ON LIMITING DIRECTIONS OF JULIA SETS

Jianyong Qiao
China University of Mining \& Technology, Center of Mathematics, Beijing 100083
Chinese Academy of Sciences, Academy of Mathematics \& System Sciences, Beijing 100080
P. R. China; qjy@mail.cumtb.edu.cn

Abstract

We deal with the iteration of transcendental entire functions, and prove some properties on the Julia sets.

1. Introduction and main results

Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be a transcendental entire function; we define the iterated sequence of f by $f^{0}(z)=z, f^{n+1}(z)=f \circ f^{n}(z), n=1,2, \ldots$. The Fatou set and the Julia set are defined by $N(f)=\left\{z \in \mathbf{C} \mid\left\{f^{n}\right\}\right.$ is normal at $\left.z\right\}$ and $J(f)=\mathbf{C} \backslash N(f)$ respectively. Qiao ([7]) proved that the Julia set of a transcendental entire function of finite order has infinitely many limiting directions; here a limiting direction of $J(f)$ means a limit of the set $\left\{\arg z_{n} \mid z_{n} \in\right.$ $J(f)$ is an unbounded sequence $\}$. The example in [1] shows that there exists an entire function of infinite order whose Julia set has only one limiting direction. In this note we shall prove

Theorem 1. Let f be a transcendental entire function of lower order $\lambda<\infty$. Then there exists a closed interval $I \in \mathbf{R}$ such that all $\theta \in I$ are the common limiting directions of $J\left(f^{(n)}\right), n=0, \pm 1, \pm 2, \cdots$, and mes $I \geq \pi / \max \left(\frac{1}{2}, \lambda\right)$. Here $f^{(n)}$ denotes the n-th derivative or the n-th integral primitive of f for $n \geq 0$ or $n \leq 0$ respectively.

We know that Mittag-Leffler's function

$$
E_{\alpha}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(1+\alpha n)}, \quad 0<\alpha<2
$$

is a transcendental entire function of order $1 / \alpha$. Put $\Omega(-\theta, \theta)=\{z \in \mathbf{C} \mid-\theta<$ $\arg <\theta\}$. By the discussion used in [3] it is easy to verify that for any $E_{\alpha}(z)$, $0<\alpha<2$, there exists a constant $k>0$, such that

$$
f_{\alpha k}\left(\mathbf{C} \backslash \bar{\Omega}\left(-\frac{\alpha}{2 \pi}, \frac{\alpha}{2 \pi}\right)\right) \subset \mathbf{C} \backslash \bar{\Omega}\left(-\frac{\alpha}{2 \pi}, \frac{\alpha}{2 \pi}\right),
$$

2000 Mathematics Subject Classification: Primary 30D35, 37F10.
Project supported by the National Natural Science Foundation of China.
here $f_{\alpha k}=E_{\alpha}(z)-k$. Hence $J\left(f_{\alpha k}\right) \subset \bar{\Omega}(-\alpha / 2 \pi, \alpha / 2 \pi)$. This shows that the estimate of the length of the closed interval I in Theorem 1 is sharp.

Liverpool ([5]) proved that: if $J(f)$ lies in the half-plane $\{z \in \mathbf{C} \mid \operatorname{Re} z \geq 0\}$ for a transcendental entire function f of order ≤ 1, then there exists a positive constant c such that for any horizontal strip region S with width $c, J(f) \cap S$ is unbounded; here a strip region means a region between two parallel straight lines. It is easy to see from Theorem 1 that f is of lower order ≥ 1 provided $J(f)$ lies in a half-plane. Therefore, Liverpool's result is valid only for entire functions with order and lower order one. We shall prove

Theorem 2. Let f be a transcendental entire function of lower order $1, J(f)$ lie in the half plane $\{z \in \mathbf{C} \mid \operatorname{Re} z \geq 0\}$. Then there exists a positive constant c such that all $J\left(f^{(n)}\right) \cap S, n=0, \pm 1, \pm 2, \cdots$, are unbounded for any non-vertical strip region S with width c.

