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Abstract. We deal with the iteration of transcendental entire functions, and prove some
properties on the Julia sets.

1. Introduction and main results

Let f : C → C be a transcendental entire function; we define the iterated
sequence of f by f0(z) = z , fn+1(z) = f ◦ fn(z) , n = 1, 2, . . . . The Fatou
set and the Julia set are defined by N(f) = {z ∈ C | {fn} is normal at z}
and J(f) = C \ N(f) respectively. Qiao ([7]) proved that the Julia set of a
transcendental entire function of finite order has infinitely many limiting direc-
tions; here a limiting direction of J(f) means a limit of the set {arg zn | zn ∈
J(f) is an unbounded sequence} . The example in [1] shows that there exists an
entire function of infinite order whose Julia set has only one limiting direction. In
this note we shall prove

Theorem 1. Let f be a transcendental entire function of lower order λ <∞ .
Then there exists a closed interval I ∈ R such that all θ ∈ I are the common
limiting directions of J(f (n)) , n = 0,±1,±2, · · · , and mes I ≥ π/max( 1

2 , λ) . Here

f (n) denotes the n -th derivative or the n -th integral primitive of f for n ≥ 0 or
n ≤ 0 respectively.

We know that Mittag-Leffler’s function

Eα(z) =
∞∑

n=0

zn

Γ(1 + αn)
, 0 < α < 2,

is a transcendental entire function of order 1/α . Put Ω(−θ, θ) = {z ∈ C | −θ <
arg < θ} . By the discussion used in [3] it is easy to verify that for any Eα(z) ,
0 < α < 2, there exists a constant k > 0, such that

fαk

(
C \ Ω

(
− α

2π
,
α

2π

))
⊂ C \ Ω

(
− α

2π
,
α

2π

)
,
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here fαk = Eα(z) − k . Hence J(fαk) ⊂ Ω(−α/2π, α/2π). This shows that the
estimate of the length of the closed interval I in Theorem 1 is sharp.

Liverpool ([5]) proved that: if J(f) lies in the half-plane {z ∈ C | Re z ≥ 0}
for a transcendental entire function f of order ≤ 1, then there exists a positive
constant c such that for any horizontal strip region S with width c , J(f) ∩ S is
unbounded; here a strip region means a region between two parallel straight lines.
It is easy to see from Theorem 1 that f is of lower order ≥ 1 provided J(f) lies
in a half-plane. Therefore, Liverpool’s result is valid only for entire functions with
order and lower order one. We shall prove

Theorem 2. Let f be a transcendental entire function of lower order 1 , J(f)
lie in the half plane {z ∈ C | Re z ≥ 0} . Then there exists a positive constant c
such that all J(f (n)) ∩ S , n = 0,±1,±2, · · · , are unbounded for any non-vertical
strip region S with width c .

Liverpool ([5]) has pointed out that

{
z ∈ C | (2n+ 1

2 )π < Im z < (2n+ 3
2 )π
}
∩ J(ez − 1) = ∅, n = 0,±1,±2, . . . .

But we shall prove this kind of “gap strips” will disappear for a class of entire
functions of order > 1.

Theorem 3. Let f be a transcendental entire function of order % > 1 ,
and all limiting directions of J(f) belong to (−π/%, π/%) . Then all J(f (n)) ∩ S ,
n = 0,±1,±2, · · · , are unbounded for an arbitrary horizontal strip region S .

Theorem 4. Let f be a transcendental entire function of order % > 1 , and
lower order λ > 1

2 . If all limiting directions of J(f) belong to
[
−π/2λ, π/2λ

]
,

then all J(f (n)) ∩ S , n = 0,±1,±2, . . . , are unbounded for an arbitrary strip
region S which is parallel to θ ∈ (−π/2λ, π/2λ) .

2. Some lemmas

In order to prove the above results, we investigate the growth of f on its
Fatou set. The following two lemmas are the improvements of the main results
in [2] and [5] respectively. For z0 ∈ C and θ, δ ∈ R , put

Ω(z0, θ, δ) = {z ∈ C | | arg(z − z0)− θ| < δ}.

