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ON LIMITING DISTRIBUTIONS OF ORDER STATISTICS WITH
VARIABLE RANKS FROM STATIONARY SEQUENCES
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Let {¢,) be a stationary sequence and £{™ < --- < £ be the order *
statistics of £,...,§,. In this paper the limiting distribution of {g“”} where
{k,} satisfles min(k,,n — k,) — oo, is determined under appropriate condi-
tions. Further results for some special {&,} that satisfy &£,,/n = A € [0,1] are
also obtained. These results are applied to discussing the limiting distribu-
tions of corresponding order statistics from m-dependent stationary se-
quences and stationary normal sequences.

1. Introduction. Let {£,} be a sequence of random variables and ¢ < - - -
< ¢ be the order statistics of £,,...,£,. Then {éﬁl")} is called the sequence of
order statistics with rank sequence {k,} from the {£, }. Write A, = k,/n and

=[nA,(1 — X,)]*/% A rank sequence {k,} is said to be variable if min(k,,,

n — k,) — oo, or equivalently A, - co. Two kinds of variable ranks are of
special inte“rest: the intermediate rank sequences that satisfy A, - 0 or 1 and
the central rank sequences that satisfy A, — A, A € (0, 1). In the case when {£}
is iid. and {&,} is variable, Smirnov (1952) gave a necessary and sufficient
condition for the normalized sequence {(52”) — b,)/a,} to converge weakly to a
certain d.f. Based on this condition, the limiting distributions of the sequences of
order statistics with the intermediate and central rank sequences from i.i.d.
sequences were extensively studied by Smirnov (1952), Cheng (1965), Wu (1966)
and others [cf., Leadbetter, Lindgren, and Rootzén (1983)]. Recently, the above
works have been extended to stationary sequences. For the intermediate rank
sequences, Watts (1977) and Watts, Rootzén, and Leadbetter (1982) have shown
that the results of Wu (1966) are still true for the stationary sequences under
some condition A(u,) and especially for the stationary normal sequences under
some condition on their correlation sequences. The central rank sequences have
been discussed by Cheng (1980), but the mixing condition used there is hard to
check even for the stationary normal sequences.

The present paper is devoted to the same objective. We will be concerned with
the general variable rank sequences, in order to deal with the intermediate and
central rank sequences simultaneously. In Section 2, a central limit theorem is
given for stationary indicator arrays. This theorem is applied to discussing the
limiting distributions of the sequences of order statistics with variable rank
sequences from stationary sequences in Section 3. Further results for some special
intermediate and central rank sequences are also given in Section 3. In Section 4,
we discuss two special kinds of stationary sequences, the m-dependent stationary
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ORDER STATISTICS FROM STATIONARY SEQUENCES 1327

sequences and the stationary normal sequences. It will be seen that our condi-
tions are easily checked for these special sequences.

2. A central limit theorem for stationary indicator arrays. Let {I, ,,
j=1,...,m,, n=1,2,...) be an array of random variables on some probability
space (2, #, P). We call {I, ;} a stationary indicator array if the following
conditions are satisfied: (1) for each n, (I, ,,..., I, ,, } is stationary; (2) for each
n, P(I,, =)+ P(1,,=0)=1,i=1,..,m, (3) m, = o0 as n - oo. Denote
P, = P(In,i = 1)’ 9, = 1- Dy dn = (mnpnqn)1/2’ and Sn = En=nl‘[n,i' In the spe-

cial case when I, ,,..., I, , are independent for each n, we have such a central
limit theorem: If

(2.1) d,— o asn— oo,

then

lim P((S, — m,p,)/d, < x)=®(x),

n—oo
where ®(x) is the standard normal d.f. In the following, we will extend this
theorem to the general stationary indicator arrays.

Denote p{’ = P(I, ;= 1I,,,;,=1),1<j<i+j<m, Itiseasily seen that if
i=0,then (I, ;=1I,,,;=1} = {I, ;= 1}, and therefore p{” = p,. Let &, , be
the o field generated by I, ,,..., I, s,ie, %, p=0{L, 1,...., L, ), k=1,...,m,.
For all positive integers s < m,, the mixing coefficients are defined as

a,(s) = sup{|P({I, ;= I, ;= 1} N B) —pY""P(B)|: BE€ %, ;,
l<k<k+s<i<j<m,).