Liverpool ([5]) has pointed out that

$$
\left\{z \in \mathbf{C} \left\lvert\,\left(2 n+\frac{1}{2}\right) \pi<\operatorname{Im} z<\left(2 n+\frac{3}{2}\right) \pi\right.\right\} \cap J\left(e^{z}-1\right)=\emptyset, \quad n=0, \pm 1, \pm 2, \ldots
$$

But we shall prove this kind of "gap strips" will disappear for a class of entire functions of order >1.

Theorem 3. Let f be a transcendental entire function of order $\varrho>1$, and all limiting directions of $J(f)$ belong to $(-\pi / \varrho, \pi / \varrho)$. Then all $J\left(f^{(n)}\right) \cap S$, $n=0, \pm 1, \pm 2, \cdots$, are unbounded for an arbitrary horizontal strip region S.

Theorem 4. Let f be a transcendental entire function of order $\varrho>1$, and lower order $\lambda>\frac{1}{2}$. If all limiting directions of $J(f)$ belong to $[-\pi / 2 \lambda, \pi / 2 \lambda]$, then all $J\left(f^{(n)}\right) \cap S, n=0, \pm 1, \pm 2, \ldots$, are unbounded for an arbitrary strip region S which is parallel to $\theta \in(-\pi / 2 \lambda, \pi / 2 \lambda)$.

2. Some lemmas

In order to prove the above results, we investigate the growth of f on its Fatou set. The following two lemmas are the improvements of the main results in [2] and [5] respectively. For $z_{0} \in \mathbf{C}$ and $\theta, \delta \in \mathbf{R}$, put

$$
\Omega\left(z_{0}, \theta, \delta\right)=\left\{z \in \mathbf{C}| | \arg \left(z-z_{0}\right)-\theta \mid<\delta\right\}
$$

We have
Lemma 1. Let f be a transcendental entire function, and $\Omega\left(z_{0}, \theta, \delta\right) \subset$ $N(f)$. Then

$$
|f(z)|=O(|z|)^{\pi / \delta}, \quad z \in \Omega\left(z_{0}, \theta, \delta^{\prime}\right)
$$

for arbitrary $\delta^{\prime} \in(0, \delta)$.

Proof. Since $\Omega\left(z_{0}, \theta, \delta\right) \subset N(f)$, there is an unbounded component G_{0} of $N(f)$ such that $\Omega\left(z_{0}, \theta, \delta\right) \subset G_{0}$. By [1] we know that every component of $N(f)$ is a simply connected hyperbolic domain. Let $f\left(G_{0}\right)$ belong to some component G of $N(f)$. It is easy to verify that the mapping

$$
w=h(z)=\frac{\left(e^{-i \theta} z-e^{-i \theta} z_{0}\right)^{\pi / 2 \delta}-1}{\left(e^{-i \theta} z-e^{-i \theta} z_{0}\right)^{\pi / 2 \delta}+1}
$$

maps $\Omega\left(z_{0}, \theta, \delta\right)$ conformally onto the unit disk $\{|w|<1\}$. Put $h^{-1}(0)=a \in$ $\Omega\left(z_{0}, \theta, \delta\right)$. By the Riemann theorem, there is a conformal mapping $w=g(z): G \rightarrow$ $\{|w|<1\}$ satisfying $g(f(a))=0$ and $g^{\prime}(f(a))>0$. Hence $F(w)=g \circ f \circ h^{-1}(w)$ is an analytic mapping from the unit disk to itself. By the Schwarz lemma,

$$
\begin{equation*}
|F(w)| \leq|w|, \quad|w|<1 . \tag{1}
\end{equation*}
$$

Since g^{-1} is univalent on $\{|w|<1\}$, by Koebe's distortion theorem we have

$$
\begin{equation*}
\left|\left(g^{-1}(w)-f(a)\right) g^{\prime}(f(a))\right| \leq \frac{|w|}{(1-|w|)^{2}}, \quad|w|<1 \tag{2}
\end{equation*}
$$

