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Let X,, X, -+, be a sequence of random variables and write X for the
kth largest among X, X», .-+, X,.. If {k.} is a sequence of integers such that
kn — ®, k,/n — 0, the sequence {X|»'} is referred to as the sequence of
intermediate order statistics corresponding to the intermediate rank se-
quence {k,}. The possible limiting distributions for X{*' have been character-
ized (under mild restrictions) by various authors when the random variables
Xy, X;, --- are independent and identically distributed. In this paper we
consider the case when the {X.} form a stationary sequence and obtain a
natural dependence restriction under which the “classical” limits still apply.
It is shown in particular that the general dependence restriction applies to
normal sequences when the covariance sequence {r.} converges to zero as
fast as an appropriate power n™" as n — o,

1. Introduction. The problem of finding the asymptotic distribution of the maxi-
mum term from a stationary dependent sequence of random variables (r.v.’s) has been
extensively investigated in the literature. Of particular interest are the cases in which the
concept of “approximate independence” is formulated mathematically in terms of condi-
tions such as “strong mixing” or, for normal sequences, conditions on the rate of decay of
the covariances. Loynes (1965) showed that under strong mixing and an additional
restriction, the (suitably normalized) maximum of a dependent sequence has the same
limiting distribution as the maximum of a corresponding independent and identically
distributed (i.i.d.) sequence, provided the latter sequence has a limiting distribution. This
limiting distribution is thus necessarily one of the three classical types of extreme value
limit laws. For stationary normal sequences Berman (1964) found covariance conditions
under which the distribution of the maximum converges to the double-exponential limit
law, which arises in the ii.d. normal case. More recently, Leadbetter (1974) obtained the
general result of Loynes under a weaker “distributional mixing” assumption and showed
that with Berman’s covariance conditions the normal case may be placed into the general
framework. Additionally, Leadbetter considered the related high-level exceedance problem
for stationary sequences, leading to corresponding limiting results for extreme order
statistics.

Our objective in this paper is to obtain analogous results for so-called intermediate
order statistics. Specifically, for a given sequence of r.v.’s {X,}, let X/ denote the kth
largest of X;, --., X, and let {&,} be integers such that 1 < %, < n for each n. Then if
kn— w0 but k./n — 0, (X7} is called a sequence of intermediate order statistics and {k,)
an intermediate rank sequence. Wu (1966) found that, subject to the mild restriction that
k, increase monotonically, when the {X,,} are i.i.d. the only possible nondegenerate limit
laws for the normalized sequence {a,(X{® — b,)} are normal and lognormal. In Section 2
we will establish general conditions under which the intermediate order statistic X'
from a stationary dependent sequence {X,} has the same asymptotic distribution as it
would if the {X,.} were i.i.d. These conditions parallel those used to obtain the correspond-
ing result in the extreme order statistic problem, a primary difference being that certain
more rapid “mixing” rates have to be assumed. Using our procedure, it is convenient to
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deal directly with an appropriate level exceedance problem and to regard that of asymptotic
distributions as a specialization. In Section 3 we show that under a certain decay of the
covariance function, our general conditions are satisfied by a stationary normal sequence
{X.}; in this instance it is known (see Cheng, 1965) that the asymptotic distribution of
X" for an independent sequence is itself normal and hence also is normal in the dependent
situation considered.

2. The general stationary case. First suppose that {X,} is an i.i.d. sequence of r.v.’s
with marginal distribution function (d.f.) F(x) = P(X; < x) and that {k.} is an intermediate
rank sequence. Let {u,} be real numbers, write S, = Y%, I,.; where I, ; is the indicator of
the event {X; > u,}, ie. I,; = 1if X; > u, and I,; = 0 otherwise, so that S,, is the number
of exceedances of the level u, by Xj, - - - , X,,, and let ® be the standard normal distribution
function. It follows from the Berry-Esseen theorem and the basic equality

PXE) = u,) = P(S, < kn)

that

(2.1) PXP <u,) > ®u) as n— o

if and only if

2.2) 1 — F(u) = ka/n — uvkn/n + 0(NEn/n).