Then we prove the following lemma.

LEMMA 2.1. Suppose that (2.1) hold. If there exist positive integers s, = o(d )
such that
(22) moan(5,)/dy = 0,

Sp

(2.3) 8,=1+2m,Y (p\ - p2)/d2— 0% < w,
i=1

and for some positive integers {t,} satisfying s, = o(t,) and t, = o(d,),
Sﬂ

(2.4) Yo=m, L i(p? ~p7)/(dit,) = 0,
i=1

then we have
where ®(x/0) is defined to be 1 for x = 0 and 0 for x < 0.

PrRoOOF. Denote i, = t, + s, and N, = [m,/{,] where [ ] is the integer part
of 4 real number. Split set {1,...,m,} into 2N, + 1 parts: J, , = {(k — Di, +
Lo.(k=Di, +t,), J,={(k—DE +t,+1,..., k), k=1..,N, and
Jn = {ann +1,...,m,}. Let I,k = ZiEJn'k(In,i _pn)/dm yn,k = ZieJ,,v,q(‘I’n,i -
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p)/d,, k=1,...,N, and 3, =L,c 5(I, ; — p,)/d,. Then we have

NII NII
(Sn_ mnpn)/dn= Zyn,k+ Z yn,k+yn'
k=1 k=1

Since |¥,| < 2¢,/d,, = 0, (2.5) will hold if we show both

Nn
(2.6) P( Zyn,ksx) - 2(x/0)

k=1
and P(X}-, Vo < x) = ,0(x/0). The latter can be shown in the same way as
(2.6). Hence we need only to show (2.6).

Let B, = Fy 1y, +1, for1 <k <N,and B, , = {¢,2}. We will consider a
martingale difference array (X, ., %, i k=1,...,N, n=1,2,...} instead of
{Yur)> where X, ;= 3, — E(3, 4|8, x—1)- By Lemma 5.2 of Dvoretzky (1972),
it follows that
Nn NII
Z yn,k - Xn,k
k=1 k=1

N’l
<X EIE(yn,kl‘@n,kvl)’
k=1

E

Nﬂ
< Z Z E|E(In,i|‘@n,k71)_EIn,i|/dn

k=11i€d,
<4m,a,(s,)/d, = 0.
This shows that (2.6) is equivalent to

- ,2(x/0).

Nn
(2.7) P( Y X, i<x
k=1

Using Lemma 5.2 of Dvoretzky (1972) again, we have

Nﬂ
E Z E(Xf,klggn,k—l) - NnEyr?,l
i=1

Nn
<Yy X [EIE(In,iIn,ﬂgn,kﬂ)_EIn,iIn,jl

k=11,j€d, 4
+EIE(In,i|‘@n,kvl) _EIn,i|
+ E\E(In,jl'@n,kfl) - EIn,Jl]/dz
< 12mt,a,(s,)/ds = 0.

Furthermore, noticing that |N,Xix, , (¢, — )Py — pr)/dil < N, t2a,(s,)/d}
— 0, and using conditions (2.4) and (2.5), we obtain

t’!
N,Ey?, = N,t,8,/m, — 2N,t,y,/m, + 2N, ¥ (¢, — )(pi" - p})/d;

i=s,+1

i 02.
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Hence it has been shown that
Nﬂ

> E(Xt?,k,‘@n,k—l) —’p°2'
C k=1

Since |X,, ,| < 2f,/d, — 0, it is also seen that
N,

n

> E[Xf,kl(|Xn,k| > E),gn,k~1] -0,
k=1

where I(-) denotes the indicator of a set. According to Hall and Heyde [(1980),
Corollary 3.1 and its remark], (2.8) follows, so that the lemma is proved. O

Now the central limit theorem we need follows:

THEOREM 2.1. Suppose that a stationary indicator array satisfies (2.1), and

[d.]
(2.8) supm,, . | P — pil/d} < oo
nx=1 i=1
and
(d,]
(2.9) 1+2m, ). (p,(,‘) - p2)/d? - a2

i=1
If there exist positive integers s, = o(d,) such that (2.2) holds, then (2.5) holds.