Since $f=g^{-1} \circ F \circ h$, it follows from (1) and (2) that

$$
\begin{equation*}
|f(z)| \leq|f(a)|+\frac{1}{\left|g^{\prime}(f(a))\right|\left(1-|h(z)|^{2}\right)}, \quad z \in \Omega\left(z_{0}, \theta, \delta\right) \tag{3}
\end{equation*}
$$

For arbitrary $z \in \Omega\left(z_{0}, \theta, \delta^{\prime}\right)$, put

$$
\eta=z-z_{0}=r e^{i \alpha}, \quad \sigma=\frac{\pi}{2 \delta}, \quad \lambda=\sin \frac{\delta^{\prime} \pi}{2 \delta}>0 .
$$

Then

$$
\begin{aligned}
|h(z)|^{2} & =\left|\frac{1-(\cos \sigma(\alpha-\theta)) / r^{\alpha}+i(\sin \sigma(\alpha-\theta)) / r^{\alpha}+o\left(1 / r^{\alpha}\right)}{1+(\cos \sigma(\alpha-\theta)) / r^{\alpha}-i(\sin \sigma(\alpha-\theta)) / r^{\alpha}+o\left(1 / r^{\alpha}\right)}\right|^{2} \\
& =\frac{1-2(\cos \sigma(\alpha-\theta)) / r^{\alpha}+o\left(1 / r^{\alpha}\right)}{1+2(\cos \sigma(\alpha-\theta)) / r^{\alpha}+o\left(1 / r^{\alpha}\right)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
1-|h(z)| & >\frac{1-|h(z)|^{2}}{2}=\frac{4(\cos \sigma(\alpha-\theta)) / r^{\alpha}+o\left(1 / r^{\alpha}\right)}{1+2(\cos \sigma(\alpha-\theta)) / r^{\alpha}+o\left(1 / r^{\alpha}\right)} \\
& \geq \frac{4 \lambda / r^{\alpha}+o\left(1 / r^{\alpha}\right)}{1+2 / r^{\alpha}+o\left(1 / r^{\alpha}\right)} .
\end{aligned}
$$

By the above inequality and (3) we can easily deduce the result of Lemma 1. The proof of Lemma 1 is complete.

For any real numbers $a>0$ and $A>0$, put

$$
H(a, A)=\{z \in \mathbf{C}|\operatorname{Re} z>a,|\operatorname{Im} z|<A\}
$$

We have
Lemma 2. Let f be a transcendental entire function, and $H(a, A) \subset N(f)$, then

$$
|f(z)|=O\left(\exp \frac{\pi}{A}|z|\right), \quad z \in H\left(a, A^{\prime}\right)
$$

for arbitrary $A^{\prime} \in(0, A)$.
Proof. Let G_{0}, G be two components of $N(f)$ such that $H(a, A) \subset G_{0}$, $f\left(G_{0}\right) \subset G$. It is easy to verify that

$$
w=h_{1}(z)=\exp \left(\frac{\pi}{2 A} z-\frac{\alpha \pi}{2 A}\right)
$$

maps $H(a, A)$ conformally onto $\{\operatorname{Re} w>0\} \backslash\{|w|<1\}$, and $w=h_{2}(z)=(z-2) / z$ maps $\{\operatorname{Re} z>1\}$ conformally onto $\{|w|<1\}$. By the Riemann theorem, there exists an univalent analytic function $g(z)$ which maps G onto $\{|w|<1\}$. Hence $F(w)=g \circ f \circ h_{1}^{-1} \circ h_{2}^{-1}(w)$ is an analytic mapping from the unit disk to itself. As in the proof of Lemma 1 we obtain

$$
\begin{equation*}
\left|g^{-1} \circ F(w)\right|=O\left(\frac{|w|}{(1-|w|)^{2}}\right), \quad|w|<1 \tag{4}
\end{equation*}
$$

Obviously, $f=g^{-1} \circ F \circ h_{2} \circ h_{1}$ and $h_{1}(z) \in\{\operatorname{Re} w>1\}$ for $z \in H\left(a, A^{\prime}\right)$ and sufficiently large $|z|$. By similar calculations as in the proof of Lemma 1, we can deduce the result of Lemma 2. The proof of Lemma 2 is complete.