Thus, there are constants ay, b.(a. > 0) such that a,(X{®’ — b,) has a limiting distribution
if and only if there exists a function u(x) such that, writing u,(x) = x/a, + bn,

(2.3) 1 = F(n(x)) = ka/n — u(x)VEu/n + 0(VEn/n)
for all continuity points of ®(u(x)), and furthermore if (2.3) holds then
P(a.(X{? — b,) =x) > ®(u(x)) as n— o

for all continuity points of ®(u(x)). Wu (1966) proved that if {k,} is nondecreasing then
the only possibilities for u(x) are

(i) ulx)=-alog|x|, x <0 (a>0)
u(x) = o, x=0

(i) w(x) =—o, x=0
u(x) = a log x, x>0 (a>0)

(i) u(x) =«
(iv) functions obtained by replacing x by ax + b (¢ > 0) in (i), (ii), or (iii).

It may be noted that if, for example, F is continuous, then for any real it is possible to
choose levels u, satisfying (2.2), and hence such that (2.1) holds, but of course these levels
may not necessarily constitute a family u,(x) = x/a, + b, which satisfies (2.3) for some
function u(x).

Our approach to proving that, say, (2.1) holds for a stationary dependent sequence {X,}
is to assume that (2.2) holds and then to use a dependent central limit theorem to prove
that

P(S.<k) > Pu) as n—>

and thus that (2.1) holds. Since (2.1) and (2.2) are equivalent for independent sequences,
the assumption (2.2) can alternatively be stated as PXf =< u,) — ®(u) where
(X ») is the k,th order statistic in the “associated independent sequence” X;, X, - - - , that
is, an ii.d. sequence which has the same marginal d.f. F as each X,,. For easy reference we
start by stating two known results from dependent central limit theory. The first one is
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Lemma 5.2 of Dvoretzky (1972), while the second one follows for example from Theorem
2.3 of Durrett and Resnick (1978).

LEMMA 2.1. Let X be an r.v. on (R, o, P), write o(X) for the o-field generated by X,
let 7 be a sub-o-field of </ and define

a =sup{| P(AB) — P(A)P(B)|: A€ o(X), BE #}.
If| X| = 1 then
E|EX|#) - EX)| = 4a.

LEMMA 2.2. Forn =1 let {X,;}¥ ber.v.’s on the probability space (2, B, P) and let
{%..;} be sub-o-fields of # such that X,; is é..-measurable. Suppose further that %,,:; C
n,iv1 and that E(X, ;41| %ni) = 0 for 1 = i < Ny If | Xpi| < €1, 1 < i < N,, for some
constants &, — 0, and if

(24) ?;"2 E(Xﬁ,, I (gn,i—l) —p 02 as n—
for some constant o = 0, then
PN X,i<x) > ®(x/o) as n— o
for all real x, where ®(x/0) is defined to be 1 for x =0 and 0 for x <O0.
To be able to give conditions restricting the dependence in the sequence {X,.} it is useful

to introduce certain “mixing coefficients.” Let %,, = o(I,1 ---, I.z) be the o-field
generated by I,,; - - -, I, .; define

ai(n, k) = sup{| P({Xn+i < tn} N B) — P(Xs+i < upn)P(B)|; i = 0, B € Bopn-r},
as(n, k) = sup{| P({Xn+i < tn, Xn+; < u,} N B)
— P(Xp+i < Un, Xprj < u))P(B); 1,j=0,| i —j | < k, BE Bnn-+r};
and put
a(n, k) = max{ai(n, k), az(n, k)}.
It is easily checked (by simply listing the events of o (I, n+i, Inn+j)) that
4a(n, k) = sup{| P(A N B) — P(A)P(B)|; A € 0 (Inn+is Inn+s)
for some i,j=0,|i—j| <k, BE Bnn-t}.

Our main dependence condition, to be called A(u.), depends on the levels u, and involves
sequence {4}, {¢,} of integers which of course may be chosen to be different for different
sequences {u,}.