Proor. If (2.2) holds, then (2.9) is equivalent to (2.3) since

AN
m, Y (p®—-p?)/d:

i=s,+1

=< mnan(sn)/dn - O

Moreover, by choosing ¢, = [(s,d,,)"/*], (2.4) follows from the fact that

8

m 3 i - p2)/(d2t,)

=1

E]

(d,]
< (s,/t,)supm, 3 |p” — p2l/d} — 0.

nx1 i=1
Hence (2.5) is obtained by using Lemma 2.1. O

At the end of this section, we prove a law of large numbers for stationary
indicator arrays, which will also be used in the next section.

“THEOREM 2.2. If there exist positive integers s, = o(m,) such that a,(s,) —
0, then

(2.10) (S, — m,p,)/m, - 0.
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PROOF. Let ¢, = [(s,m,)"?] and denote £,, N,, J, 4, Iy > Jp and B, ,
as in the proof of Lemma 21. Let Z, ,=Y,c, (L,; =~ P.)/M, Z,, =
Yicg (Ini—p)/m, k=1,...,N, and Z, = Lic (L, — P,)/m,. Then it

’ A

follows that |Z,| < 2¢,/m, — 0 and |227212n,k| <2N,s,/m, — 0. Noticing that

NnEZ,f,1 < (1 + 4t,)/m, — 0, by the same way as proved in Lemma 2.1, we can
also show that
N, N,
P( Y Z, < x) - ®(x/0), ie, Zy x> 0.
k=1 k=1

Hence (2.10) holds. O

3. The results for general stationary sequences. Let {{,, n=1,2,...}
be a stationary sequence with one dimensional d.f. F(x) and two dimensional d.f.
FOx, y)=p(¢, <%,&,,:<¥), i =1,2,... . For convenience, denote FO(x) =
F(x) and F(x) = F¥(x, x). Let {k,} be a variable rank sequence and denote
A, =k, /n, A, =[nX (1 —X,)]"? asin Section 1. In the special case when {£,}
is an iid. sequence, Smirnov (1952) has shown that there exist constants
a, > 0, b, such that

(3.1) p(&}e':) <ax+ bn) - ¥(x), forsomed.f. ¥(x),

if and only if

(3.2) v,(x) = n[F(a,x + b,) = N, ] /A, = ,o(x)

for some nondecreasing, right continuous, and extended real function v(-) satisfy-
%ng lim, , __v(x)= —oo,lim,_, v(x) = 0. The relation between ¥(x) and v(x)
is

(3.3) V(x) = ®(v(x)).

We will extend the above result for the general stationary sequences. Unless
otherwise stated, we assume that the limiting d.f. ¥(x) is not degenerate, i.e., for
the function v(-) appearing on the right hand of (3.2), there exists a real number
x, such that — o0 < v(x) < o0.

Let {u,} be a real sequence satisfying

(3.4) 0n = nF(u,) =\,] /A, = o,
where v may be finite or infinite. Then it is obvious that {I, ;= I(§; < u,),
i=1,...,n, n=12,...} is a stationary indicator array with m,=n, p, =

F(u,), and p{¥ = F(u,). We will use all of the notation in Section 2 for such a
stationary indicator array. For example, the mixing coefficients are now

a,(s) = sup{‘p({gi <u,é<u,}NB)- F‘j‘”‘(un)P(B)]:B EZF, 1
1sk<k+s’sistn}.

We need a new notation A(A) defined as follows. It is easily seen that for each
X € (0, 1), there exists a real number a()) such that F(a(A) — 0) < A < F(a(})).
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We define A(A) to be the set {x: x < a(A)} if F(a(A)) = A=A - Fla(A)—0)
and the set {x: x < a(A)} if F(a(A)) — A <A — Fla(A) — 0).