We have

Lemma 1. Let f be a transcendental entire function, and Ω(z0, θ, δ) ⊂
N(f) . Then

|f(z)| = O(|z|)π/δ, z ∈ Ω(z0, θ, δ
′)

for arbitrary δ′ ∈ (0, δ) .
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Proof. Since Ω(z0, θ, δ) ⊂ N(f) , there is an unbounded component G0 of
N(f) such that Ω(z0, θ, δ) ⊂ G0 . By [1] we know that every component of N(f)
is a simply connected hyperbolic domain. Let f(G0) belong to some component
G of N(f) . It is easy to verify that the mapping

w = h(z) =
(e−iθz − e−iθz0)π/2δ − 1

(e−iθz − e−iθz0)π/2δ + 1

maps Ω(z0, θ, δ) conformally onto the unit disk {|w| < 1} . Put h−1(0) = a ∈
Ω(z0, θ, δ) . By the Riemann theorem, there is a conformal mapping w = g(z): G→
{|w| < 1} satisfying g

(
f(a)

)
= 0 and g′

(
f(a)

)
> 0. Hence F (w) = g ◦ f ◦h−1(w)

is an analytic mapping from the unit disk to itself. By the Schwarz lemma,

(1) |F (w)| ≤ |w|, |w| < 1.

Since g−1 is univalent on {|w| < 1} , by Koebe’s distortion theorem we have

(2)
∣∣(g−1(w)− f(a)

)
g′
(
f(a)

)∣∣ ≤ |w|
(1− |w|)2

, |w| < 1.

Since f = g−1 ◦ F ◦ h , it follows from (1) and (2) that

(3) |f(z)| ≤ |f(a)|+ 1∣∣g′
(
f(a)

)∣∣(1− |h(z)|2
) , z ∈ Ω(z0, θ, δ).

For arbitrary z ∈ Ω(z0, θ, δ
′) , put

η = z − z0 = reiα, σ =
π

2δ
, λ = sin

δ′π
2δ

> 0.

Then

|h(z)|2 =

∣∣∣∣
1−

(
cosσ(α− θ)

)
/rα + i

(
sinσ(α− θ)

)
/rα + o(1/rα)

1 +
(
cosσ(α− θ)

)
/rα − i

(
sinσ(α− θ)

)
/rα + o(1/rα)

∣∣∣∣
2

=
1− 2

(
cosσ(α− θ)

)
/rα + o(1/rα)

1 + 2
(
cosσ(α− θ)

)
/rα + o(1/rα)

.

Thus

1− |h(z)| > 1− |h(z)|2
2

=
4
(
cosσ(α− θ)

)
/rα + o(1/rα)

1 + 2
(
cosσ(α− θ)

)
/rα + o(1/rα)

≥ 4λ/rα + o(1/rα)

1 + 2/rα + o(1/rα)
.

By the above inequality and (3) we can easily deduce the result of Lemma 1. The
proof of Lemma 1 is complete.
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For any real numbers a > 0 and A > 0, put

H(a,A) = {z ∈ C | Re z > a, | Im z| < A}.
We have

Lemma 2. Let f be a transcendental entire function, and H(a,A) ⊂ N(f) ,
then

|f(z)| = O

(
exp

π

A
|z|
)
, z ∈ H(a,A′)

for arbitrary A′ ∈ (0, A) .

Proof. Let G0 , G be two components of N(f) such that H(a,A) ⊂ G0 ,
f(G0) ⊂ G . It is easy to verify that

w = h1(z) = exp

(
π

2A
z − απ

2A

)

maps H(a,A) conformally onto {Rew > 0}\{|w| < 1} , and w = h2(z) = (z−2)/z
maps {Re z > 1} conformally onto {|w| < 1} . By the Riemann theorem, there
exists an univalent analytic function g(z) which maps G onto {|w| < 1} . Hence
F (w) = g ◦ f ◦ h−1

1 ◦ h−1
2 (w) is an analytic mapping from the unit disk to itself.

As in the proof of Lemma 1 we obtain

(4) |g−1 ◦ F (w)| = O

( |w|
(1− |w|)2

)
, |w| < 1.

Obviously, f = g−1 ◦ F ◦ h2 ◦ h1 and h1(z) ∈ {Rew > 1} for z ∈ H(a,A′) and
sufficiently large |z| . By similar calculations as in the proof of Lemma 1, we can
deduce the result of Lemma 2. The proof of Lemma 2 is complete.

Below we shall use the fundamental concepts and basic notations of Nevan-
linna’s theory ([4]).

Lemma 3 ([7]). Let f be a transcendental entire function satisfying

lim
r→∞

T (r, f)

rm
= 0

for some fixed natural number m . Then for arbitrary α ∈ [0, 2π) , the set

J(f) ∩
[
m⋃
k=1

{
z ∈ C

∣∣∣ 2k − 1

m
π + α < arg z <

2k

m
π + α

}]

is unbounded.