Condition A(u,) will be said to hold if

2 S1E PXG > ty X1 > tn) = (1= F@a)?| >0 a5 n— o,
and if furthermore there exist sequences {4} and {¢,} of integers satisfying ¢, < 4, <
VEn, ¢4 = 0(4), 4, = 0(Vk,) such that
n

a(n, 4)—> 0 and n an,t,)—>0 as n— oo,

n n

The mixing condition in A(u,) differs from the strong mixing condition which uses the
mixing coefficient

a(n, k) = sup{| P(AB) — P(A)P(B)|; A € 6(Xy, Xp+1, ---), BE o(Xy, -+« , Xn1)},

in that substantially fewer events are involved. However, for a strongly mixing sequence,
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clearly a(n, k) = a(n, k') if 2 < k’, and hence the second part of A (u,) follows if

n

an,¢,) >0 as n— o,

n

However this condition may be harder to check; in particular this seems to be the case
when {X,} is normal.

To state the next lemma, which contains the major part of the proof of (2.1) for
dependent sequences, we need some further notation. We partition the first n integers into
long and short “intervals” oJy, J4, Jo, J3, -+, Jn, with Ji, J3, --+, Jn, of alternating
lengths 4, ¢7, -+ -, 4 and with J_of length r < ¢, + ¢7. Clearly

(2.5) Nn ~ n/dz.
Further, define %,,; = o(I,j; j € U=y J3) and 5 = o (I, ;; j € Uk1 J%), and put
Xni = Yjea {Inj = EIn;| €ni-0}/VEn

and

Xpi=Yjes {Inj— E(;| i)}/ Vkn

for2<i< N,.

LEMMA 2.3. Suppose that the stationary sequence {X,} satisfies A(u,). Then

(2.6) YN Y ket | ETnIng) — E(I)E (I)| /kn— 0
and
(2.7) N Sea AEUnj | Guiz1) = E (1)} /VEn—1, 0

as n — oo, and (2.6) and (2.7) hold also when J; is replaced by J: and %, by €. If in
addition (2.2) holds then

(2.8) N E(X2; | Gniz1) - 1, Zf\i"? EXZE | niz) =1, 0

as n— o,

Proor. Since E(I,;) =1 — F(u,) and E (I, ;1) = P(X ; > u,, Xx > u,) it follows by
stationarity that

Sl S ikedijrek | ETnjIng) — E (L )E (Lz) | /Fn
< Noly YU | P(Xy > thny Xvwi > ) — (1 = F(u))? | /Fon,

which tends to zero as n — o by A (u,) since N,4,/k, ~ n/k,. This proves (2.6).
Next by Lemma 2.1 and stationarity we have for j € J; that

E|E(,,| %n-1) — E(I,))| < 4ai(n, 1) < 4a(n, ¢7),
and hence by A(u,) that
S Yies B | Bl | nict) = EL,) | [Vko =< 4No6oii(n, £1)/VEn
= Kna(n, f’,,)/s/k—,,—> 0 as n— o,
and (2.7) follows.
To prove the first part of (2.8) we note that
(29) EX7%i| Gni-1) = Yored {EUn,Lnr | 6ni-1) — E (L, | €ni)E Ing | €ni-1)}/En.
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Reasoning as above we have
(2.10) N Sked B | EniIng | Gni-1) — E InIns)|/n

= 16N,.¢ia(n, £,)/kn— 0 as n— o,
and furthermore, since | I, ;| < 1,

E| E(I.,| 6ni-0)E Ik | 6ni-) — EInp)E (In,)|
=E [{E(Inj | 6ni-1) — E(I,;))}E (It | n,i-1) + E(Li ) {E (i | Gni-1) — E L)}
<E|E(L;| %)) — E(.,)| + E | E(Lnk | Gni-1) — EIns)]
=< 8ai(n, ¢1),
and thus it follows similarly that
(211) Y3 rea E | E(n; | 6nic)E Ink | 6nic1) — E(,)E(Ip)|/kn— 0 as n— o
Further, by (2.6), (2.5), and (2.2),
I Yine s AE UnsIn) — E (L) E (Ing)} ke
S Vs AE ;) — E*(I))} /ka
+ 2 Yinedujen {E (Lnjlnp) — E (L) E (Ig)} kn
(N, = 1)6a{(1 = F(u,)) — (1 = F(4))*}/kn + 0(1)

—1 as n— oo

and together with (2.9) through (2.11) this proves (2.8).