LEmMaA 3.1. Let {u,} be a real sequence. Suppose that there exist positive
integers s,, = o(A ) such that

(3.5) na,(s,)/A, = 0.
Ifd, /A, — 1, then (2.8) and (2.9) are, respectively, equivalent to
[A.]
(3.6) supn Y, |F(u,) — F¥(u,)|/A% < o
n>1 i=1
and
(a1
(3.7) 1+2n Y [F(u,) - F*(u,)] /A% - o?.

i=1

Furthermore, if (3.4) holds with a finite v, then p,/A, = 1, q,/(1 —A,) > 1,
and (3.6) and (3.7) are, respectively, equivalent to

(38) Supn Zn |p(£1 = A(An)agi—rl = A()\n)) - }\Zn’/AQn < 0

nzl (=1

and

Sn

(3.9) 1+2nY [p(& € A(X,), &1 € A(N,)) — N ] /A% > o2

=1

Proor. If d,/A, — 1, then (3.5) and (2.2) are equivalent. Moreover, (2.8) is
equivalent to sup,.,nX!%!|p!" — pZ|/A2% < oc. The latter is equivalent to
sup, .. Lz, | pt — pZ|/A% < oo under the mixing condition (3.5) or (2.2), and so
is (3.6). Hence (2.8) and (3.6) are equivalent. Similarly, (2.9) and (3.7) are
equivalent. Noticing that A, — oo iff min(k,,n — k,) — oo, we have k,/A, >
k/? - o0. Hence if (3.4) holds with a finite v, ie., k(p,/A,— /A, =
n(p, — A,)/A, = v, then p, /A, — 1. Similarly we have ¢,,/(1 — A,,) = 1. From
the definition of A(A), it follows that

[1P(§ < up, §i0 < uy) — F2(u,)| = [P(§ € AN, €00 € AN,)) - X
<I|P(§ < w0 <u,) — P& € AN,), €00 € AN+ IFX(u,) — N
< 2[|F(u,) - P(§ € AN))| + 1F(u,) = A, ]
< 4|F(u,) = N, + 2|1P(§, € A(X,)) = N,| < 6F(u,) — A,|.

If (3.4) holds with a finite v, then it follows that

[AR] Sp
n Y |FO(u,) — FX(u,)l/N, - n Y |P(§ € A(X,), .0 € A(X,)) — N I/A%,
i=1

i=1

< 6ns,|F(u,) = A,|/A} + na,(s,)/A, =0,
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so that (3.6) and (3.8) are equivalent. Similarly, (3.7) and (3.9) are equivalent. The
lemma is now proved. O

THEOREM 3.1. Let {u,} be a real sequence. Suppose that d,/A, — 1 and
(3.4) holds with finite or infinite v. If there exist positive integers s, = o(A ) such
that (3.5), (3.6), and (3.7) hold with ¢® > 0, then as n — oo,

P& <u,) > ®(v/0).

Furthermore, if v in (3.4) is finite, the above conclusion still holds by replacing
(3.6) and (3.7) by (3.8) and (3.9).

Proor. By Theorem 2.1 and Lemma 3.1, the conclusion of this theorem
follows from the continuity of ®(x/¢) when ¢ > 0 and the fact that

P(¢"<u,)=P(S,>k,)

=1-P((S,— np,)/A, < —v,) > 1-®(-v/0) = ®(v/0).
O

Denote B(v(:)) = {x: o(:) is finite and continuous at x}. We state three
corollaries of Theorem 3.2 as follows:

COROLLARY 3.1. Suppose that there exist constants a, > 0 and b, such that
(3.2) holds for a finite valued function v(-). If there exist positive integers
s, = o(A,) such that (3.8) and (3.9) hold with o > 0 and such that (3.5) holds
forallu, = a,x + b,,x € B(v(+)), then (3.1) holds with

(3.10) ¥(x) = ®(v(x)/0).
Proor. Use Theorem 3.1. O

COROLLARY 3.2. Suppose that there exist constants a,, > 0 and b, such that
(3.2) holds for a continuous o(-). If there exist positive integers s, = o(A ) such
that (3.8) and (3.9) hold with ¢2 > 0 and such that (3.5) holds for all u, = a,x
+ b, x € B(u(-)), then (3.1) holds with (3.10).

