each V ∈ V , define the open covering of G:

UV = {V g : g ∈ G} .
Let O be the family of all open coverings UV , V ∈ V . This family is admissible.
For showing this fact, we need the following lemma.

Lemma 1. Let K ⊂ N be subsets of G, with K compact and N open. There is
V ∈ V such that V K ⊂ N .

Proof. For each x ∈ K, take Vx ∈ V such that V 2
x ⊂ N . The open covering

K ⊂
⋃

x∈K Vxx admits a finite subcoveringK ⊂
⋃n

i=1 Vxi
xi. Set V =

⋂n
i=1 Vxi

∈ V .
If x ∈ K, then x ∈ Vxi

xi for some i. It follows that V x ⊂ V 2
xi
xi ⊂ N . Hence

V K ⊂ N . �
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Proposition 6. The family O of open coverings of G is admissible.

Proof. For UV ∈ O, take U ∈ V such that U2 ⊂ V . If Ug1, Ug2 ∈ UU , with
Ug1 ∩ Ug2 �= ∅, take g ∈ Ug1 ∩ Ug2. Then, there are u1, u2 ∈ U such that
g = u1g1 = u2g2. For u ∈ U , we have

ug1 = uu−1
1 u1g1 = uu−1

1 g ∈ U2g ⊂ V g,

ug2 = uu−1
2 u2g2 = uu−1

2 g ∈ U2g ⊂ V g.

Hence, Ug1 ∪ Ug2 ⊂ V g, where V g ∈ UV . Thus, UU � 1
2UV . Now, let Y ⊂ G be

an open set and K a compact subset of G contained in Y . By Lemma 1, there is
V ∈ V such that V K ⊂ Y . Take U ∈ V with U2 ⊂ V . If Ug ∈ [UU ,K], there is
u ∈ U such that ug ∈ K. Then

Ug = Uu−1ug ⊂ U2K ⊂ V K ⊂ Y.

Hence, UU ∈ O is K-subordinated to Y . Finally, for any UV ,UU ∈ O, UV ∩U ∈ O is
a refinement of both UV and UU . �

From now on, we assume that G is a locally compact group and H is a closed
subgroup of G. Let S ⊂ G be a semigroup and consider the semigroup action
(S,G/H). Let F be a family of subsets of S. The idea is to construct shadowing
semigroups of (S,G/H) by using the group G. Certainly, this is an advantage of
studying the semigroup action on homogeneous spaces.

Proposition 7. Let π : G → G/H be the projection. For each V ∈ V, define the
open covering of G/H by

πUV = {π (V g) : g ∈ G} .
The family Oπ = {πUV : V ∈ V} of open coverings of G/H is admissible. Further-
more, the group G is Oπ-locally transitive.

Proof. For πUV ∈ Oπ, take U ∈ V such that UU � 1
2UV . If π (V g1) ∩ π (V g2) �= ∅,

there is h ∈ H such that V g1 ∩ V g2h �= ∅. Hence, there is Ug ∈ UU such that
V g1∪V g2h ⊂ Ug. It follows that π (V g1)∪π (V g2) ⊂ π (Ug). Thus, πUU � 1

2πUV .
Let Y ⊂ G/H be an open set andK a compact subset ofG/H contained in Y . Since
G is locally compact, there is a compact set F ⊂ G with π (F ) = K. There is UV ∈
O that is F -subordinated to π−1 (Y ). If π (V g) ∈ [πUV ,K], then V gh ∈ [UV , F ]
for some h ∈ H. It follows that V gh ⊂ π−1 (Y ), that is, π (V g) ⊂ Y . Hence,
πUV is K-subordinated to Y . Finally, for any πUV , πUU ∈ Oπ, it is immediate
πUV ∩U ∈ Oπ is a refinement of both πUV and πUU . Now, we have V ⊂ NG,πUV

for all V ∈ V . In fact, for gH ∈ G/H and v ∈ V , we have gH, vgH ∈ π (V g).
Given a covering πUV ∈ Oπ and π (V g) ∈ πUV , for aH, bH ∈ π (V g), there are
v1, v2 ∈ V such that aH = v1gH and bH = v2gH. Hence, v2v

−1
1 aH = bH, with

v2v
−1
1 ∈ V . �
In particular, the shadowing semigroups GπUV ,A have interior points in G.
Now, we are able to describe the chain transitivity of (S,G/H) from Theorem 4.

Theorem 5. A nonempty subset M ⊂ G/H is a maximal F-chain transitive set
if, and only if, for all shadowing semigroups GU,A, U ∈ Oπ and A ∈ F , there is an
effective control set DU,A of GU,A such that

M =
⋂

U∈Oπ ,A∈F
(DU,A)0 .
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4.2. Adjoint orbits. Regular adjoint orbits of semisimple Lie groups are the most
interesting noncompact spaces that we know of. Maximal chain transitive sets are
parameterized by the Weyl group, which is finite.

Let G be a connected noncompact semi-simple Lie group with finite center. Let
g be the Lie algebra of G and g = k⊕a⊕n an Iwasawa decomposition of g. Consider
the noncompact homogeneous space G/MA, where MA is the centralizer of a in
G. This homogeneous space identifies with any regular adjoint orbit in g (see [15]).
Moreover, the control sets for the action of a semigroup with nonempty interior
S ⊂ G on G/MA are parameterized by the Weyl group W of g. Then, we can
apply Theorem 5 to parameterize the maximal chain transitive sets of semigroup
actions on G/MA.

In [15, Theorem 3.7] the effective control sets for the action of S on G/MA
were described by means of the Weyl group. In this description one has a mapping
w → D (w) which associates to w ∈ W a control set D (w) in such a way that the
set of transitivity D (w)0 is the set of the fixed points of type w for the split-regular
elements in int (S).

Let (S,G/MA) be a semigroup action, where S ⊂ G, and F a family of subsets
of S. Let Oπ be the admissible family of open coverings of G/MA constructed as
above.

Theorem 6. For each w ∈ W , set

M (w) =
⋂

U∈Oπ ,A∈F
(DU,A (w))0 ,

where DU,A (w) is the effective control set of GU,A of type w. A nonempty subset
M ⊂ G/MA is a maximal F-chain transitive set if, and only if, M = M (w) for
some w ∈ W . In particular, the number of maximal chain transitive sets in G/MA
is finite.

Proof. Since the shadowing semigroups GU,A have interior point in G, the theorem
follows from Theorem 5. �
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