Lemma 4 ([4]). Let f be a transcendental entire function. Then

m

(
r,
f ′

f

)
= O

(
log rT (r, f)

)
, r →∞,

at most with an exceptional set of r whose linear measure is finite.
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3. The proofs of the theorems

The proof of Theorem 1. We distinguish the following two cases:

(A) Suppose f is of lower order λ < 1
2 . We shall prove that, all θ ∈ [0, 2π) are

the limiting directions of all J(f (n)) , n = 0,±1,±2, · · · . Assume this statement
is not true, then there exist θ ∈ [0, 2π) and an integer n0 such that θ is not a
limiting direction of J(fn0) . Therefore J(fn0) ∩ Ω(0, θ, δ) is bounded for some
constant δ > 0. By Lemma 1,

(5) |f (n0)(z)| = O(|z|k), arg z = θ;

here k is a positive constant. Since the lower order of fn0(z) is less than 1
2 , by

(5) and Wiman’s theorem on minimum modulus (see [4]) we get a contradiction.

(B) Suppose f is of lower order λ ≥ 1
2 , put

En =
{
eiθ | θ is a limiting direction of J(f (n))

}
.

Obviously, En is a closed set on the unit circle Γ. Denote E =
⋂
n∈ZEn , here

Z is the set of integers. It is easy to see that the arguments of the points in E
are the common limiting directions of all J(f (n)) , and the components of E are
closed arcs on Γ. Put

γ =

{
α
∣∣∣ α is an open arc on Γ with length <

π

λ
, and its endpoints are not in E

}
.

Assume the maximum component of E is of length < π/λ , then the set γ covers Γ.
So there exist finitely many α1, α2, . . . , αp ∈ γ such that

⋃p
j=1 αj ⊃ Γ. Denote the

arguments of two endpoints of αj by θj1 , θj2 , θj1 < θj2 , respectively, and suppose
θj1 is not the limiting direction of J(f (nj1 )) , θj2 is not the limiting direction of
J(f (nj2 )) . By Lemma 1,

|f (nj1 )(z)| = O(|z|kj1 ), arg z = θj1 ,(6)

|f (nj2 )(z)| = O(|z|kj2 ), arg z = θj2 .(7)

Here kj1 , kj2 are two positive constants.
Put m = min1≤j≤p(nj1 , nj2) . Note

f (nj1−1)(z) =

∫ z

0

f (nj1 )(η) dη + c,

where c is a constant, and the above integral path is the segment of a straight line
from 0 to z . From the above equality and (10) we deduce

|f (nj1−1)(z)| = O(|z|kj1+1), arg z = θj1 .
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Repeating the above discussion, we can obtain

|f (m)(z)| = O(|z|k1), arg z = θj1 ,

where k1 is a positive constant. By the same method we have

|f (m)(z)| = O(|z|k2), arg z = θj2 ,

where k2 is a positive constant. Note that θj2 − θj1 < π/λ . By the Phragmén–
Lindelöf principle we have

|f (m)(z)| = O(|z|k), θj1 ≤ arg z ≤ θj2 ,

where k = max(k1, k2) . Since α1, α2, . . . , αp cover Γ, it follows that f is a
polynomial. This contradicts the transcendence of f . The proof of Theorem 1 is
complete.

The proof of Theorem 2. Assume the conclusion of this theorem is not true;
then there exists a sequence of non-vertical strip regions Sj with width cj →∞ ,
and a sequence of J(f (nj)) such that J(f (nj))∩Sj is bounded. Let Sj be parallel
to the ray arg z = θj ∈ (− 1

2π,
1
2π) . Choose points zj ∈ Sj , j = 1, 2, . . . . Then

the ray Lj : z = zj + teiθj , t > 0, lies on Sj . By Lemma 2,

(8) |f (nj)(z)| = O

(
exp

2π

cj
|z|
)
, z ∈ Lj .

We distinguish two cases:

(A) Suppose there are infinitely many nj > 0 such that (8) holds. Integrating
f (nj)(z) , by (8) we easily obtain

|f (nj−1)(z)| = O

(
|z| exp

2π

cj
|z|
)
, z ∈ Lj .

Repeating this procedure we can get

(9) |f(z)| = O

(
|z|nj exp

2π

cj
|z|
)
, z ∈ Lj .

Since Lj is not vertical, we can draw two rays:

L′j : z = zj + teiαj , t > 0, L′′j : z = zj + teiβj , t > 0,

satisfying αj < βj , αj , βj ∈ ( 1
2π,

3
2π) . The angle from Lj to L′j and the angle

from L′′j to Lj are both less than π . Since there are no points of J(f) in the left
half-plane, by Lemma 1

(10) |f(z)| = O(|z|2), z ∈ L′j or L′′j .
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By (9), (10) and the Phragmén–Lindelöf principle we have

|f(z)| = O

(
|z|nj exp

2π

cj
|z|
)
, z ∈ C.