ProorF. By Corollary 3.1, we need only to show that (3.1) holds if o(-) is
continuous and with infinite values at some points. Let x, = sup{x: v(x) < co}.
If v(x) = o, then x > x,. By taking x, € B(v(+)), x,, T x, and using the continu-
ity of ®(- /o) and o(-), it follows that
liminf P(£0” < a,x + b,) = 1iminfp(g§;;> < a,xy+ b,)

> lim P(E(”) <ax,+b ) = lim ®(ov(x,)/0) =1.
This shows that lim,, _, ,P(¢y” < a,x + b,) = ®(v(x)/0) still holds for x satis-
fying v(x) = oo. Similarly, we can show the above equation for x satisfying
v(x) = — o0, to complete the proof of Corollary 3.2. O
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COROLLARY 3.3. Let {k,} be a rank sequence satisfying 0 < liminf, , A, <
limsup, _, A, < 1. Suppose that there exist constants a,, > 0 and b, such that
(3.2) holds. If there exist positive integers s,, = o(n'/?) such that (3.8) and (3.9)
hold with 6% > 0, and such that n*/%a,(s,) = 0 forallu, = a,x + b,, then (3.1)
holds with (3.10).

PrOOF. It is easily seen that for a rank sequence satisfying 0 < liminf, , A,
< limsup, _, A, < 1,A, = O(n*/?) and therefore that (3.5) is equivalent to
n'’%a,(s,) = 0. By Theorem 3.1, it is sufficient to show that lim,_,  P(§}" <
a,x + b,) = 1 for x satisfying v(x) = o and lim, _, ,P(§{" < a,x + b,) = O for
x satisfying v(x) = —oo. If there exists a x, satisfying v(x,) = o such that
lim P(¢" < a,xy + b,) # 1, then we could choose a subsequence such that
lim, P(£") < a,x, + b,) < 1. Taking x, € B(v(-)), we have

0 < lim P(é}e’:) <a,x + bn,) < lim P(‘E%’:T) < a,x,+ bn,) <1,
-0 n

n’ - 00

n—co

and therefore for u,, = a,x, + b,,
0 < lim P((S, - n'F(u,))/n' =\, = F(u,)) <1.

Hence from Theorem 2.2, it follows that A, — F(u,)— 0. This implies
F(u,)/\, > 1 and [1 - F(u,)]/0 —A,)—> 1 since 0 < liminf, , A, <
limsup, , A, < 1. By Theorem 2.1, we would obtain

1=0(v(xy)/0) = lim ®(v,(x,)/0)= lim P(gﬁ,:f) < a,xy+ bn,) <1.

Thus it is impossible that lim,, _, ,P(£§{” < a,x, + b,) # 1 for an x, satisfying
v(x,) = c0. A similar discussion can be done for the case when v(x) = — o0, to
complete the proof of this corollary. O

Now let us discuss the cases with the intermediate rank sequences. In these
cases, A, > 0 or 1. We will assume that A, — 0 since the case A, - 1 can be
easily transformed to the former. It is easy to see that in all of the equations
(3.2), (3.5)—(3.9), A, may be replaced by k,/? under the assumption A, — 0. The
following theorem is the extension of Wu’s result.

THEOREM 3.2. Let {k,} be an intermediate rank sequence such that k, 1 o
and X\, — 0. Suppose that there exist constants a, > 0, b, such that (3.2) holds.
If there exist positive integers s,, = o(k,/*) such that

(3.8) supn Z |P(& € A(A,), €1 € AQX,)) — NoI/R, < o0,

n=1l {=1

(3.9) 1+2n Y [P(& € AN,), &1 € A(N,)) — 2] /R, — 02> 0,
i=1
and such that

(3.5) na,(s,)/ky/* -0

forallu, = a,x + b,,x € B(v(-)), then (3.1) holds with (3.10).
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PRroOF. It has been proved by Wu (1966) that the only possibilities for o(:)
that is defined by (3.2) are