Finally, the proofs of the remaining assertions of the lemma are similar and are left to
the reader. 0O

Our main results now follow easily.

THEOREM 2.4. Let {X,} be a stationary sequence of r.v.’s, let {k,} be an intermediate
rank sequence, and let S, be the number of exceedances of u, by X,, « - - , X,. If (2.2) and
A(u,) hold then

P((Sy — E(S.))/VEn < x) > ®(x) as n— o
for all real x, and therefore
PX{ <uy) = P(S, <k,) > ®Pu) as n— w,

ProOF. Since |1, — E(I,;| %u.-1) | < 2 we have that | X, | < 2£,/Vk. — 0, and it
follows at once from (2.8) and the definition of {X,;} that the conditions of Lemma 2.2 are
satisfied (with o® = 1), and hence that

Y Xni—a © as n— o,
Similarly it follows that
S Xni—a0 as n—> oo,
Together with Lemma 2.3 this implies that
(Su = E(8:))/Vkn = 3 e (Inj — EL;)/VEkn + YN X, + ™ X

=2 =2
+ Y%, Yes, (E(Inj| ni-t) = E(I))} /VEa
+ 3% Yics AE(Lnj| 6nic) = E(In;)}/Vkn

—-sP as n—o x
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and thus proves the first part of the theorem.
Next by (2.2)

(kn = E(S2))/VEn = (kn = n(1 = F(,)))/Vka > u as n— o,
and, writing
P(S, < ky) = P((Sy — E(8,))/Vbn = (ks — E(S,))/VEy),

the last part of the theorem follows at once since ® is continuous. 0O

Using this result we obtain the following theorem, giving sufficient conditions for
X" to have an asymptotic distribution, which is the same as if the X,’s were ii.d.

THEOREM 2.5. Let {X,} be stationary and suppose that for some constants a, > 0, b,

P(a (X" — b)) = x) > ®(u(x)) as n—»

for all continuity points x of u where {X‘z’} is the independent sequence associated with
{X.}. If A(u,) is satisfied for u, = x/a, + b, for all continuity points x for which u(x) is
finite, then for such x

P(a. (X — b,) =x) > ®(ulx)) as n— o,
This then holds for all x if u is continuous (as is the case when for example k, increases

monotonically).

3. The normal case. In this section the general results obtained above are applied
to normal sequences. Let { X,,} be a stationary normal sequence which for convenience is
assumed to be standardized to have zero means and unit variances. We assume that its
covariance function r, = EX, X, satisfies

(3.1) r.=0(n")
for some constant p > 0 to be specified later. Write
8 =supsz1|7n|, 8 = SUPmzn|7m|.

It is easily seen that since r, — 0 we must have 8 < 1, and that (3.1) implies 8, = O(n™").
Further, let {%£.} be an intermediate rank sequence and define § = 6({k,}) by

6 =inf{6’; b, = O(n")).

Clearly 0 <= § <1 and %, = O(n®*) for all ¢ > 0.
Now, for x real, suppose that u, satisfies (2.2) (with u replaced by x), i.e. suppose that

(3.2) 1 — ®(un) = kn/n — xVka/n + o(Vka/n).

By making a first order expansion of ® around the point b,, it is easily seen that one
such u, is u, = x/a, + b, with

bo=® (1 — ku/n),  an=n® (by)/VEn

Somewhat more generally, u, = x/a, + b, for a), b) satisfying a;’a, — 1, a,* (b, — b.)
— 0 also satisfies (3.2). We require the following two useful technical results. First, for
{u.} satisfying (3.2) we have

ko~ 1 — ®(u,) ~ (27) " *u, exp(—u2/2),
and taking logarithms gives u, ~ v2 log n/k, so that
3.3) exp(—u2) ~ 4m(kn/n)? log n/k,.