We thus obtain

lim
r→∞

T (r, f)

r
≤ 2π

cj
.

Letting cj →∞ we get

lim
r→∞

T (r, f)

r
= 0.

By Lemma 3, we deduce a contradiction.

(B) Suppose there are infinitely many nj ≤ 0 such that (8) holds. As in
(A), we can draw the ray L′j and the ray L′′j ; hence (10) follows. Using (10) to
estimate the integrand, we can deduce

|f (nj)(z)| = O(|z|2+nj ), z ∈ L′j or L′′j .

It follows from this equality, (8) and the Phragmén–Lindelöf principle that

(11) lim
r→∞

T (r, f (nj))

r
≤ 2π

cj
.

On the other hand, by Lemma 4,

T (r, f (nj+1)) ≤ T (r, f (nj)) +m

(
r,

(f (nj))′

f (nj)

)
≤
(
1 + o(1)

)
T (r, f (nj)) + kj log r

for sufficiently large r , r /∈ E1
j , mesE1

j < ∞ . Here kj is a positive constant.
Note that nj ≤ 0. Repeating the above estimation, we obtain

(12) T (r, f) ≤
(
1 + o(1)

)
T (r, f (nj)) +Kj log r

for r /∈ E1
j , mesE1

j < ∞ . Here Kj is a positive constant. By (11) and (12), we
have

lim
r→∞

T (r, f)

r
≤ 2π

cj
.

Furthermore, by the same method as used in (A), we can deduce a contradiction.
The proof of Theorem 2 is complete.
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The proof of Theorem 3. Assume there exist a horizontal strip region S and
an integer n such that J(f (n)) ∩ S is bounded. Denote the width of S by c .
Choose a point z0 ∈ S , and draw the ray L : z = z0 + t , t > 0. By Lemma 2,

(13) |f (n)(z)| = O

(
exp

2π

c
|z|
)
, z ∈ L.

Since all limiting directions of J(f) belong to (−π/%, π/%) , we can draw two
rays: L′ : z = z0 + teiθ , t > 0, and L′′ : z = z0 + te−iθ , t > 0, such that
(−θ, θ) ⊂ (−π/%, π/%) and all limiting directions of J(f) belong to (−θ, θ) . By
Lemma 1,

(14) |f(z)| = O(|z|k), z ∈ L′ or L′′;

here k is a positive constant. Put m = min(n, 0). Using (13) and (14) to estimate
the integrand, we can obtain

|f (m)(z)| = O

(
|z|k1 exp

2π

c
|z|
)
, z ∈ L,(15)

|f (m)(z)| = O(|z|k2), z ∈ L′ or L′′;(16)

here k1 , k2 are two positive constants. It follows from (15), (16) and the Phrag-
mén–Lindelöf principle that

(17) |f (m)(z)| = O

(
|z|k1 exp

2π

c
|z|
)
, −θ ≤ arg(z − z0) ≤ θ.

Since all limiting directions of J(f) belong to (−π/%, π/%) , by Lemma 1, there
exists a positive constant k such that (14) holds for θ ≤ arg(z − z0) ≤ 2π − θ .
This and (17) imply that f (m) is of order ≤ 1. This is a contradiction. The proof
of Theorem 3 is complete.

The proof of Theorem 4. Assume there exist a strip region S which parallels
θ ∈ (−π/2λ, π/2λ) , and some J(f (n)) such that J(f (n)) ∩ S is bounded. Denote
the width of S by c . Choose a point z0 ∈ S , by Lemma 2,

|f (n)(z)| = O

(
exp

2π

c
|z|
)
, z ∈ L : z = z0 + teiθ, t > 0.

Obviously, we can draw two rays

L′ : z = z0 + teiθ1 , t > 0, L′′ : z = z0 + teiθ2 , t > 0,

such that (θ1, θ2) ⊃ [−π/2λ, π/2λ] , θ2 − θ < π/λ and θ − θ1 < π/λ . Using the
same method as in the proof of Theorem 3, we can deduce

|f (n)(z)| = O

(
exp

2π

c
|z|
)
, θ1 ≤ arg(z − z0) ≤ θ2,

|f (n)(z)| = O(|z|2), θ2 ≤ arg(z − z0) ≤ θ1 + 2π.

It follows that f is of order ≤ 1. This is a contradiction. The proof of Theorem 4
is thus complete.
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