D(x)={—ozlog|x|, x <0,
! x>0,a>0,

b

oy(x) = — 00, x<0
2 alogx, x>0,a >0,

vg(x) = x,

and other functions which can be obtained by replacing x by ax + b (¢ > 0 and
b are constants) in the above functions v,(x), i = 1,2, 3. All of these functions are
continuous. Hence this theorem follows from Corollary 3.2. O

The above theorem shows that, under the conditions of the theorem, the only
possible types of nondegenerate limiting laws of {52:)} are the same as in the i.i.d.
case, i.e,, ®(v(x)), i = 1,2,3, where v,(+) are indicated in the proof of theorem
3.2. It is also shown by the theorem that the limiting distributions of normalized
sequences {(£{" — b,)/a,} and {(é};ﬂ” — b,)/a,) may be different, where {£{"} is
the corresponding order statistics from the associated independent sequence {f nt
Anyway, the two limiting distributions will be the same if ¢? = 1, especially if
(3.8) and (3.9) are replaced by one equation:

[k1/%]
lim n Y |FO(u,) - F*(u,)|/k, = 0.
oo =

[See Watts, Rootzén and Leadbetter (1982).]

Now we discuss the cases with the central rank sequences. The general result
follows from Corollary 3.3. Here we discuss only the case when the ranks {%&,}
satisfy

(3.11) n'/2(X,—A) >t forsome A€ (0,1) and t€R.

If {£,) is ii.d., Smirnov (1952) has shown that the only possible nondegenerate
types of limiting laws of (£} are @(w;(x)—t/[A(1 — MV, i=1,2,3,4,
where

_ ] —oo, x <0,
wl(x)_{cx"‘, x20,¢>0,a>0,
w(x)={~c|x|“, x <0,
? , x20,¢>0,a>0,
(x) —c,|x|%, x <0,
x)= .
Ws cox”, x>0,¢,c,>0,a>0,
~ 00, x < -1,
w4(x)= Oa -1<x<1,
00, x=1.

We will extend this result for stationary sequences.
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It is easily seen that if the ranks {k,} satisfy (3.11), then (3.2) and (3.4) are,
respectively, equivalent to
(327)  wy(x) = n2[Fa,x + b,) = Al /M1 = M) > w(x)
and
(3.4”) w, = n¥?[F(u,) = A]/[M1 = N)]"* - w,
and our mixing condition may be restated as follows: There exist positive integers
s, = o(n'/?) such that
(3.5") n'%a,(s,) = 0.

LEMMA 3.2. Let {k,} be a rank sequence satisfying (3.11). Suppose that
(3.4”) hold with a finite w. If there exist positive integers s, = o(n'/*) such that
(3.5") holds, then (3.8) and (3.9) hold iff

(3.12) > [Pt € AN, £,y € AN) — X[ < o0,

n=1

and it can be found that

(813) o2=1+2 % [P(& € A\, &y € AN) —2]/[NL = D).

n=1

ProoF. It has been seen, by Lemma 3.1, that (3.8) is equivalent to

tn
supn 3 |FO(u,) = F*(u,)|/k, < =,
n=1l {=1
where s, < t, < n'/% Let ¢, = [sY/?n'/*]. Noting that k,/n - A € (0,1) and
¢, = o0, to show this lemma we need only to prove
tn

tn
lim Y |FO(x,) - F(u,)|= lim 3 |P(§ € AN, &y € AN)) = 22|
now

n—o0 g

This follows from the fact that

% IFO(u,) = F(u) = ¥ 1P(6 € A, i1 € AN) = ¥

i=1 i=

< 3 [IFO(u,) — P&, € AA), £,y € AQN))| + [F2(u,) — N2

i=1
< 6t,|F(u,) — Al =0,

so that (3.8) and (3.12) are equivalent. If (3.12) holds, by the same way as above,
we can show (3.9) with (3.13). O

THEOREM 3.3. Let {£,) be a stationary sequence and {k,} satisfy (3.11).
Suppose that (3.12) holds and o > 0 in (3.13). If there exist constants a, > 0
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and b, such that (3.2") holds and there exist positive integers s, = o(n'’?) such
that (3.5") holds for all u, = a,x + b,, then we have (3.1) with (3.10).