Below we shall use the fundamental concepts and basic notations of Nevanlinna's theory ([4]).

Lemma 3 ([7]). Let f be a transcendental entire function satisfying

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{r^{m}}=0
$$

for some fixed natural number m. Then for arbitrary $\alpha \in[0,2 \pi)$, the set

$$
J(f) \cap\left[\bigcup_{k=1}^{m}\left\{z \in \mathbf{C} \left\lvert\, \frac{2 k-1}{m} \pi+\alpha<\arg z<\frac{2 k}{m} \pi+\alpha\right.\right\}\right]
$$

is unbounded.
Lemma 4 ([4]). Let f be a transcendental entire function. Then

$$
m\left(r, \frac{f^{\prime}}{f}\right)=O(\log r T(r, f)), \quad r \rightarrow \infty
$$

at most with an exceptional set of r whose linear measure is finite.

3. The proofs of the theorems

The proof of Theorem 1. We distinguish the following two cases:
(A) Suppose f is of lower order $\lambda<\frac{1}{2}$. We shall prove that, all $\theta \in[0,2 \pi)$ are the limiting directions of all $J\left(f^{(n)}\right), n=0, \pm 1, \pm 2, \cdots$. Assume this statement is not true, then there exist $\theta \in[0,2 \pi)$ and an integer n_{0} such that θ is not a limiting direction of $J\left(f^{n_{0}}\right)$. Therefore $J\left(f^{n_{0}}\right) \cap \Omega(0, \theta, \delta)$ is bounded for some constant $\delta>0$. By Lemma 1 ,

$$
\begin{equation*}
\left|f^{\left(n_{0}\right)}(z)\right|=O\left(|z|^{k}\right), \quad \arg z=\theta ; \tag{5}
\end{equation*}
$$

here k is a positive constant. Since the lower order of $f^{n_{0}}(z)$ is less than $\frac{1}{2}$, by (5) and Wiman's theorem on minimum modulus (see [4]) we get a contradiction.
(B) Suppose f is of lower order $\lambda \geq \frac{1}{2}$, put

$$
E_{n}=\left\{e^{i \theta} \mid \theta \text { is a limiting direction of } J\left(f^{(n)}\right)\right\} .
$$

Obviously, E_{n} is a closed set on the unit circle Γ. Denote $E=\bigcap_{n \in \mathbf{Z}} E_{n}$, here \mathbf{Z} is the set of integers. It is easy to see that the arguments of the points in E are the common limiting directions of all $J\left(f^{(n)}\right)$, and the components of E are closed arcs on Γ. Put
$\gamma=\left\{\alpha \mid \alpha\right.$ is an open arc on Γ with length $<\frac{\pi}{\lambda}$, and its endpoints are not in $\left.E\right\}$.
Assume the maximum component of E is of length $<\pi / \lambda$, then the set γ covers Γ. So there exist finitely many $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p} \in \gamma$ such that $\bigcup_{j=1}^{p} \alpha_{j} \supset \Gamma$. Denote the arguments of two endpoints of α_{j} by $\theta_{j_{1}}, \theta_{j_{2}}, \theta_{j_{1}}<\theta_{j_{2}}$, respectively, and suppose $\theta_{j_{1}}$ is not the limiting direction of $J\left(f^{\left(n_{j_{1}}\right)}\right), \theta_{j_{2}}$ is not the limiting direction of $J\left(f^{\left(n_{j_{2}}\right)}\right)$. By Lemma 1,

$$
\begin{array}{ll}
\left|f^{\left(n_{j_{1}}\right)}(z)\right|=O\left(|z|^{k_{j_{1}}}\right), & \arg z=\theta_{j_{1}}, \\
\left|f^{\left(n_{j_{2}}\right)}(z)\right|=O\left(|z|^{k_{j_{2}}}\right), & \arg z=\theta_{j_{2}} . \tag{7}
\end{array}
$$