In the following two lemmas, we find conditions on p which ensure that A (u,) is
satisfied.
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LEMMA 3.1. Suppose that § < 1 and that {r.} satisfies (3.1) for some p > 0. Then
EZEﬁan(X1>itn,X1+i>un)—(1—<I)(u,,))2|—>0 as n— o,

PrROOF. As a special case of a result used by Berman (1964) and others, we have that
|P(X: > ttn, X14i > Un) — (1 — @ (un))?| < K| 1| exp(—un/(1 +|1:]))

for some constant K (depending only on § but whose value may change from line to line
below). Hence

S | P>y, X > ) = (1= @ (u))?| = K S | il exp(—ait/ (1 + | n]),

and we estimate the latter sum by splitting it into two parts: for 1 =j < yand fory <j =
[VE.], where y = [(n/kn)"] with 0 < & < (1 — 8)/(1 + 6). By (3.3)

"‘1‘27 | i| exp(—un/(1 + | '|))<K£E o log £ )y—>0 as n—w
n i=1 | Ti| €Xp{—Un, ri =87 gkn Y

by the choice of v.
Since § < 1 and §, = O(n") by the assumption on {r,}, we have that §,u;, — 0 and n
— o, and hence (3.3) gives, for i > v,

Ea\’
exp(—u2/(1 + | r;|)) < exp(—uZ/(1 + §,)) = exp(—uj + §,un/(1 + 8,)) = K(;) log kﬁ
Thus, (defining the sum to be zero for y = [\/k_,,] )
n ko, N ka' n _
W YL | 7| exp(—u2/(1 + | 1)) = K- " log - YR || = K" log 1~ IR o

i=y+1
= K% log ki(kﬁ,‘-ﬂ’/2 +log VEn + 1),

where the three terms in the parentheses take account respectively of the cases p <1, p
=1, and p > 1. This expression tends to zero since p > 8, thus concluding the proof of the
lemma. 00

To establish the latter part of A(u,), we shall further extend an important method, due
to Slepian, Berman, and Cramér, from the extreme value theory of normal processes. In
addition to conditions on p, we shall for convenience assume that &, does not increase too
slowly, or more precisely that

(3.4) kn/(log n)?? — 0 as n— .
LEMMA 32. Suppose that {r,) satisfies (3.1) and (3.4) with p > max(360/2,
2(2 — 1/0)) and that {u,)} satisfies (3.2). Then there exist sequences {4} and {/,} which

satisfy the requirements of A(u,).

Proor. We first show that there exists a sequence {¢.} with ¢, <+vk, and £, =
o(Vky) such that

(3.5)

n
a(n,4,) >0 as n— .
N
First, by (3.4), a sequence {/,} can be chosen so that £, = o( Vk, ), b= VE. but
such that £, = (log n)'/*. We shall impose a slight further restriction on ¢; later, but for the
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moment just assume these properties. Then since 8, < Kn™ by (3.1), u,z,S/nr = K (log n)(log
n)~' = K, and hence by (3.3), forj = £,

(3.6) exp(—un/(1 + §,)) = exp(—uf + u28;/(1 + §)) < K (kn/n)? log n/k,.

Now let B € o(I,1, «++, Lyn- ) and £= 0 be fixed. Then B is a disjoint union of sets of
the form N {I,,, = x:}, where each x; is zero or one, and hence for anyj,1=j=<n-=
ln,

B = By{I.;=0} U B:{I,,=1}

where B, and B; are sets of the same general form as B, except that the jth factor in the
intersections are missing. It is evident that

B={(X;, X)) €B),Bi= {(Xs, -+, Xj1, Xju1, -+, Xu_p) € B, i=0,1,

for some sets B € R"» By, B, € R~ 1,

Let R; be the covariance matrix of the vector (Xi, --., X, ¢, Xnvo), let R
be the covariance matrix it would have if (X;, -+, X,_ ¢) and X, , were independent,
and define R, = AR, + (1 — h)R,. Since r, — 0, it is readily shown that X; is not linearly
dependent on Xj, - - -, X, for any j, from which it follows that R; and hence R}, is positive
definite. Writing (with an obvious, compressed notation)

F(h):f...fjn fr
TeB X, /==

where & = (x1, « + -, X,— ) and f, is the density function of a zero-mean normal vector with
covariance matrix R;, we have that

1
37 |P({Xuss<tn) N B) — P(Xor, < u)P(B)| = | F(1) — F(0)| < f |F’|.
0

Proceeding as in Leadbetter, Lindgren, and Rootzén (1979, pages 46-47) (cf. also Cramér
and Leadbetter, 1967, pages 268-269), we obtain