Proor. Use Corollary 3.3 and Lemma 3.2. O

4. Two examples: The m-dependent case and the normal case.. In this
section, we apply our general results to two special cases: the m-dependent
stationary sequences and the stationary normal sequences. For these special
cases, one could obtam simpler conditions under which (3.1) holds. And some-
times the variance o2 appearing in (3.10) can easily be determined.

It is easily seen that if {£,} is a m-dependent stationary sequence, (3.5') and
(3.8") hold by choosing s, = m. Furthermore, for a intermediate rank sequence
{k,}, (3.9) will hold if

(4.1) P(¢, € AN, 8., € AN ) /A, —0;,  i=1,....m.

At the same time, the variance o” is determined by

m
(4.2) 02=14+2Y o,

i=1

which is always positive.

THEOREM 4.1. Let {£,} be a m-dependent stationary sequence and {k,} be
an intermediate rank sequence satisfying k, 1 c0. Suppose that there exist con-
stants a, > 0 and b, such that (3.2) holds. If

(4.3) limF F(x)/F(x)=0,, i=1,...,m,
x = w(F)

then (3.1) holds with (3.10) and (4.2), where w(F) = inf{(x: F(x) > 0} and other
notation is the same as in Section 3.

Proor. Noticing the remarks before this theorem and using Theorem 3.2, we
need only to show that (4.3) implies (4.1). Choose x € B(v(-)) [such a number x
must exist since v(-) is nondegenerate as stated in Section 3] and let u, = a,x +
b,. Then, from (3.2), it follows that F(u,)/A, — 1 and that F(u,)/P(¢, €
A(A,), €, € A(A))) — 1. Note that both A, - 0 and F(u,)/A, > 1 imply
u, = w(F)as n - co. Hence we obtain that

lim P(§, € A(A,), ¢, € A(A,))/A, = lim FO(u,)/F(u,)
= lim F%x)/F(x) =0,
x—w(F)
as desired. O

The above theorem shows us that if the limiting distribution of {(£{") —
b,)/a,} exists, then the limiting distribution of {(g('” - b,)/a,} will exist under
only one condition (4.3), where, as in Section 3, {5(”)} is the corresponding order
statistics from the associated i.i.d. sequence {£,}. The similar conclusion holds for
central rank sequence satisfying (3.11). We state it as follows:
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THEOREM 4.2. Let {£,} be a m-dependent stationary sequence and {k,}
satisfy (3.11). Suppose that there exist constants a, > 0 and b, such that (3.2"")
holds. Then (3.1) holds with

(44)  o*=1+2Y [P(§ € AN), &,y € AN)) - R]/[M1 =)
i=1
if 62 in (4.4) is positive. Furthermore, if F(x) is continuous, (4.4) can be réplaced
by

62=1+2 f [FO(a(N)) — ] /[A1 - M),

i=1

where a()\) is a solution of the equation F(x) = A.
Proor. This follows from Theorem 3.3 and the definition of set A(A). O

Now we turn our attention to discussing the stationary normal sequence. The
case with intermediate rank sequence has been discussed by Watts, Rootzén, and
Leadbetter (1982). Here we consider only the case with central rank sequence.

Let {£,} be a stationary normal sequence with E¢, =0, E£ =1, and
E¢ ¢, =1, n=12,.... The one dimensional d.f. of {£,} is now the standard
normal d.f. ®(x). For any A € (0,1), we will denote the solution of the equation
®(x) = A by a(A). Let {&,} be a rank sequence satisfying A, - A € (0,1) and
denote b, = a(\,) and a, = kY*(1 — X\)/2/[n¢(b,)] where ¢(x) is the density
function of ®(x). According to Theorem 3.5 of Cheng (1965), we know (3.2) holds
with the following form:

(4.5) n2[®(a,x + b,) — A, ]/[M1-MN)]"?>x, «x€R.