Here $k_{j_{1}}, k_{j_{2}}$ are two positive constants.
Put $m=\min _{1 \leq j \leq p}\left(n_{j_{1}}, n_{j_{2}}\right)$. Note

$$
f^{\left(n_{j_{1}}-1\right)}(z)=\int_{0}^{z} f^{\left(n_{j_{1}}\right)}(\eta) d \eta+c,
$$

where c is a constant, and the above integral path is the segment of a straight line from 0 to z. From the above equality and (10) we deduce

$$
\left|f^{\left(n_{j_{1}}-1\right)}(z)\right|=O\left(|z|^{k_{j_{1}}+1}\right), \quad \arg z=\theta_{j_{1}} .
$$

Repeating the above discussion, we can obtain

$$
\left|f^{(m)}(z)\right|=O\left(|z|^{k_{1}}\right), \quad \arg z=\theta_{j_{1}},
$$

where k_{1} is a positive constant. By the same method we have

$$
\left|f^{(m)}(z)\right|=O\left(|z|^{k_{2}}\right), \quad \arg z=\theta_{j_{2}}
$$

where k_{2} is a positive constant. Note that $\theta_{j_{2}}-\theta_{j_{1}}<\pi / \lambda$. By the PhragménLindelöf principle we have

$$
\left|f^{(m)}(z)\right|=O\left(|z|^{k}\right), \quad \theta_{j_{1}} \leq \arg z \leq \theta_{j_{2}}
$$

where $k=\max \left(k_{1}, k_{2}\right)$. Since $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ cover Γ, it follows that f is a polynomial. This contradicts the transcendence of f. The proof of Theorem 1 is complete.

The proof of Theorem 2. Assume the conclusion of this theorem is not true; then there exists a sequence of non-vertical strip regions S_{j} with width $c_{j} \rightarrow \infty$, and a sequence of $J\left(f^{\left(n_{j}\right)}\right)$ such that $J\left(f^{\left(n_{j}\right)}\right) \cap S_{j}$ is bounded. Let S_{j} be parallel to the ray $\arg z=\theta_{j} \in\left(-\frac{1}{2} \pi, \frac{1}{2} \pi\right)$. Choose points $z_{j} \in S_{j}, j=1,2, \ldots$ Then the ray $L_{j}: z=z_{j}+t e^{i \theta_{j}}, t>0$, lies on S_{j}. By Lemma 2,

$$
\begin{equation*}
\left|f^{\left(n_{j}\right)}(z)\right|=O\left(\exp \frac{2 \pi}{c_{j}}|z|\right), \quad z \in L_{j} \tag{8}
\end{equation*}
$$

We distinguish two cases:
(A) Suppose there are infinitely many $n_{j}>0$ such that (8) holds. Integrating $f^{\left(n_{j}\right)}(z)$, by (8) we easily obtain

$$
\left|f^{\left(n_{j}-1\right)}(z)\right|=O\left(|z| \exp \frac{2 \pi}{c_{j}}|z|\right), \quad z \in L_{j}
$$

Repeating this procedure we can get

$$
\begin{equation*}
|f(z)|=O\left(|z|^{n_{j}} \exp \frac{2 \pi}{c_{j}}|z|\right), \quad z \in L_{j} \tag{9}
\end{equation*}
$$

Since L_{j} is not vertical, we can draw two rays:

$$
L_{j}^{\prime}: z=z_{j}+t e^{i \alpha_{j}}, \quad t>0, \quad L_{j}^{\prime \prime}: z=z_{j}+t e^{i \beta_{j}}, \quad t>0,
$$

satisfying $\alpha_{j}<\beta_{j}, \alpha_{j}, \beta_{j} \in\left(\frac{1}{2} \pi, \frac{3}{2} \pi\right)$. The angle from L_{j} to L_{j}^{\prime} and the angle from $L_{j}^{\prime \prime}$ to L_{j} are both less than π. Since there are no points of $J(f)$ in the left half-plane, by Lemma 1

$$
\begin{equation*}
|f(z)|=O\left(|z|^{2}\right), \quad z \in L_{j}^{\prime} \text { or } L_{j}^{\prime \prime} \tag{10}
\end{equation*}
$$