, “n 8f
3.8 F'h)y=Y""" 1 Frperj| «o- .
(3.8) (h) Z =1 Tn+/~j J' s f J; e 0X;0Xn+ ¢

As above, {X € B} = {£* € By} {x; S ux} U {&* € B} {x; > u,) where £* = (x, - - -, %1,
Xj+1, =+, Xn—¢), and performing the integrations over x, and x,. , gives

u,l up 02
f...ff j a‘afh =j... fh(xj=xn+f=un)

E*El_‘% X=TR IX, = Xj0%n+ o f*eﬁ)
SJ ffh(xj = Xt e = Un)

where fi(x; = X+, = u,) is the function of ¥* which is obtained by putting Xj = Up, Xn4+ =
un in fn. The last integral is easily seen to be bounded by Kexp(—u2/(1 + | Fns /) , with
K depending only on 8. Next,

e
L. == «.. fh(x,=x,,+/=un)~
f‘ _f £/=“n £n+/=_°° ax]axn+/ T*eB

xX*eB;

Again, the modulus of the latter integral is seen to be bounded by K exp(—u2/(1 +
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| 72+/-1)), and it follows that

B S 9x,0x,

Inserting this into (3.7) and (3.8) gives

= K exp(—=tn/(1 + | s 1))

| P({Xn+s = tta} N B) — P(Xp+s < un) P(B)| < K Y= | P 1) | exp(—uZ/(1 + | 7ot r=i]))
=K Y- Sexp(—un/(1 + 8))).
Since the last expression is independent of the particular #and B considered, we have that
ai(n, £,) = K Y Sexp(—un/(1 + §)).
Thus, by again using r» = O(n™") and (3.6), we have

n n kn : n
—a(n,/ﬁ)sK—(—) log——Y5-sj™"
(3.9) N Vi \n) 182

n k3/2

=< Klog k——;-{&i{"" +log n + n'™*)

(which takes account of the three possibilities p > 1, p = 1, and p < 1).

Since p > max(36/2, 2(2 — 1/8)) this expression clearly tends to zero when p < 1. For
p > 1it is readily seen that ¢, may be redefined (by increasing if necessary, keeping
Zn = o s/k_,,), 4 < «/73:) so that (3.9) still tends to zero. Hence (3.5) follows.

The proof that nk;"?a:(n, 4,) — 0 as n —  for the above choice of ¢, is only
notationally more complicated, and together with (3.5) this shows that

n
an, ) >0 as n— oo,

vk, i

It is now easy to see in the same way that, for any sequence &, with £, < 4, <Vk. , we

have

an, 4,) >0 as n— «,

vk,

and this proves the lemma. 0O

It now follows at once that A(u.), and hence the results of Theorems 2.4 and 2.5, hold
for stationary normal sequences which satisfy the above conditions. To avoid repetition
we only state an analog of Theorem 2.5.

THEOREM 3.3. Suppose that {X,} is a stationary normal sequence (zero mean, unit
variance), and {k,} an intermediate rank sequence such that
r.=0(n""), some p>max(360/2, 22— 1/6)),
and suppose that in addition k,/(log n)*? — «. Then

P@. (X" —b,)=x) > ®(x) as n—>

for all real x, where a, and b, are defined by ®(b,) = 1 — k./n and a, = n®’(b,) Nk .

Finally, it should be remarked that the covariance condition of the theorem does not
seem to be optimal. Perhaps even a condition like
kn

;logkan?=1|r,»|—>0,



662 V. WATTS, H. ROOTZEN AND M. R. LEADBETTER

or, translated into terms of (3.1), p > 6, may be sufficient. In fact, we have been able to
show that if X, can be written as a moving average of independent normal random
variables X,, = Y2 . ¢;Y,—;, with ¢, = O(n™") for some p > max(0, %), then the conclusion
of Theorem 3.3 holds. In particular, this provides a large class of examples of processes
with

rn=0(®™),

such that P(a.(X:, — b,) =< x) — ®(x) for any p > max(6, ).
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