LeEMMA 4.1. If for some positive integers {s, },
n
(4.6) n/2Y |r|—>0 asn— oo,

i=s,

then (3.5") holds for anyu,=a,x + b,, x € R.

Proor. By a fact quoted from Watts, Rootzén, and Leadbetter (1982), we
have

|P({¢; < u,§, <u} N B) - ®Y"(u)P(B)|< K 2:‘, |rjexp| —u?/(1 + |r)]

for any real number u, set B€ o({§, < u},i=1,...,k),integers 1l <k <k +s
< i £J < n, and some constant K. Then it follows that

n'2a,(s,) < Kn'/? ¥ |rjexp[ —u2/(1 + |r))]

i=s,

< Kexp(-u2/2)-n'? ¥ ).

i=s,
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For any u, =a,x + b,, —0 < x < o0, we have ®(u,) - A and therefore u, —
a(A) which implies exp(—uZ/2) — exp[ —a?(\)/2]. Hence (4.6) follows, to com-
plete the proof of this lemma. O

LEMMA 4.2. Suppose that 23_,|r,,| < co. Then

sn
(4.7) sup Y. [@9(b,) — A| < 0

n=li=1

and

sn
lim Y [@0(b,) — %]

i=1

(4.8) "
= (27)7" Z_ZOLnexp[—(ﬁ(?\)/(l +r)]/a - r2) dr

for any positive integers s, satisfying s, = oo.

Proor. Let ¢(x,,x,) be the joint density function of the normal random
vector (1;,m,) with En, = En, =0, En? = E9% =1, and Enn, = r. Then it is
well known that 9/(9r)¢(x,,x,) = 32/(dx, dx,)p,(x,,%,) [see Cramér and
Leadbetter (1967), p. 26]. Hence it is easily seen that

2O(b) — %(b) = ["4,(5,b) ar
(4.9) 0 )
= (277)_1'/(;lexp[—b2/(1 +n))/a-r2)"adr

for any real number b. Using (4.9) and noticing that ®(b,) = A ,,, we have, for any

n=1,
S

Y [29(b,) — X2

i=1

<@2mn) 'Y /ml(l - r2) " %qr
i=1"0

o0
< (27)7" Y arcsin|r.
i=1

This shows (4.7) since £ ,arcsin |r;| < oo iff £7°_,|r,,| < c0. Using (4.9) again, we
have

5 [00(5,) ~ 2] ~(2m) " ¥ [Texp[-a*(0)/(1'+ 1] /(1 - 1)
i=1 i=1"0
< K|b2 — a*(N)| i arcsin |r;| = 0,
i-1

where K is a constant. This proves (4.8). O
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THEOREM 4.3. Let {§,} be a stationary normal sequence with E§, = 0,
E¢ =1, and E¢ ¢, ., =1, n=12,..., and {k,} be a rank sequence satisfy-
ing A\, > A 0<A<]1.If

(4.10) Y nflr,| <
n=1
for some p > 1 and
(4.11) Y arcsinr, > —7A(1 — Aexpa?(A),

n=1
then there exist constants a, > 0 and b, such that
lim P(£(” < a,x+b,) = ®(x/0), x€R,

n— o0

where

T

(4.12) o2=1+[zA1-M)]"" i fo exp[—a?(A)/(1 + )] /(1 - r2)*dr

Is positive.

Proor. It is easily seen that (4.10) implies >%_,|r,| < oo. Hence the conclu-
sions of Lemma 4.2 hold. Furthermore, letting s, = [n'/??’], we have s, = o(n'/?)
and

n n n
V2 Y <282 Y Inl<2 ) iln.
i=s i=s i=s

This shows that (4.10) implies (4.6). Hence the conclusion of Lemma 4.1 holds. By
Corollary 3.3, to prove this theorem, it is sufficient to show that (4.11) implies
62 > 0. Notice that for any p € (—1,1),

/pexp[—aQ(}\)/(l +r)] /(1 = r2)"? dr > exp| —a?(A)]arcsinp.
0
Then we have
62> 1+[7A1 — Nexpa?(A)] ' Y arcsinz, > 0
n=1

if (4.11) holds. O
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