By (9), (10) and the Phragmén-Lindelöf principle we have

$$
|f(z)|=O\left(|z|^{n_{j}} \exp \frac{2 \pi}{c_{j}}|z|\right), \quad z \in \mathbf{C} .
$$

We thus obtain

$$
\varlimsup_{r \rightarrow \infty} \frac{T(r, f)}{r} \leq \frac{2 \pi}{c_{j}}
$$

Letting $c_{j} \rightarrow \infty$ we get

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{r}=0
$$

By Lemma 3, we deduce a contradiction.
(B) Suppose there are infinitely many $n_{j} \leq 0$ such that (8) holds. As in (A), we can draw the ray L_{j}^{\prime} and the ray $L_{j}^{\prime \prime}$; hence (10) follows. Using (10) to estimate the integrand, we can deduce

$$
\left|f^{\left(n_{j}\right)}(z)\right|=O\left(|z|^{2+n_{j}}\right), \quad z \in L_{j}^{\prime} \text { or } L_{j}^{\prime \prime}
$$

It follows from this equality, (8) and the Phragmén-Lindelöf principle that

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{T\left(r, f^{\left(n_{j}\right)}\right)}{r} \leq \frac{2 \pi}{c_{j}} \tag{11}
\end{equation*}
$$

On the other hand, by Lemma 4,

$$
T\left(r, f^{\left(n_{j}+1\right)}\right) \leq T\left(r, f^{\left(n_{j}\right)}\right)+m\left(r, \frac{\left(f^{\left(n_{j}\right)}\right)^{\prime}}{f^{\left(n_{j}\right)}}\right) \leq(1+o(1)) T\left(r, f^{\left(n_{j}\right)}\right)+k_{j} \log r
$$

for sufficiently large $r, r \notin E_{j}^{1}$, mes $E_{j}^{1}<\infty$. Here k_{j} is a positive constant. Note that $n_{j} \leq 0$. Repeating the above estimation, we obtain

$$
\begin{equation*}
T(r, f) \leq(1+o(1)) T\left(r, f^{\left(n_{j}\right)}\right)+K_{j} \log r \tag{12}
\end{equation*}
$$

for $r \notin E_{j}^{1}$, mes $E_{j}^{1}<\infty$. Here K_{j} is a positive constant. By (11) and (12), we have

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{r} \leq \frac{2 \pi}{c_{j}}
$$

Furthermore, by the same method as used in (A), we can deduce a contradiction. The proof of Theorem 2 is complete.

The proof of Theorem 3. Assume there exist a horizontal strip region S and an integer n such that $J\left(f^{(n)}\right) \cap S$ is bounded. Denote the width of S by c. Choose a point $z_{0} \in S$, and draw the ray $L: z=z_{0}+t, t>0$. By Lemma 2,

$$
\begin{equation*}
\left|f^{(n)}(z)\right|=O\left(\exp \frac{2 \pi}{c}|z|\right), \quad z \in L \tag{13}
\end{equation*}
$$

Since all limiting directions of $J(f)$ belong to $(-\pi / \varrho, \pi / \varrho)$, we can draw two rays: $L^{\prime}: z=z_{0}+t e^{i \theta}, t>0$, and $L^{\prime \prime}: z=z_{0}+t e^{-i \theta}, t>0$, such that $(-\theta, \theta) \subset(-\pi / \varrho, \pi / \varrho)$ and all limiting directions of $J(f)$ belong to $(-\theta, \theta)$. By Lemma 1,

$$
\begin{equation*}
|f(z)|=O\left(|z|^{k}\right), \quad z \in L^{\prime} \text { or } L^{\prime \prime} \tag{14}
\end{equation*}
$$

here k is a positive constant. Put $m=\min (n, 0)$. Using (13) and (14) to estimate the integrand, we can obtain

$$
\begin{align*}
& \left|f^{(m)}(z)\right|=O\left(|z|^{k_{1}} \exp \frac{2 \pi}{c}|z|\right), \quad z \in L \tag{15}\\
& \left|f^{(m)}(z)\right|=O\left(|z|^{k_{2}}\right), \quad z \in L^{\prime} \text { or } L^{\prime \prime} \tag{16}
\end{align*}
$$

here k_{1}, k_{2} are two positive constants. It follows from (15), (16) and the Phrag-mén-Lindelöf principle that

$$
\begin{equation*}
\left|f^{(m)}(z)\right|=O\left(|z|^{k_{1}} \exp \frac{2 \pi}{c}|z|\right), \quad-\theta \leq \arg \left(z-z_{0}\right) \leq \theta \tag{17}
\end{equation*}
$$

Since all limiting directions of $J(f)$ belong to $(-\pi / \varrho, \pi / \varrho)$, by Lemma 1 , there exists a positive constant k such that (14) holds for $\theta \leq \arg \left(z-z_{0}\right) \leq 2 \pi-\theta$. This and (17) imply that $f^{(m)}$ is of order ≤ 1. This is a contradiction. The proof of Theorem 3 is complete.

The proof of Theorem 4. Assume there exist a strip region S which parallels $\theta \in(-\pi / 2 \lambda, \pi / 2 \lambda)$, and some $J\left(f^{(n)}\right)$ such that $J\left(f^{(n)}\right) \cap S$ is bounded. Denote the width of S by c. Choose a point $z_{0} \in S$, by Lemma 2 ,

$$
\left|f^{(n)}(z)\right|=O\left(\exp \frac{2 \pi}{c}|z|\right), \quad z \in L: z=z_{0}+t e^{i \theta}, t>0
$$

Obviously, we can draw two rays

$$
L^{\prime}: z=z_{0}+t e^{i \theta_{1}}, \quad t>0, \quad L^{\prime \prime}: z=z_{0}+t e^{i \theta_{2}}, \quad t>0,
$$

such that $\left(\theta_{1}, \theta_{2}\right) \supset[-\pi / 2 \lambda, \pi / 2 \lambda], \theta_{2}-\theta<\pi / \lambda$ and $\theta-\theta_{1}<\pi / \lambda$. Using the same method as in the proof of Theorem 3, we can deduce

$$
\begin{array}{rlrl}
\left|f^{(n)}(z)\right| & =O\left(\exp \frac{2 \pi}{c}|z|\right), & \theta_{1} \leq \arg \left(z-z_{0}\right) \leq \theta_{2} \\
\left|f^{(n)}(z)\right| & =O\left(|z|^{2}\right), & & \theta_{2} \leq \arg \left(z-z_{0}\right) \leq \theta_{1}+2 \pi
\end{array}
$$

It follows that f is of order ≤ 1. This is a contradiction. The proof of Theorem 4 is thus complete.

References

[1] Baker, I.N.: The domains of normality of an entire function. - Ann. Acad. Sci. Fenn. Math. 1, 1975, 177-283.
[2] Bhattacharyya, P.: On the domain of normality of an attractive fixpoint. - Trans. Amer. Math. Soc. 153, 1971, 89-98.
[3] Cartwright, M.L.: Integral Functions. - Cambridge University Press, 1953.
[4] Hayman, W.K.: Meromorphic Functions. - Clarendon Press, Oxford, 1964.
[5] Liverpool, L.S.O.: On entire functions with infinite domains of normality. - Aequationes Math. 10, 1974, 189-200.
[6] Qiao, J.: The value distribution of entire functions of finite order. - Kodai Math. J. 12, 1989, 429-436.
[7] Qiao, J.: The value distribution and the Julia sets of entire functions. - Chinese Acta Math. 36, 1993, 418-422 (Chinese).

